1
|
Padayatti PS, Leung JH, Mahinthichaichan P, Tajkhorshid E, Ishchenko A, Cherezov V, Soltis SM, Jackson JB, Stout CD, Gennis RB, Zhang Q. Critical Role of Water Molecules in Proton Translocation by the Membrane-Bound Transhydrogenase. Structure 2017. [PMID: 28648609 DOI: 10.1016/j.str.2017.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The nicotinamide nucleotide transhydrogenase (TH) is an integral membrane enzyme that uses the proton-motive force to drive hydride transfer from NADH to NADP+ in bacteria and eukaryotes. Here we solved a 2.2-Å crystal structure of the TH transmembrane domain (Thermus thermophilus) at pH 6.5. This structure exhibits conformational changes of helix positions from a previous structure solved at pH 8.5, and reveals internal water molecules interacting with residues implicated in proton translocation. Together with molecular dynamics simulations, we show that transient water flows across a narrow pore and a hydrophobic "dry" region in the middle of the membrane channel, with key residues His42α2 (chain A) being protonated and Thr214β (chain B) displaying a conformational change, respectively, to gate the channel access to both cytoplasmic and periplasmic chambers. Mutation of Thr214β to Ala deactivated the enzyme. These data provide new insights into the gating mechanism of proton translocation in TH.
Collapse
Affiliation(s)
- Pius S Padayatti
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Josephine H Leung
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Paween Mahinthichaichan
- Department of Biochemistry, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| | - Andrii Ishchenko
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Vadim Cherezov
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA; Laboratory for Structural Biology of GPCRs, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - S Michael Soltis
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - J Baz Jackson
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - C David Stout
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| | - Qinghai Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Jackson JB, Leung JH, Stout CD, Schurig-Briccio LA, Gennis RB. Review and Hypothesis. New insights into the reaction mechanism of transhydrogenase: Swivelling the dIII component may gate the proton channel. FEBS Lett 2015; 589:2027-33. [PMID: 26143375 DOI: 10.1016/j.febslet.2015.06.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 11/26/2022]
Abstract
The membrane protein transhydrogenase in animal mitochondria and bacteria couples reduction of NADP⁺ by NADH to proton translocation. Recent X-ray data on Thermus thermophilus transhydrogenase indicate a significant difference in the orientations of the two dIII components of the enzyme dimer (Leung et al., 2015). The character of the orientation change, and a review of information on the kinetics and thermodynamics of transhydrogenase, indicate that dIII swivelling might assist in the control of proton gating by the redox state of bound NADP⁺/NADPH during enzyme turnover.
Collapse
Affiliation(s)
- J Baz Jackson
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Josephine H Leung
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92307, USA
| | - Charles D Stout
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92307, USA
| | | | - Robert B Gennis
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
3
|
Thioredoxin-mediated reduction of the photosystem I subunit PsaF and activation through oxidation by the interaction partner plastocyanin. FEBS Lett 2011; 585:1753-8. [DOI: 10.1016/j.febslet.2011.04.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 04/27/2011] [Accepted: 04/28/2011] [Indexed: 11/17/2022]
|
4
|
Proton-translocating transhydrogenase: an update of unsolved and controversial issues. J Bioenerg Biomembr 2008; 40:463-73. [PMID: 18972197 DOI: 10.1007/s10863-008-9170-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
Abstract
Proton-translocating transhydrogenases, reducing NADP(+) by NADH through hydride transfer, are membrane proteins utilizing the electrochemical proton gradient for NADPH generation. The enzymes have important physiological roles in the maintenance of e.g. reduced glutathione, relevant for essentially all cell types. Following X-ray crystallography and structural resolution of the soluble substrate-binding domains, mechanistic aspects of the hydride transfer are beginning to be resolved. However, the structure of the intact enzyme is unknown. Key questions regarding the coupling mechanism, i.e., the mechanism of proton translocation, are addressed using the separately expressed substrate-binding domains. Important aspects are therefore which functions and properties of mainly the soluble NADP(H)-binding domain, but also the NAD(H)-binding domain, are relevant for proton translocation, how the soluble domains communicate with the membrane domain, and the mechanism of proton translocation through the membrane domain.
Collapse
|
5
|
Iwaki M, Cotton NPJ, Quirk PG, Rich PR, Jackson JB. Molecular recognition between protein and nicotinamide dinucleotide in intact, proton-translocating transhydrogenase studied by ATR-FTIR Spectroscopy. J Am Chem Soc 2006; 128:2621-9. [PMID: 16492047 DOI: 10.1021/ja0556272] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nicotinamide dinucleotide binding to transhydrogenase purified from Escherichia coli was investigated by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Detergent-free transhydrogenase was deposited as a thin film on an ATR prism, and spectra were recorded during perfusion with buffers in the presence and absence of dinucleotide (NADP(+), NADPH, NAD(+), or NADH) in both H(2)O and D(2)O media. IR spectral changes were attributable to the bound dinucleotides and to changes in the protein itself. The dissociation constant of NADPH was estimated to be approximately 5 muM from a titration of the magnitude of the IR changes against the nucleotide concentration. IR spectra of related model compounds were used to assign principle bands of the dinucleotides. This information was combined with IR data on amino acids and with protein crystallographic data to identify interactions between specific parts of the dinucleotides and their binding sites in the protein. Several IR bands of bound nucleotide were sharpened and/or shifted relative to those in aqueous solution, reflecting a restriction to motion and a change in environment upon binding. Alterations in the protein secondary structure indicated by amide I/II changes were distinctly different for NADP(H) and for NAD(H) binding. The data suggest that NADP(H) binding leads to perturbation of a deeply buried part of the polypeptide backbone and to protonation of a carboxylic acid residue.
Collapse
Affiliation(s)
- Masayo Iwaki
- School of Biosciences, University of Birmingham, UK
| | | | | | | | | |
Collapse
|
6
|
Bizouarn T, van Boxel GI, Bhakta T, Jackson JB. Nucleotide binding affinities of the intact proton-translocating transhydrogenase from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:404-10. [PMID: 15935988 DOI: 10.1016/j.bbabio.2005.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 04/28/2005] [Accepted: 04/29/2005] [Indexed: 12/01/2022]
Abstract
Transhydrogenase (E.C. 1.6.1.1) couples the redox reaction between NAD(H) and NADP(H) to the transport of protons across a membrane. The enzyme is composed of three components. The dI and dIII components, which house the binding site for NAD(H) and NADP(H), respectively, are peripheral to the membrane, and dII spans the membrane. We have estimated dissociation constants (K(d) values) for NADPH (0.87 microM), NADP(+) (16 microM), NADH (50 microM), and NAD(+) (100-500 microM) for intact, detergent-dispersed transhydrogenase from Escherichia coli using micro-calorimetry. This is the first complete set of dissociation constants of the physiological nucleotides for any intact transhydrogenase. The K(d) values for NAD(+) and NADH are similar to those previously reported with isolated dI, but the K(d) values for NADP(+) and NADPH are much larger than those previously reported with isolated dIII. There is negative co-operativity between the binding sites of the intact, detergent-dispersed transhydrogenase when both nucleotides are reduced or both are oxidized.
Collapse
Affiliation(s)
- Tania Bizouarn
- Laboratoire de Chimie Physique, Bat 350, Université Paris XI-Orsay, 91405 Orsay, France
| | | | | | | |
Collapse
|
7
|
Egorov MV, Tigerström A, Pestov NB, Korneenko TV, Kostina MB, Shakhparonov MI, Rydström J. Purification of a recombinant membrane protein tagged with a calmodulin-binding domain: properties of chimeras of the Escherichia coli nicotinamide nucleotide transhydrogenase and the C-terminus of human plasma membrane Ca2+ -ATPase. Protein Expr Purif 2005; 36:31-9. [PMID: 15177281 DOI: 10.1016/j.pep.2004.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Revised: 02/09/2004] [Indexed: 10/26/2022]
Abstract
A Ca2+ -dependent calmodulin-binding peptide (CBP) is an attractive tag for affinity purification of recombinant proteins, especially membrane proteins, since elution is simply accomplished by removing/chelating Ca2+. To develop a single-step calmodulin/CBP-dependent purification procedure for Escherichia coli nicotinamide nucleotide transhydrogenase, a 49 amino acid large CBP or a larger 149 amino acid C-terminal fragment of human plasma membrane Ca2+ -ATPase (hPMCA) was fused C-terminally to the beta subunit of transhydrogenase. Fusion using the 49 amino acid fragment resulted in a dramatic loss of transhydrogenase expression while fusion with the 149 amino acid fragment gave a satisfactory expression. This chimeric protein was purified by affinity chromatography on calmodulin-Sepharose with mild elution with EDTA. The purity and activity were comparable to those obtained with His-tagged transhydrogenase and showed an increased stability. CBP-tagged transhydrogenase contained a 4- to 10-fold higher amount of the alpha subunit relative to the beta subunit as compared to wild-type transhydrogenase. To determine whether the latter was due to the CBP tag, a double-tagged transhydrogenase with both an N-terminal 6x His-tag and a CBP-tag, purified by using either tag, gave no significant increase in purity as compared to the single-tagged protein. The reasons for the altered subunit composition are discussed. The results suggest that, depending on the construct, the CBP-tag may be a suitable affinity purification tag for membrane proteins in general.
Collapse
Affiliation(s)
- Maxim V Egorov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117871 Moscow
| | | | | | | | | | | | | |
Collapse
|
8
|
Pedersen A, Johansson T, Rydström J, Göran Karlsson B. Titration of E. coli transhydrogenase domain III with bound NADP+ or NADPH studied by NMR reveals no pH-dependent conformational change in the physiological pH range. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1707:254-8. [PMID: 15863102 DOI: 10.1016/j.bbabio.2004.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2004] [Revised: 12/14/2004] [Accepted: 12/15/2004] [Indexed: 10/26/2022]
Abstract
A pH-titration 2D NMR study of Escherichia coli transhydrogenase domain III with bound NADP(+) or NADPH has been carried out, in which the pH was varied between 5.4 and 12. In this analysis, individual amide protons served as reporter groups. The apparent pK(a) values of the amide protons, determined from the pH-dependent chemical shift changes, were attributed to actual pK(a) values for several titrating residues in the protein. The essential Asp392 is shown to be protonated at neutral pH in both the NADP(+) and NADPH forms of domain III, but with a marked difference in pK(a) not only attributable to the charge difference between the substrates. Titrating residues found in loop D/alpha5 point to a conformational difference of these structural elements that is redox-dependent, but not pH dependent. The observed apparent pK(a) values of these residues are discussed in relation to the crystal structure of Rhodospirillum rubrum domain III, the solution structure of E. coli domain III and the mechanism of intact proton-translocating transhydrogenase.
Collapse
Affiliation(s)
- Anders Pedersen
- Department of Chemistry, Göteborg University, P.O. Box 462, SE-405 30 Göteborg, Sweden
| | | | | | | |
Collapse
|
9
|
Sundaresan V, Yamaguchi M, Chartron J, Stout CD. Conformational change in the NADP(H) binding domain of transhydrogenase defines four states. Biochemistry 2003; 42:12143-53. [PMID: 14567675 DOI: 10.1021/bi035006q] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proton-translocating transhydrogenase (TH) couples direct and stereospecific hydride transfer between NAD(H) and NADP(H), bound to soluble domains dI and dIII, respectively, to proton translocation across a membrane bound domain, dII. The reaction occurs with proton-gradient coupled conformational changes, which affect the energetics of substrate binding and interdomain interactions. The crystal structure of TH dIII from Rhodospirillum rubrum has been determined in the presence of NADPH (2.4 A) and NADP (2.1 A) (space group P6(1)22). Each structure has two molecules in the asymmetric unit, differing in the conformation of the NADP(H) binding loop D. In one molecule, loop D has an open conformation, with the B face of (dihydro)nicotinamide exposed to solvent. In the other molecule, loop D adopts a hitherto unobserved closed conformation, resulting in close interactions between NADP(H) and side chains of the highly conserved residues, betaSer405, betaPro406, and betaIle407. The conformational change shields the B face of (dihydro)nicotinamide from solvent, which would block hydride transfer in the intact enzyme. It also alters the environments of invariant residues betaHis346 and betaAsp393. However, there is little difference in either the open or the closed conformation upon change in oxidation state of nicotinamide, i.e., for NADP vs. NADPH. Consequently, the occurrence of two loop D conformations for both substrate oxidation states gives rise to four states: NADP-open, NADP-closed, NADPH-open, and NADPH-closed. Because these states are distinguished by protein conformation and by net charge they may be important in the proton translocating mechanism of intact TH.
Collapse
Affiliation(s)
- Vidyasankar Sundaresan
- Department of Molecular Biology, 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
10
|
Althage M, Karlsson J, Gourdon P, Levin M, Bill RM, Tigerström A, Rydström J. Functional split and crosslinking of the membrane domain of the beta subunit of proton-translocating transhydrogenase from Escherichia coli. Biochemistry 2003; 42:10998-1003. [PMID: 12974635 DOI: 10.1021/bi034560x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proton pumping nicotinamide nucleotide transhydrogenase from Escherichia coli contains an alpha subunit with the NAD(H)-binding domain I and a beta subunit with the NADP(H)-binding domain III. The membrane domain (domain II) harbors the proton channel and is made up of the hydrophobic parts of the alpha and beta subunits. The interface in domain II between the alpha and the beta subunits has previously been investigated by cross-linking loops connecting the four transmembrane helices in the alpha subunit and loops connecting the nine transmembrane helices in the beta subunit. However, to investigate the organization of the nine transmembrane helices in the beta subunit, a split was introduced by creating a stop codon in the loop connecting transmembrane helices 9 and 10 by a single mutagenesis step, utilizing an existing downstream start codon. The resulting enzyme was composed of the wild-type alpha subunit and the two new peptides beta1 and beta2. As compared to other split membrane proteins, the new transhydrogenase was remarkably active and catalyzed activities for the reduction of 3-acetylpyridine-NAD(+) by NADPH, the cyclic reduction of 3-acetylpyridine-NAD(+) by NADH (mediated by bound NADP(H)), and proton pumping, amounting to about 50-107% of the corresponding wild-type activities. These high activities suggest that the alpha subunit was normally folded, followed by a concerted folding of beta1 + beta2. Cross-linking of a betaS105C-betaS237C double cysteine mutant in the functional split cysteine-free background, followed by SDS-PAGE analysis, showed that helices 9, 13, and 14 were in close proximity. This is the first time that cross-linking between helices in the same beta subunit has been demonstrated.
Collapse
Affiliation(s)
- Magnus Althage
- Department of Biochemistry and Biophysics, Göteborg University, Sweden
| | | | | | | | | | | | | |
Collapse
|
11
|
Pedersen A, Karlsson J, Althage M, Rydström J. Properties of the apo-form of the NADP(H)-binding domain III of proton-pumping Escherichia coli transhydrogenase: implications for the reaction mechanism of the intact enzyme. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1604:55-9. [PMID: 12765762 DOI: 10.1016/s0005-2728(03)00028-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proton-translocating nicotinamide nucleotide transhydrogenases contain an NAD(H)-binding domain (dI), an NADP(H)-binding domain (dIII) and a membrane domain (dII) with the proton channel. Separately expressed and isolated dIII contains tightly bound NADP(H), predominantly in the oxidized form, possibly representing a so-called "occluded" intermediary state of the reaction cycle of the intact enzyme. Despite a K(d) in the micromolar to nanomolar range, this NADP(H) exchanges significantly with the bulk medium. Dissociated NADP(+) is thus accessible to added enzymes, such as NADP-isocitrate dehydrogenase, and can be reduced to NADPH. In the present investigation, dissociated NADP(H) was digested with alkaline phosphatase, removing the 2'-phosphate and generating NAD(H). Surprisingly, in the presence of dI, the resulting NADP(H)-free dIII catalyzed a rapid reduction of 3-acetylpyridine-NAD(+) by NADH, indicating that 3-acetylpyridine-NAD(+) and/or NADH interacts unspecifically with the NADP(H)-binding site. The corresponding reaction in the intact enzyme is not associated with proton pumping. It is concluded that there is a 2'-phosphate-binding region in dIII that controls tight binding of NADP(H) to dIII, which is not a required for fast hydride transfer. It is likely that this region is the Lys424-Arg425-Ser426 sequence and loops D and E. Further, in the intact enzyme, it is proposed that the same region/loops may be involved in the regulation of NADP(H) binding by an electrochemical proton gradent.
Collapse
Affiliation(s)
- Anders Pedersen
- Department of Biochemistry and Biophysics, Göteborg University, Box 462, 405 30, Göteborg, Sweden
| | | | | | | |
Collapse
|
12
|
Karlsson J, Althage M, Rydström J. Roles of individual amino acids in helix 14 of the membrane domain of proton-translocating transhydrogenase from Escherichia coli as deduced from cysteine mutagenesis. Biochemistry 2003; 42:6575-81. [PMID: 12767241 DOI: 10.1021/bi034172v] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proton-translocating nicotinamide nucleotide transhydrogenase is a membrane-bound protein composed of three domains: the hydrophilic NAD(H)-binding domain, the hydrophilic NADP(H)-binding domain, and the hydrophobic membrane domain. The latter harbors the proton channel. In Escherichia coli transhydrogenase, the membrane domain is composed of 13 transmembrane alpha helices, of which especially helices 13 and 14 contain conserved residues. To characterize the roles of the individual residues betaLeu240 to betaSer260 in helix 14, these were mutated as single mutants to cysteines in the cysteine-free background, and in the case of betaGly245, betaGly249, and betaGly252, also to leucines. In addition to the residues forming the helix, residues betaAsn238 and betaAsp239 were also mutated. Except for betaI242C, all mutants were normally expressed, purified, and characterized with respect to, e.g., catalytic activities and proton pumping. The results show that mutation of the conserved glycines betaGly245, betaGly249, and betaGly252, located on the same face of the helix, led to a general inhibition of all activities, especially in the case of betaGly252, suggesting a role of these glycines in helix-helix interactions. In contrast, mutation of the conserved serines betaSer250, betaSer251, and betaSer256 led to enhanced activities of all reactions, including the cyclic reaction which was mediated by bound NADP(H). Mutation of the remaining residues resulted in intermediate inhibitory effects. The results strongly support an important regulatory role of the membrane domain on the NADP(H)-binding site.
Collapse
Affiliation(s)
- Jenny Karlsson
- Department of Biochemistry and Biophysics, Göteborg University, Box 462, 405 30 Göteborg, Sweden
| | | | | |
Collapse
|
13
|
Johansson C, Pedersen A, Karlsson BG, Rydström J. Redox-sensitive loops D and E regulate NADP(H) binding in domain III and domain I-domain III interactions in proton-translocating Escherichia coli transhydrogenase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4505-15. [PMID: 12230562 DOI: 10.1046/j.1432-1033.2002.03144.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Membrane-bound transhydrogenases are conformationally driven proton-pumps which couple an inward proton translocation to the reversible reduction of NADP+ by NADH (forward reaction). This reaction is stimulated by an electrochemical proton gradient, Delta p, presumably through an increased release of NADPH. The enzymes have three domains: domain II spans the membrane, while domain I and III are hydrophilic and contain the binding sites for NAD(H) and NADP(H), respectively. Separately expressed domain I and III together catalyze a very slow forward reaction due to tightly bound NADP(H) in domain III. With the aim of examining the mechanistic role(s) of loop D and E in domain III and intact cysteine-free Escherichia coli transhydrogenase by cysteine mutagenesis, the conserved residues beta A398, beta S404, beta I406, beta G408, beta M409 and beta V411 in loop D, and residue beta Y431 in loop E were selected. In addition, the previously made mutants betaD392C and betaT393C in loop D, and beta G430C and beta A432C in loop E, were included. All loop D and E mutants, especially beta I406C and beta G430C, showed increased ratios between the rates of the forward and reverse reactions, thus approaching that of the wild-type enzyme. Determination of values indicated that the former increase was due to a strongly increased dissociation of NADPH caused by an altered conformation of loops D and E. In contrast, the cysteine-free G430C mutant of the intact enzyme showed the same inhibition of both forward and reverse rates. Most domain III mutants also showed a decreased affinity for domain I. The results support an important and regulatory role of loops D and E in the binding of NADP(H) as well as in the interaction between domain I and domain III.
Collapse
|
14
|
Althage M, Bizouarn T, Rydström J. Identification of a region involved in the communication between the NADP(H) binding domain and the membrane domain in proton pumping E. coli transhydrogenase. Biochemistry 2001; 40:9968-76. [PMID: 11502193 DOI: 10.1021/bi0103157] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The two hydrophilic domains I and III of Escherichia coli transhydrogenase containing the binding sites for NAD(H) and NADP(H), respectively, are located on the cytosolic side of the membrane, whereas the hydrophobic domain II is composed of 13 transmembrane alpha-helices, and is responsible for proton transport. In the present investigation the segment betaC260-betaS266 connecting domain II and III was characterized primarily because of its assumed role in the bioenergetic coupling of the transhydrogenase reaction. Each residue of this segment was replaced by a cysteine in a cysteine-free background, and the mutated proteins analyzed. Except for betaS266C, binding studies of the fluorescent maleimide derivative MIANS to each cysteine in the betaC260-betaR266 region revealed an increased accessibility in the presence of NADP(H) bound to domain III; an opposite effect was observed for betaS266. A betaD213-betaR265 double cysteine mutant was isolated in a predominantly oxidized form, suggesting that the corresponding residues in the wild-type enzyme are closely located and form a salt bridge. The betaS260C, betaK261C, betaA262C, betaM263, and betaN264 mutants showed a pronounced inhibition of proton-coupled reactions. Likewise, several betaR265 mutants and the D213C mutant showed inhibited proton-coupled reactions but also markedly increased values. It is concluded that the mobile hinge region betaC260-betaS266 and the betaD213-betaR265 salt bridge play a crucial role in the communication between the proton translocation/binding events in domain II and binding/release of NADP(H) in domain III.
Collapse
Affiliation(s)
- M Althage
- Department of Biochemistry and Biophysics, Göteborg University, S-413 90 Göteborg, Sweden
| | | | | |
Collapse
|
15
|
Rodrigues DJ, Venning JD, Quirk PG, Jackson JB. A change in ionization of the NADP(H)-binding component (dIII) of proton-translocating transhydrogenase regulates both hydride transfer and nucleotide release. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:1430-8. [PMID: 11231296 DOI: 10.1046/j.1432-1327.2001.02008.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transhydrogenase couples the transfer of hydride-ion equivalents between NAD(H) and NADP(H) to proton translocation across a membrane. The enzyme has three components: dI binds NAD(H), dIII binds NADP(H) and dII spans the membrane. Coupling between transhydrogenation and proton translocation involves changes in the binding of NADP(H). Mixtures of isolated dI and dIII from Rhodospirillum rubrum transhydrogenase catalyse a rapid, single-turnover burst of hydride transfer between bound nucleotides; subsequent turnover is limited by NADP(H) release. Stopped-flow experiments showed that the rate of the hydride transfer step is decreased at low pH. Single Trp residues were introduced into dIII by site-directed mutagenesis. Two mutants with similar catalytic properties to those of the wild-type protein were selected for a study of nucleotide release. The way in which Trp fluorescence was affected by nucleotide occupancy of dIII was different in the two mutants, and hence two different procedures for determining the rate of nucleotide release were developed. The apparent first-order rate constants for NADP(+) release and NADPH release from isolated dIII increased dramatically at low pH. It is concluded that a single ionisable group in dIII controls both the rate of hydride transfer and the rate of nucleotide release. The properties of the protonated and unprotonated forms of dIII are consistent with those expected of intermediates in the NADP(H)-binding-change mechanism. The ionisable group might be a component of the proton-translocation pathway in the complete enzyme.
Collapse
Affiliation(s)
- D J Rodrigues
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | |
Collapse
|
16
|
Metzler DE, Metzler CM, Sauke DJ. Electron Transport, Oxidative Phosphorylation, and Hydroxylation. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Bergkvist A, Johansson C, Johansson T, Rydström J, Karlsson BG. Interactions of the NADP(H)-binding domain III of proton-translocating transhydrogenase from escherichia coli with NADP(H) and the NAD(H)-binding domain I studied by NMR and site-directed mutagenesis. Biochemistry 2000; 39:12595-605. [PMID: 11027139 DOI: 10.1021/bi0004091] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using the purified NADP(H)-binding domain of proton-translocating Escherichia coli transhydrogenase (ecIII) overexpressed in (15)N- and (2)H-labeled medium, together with the purified NAD(H)-binding domain from E. coli (ecI), the interface between ecIII and ecI, the NADP(H)-binding site and the influence on the interface by NAD(P)(H) was investigated in solution by NMR chemical shift mapping. Mapping of the NADP(H)-binding site showed that the NADP(H) substrate is bound to ecIII in an extended conformation at the C-terminal end of the parallel beta-sheet. The distribution of chemical shift perturbations in the NADP(H)-binding site, and the nature of the interaction between ecI and ecIII, indicated that the nicotinamide moiety of NADP(H) is located near the loop comprising residues P346-G353, in agreement with the recently determined crystal structures of bovine [Prasad, G. S., et al. (1999) Nat. Struct. Biol. 6, 1126-1131] and human heart [White, A. W., et al. (2000) Structure 8, 1-12] transhydrogenases. Further chemical shift perturbation analysis also identified regions comprising residues G389-I406 and G430-V434 at the C-terminal end of ecIII's beta-sheet as part of the ecI-ecIII interface, which were regulated by the redox state of the NAD(P)(H) substrates. To investigate the role of these loop regions in the interaction with domain I, the single cysteine mutants T393C, R425C, G430C, and A432C were generated in ecIII and the transhydrogenase activities of the resulting mutant proteins characterized using the NAD(H)-binding domain I from Rhodospirillum rubrum (rrI). All mutants except R425C showed altered NADP(H) binding and domain interaction properties. In contrast, the R425C mutant showed almost exclusively changes in the NADP(H)-binding properties, without changing the affinity for rrI. Finally, by combining the above conclusions with information obtained by a further characterization of previously constructed mutants, the implications of the findings were considered in a mechanistic context.
Collapse
Affiliation(s)
- A Bergkvist
- Department of Biochemistry and Biophysics, Göteborg University, S-413 90 Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
18
|
Jeeves M, Smith KJ, Quirk PG, Cotton NP, Jackson JB. Solution structure of the NADP(H)-binding component (dIII) of proton-translocating transhydrogenase from Rhodospirillum rubrum. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1459:248-57. [PMID: 11004437 DOI: 10.1016/s0005-2728(00)00159-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Transhydrogenase is a proton pump found in the membranes of bacteria and animal mitochondria. The solution structure of the expressed, 21.5 kDa, NADP(H)-binding component (dIII) of transhydrogenase from Rhodospirillum rubrum has been solved by NMR methods. This is the first description of the structure of dIII from a bacterial source. The protein adopts a Rossmann fold: an open, twisted, parallel beta-sheet, flanked by helices. However, the binding of NADP(+) to dIII is profoundly different to that seen in other Rossmann structures, in that its orientation is reversed: the adenosine moiety interacts with the first betaalphabetaalphabeta motif, and the nicotinamide with the second. Features in the structure that might be responsible for changes in nucleotide-binding affinity during catalysis, and for interaction with other components of the enzyme, are identified. The results are compared with the recently determined, high-resolution crystal structures of human and bovine dIII which also show the reversed nucleotide orientation.
Collapse
Affiliation(s)
- M Jeeves
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | | | | | | | | |
Collapse
|
19
|
Bizouarn T, Fjellström O, Axelsson M, Korneenko TV, Pestov NB, Ivanova MV, Egorov MV, Shakhparonov M, Rydström J. Interactions between the soluble domain I of nicotinamide nucleotide transhydrogenase from Rhodospirillum rubrum and transhydrogenase from Escherichia coli. Effects on catalytic and H+-pumping activities. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3281-8. [PMID: 10824114 DOI: 10.1046/j.1432-1327.2000.01358.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nicotinamide nucleotide transhydrogenase from Escherichia coli is composed of two subunits, the alpha and the beta subunits, each of which contains a hydrophilic domain, domain I and III, respectively, as well as several transmembrane helices, collectively denoted domain II. The interactions between domain I from Rhodospirillum rubrum (rrI) and the intact or the protease-treated enzyme from E. coli was investigated using the separately expressed and purified domain I from R. rubrum, and His-tagged intact and trypsin-treated E. coli transhydrogenase. Despite harsh treatments with, e.g. detergents and denaturing agents, the alpha and beta subunits remained tightly associated. A monoclonal antibody directed towards the alpha subunit was strongly inhibitory, an effect that was relieved by added rrI. In addition, rrI also reactivated the trypsin-digested E. coli enzyme in which domain I had been partly removed. This suggests that the hydrophilic domains I and III are not in permanent contact but are mobile during catalysis while being anchored to domain II. Replacement of domain I of intact, as well as trypsin-digested, E. coli transhydrogenase with rrI resulted in a markedly different pH dependence of the cyclic reduction of 3-acetyl-pyridine-NAD+ by NADH in the presence of NADP(H), suggesting that the protonation of one or more protonable groups in domain I is controlling this reaction. The reverse reaction and proton pumping showed a less pronounced change in pH dependence, demonstrating the regulatory role of domain II in these reactions.
Collapse
Affiliation(s)
- T Bizouarn
- Department of Biochemistry and Biophysics, Göteborg University, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bizouarn T, Fjellström O, Meuller J, Axelsson M, Bergkvist A, Johansson C, Göran Karlsson B, Rydström J. Proton translocating nicotinamide nucleotide transhydrogenase from E. coli. Mechanism of action deduced from its structural and catalytic properties. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1457:211-28. [PMID: 10773166 DOI: 10.1016/s0005-2728(00)00103-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transhydrogenase couples the stereospecific and reversible transfer of hydride equivalents from NADH to NADP(+) to the translocation of proton across the inner membrane in mitochondria and the cytoplasmic membrane in bacteria. Like all transhydrogenases, the Escherichia coli enzyme is composed of three domains. Domains I and III protrude from the membrane and contain the binding site for NAD(H) and NADP(H), respectively. Domain II spans the membrane and constitutes at least partly the proton translocating pathway. Three-dimensional models of the hydrophilic domains I and III deduced from crystallographic and NMR data and a new topology of domain II are presented. The new information obtained from the structures and the numerous mutation studies strengthen the proposition of a binding change mechanism, as a way to couple the reduction of NADP(+) by NADH to proton translocation and occurring mainly at the level of the NADP(H) binding site.
Collapse
Affiliation(s)
- T Bizouarn
- Department of Biochemistry and Biophysics, Göteborg University, Göteborg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
21
|
White SA, Peake SJ, McSweeney S, Leonard G, Cotton NP, Jackson JB. The high-resolution structure of the NADP(H)-binding component (dIII) of proton-translocating transhydrogenase from human heart mitochondria. Structure 2000; 8:1-12. [PMID: 10673423 DOI: 10.1016/s0969-2126(00)00075-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Transhydrogenase, located in the inner membranes of animal mitochondria and the cytoplasmic membranes of bacteria, couples the transfer of reducing equivalents between NAD(H) and NADP(H) to proton pumping. The protein comprises three subunits termed dI, dII and dIII. The dII component spans the membrane. The dI component, which contains the binding site for NAD(+)/NADH, and the dIII component, which has the binding site for NADP(+)/NADPH, protrude from the membrane. Proton pumping is probably coupled to changes in the binding affinities of dIII for NADP(+) and NADPH. RESULTS The first X-ray structure of the NADP(H)-binding component, dIII, of human heart transhydrogenase is described here at 2.0 A resolution. It comprises a single domain resembling the classical Rossmann fold, but NADP(+) binds to dIII with a reversed orientation. The first betaalphabetaalphabeta motif of dIII contains a Gly-X-Gly-X-X-Ala/Val 'fingerprint', but it has a different function to that in the classical Rossmann structure. The nicotinamide ring of NADP(+) is located on a ridge where it is exposed to interaction with NADH on the dI subunit. Two distinctive features of the dIII structure are helix D/loop D, which projects from the beta sheet, and loop E, which forms a 'lid' over the bound NADP(+). CONCLUSIONS Helix D/loop D interacts with the bound nucleotide and loop E, and probably interacts with the membrane-spanning dII. Changes in ionisation and conformation in helix D/loop D, resulting from proton translocation through dII, are thought to be responsible for the changes in affinity of dIII for NADP(+) and NADPH that drive the reaction.
Collapse
Affiliation(s)
- S A White
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Recent developments have led to advances in our understanding of the structure and mechanism of action of proton-translocating (or AB) transhydrogenase. There is (a) a high-resolution crystal structure, and an NMR structure, of the NADP(H)-binding component (dIII), (b) a homology-based model of the NAD(H)-binding component (dI) and (c) an emerging consensus on the position of the transmembrane helices (in dII). The crystal structure of dIII, in particular, provides new insights into the mechanism by which the energy released in proton translocation across the membrane is coupled to changes in the binding affinities of NADP(+) and NADPH that drive the chemical reaction.
Collapse
Affiliation(s)
- J B Jackson
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.
| | | | | |
Collapse
|