1
|
Alieva RT, Ulasov AV, Khramtsov YV, Slastnikova TA, Lupanova TN, Gribova MA, Georgiev GP, Rosenkranz AA. Optimization of a Modular Nanotransporter Design for Targeted Intracellular Delivery of Photosensitizer. Pharmaceutics 2024; 16:1083. [PMID: 39204428 PMCID: PMC11360004 DOI: 10.3390/pharmaceutics16081083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/26/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Modular nanotransporters (MNTs) are drug delivery systems for targeted cancer treatment. As MNTs are composed of several modules, they offer the advantage of high specificity and biocompatibility in delivering drugs to the target compartment of cancer cells. The large carrier module brings together functioning MNT modules and serves as a platform for drug attachment. The development of smaller-sized MNTs via truncation of the carrier module appears advantageous in facilitating tissue penetration. In this study, two new MNTs with a truncated carrier module containing either an N-terminal (MNTN) or a C-terminal (MNTC) part were developed by genetic engineering. Both new MNTs demonstrated a high affinity for target receptors, as revealed by fluorescent-labeled ligand-competitive binding. The liposome leakage assay proved the endosomolytic activity of MNTs. Binding to the importin heterodimer of each truncated MNT was revealed by a thermophoresis assay, while only MNTN possessed binding to Keap1. Finally, the photodynamic efficacy of the photosensitizer attached to MNTN was significantly higher than when attached to either MNTC or the original MNTs. Thus, this work reveals that MNT's carrier module can be truncated without losing MNT functionality, favoring the N-terminal part of the carrier module due to its ability to bind Keap1.
Collapse
Affiliation(s)
- Rena T. Alieva
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Alexey V. Ulasov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Yuri V. Khramtsov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Tatiana A. Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Tatiana N. Lupanova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Maria A. Gribova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory St., 119234 Moscow, Russia
| | - Georgii P. Georgiev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Andrey A. Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory St., 119234 Moscow, Russia
| |
Collapse
|
2
|
De Simone G, di Masi A, Ascenzi P. Strategies of Pathogens to Escape from NO-Based Host Defense. Antioxidants (Basel) 2022; 11:2176. [PMID: 36358549 PMCID: PMC9686644 DOI: 10.3390/antiox11112176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 06/22/2024] Open
Abstract
Nitric oxide (NO) is an essential signaling molecule present in most living organisms including bacteria, fungi, plants, and animals. NO participates in a wide range of biological processes including vasomotor tone, neurotransmission, and immune response. However, NO is highly reactive and can give rise to reactive nitrogen and oxygen species that, in turn, can modify a broad range of biomolecules. Much evidence supports the critical role of NO in the virulence and replication of viruses, bacteria, protozoan, metazoan, and fungi, thus representing a general mechanism of host defense. However, pathogens have developed different mechanisms to elude the host NO and to protect themselves against oxidative and nitrosative stress. Here, the strategies evolved by viruses, bacteria, protozoan, metazoan, and fungi to escape from the NO-based host defense are overviewed.
Collapse
Affiliation(s)
| | | | - Paolo Ascenzi
- Laboratorio Interdipartimentale di Microscopia Elettronica, Via della Vasca Navale 79, 00146 Roma, Italy
| |
Collapse
|
3
|
Keith MF, Gopalakrishna KP, Bhavana VH, Hillebrand GH, Elder JL, Megli CJ, Sadovsky Y, Hooven TA. Nitric Oxide Production and Effects in Group B Streptococcus Chorioamnionitis. Pathogens 2022; 11:1115. [PMID: 36297171 PMCID: PMC9608865 DOI: 10.3390/pathogens11101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Intrauterine infection, or chorioamnionitis, due to group B Streptococcus (GBS) is a common cause of miscarriage and preterm birth. To cause chorioamnionitis, GBS must bypass maternal-fetal innate immune defenses including nitric oxide (NO), a microbicidal gas produced by nitric oxide synthases (NOS). This study examined placental NO production and its role in host-pathogen interactions in GBS chorioamnionitis. In a murine model of ascending GBS chorioamnionitis, placental NOS isoform expression quantified by RT-qPCR revealed a four-fold expression increase in inducible NOS, no significant change in expression of endothelial NOS, and decreased expression of neuronal NOS. These NOS expression results were recapitulated ex vivo in freshly collected human placental samples that were co-incubated with GBS. Immunohistochemistry of wild type C57BL/6 murine placentas with GBS chorioamnionitis demonstrated diffuse inducible NOS expression with high-expression foci in the junctional zone and areas of abscess. Pregnancy outcomes between wild type and inducible NOS-deficient mice did not differ significantly although wild type dams had a trend toward more frequent preterm delivery. We also identified possible molecular mechanisms that GBS uses to survive in a NO-rich environment. In vitro exposure of GBS to NO resulted in dose-dependent growth inhibition that varied by serovar. RNA-seq on two GBS strains with distinct NO resistance phenotypes revealed that both GBS strains shared several detoxification pathways that were differentially expressed during NO exposure. These results demonstrate that the placental immune response to GBS chorioamnionitis includes induced NO production and indicate that GBS activates conserved stress pathways in response to NO exposure.
Collapse
Affiliation(s)
- Mary Frances Keith
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | - Gideon Hayden Hillebrand
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Jordan Lynn Elder
- Manual Hematology and Coagulation Department, The Cleveland Clinic, Cleveland, OH 44195, USA
| | - Christina Joann Megli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| | - Yoel Sadovsky
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| | - Thomas Alexander Hooven
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- UPMC Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
- UPMC Children’s Hospital of Pittsburgh Richard King Mellon Institute for Pediatric Research, Pittsburgh, PA 15224, USA
- UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave. Rangos Research Building #8128, Pittsburgh, PA 15224, USA
| |
Collapse
|
4
|
Identification of essential genes for Escherichia coli aryl polyene biosynthesis and function in biofilm formation. NPJ Biofilms Microbiomes 2021; 7:56. [PMID: 34215744 PMCID: PMC8253772 DOI: 10.1038/s41522-021-00226-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/16/2021] [Indexed: 01/04/2023] Open
Abstract
Aryl polyenes (APEs) are specialized polyunsaturated carboxylic acids that were identified in silico as the product of the most widespread family of bacterial biosynthetic gene clusters (BGCs). They are present in several Gram-negative host-associated bacteria, including multidrug-resistant human pathogens. Here, we characterize a biological function of APEs, focusing on the BGC from a uropathogenic Escherichia coli (UPEC) strain. We first perform a genetic deletion analysis to identify the essential genes required for APE biosynthesis. Next, we show that APEs function as fitness factors that increase protection from oxidative stress and contribute to biofilm formation. Together, our study highlights key steps in the APE biosynthesis pathway that can be explored as potential drug targets for complementary strategies to reduce fitness and prevent biofilm formation of multi-drug resistant pathogens.
Collapse
|
5
|
Abstract
Flavohaemoglobins were first described in yeast as early as the 1970s but their functions were unclear. The surge in interest in nitric oxide biology and both serendipitous and hypothesis-driven discoveries in bacterial systems have transformed our understanding of this unusual two-domain globin into a comprehensive, yet undoubtedly incomplete, appreciation of its pre-eminent role in nitric oxide detoxification. Here, I focus on research on the flavohaemoglobins of microorganisms, especially of bacteria, and update several earlier and more comprehensive reviews, emphasising advances over the past 5 to 10 years and some controversies that have arisen. Inevitably, in light of space restrictions, details of nitric oxide metabolism and globins in higher organisms are brief.
Collapse
Affiliation(s)
- Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Sheffield, S10 2TN, UK
| |
Collapse
|
6
|
Picciano AL, Crane BR. A nitric oxide synthase-like protein from Synechococcus produces NO/NO 3- from l-arginine and NADPH in a tetrahydrobiopterin- and Ca 2+-dependent manner. J Biol Chem 2019; 294:10708-10719. [PMID: 31113865 PMCID: PMC6615690 DOI: 10.1074/jbc.ra119.008399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/17/2019] [Indexed: 01/01/2023] Open
Abstract
Nitric oxide synthases (NOSs) are heme-based monooxygenases that convert l-Arg to l-citrulline and nitric oxide (NO), a key signaling molecule and cytotoxic agent in mammals. Bacteria also contain NOS proteins, but the role of NO production within these organisms, where understood, differs considerably from that of mammals. For example, a NOS protein in the marine cyanobacterium Synechococcus sp. PCC 7335 (syNOS) has recently been proposed to function in nitrogen assimilation from l-Arg. syNOS retains the oxygenase (NOSox) and reductase (NOSred) domains present in mammalian NOS enzymes (mNOSs), but also contains an N-terminal globin domain (NOSg) homologous to bacterial flavohemoglobin proteins. Herein, we show that syNOS functions as a dimer and produces NO from l-Arg and NADPH in a tetrahydrobiopterin (H4B)-dependent manner at levels similar to those produced by other NOSs but does not require Ca2+-calmodulin, which regulates NOSred-mediated NOSox reduction in mNOSs. Unlike other bacterial NOSs, syNOS cannot function with tetrahydrofolate and requires high Ca2+ levels (>200 μm) for its activation. NOSg converts NO to NO3- in the presence of O2 and NADPH; however, NOSg did not protect Escherichia coli strains against nitrosative stress, even in a mutant devoid of NO-protective flavohemoglobin. We also found that syNOS does not have NOS activity in E. coli (which lacks H4B) and that the recombinant protein does not confer growth advantages on l-Arg as a nitrogen source. Our findings indicate that syNOS has both NOS and NO oxygenase activities, requires H4B, and may play a role in Ca2+-mediated signaling.
Collapse
Affiliation(s)
- Angela L Picciano
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Brian R Crane
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
7
|
Dong X, Liu Y, Zhang G, Wang D, Zhou X, Shao J, Shen Q, Zhang R. Synthesis and detoxification of nitric oxide in the plant beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 and its effect on biofilm formation. Biochem Biophys Res Commun 2018; 503:784-790. [PMID: 29913149 DOI: 10.1016/j.bbrc.2018.06.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
Abstract
Nitric oxide (NO) is an important gas signal that regulates many biological processes, and due to the high nitrogen recycling activity in the rhizosphere, NO is an important signaling molecule in this region. Thus, an understanding of the effect of NO on the rhizomicrobiome, especially on plant beneficial rhizobacteria, is important for the use of these bacteria in agriculture. In this study, the effect of exogenous NO on the beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 was investigated. The results showed that low concentrations of NO increased the ability of the strain SQR9 to form biofilms, while high concentrations of NO inhibited the growth of this bacterium. The SQR9 gene yflM encodes nitric oxide synthase (NOS), which is used to synthesize NO, while the gene ykvO encodes a sepiapterin reductase that is used to synthesize tetrahydrobiopterin, the coenzyme of NOS. Isothermal titration calorimetry and high-performance liquid chromatography analyses demonstrated an interaction between YkvO and NADPH. SQR9 has two hmp genes, although only one was observed to be responsible for NO detoxification through oxidization. This study revealed the effect of NO on plant beneficial rhizobacterium and assessed the ability of this strain to adapt to exogenous NO, which will help to improve the application of this strain in agricultural production.
Collapse
Affiliation(s)
- Xiaoyan Dong
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China; Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Yunpeng Liu
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Guishan Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Dandan Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xuan Zhou
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jiahui Shao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, PR China; Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
8
|
Abstract
Urinary tract infection (UTI) is one of the most common bacterial infections in humans, and the majority are caused by uropathogenic Escherichia coli (UPEC). The rising antibiotic resistance among UPEC and the frequent failure of antibiotics to effectively treat recurrent UTI and catheter-associated UTI motivate research on alternative ways of managing UTI. Abundant evidence indicates that the toxic radical nitric oxide (NO), formed by activation of the inducible nitric oxide synthase, plays an important role in host defence to bacterial infections, including UTI. The major source of NO production during UTI is from inflammatory cells, especially neutrophils, and from the uroepithelial cells that are known to orchestrate the innate immune response during UTI. NO and reactive nitrogen species have a wide range of antibacterial targets, including DNA, heme proteins, iron-sulfur clusters, and protein thiol groups. However, UPEC have acquired a variety of defence mechanisms for protection against NO, such as the NO-detoxifying enzyme flavohemoglobin and the NO-tolerant cytochrome bd-I respiratory oxidase. The cytotoxicity of NO-derived intermediates is nonspecific and may be detrimental to host cells, and a balanced NO production is crucial to maintain the tissue integrity of the urinary tract. In this review, we will give an overview of how NO production from host cells in the urinary tract is activated and regulated, the effect of NO on UPEC growth and colonization, and the ability of UPEC to protect themselves against NO. We also discuss the attempts that have been made to develop NO-based therapeutics for UTI treatment.
Collapse
|
9
|
Coexistence of multiple globin genes conferring protection against nitrosative stress to the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Nitric Oxide 2018; 73:39-51. [DOI: 10.1016/j.niox.2017.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 12/07/2017] [Accepted: 12/18/2017] [Indexed: 11/20/2022]
|
10
|
Seth D, Hess DT, Hausladen A, Wang L, Wang YJ, Stamler JS. A Multiplex Enzymatic Machinery for Cellular Protein S-nitrosylation. Mol Cell 2018; 69:451-464.e6. [PMID: 29358078 DOI: 10.1016/j.molcel.2017.12.025] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/22/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023]
Abstract
S-nitrosylation, the oxidative modification of Cys residues by nitric oxide (NO) to form S-nitrosothiols (SNOs), modifies all main classes of proteins and provides a fundamental redox-based cellular signaling mechanism. However, in contrast to other post-translational protein modifications, S-nitrosylation is generally considered to be non-enzymatic, involving multiple chemical routes. We report here that endogenous protein S-nitrosylation in the model organism E. coli depends principally upon the enzymatic activity of the hybrid cluster protein Hcp, employing NO produced by nitrate reductase. Anaerobiosis on nitrate induces both Hcp and nitrate reductase, thereby resulting in the S-nitrosylation-dependent assembly of a large interactome including enzymes that generate NO (NO synthase), synthesize SNO-proteins (SNO synthase), and propagate SNO-based signaling (trans-nitrosylases) to regulate cell motility and metabolism. Thus, protein S-nitrosylation by NO in E. coli is essentially enzymatic, and the potential generality of the multiplex enzymatic mechanism that we describe may support a re-conceptualization of NO-based cellular signaling.
Collapse
Affiliation(s)
- Divya Seth
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Douglas T Hess
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Alfred Hausladen
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Liwen Wang
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ya-Juan Wang
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jonathan S Stamler
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA.
| |
Collapse
|
11
|
Stress Responses, Adaptation, and Virulence of Bacterial Pathogens During Host Gastrointestinal Colonization. Microbiol Spectr 2017; 4. [PMID: 27227312 DOI: 10.1128/microbiolspec.vmbf-0007-2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Invading pathogens are exposed to a multitude of harmful conditions imposed by the host gastrointestinal tract and immune system. Bacterial defenses against these physical and chemical stresses are pivotal for successful host colonization and pathogenesis. Enteric pathogens, which are encountered due to the ingestion of or contact with contaminated foods or materials, are highly successful at surviving harsh conditions to colonize and cause the onset of host illness and disease. Pathogens such as Campylobacter, Helicobacter, Salmonella, Listeria, and virulent strains of Escherichia have evolved elaborate defense mechanisms to adapt to the diverse range of stresses present along the gastrointestinal tract. Furthermore, these pathogens contain a multitude of defenses to help survive and escape from immune cells such as neutrophils and macrophages. This chapter focuses on characterized bacterial defenses against pH, osmotic, oxidative, and nitrosative stresses with emphasis on both the direct and indirect mechanisms that contribute to the survival of each respective stress response.
Collapse
|
12
|
Shepherd M, Achard MES, Idris A, Totsika M, Phan MD, Peters KM, Sarkar S, Ribeiro CA, Holyoake LV, Ladakis D, Ulett GC, Sweet MJ, Poole RK, McEwan AG, Schembri MA. The cytochrome bd-I respiratory oxidase augments survival of multidrug-resistant Escherichia coli during infection. Sci Rep 2016; 6:35285. [PMID: 27767067 PMCID: PMC5073308 DOI: 10.1038/srep35285] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/13/2016] [Indexed: 12/30/2022] Open
Abstract
Nitric oxide (NO) is a toxic free radical produced by neutrophils and macrophages in response to infection. Uropathogenic Escherichia coli (UPEC) induces a variety of defence mechanisms in response to NO, including direct NO detoxification (Hmp, NorVW, NrfA), iron-sulphur cluster repair (YtfE), and the expression of the NO-tolerant cytochrome bd-I respiratory oxidase (CydAB). The current study quantifies the relative contribution of these systems to UPEC growth and survival during infection. Loss of the flavohemoglobin Hmp and cytochrome bd-I elicit the greatest sensitivity to NO-mediated growth inhibition, whereas all but the periplasmic nitrite reductase NrfA provide protection against neutrophil killing and promote survival within activated macrophages. Intriguingly, the cytochrome bd-I respiratory oxidase was the only system that augmented UPEC survival in a mouse model after 2 days, suggesting that maintaining aerobic respiration under conditions of nitrosative stress is a key factor for host colonisation. These findings suggest that while UPEC have acquired a host of specialized mechanisms to evade nitrosative stresses, the cytochrome bd-I respiratory oxidase is the main contributor to NO tolerance and host colonisation under microaerobic conditions. This respiratory complex is therefore of major importance for the accumulation of high bacterial loads during infection of the urinary tract.
Collapse
Affiliation(s)
- Mark Shepherd
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
| | - Maud E S Achard
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Adi Idris
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Makrina Totsika
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Minh-Duy Phan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kate M Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sohinee Sarkar
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cláudia A Ribeiro
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
| | - Louise V Holyoake
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
| | - Dimitrios Ladakis
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
| | - Glen C Ulett
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Alastair G McEwan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
13
|
Müller-Herbst S, Wüstner S, Kabisch J, Pichner R, Scherer S. Acidified nitrite inhibits proliferation of Listeria monocytogenes - Transcriptional analysis of a preservation method. Int J Food Microbiol 2016; 226:33-41. [PMID: 27017279 DOI: 10.1016/j.ijfoodmicro.2016.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 02/29/2016] [Accepted: 03/05/2016] [Indexed: 11/16/2022]
Abstract
Sodium nitrite (NaNO2) is added as a preservative during raw meat processing such as raw sausage production to inhibit growth of pathogenic bacteria. In the present study it was shown in challenge assays that the addition of sodium nitrite indeed inhibited growth and survival of Listeria monocytogenes in short-ripened spreadable raw sausages. Furthermore, in vitro growth analyses were performed, which took into account combinations of various parameters of the raw sausage ripening process like temperature, oxygen availability, pH, NaCl concentration, and absence or presence of NaNO2. Data based on 300 growth conditions revealed that the inhibitory effect of nitrite was most prominent in combination with acidification, a combination that is also achieved during short-ripened spreadable raw sausage production. At pH6.0 and below, L. monocytogenes was unable to replicate in the presence of 200mg/l NaNO2. During the adaptation of L. monocytogenes to acidified nitrite stress (pH6.0, 200mg/l NaNO2) in comparison to acid exposure only (pH6.0, 0mg/l NaNO2), a massive transcriptional adaptation was observed using microarray analyses. In total, 202 genes were up-regulated and 204 genes were down-regulated. In accordance with growth inhibition, a down-regulation of genes encoding for proteins which are involved in central cellular processes, like cell wall/membrane/envelope biogenesis, translation and ribosomal structure and biogenesis, transcription, and replication, recombination and repair, was observed. Among the up-regulated genes the most prominent group belonged to poorly characterized genes. A considerable fraction of the up-regulated genes has been shown previously to be up-regulated intracellularly in macrophages, after exposure to acid shock or to be part of the SigB regulon. These data indicate that the adaptation to acidified nitrite partly overlaps with the adaptation to stress conditions being present during host colonization.
Collapse
Affiliation(s)
- Stefanie Müller-Herbst
- Lehrstuhl für Mikrobielle Ökologie, Technische Universität München, Weihenstephaner Berg 3, 85350 Freising, Germany; Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Technische Universität München, Weihenstephaner Berg 3, 85350 Freising, Germany.
| | - Stefanie Wüstner
- Lehrstuhl für Mikrobielle Ökologie, Technische Universität München, Weihenstephaner Berg 3, 85350 Freising, Germany.
| | - Jan Kabisch
- Institut für Mikrobiologie und Biotechnologie, MRI, Bundesforschungsinstitut für Ernährung und Lebensmittel, E.-C.-Baumann-Str. 20, 95326 Kulmbach, Germany.
| | - Rohtraud Pichner
- Institut für Mikrobiologie und Biotechnologie, MRI, Bundesforschungsinstitut für Ernährung und Lebensmittel, E.-C.-Baumann-Str. 20, 95326 Kulmbach, Germany.
| | - Siegfried Scherer
- Lehrstuhl für Mikrobielle Ökologie, Technische Universität München, Weihenstephaner Berg 3, 85350 Freising, Germany; Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Technische Universität München, Weihenstephaner Berg 3, 85350 Freising, Germany.
| |
Collapse
|
14
|
Label-Free Proteomic Analysis of Flavohemoglobin Deleted Strain of Saccharomyces cerevisiae. INTERNATIONAL JOURNAL OF PROTEOMICS 2016; 2016:8302423. [PMID: 26881076 PMCID: PMC4737026 DOI: 10.1155/2016/8302423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 11/30/2022]
Abstract
Yeast flavohemoglobin, YHb, encoded by the nuclear gene YHB1, has been implicated in the nitrosative stress responses in Saccharomyces cerevisiae. It is still unclear how S. cerevisiae can withstand this NO level in the absence of flavohemoglobin. To better understand the physiological function of flavohemoglobin in yeast, in the present study a label-free differential proteomics study has been carried out in wild-type and YHB1 deleted strains of S. cerevisiae grown under fermentative conditions. From the analysis, 417 proteins in Y190 and 392 proteins in ΔYHB1 were identified with high confidence. Interestingly, among the differentially expressed identified proteins, 40 proteins were found to be downregulated whereas 41 were found to be upregulated in ΔYHB1 strain of S. cerevisiae (p value < 0.05). The differentially expressed proteins were also classified according to gene ontology (GO) terms. The most enriched and significant GO terms included nitrogen compound biosynthesis, amino acid biosynthesis, translational regulation, and protein folding. Interactions of differentially expressed proteins were generated using Search Tool for the Retrieval of Interacting Genes (STRING) database. This is the first report which offers a more complete view of the proteome changes in S. cerevisiae in the absence of flavohemoglobin.
Collapse
|
15
|
Abstract
The biosynthesis of serine, glycine, and one-carbon (C1) units constitutes a major metabolic pathway in Escherichia coli and Salmonella enterica serovar Typhimurium. C1 units derived from serine and glycine are used in the synthesis of purines, histidine, thymine, pantothenate, and methionine and in the formylation of the aminoacylated initiator fMet-TRNAfMet used to start translation in E. coli and serovar Typhimurium. The need for serine, glycine, and C1 units in many cellular functions makes it necessary for the genes encoding enzymes for their synthesis to be carefully regulated to meet the changing demands of the cell for these intermediates. This review discusses the regulation of the following genes: serA, serB, and serC; gly gene; gcvTHP operon; lpdA; gcvA and gcvR; and gcvB genes. Threonine utilization (the Tut cycle) constitutes a secondary pathway for serine and glycine biosynthesis. L-Serine inhibits the growth of E. coli cells in GM medium, and isoleucine releases this growth inhibition. The E. coli glycine transport system (Cyc) has been shown to transport glycine, D-alanine, D-serine, and the antibiotic D-cycloserine. Transport systems often play roles in the regulation of gene expression, by transporting effector molecules into the cell, where they are sensed by soluble or membrane-bound regulatory proteins.
Collapse
|
16
|
Romsang A, Duang-nkern J, Wirathorn W, Vattanaviboon P, Mongkolsuk S. Pseudomonas aeruginosa IscR-Regulated Ferredoxin NADP(+) Reductase Gene (fprB) Functions in Iron-Sulfur Cluster Biogenesis and Multiple Stress Response. PLoS One 2015; 10:e0134374. [PMID: 26230408 PMCID: PMC4521836 DOI: 10.1371/journal.pone.0134374] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 07/08/2015] [Indexed: 12/14/2022] Open
Abstract
P. aeruginosa (PAO1) has two putative genes encoding ferredoxin NADP(+) reductases, denoted fprA and fprB. Here, the regulation of fprB expression and the protein’s physiological roles in [4Fe-4S] cluster biogenesis and stress protection are characterized. The fprB mutant has defects in [4Fe-4S] cluster biogenesis, as shown by reduced activities of [4Fe-4S] cluster-containing enzymes. Inactivation of the gene resulted in increased sensitivity to oxidative, thiol, osmotic and metal stresses compared with the PAO1 wild type. The increased sensitivity could be partially or completely suppressed by high expression of genes from the isc operon, which are involved in [Fe-S] cluster biogenesis, indicating that stress sensitivity in the fprB mutant is partially caused by a reduction in levels of [4Fe-4S] clusters. The pattern and regulation of fprB expression are in agreement with the gene physiological roles; fprB expression was highly induced by redox cycling drugs and diamide and was moderately induced by peroxides, an iron chelator and salt stress. The stress-induced expression of fprB was abolished by a deletion of the iscR gene. An IscR DNA-binding site close to fprB promoter elements was identified and confirmed by specific binding of purified IscR. Analysis of the regulation of fprB expression supports the role of IscR in directly regulating fprB transcription as a transcription activator. The combination of IscR-regulated expression of fprB and the fprB roles in response to multiple stressors emphasizes the importance of [Fe-S] cluster homeostasis in both gene regulation and stress protection.
Collapse
Affiliation(s)
- Adisak Romsang
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jintana Duang-nkern
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Wilaiwan Wirathorn
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Paiboon Vattanaviboon
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Emerging Bacterial Infections, Faculty of Science, Mahidol University, Bangkok, Thailand
- Program in Applied Biological Science: Environmental Health, Chulabhorn Graduate Institute, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Emerging Bacterial Infections, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Ministry Of Education, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
17
|
The Possible Involvement of Copper-Containing Nitrite Reductase (NirK) and Flavohemoglobin in Denitrification by the FungusCylindrocarpon tonkinense. Biosci Biotechnol Biochem 2014; 74:1403-7. [DOI: 10.1271/bbb.100071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Giordano D, Coppola D, Russo R, Tinajero-Trejo M, di Prisco G, Lauro F, Ascenzi P, Verde C. The globins of cold-adapted Pseudoalteromonas haloplanktis TAC125: from the structure to the physiological functions. Adv Microb Physiol 2014; 63:329-89. [PMID: 24054800 DOI: 10.1016/b978-0-12-407693-8.00008-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Evolution allowed Antarctic microorganisms to grow successfully under extreme conditions (low temperature and high O2 content), through a variety of structural and physiological adjustments in their genomes and development of programmed responses to strong oxidative and nitrosative stress. The availability of genomic sequences from an increasing number of cold-adapted species is providing insights to understand the molecular mechanisms underlying crucial physiological processes in polar organisms. The genome of Pseudoalteromonas haloplanktis TAC125 contains multiple genes encoding three distinct truncated globins exhibiting the 2/2 α-helical fold. One of these globins has been extensively characterised by spectroscopic analysis, kinetic measurements and computer simulation. The results indicate unique adaptive structural properties that enhance the overall flexibility of the protein, so that the structure appears to be resistant to pressure-induced stress. Recent results on a genomic mutant strain highlight the involvement of the cold-adapted globin in the protection against the stress induced by high O2 concentration. Moreover, the protein was shown to catalyse peroxynitrite isomerisation in vitro. In this review, we first summarise how cold temperatures affect the physiology of microorganisms and focus on the molecular mechanisms of cold adaptation revealed by recent biochemical and genetic studies. Next, since only in a very few cases the physiological role of truncated globins has been demonstrated, we also discuss the structural and functional features of the cold-adapted globin in an attempt to put into perspective what has been learnt about these proteins and their potential role in the biology of cold-adapted microorganisms.
Collapse
|
19
|
Bang CS, Kinnunen A, Karlsson M, Önnberg A, Söderquist B, Persson K. The antibacterial effect of nitric oxide against ESBL-producing uropathogenic E. coli is improved by combination with miconazole and polymyxin B nonapeptide. BMC Microbiol 2014; 14:65. [PMID: 24629000 PMCID: PMC3984681 DOI: 10.1186/1471-2180-14-65] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/07/2014] [Indexed: 12/29/2022] Open
Abstract
Background Nitric oxide (NO) is produced as part of the host immune response to bacterial infections, including urinary tract infections. The enzyme flavohemoglobin, coded by the hmp gene, is involved in protecting bacterial cells from the toxic effects of NO and represents a potentially interesting target for development of novel treatment concepts against resistant uropathogenic bacteria. The aim of the present study was to investigate if the in vitro antibacterial effects of NO can be enhanced by pharmacological modulation of the enzyme flavohemoglobin. Results Four clinical isolates of multidrug-resistant extended-spectrum β-lactamase (ESBL)-producing uropathogenic E. coli were included in the study. It was shown that the NO-donor substance DETA/NO, but not inactivated DETA/NO, caused an initial growth inhibition with regrowth noted after 8 h of exposure. An hmp-deficient strain showed a prolonged growth inhibition in response to DETA/NO compared to the wild type. The imidazole antibiotic miconazole, that has been shown to inhibit bacterial flavohemoglobin activity, prolonged the DETA/NO-evoked growth inhibition. When miconazole was combined with polymyxin B nonapeptide (PMBN), in order to increase the bacterial wall permeability, DETA/NO caused a prolonged bacteriostatic response that lasted for up to 24 h. Conclusion An NO-donor in combination with miconazole and PMBN showed enhanced antimicrobial effects and proved effective against multidrug-resistant ESBL-producing uropathogenic E. coli.
Collapse
Affiliation(s)
| | | | | | | | | | - Katarina Persson
- Faculty of Medicine and Health, iRiSC - Inflammatory Response and Infection Susceptibility Centre, Örebro University, SE- 701 82 Örebro, Sweden.
| |
Collapse
|
20
|
Platzen L, Koch-Koerfges A, Weil B, Brocker M, Bott M. Role of flavohaemoprotein Hmp and nitrate reductase NarGHJI ofCorynebacterium glutamicumfor coping with nitrite and nitrosative stress. FEMS Microbiol Lett 2013; 350:239-48. [DOI: 10.1111/1574-6968.12318] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 10/26/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Laura Platzen
- Institut für Bio- und Geowissenschaften; IBG-1: Biotechnologie; Forschungszentrum Jülich; Jülich Germany
| | - Abigail Koch-Koerfges
- Institut für Bio- und Geowissenschaften; IBG-1: Biotechnologie; Forschungszentrum Jülich; Jülich Germany
| | - Brita Weil
- Institut für Bio- und Geowissenschaften; IBG-1: Biotechnologie; Forschungszentrum Jülich; Jülich Germany
| | - Melanie Brocker
- Institut für Bio- und Geowissenschaften; IBG-1: Biotechnologie; Forschungszentrum Jülich; Jülich Germany
| | - Michael Bott
- Institut für Bio- und Geowissenschaften; IBG-1: Biotechnologie; Forschungszentrum Jülich; Jülich Germany
| |
Collapse
|
21
|
Vinogradov SN, Tinajero-Trejo M, Poole RK, Hoogewijs D. Bacterial and archaeal globins — A revised perspective. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1789-800. [DOI: 10.1016/j.bbapap.2013.03.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/12/2013] [Accepted: 03/16/2013] [Indexed: 12/17/2022]
|
22
|
Lewinska A, Bartosz G. Yeast flavohemoglobin protects against nitrosative stress and controls ferric reductase activity. Redox Rep 2013; 11:231-9. [PMID: 17132272 DOI: 10.1179/135100006x154987] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The role of Saccharomyces cerevisiae flavohemoglobin (Yhb1) is controversial and far from understood. This study compares the effects of nitrosative and oxidative challenge on the yeast mutant lacking the YHB1 gene. Growth of the mutant was impaired by nitrosoglutathione and peroxynitrite, whereas increased sensitivity to reactive oxygen species was not observed. Increased levels of intracellular NO(*) after incubation with NO(*) donors were found in the mutants cells as compared to the wild-type cells. Deletion of the YHB1 gene was found to augment the reduction of Fe(3+) by yeast cells which suggests that flavohemoglobin participates in regulation of the activity of plasma membrane ferric reductase(s).
Collapse
Affiliation(s)
- Anna Lewinska
- Department of Biochemistry and Cell Biology, University of Rzeszow, Rzeszow, Poland.
| | | |
Collapse
|
23
|
Coppola D, Giordano D, Tinajero-Trejo M, di Prisco G, Ascenzi P, Poole RK, Verde C. Antarctic bacterial haemoglobin and its role in the protection against nitrogen reactive species. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1923-31. [PMID: 23434851 DOI: 10.1016/j.bbapap.2013.02.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 01/25/2023]
Abstract
In a cold and oxygen-rich environment such as Antarctica, mechanisms for the defence against reactive oxygen and nitrogen species are needed and represent important components in the evolutionary adaptations. In the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125, the presence of multiple genes encoding 2/2 haemoglobins and a flavohaemoglobin strongly suggests that these proteins fulfil important physiological roles, perhaps associated to the peculiar features of the Antarctic habitat. In this work, the putative role of Ph-2/2HbO, encoded by the PSHAa0030 gene, was investigated by in vivo and in vitro experiments in order to highlight its involvement in NO detoxification mechanisms. The PSHAa0030 gene was cloned and then over-expressed in a flavohaemoglobin-deficient mutant of Escherichia coli, unable to metabolise NO, and the resulting strain was studied analysing its growth properties and oxygen uptake in the presence of NO. We here demonstrate that Ph-2/2HbO protects growth and cellular respiration of the heterologous host from the toxic effect of NO-donors. Unlike in Mycobacterium tuberculosis 2/2 HbN, the deletion of the N-terminal extension of Ph-2/2HbO does not seem to reduce the NO scavenging activity, showing that the N-terminal extension is not a requirement for efficient NO detoxification. Moreover, the ferric form of Ph-2/2HbO was shown to catalyse peroxynitrite isomerisation in vitro, confirming its potential role in the scavenging of reactive nitrogen species. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
Affiliation(s)
- Daniela Coppola
- Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Campylobacter jejuni is a zoonotic Gram-negative bacterial pathogen that is exposed to reactive nitrogen species, such as nitric oxide, from a variety of sources. To combat the toxic effects of this nitrosative stress, C. jejuni upregulates a small regulon under the control of the transcriptional activator NssR, which positively regulates the expression of a single-domain globin protein (Cgb) and a truncated globin protein (Ctb). Cgb has previously been shown to detoxify nitric oxide, but the role of Ctb remains contentious. As C. jejuni is amenable to genetic manipulation, and its globin proteins are easily expressed and purified, a combination of mutagenesis, complementation, transcriptomics, spectroscopic characterisation and structural analyses has been used to probe the regulation, function and structure of Cgb and Ctb. This ability to study Cgb and Ctb with such a multi-pronged approach is a valuable asset, especially since only a small fraction of known globin proteins have been functionally characterised.
Collapse
|
25
|
Forrester MT, Foster MW. Protection from nitrosative stress: a central role for microbial flavohemoglobin. Free Radic Biol Med 2012; 52:1620-33. [PMID: 22343413 DOI: 10.1016/j.freeradbiomed.2012.01.028] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/22/2012] [Accepted: 01/27/2012] [Indexed: 12/31/2022]
Abstract
Nitric oxide (NO) is an inevitable product of life in an oxygen- and nitrogen-rich environment. This reactive diatomic molecule exhibits microbial cytotoxicity, in large part by facilitating nitrosative stress and inhibiting heme-containing proteins within the aerobic respiratory chain. Metabolism of NO is therefore essential for microbial life. In many bacteria, fungi, and protozoa, the evolutionarily ancient flavohemoglobin (flavoHb) converts NO and O(2) to inert nitrate (NO(3)(-)) and undergoes catalytic regeneration via flavin-dependent reduction. Since its identification, widespread efforts have characterized roles for flavoHb in microbial nitrosative stress protection. Subsequent genomic studies focused on flavoHb have elucidated the transcriptional machinery necessary for inducible NO protection, such as NsrR in Escherichia coli, as well as additional proteins that constitute a nitrosative stress protection program. As an alternative strategy, flavoHb has been heterologously employed in higher eukaryotic organisms such as plants and human tumors to probe the function(s) of endogenous NO signaling. Such an approach may also provide a therapeutic route to in vivo NO depletion. Here we focus on the molecular features of flavoHb, the hitherto characterized NO-sensitive transcriptional machinery responsible for its induction, the roles of flavoHb in resisting mammalian host defense systems, and heterologous applications of flavoHb in plant/mammalian systems (including human tumors), as well as unresolved questions surrounding this paradigmatic NO-consuming enzyme.
Collapse
Affiliation(s)
- Michael T Forrester
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | |
Collapse
|
26
|
Gupta S, Pawaria S, Lu C, Hade MD, Singh C, Yeh SR, Dikshit KL. An unconventional hexacoordinated flavohemoglobin from Mycobacterium tuberculosis. J Biol Chem 2012; 287:16435-46. [PMID: 22437825 DOI: 10.1074/jbc.m111.329920] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Being an obligate aerobe, Mycobacterium tuberculosis faces a number of energetic challenges when it encounters hypoxia and environmental stress during intracellular infection. Consequently, it has evolved innovative strategies to cope with these unfavorable conditions. Here, we report a novel flavohemoglobin (MtbFHb) from M. tuberculosis that exhibits unique features within its heme and reductase domains distinct from conventional FHbs, including the absence of the characteristic hydrogen bonding interactions within the proximal heme pocket and mutations in the FAD and NADH binding regions of the reductase domain. In contrast to conventional FHbs, it has a hexacoordinate low-spin heme with a proximal histidine ligand lacking imidazolate character and a distal heme pocket with a relatively low electrostatic potential. Additionally, MtbFHb carries a new FAD binding site in its reductase domain similar to that of D-lactate dehydrogenase (D-LDH). When overexpressed in Escherichia coli or Mycobacterium smegmatis, MtbFHb remained associated with the cell membrane and exhibited D-lactate:phenazine methosulfate reductase activity and oxidized D-lactate into pyruvate by converting the heme iron from Fe(3+) to Fe(2+) in a FAD-dependent manner, indicating electron transfer from D-lactate to the heme via FAD cofactor. Under oxidative stress, MtbFHb-expressing cells exhibited growth advantage with reduced levels of lipid peroxidation. Given the fact that D-lactate is a byproduct of lipid peroxidation and that M. tuberculosis lacks the gene encoding D-LDH, we propose that the novel D-lactate metabolizing activity of MtbFHb uniquely equips M. tuberculosis to balance the stress level by protecting the cell membrane from oxidative damage via cycling between the Fe(3+)/Fe(2+) redox states.
Collapse
Affiliation(s)
- Sanjay Gupta
- Institute of Microbial Technology, Council of Scientific & Industrial Research, Sector 39 A, Chandigarh 160036, India
| | | | | | | | | | | | | |
Collapse
|
27
|
Bowman LAH, McLean S, Poole RK, Fukuto JM. The diversity of microbial responses to nitric oxide and agents of nitrosative stress close cousins but not identical twins. Adv Microb Physiol 2012; 59:135-219. [PMID: 22114842 DOI: 10.1016/b978-0-12-387661-4.00006-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nitric oxide and related nitrogen species (reactive nitrogen species) now occupy a central position in contemporary medicine, physiology, biochemistry, and microbiology. In particular, NO plays important antimicrobial defenses in innate immunity but microbes have evolved intricate NO-sensing and defense mechanisms that are the subjects of a vast literature. Unfortunately, the burgeoning NO literature has not always been accompanied by an understanding of the intricacies and complexities of this radical and other reactive nitrogen species so that there exists confusion and vagueness about which one or more species exert the reported biological effects. The biological chemistry of NO and derived/related molecules is complex, due to multiple species that can be generated from NO in biological milieu and numerous possible reaction targets. Moreover, the fate and disposition of NO is always a function of its biological environment, which can vary significantly even within a single cell. In this review, we consider newer aspects of the literature but, most importantly, consider the underlying chemistry and draw attention to the distinctiveness of NO and its chemical cousins, nitrosonium (NO(+)), nitroxyl (NO(-), HNO), peroxynitrite (ONOO(-)), nitrite (NO(2)(-)), and nitrogen dioxide (NO(2)). All these species are reported to be generated in biological systems from initial formation of NO (from nitrite, NO synthases, or other sources) or its provision in biological experiments (typically from NO gas, S-nitrosothiols, or NO donor compounds). The major targets of NO and nitrosative damage (metal centers, thiols, and others) are reviewed and emphasis is given to newer "-omic" methods of unraveling the complex repercussions of NO and nitrogen oxide assaults. Microbial defense mechanisms, many of which are critical for pathogenicity, include the activities of hemoglobins that enzymically detoxify NO (to nitrate) and NO reductases and repair mechanisms (e.g., those that reverse S-nitrosothiol formation). Microbial resistance to these stresses is generally inducible and many diverse transcriptional regulators are involved-some that are secondary sensors (such as Fnr) and those that are "dedicated" (such as NorR, NsrR, NssR) in that their physiological function appears to be detecting primarily NO and then regulating expression of genes that encode enzymes with NO as a substrate. Although generally harmful, evidence is accumulating that NO may have beneficial effects, as in the case of the squid-Vibrio light-organ symbiosis, where NO serves as a signal, antioxidant, and specificity determinant. Progress in this area will require a thorough understanding not only of the biology but also of the underlying chemical principles.
Collapse
Affiliation(s)
- Lesley A H Bowman
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| | | | | | | |
Collapse
|
28
|
Gupta S, Pawaria S, Lu C, Yeh SR, Dikshit KL. Novel flavohemoglobins of mycobacteria. IUBMB Life 2011; 63:337-45. [PMID: 21491561 DOI: 10.1002/iub.460] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 02/28/2011] [Indexed: 11/10/2022]
Abstract
Flavohemoglobins (flavoHbs) constitute a distinct class of chimeric hemoglobins in which a globin domain is coupled with a ferredoxin reductase such as FAD- and NADH-binding modules. Structural features and active site of heme and reductase domains are highly conserved in various flavoHbs. A new class of flavoHbs, displaying crucial differences in functionally conserved regions of heme and reductase domains, have been identified in mycobacteria. Mining of microbial genome data indicated that the occurrence of such flavoHbs might be restricted to a small group of microbes unlike conventional flavoHbs that are widespread among prokaryotes and lower eukaryotes. One of the representative flavoHbs of this class, encoded by Rv0385 gene (MtbFHb) of Mycobacterium tuberculosis, has been cloned, expressed, and characterized. The ferric and deoxy spectra of MtbFHb displayed a hexacoordinate state indicating that its distal site may be occupied by an intrinsic amino acid or an external ligand and it may not be involved in nitric oxide detoxification. Phylogenetic analysis revealed that mycobacterial flavoHbs constitute a separate cluster distinct from conventional flavoHbs and may have novel function(s).
Collapse
Affiliation(s)
- Sanjay Gupta
- Institute of Microbial Technology, Chandigarh, India
| | | | | | | | | |
Collapse
|
29
|
Functional analysis and subcellular location of two flavohemoglobins from Aspergillus oryzae. Fungal Genet Biol 2011; 48:200-7. [DOI: 10.1016/j.fgb.2010.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/06/2010] [Accepted: 08/24/2010] [Indexed: 01/28/2023]
|
30
|
Role of flavohemoglobin in combating nitrosative stress in uropathogenic Escherichia coli – Implications for urinary tract infection. Microb Pathog 2010; 49:59-66. [DOI: 10.1016/j.micpath.2010.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 04/01/2010] [Accepted: 04/09/2010] [Indexed: 11/22/2022]
|
31
|
Yoon J, Herzik MA, Winter MB, Tran R, Olea C, Marletta MA. Structure and properties of a bis-histidyl ligated globin from Caenorhabditis elegans. Biochemistry 2010; 49:5662-70. [PMID: 20518498 DOI: 10.1021/bi100710a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Globins are heme-containing proteins that are best known for their roles in oxygen (O(2)) transport and storage. However, more diverse roles of globins in biology are being revealed, including gas and redox sensing. In the nematode Caenorhabditis elegans, 33 globin or globin-like genes were recently identified, some of which are known to be expressed in the sensory neurons of the worm and linked to O(2) sensing behavior. Here, we describe GLB-6, a novel globin-like protein expressed in the neurons of C. elegans. Recombinantly expressed full-length GLB-6 contains a heme site with spectral features that are similar to those of other bis-histidyl ligated globins, such as neuroglobin and cytoglobin. In contrast to these globins, however, ligands such as CO, NO, and CN(-) do not bind to the heme in GLB-6, demonstrating that the endogenous histidine ligands are likely very tightly coordinated. Additionally, GLB-6 exhibits rapid two-state autoxidation kinetics in the presence of physiological O(2) levels as well as a low redox potential (-193 +/- 2 mV). A high-resolution (1.40 A) crystal structure of the ferric form of the heme domain of GLB-6 confirms both the putative globin fold and bis-histidyl ligation and also demonstrates key structural features that can be correlated with the unusual ligand binding and redox properties exhibited by the full-length protein. Taken together, the biochemical properties of GLB-6 suggest that this neural protein would most likely serve as a physiological sensor for O(2) in C. elegans via redox signaling and/or electron transfer.
Collapse
Affiliation(s)
- Jungjoo Yoon
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
32
|
Shepherd M, Barynin V, Lu C, Bernhardt PV, Wu G, Yeh SR, Egawa T, Sedelnikova SE, Rice DW, Wilson JL, Poole RK. The single-domain globin from the pathogenic bacterium Campylobacter jejuni: novel D-helix conformation, proximal hydrogen bonding that influences ligand binding, and peroxidase-like redox properties. J Biol Chem 2010; 285:12747-54. [PMID: 20164176 PMCID: PMC2857070 DOI: 10.1074/jbc.m109.084509] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 01/29/2010] [Indexed: 11/06/2022] Open
Abstract
The food-borne pathogen Campylobacter jejuni possesses a single-domain globin (Cgb) whose role in detoxifying nitric oxide has been unequivocally demonstrated through genetic and molecular approaches. The x-ray structure of cyanide-bound Cgb has been solved to a resolution of 1.35 A. The overall fold is a classic three-on-three alpha-helical globin fold, similar to that of myoglobin and Vgb from Vitreoscilla stercoraria. However, the D region (defined according to the standard globin fold nomenclature) of Cgb adopts a highly ordered alpha-helical conformation unlike any previously characterized members of this globin family, and the GlnE7 residue has an unexpected role in modulating the interaction between the ligand and the TyrB10 residue. The proximal hydrogen bonding network in Cgb demonstrates that the heme cofactor is ligated by an imidazolate, a characteristic of peroxidase-like proteins. Mutation of either proximal hydrogen-bonding residue (GluH23 or TyrG5) results in the loss of the high frequency nu(Fe-His) stretching mode (251 cm(-1)), indicating that both residues are important for maintaining the anionic character of the proximal histidine ligand. Cyanide binding kinetics for these proximal mutants demonstrate for the first time that proximal hydrogen bonding in globins can modulate ligand binding kinetics at the distal site. A low redox midpoint for the ferrous/ferric couple (-134 mV versus normal hydrogen electrode at pH 7) is consistent with the peroxidase-like character of the Cgb active site. These data provide a new insight into the mechanism via which Campylobacter may survive host-derived nitrosative stress.
Collapse
Affiliation(s)
- Mark Shepherd
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Aspergillus oryzae flavohemoglobins promote oxidative damage by hydrogen peroxide. Biochem Biophys Res Commun 2010; 394:558-61. [DOI: 10.1016/j.bbrc.2010.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Accepted: 03/03/2010] [Indexed: 11/22/2022]
|
34
|
Parrilli E, Giuliani M, Marino G, Tutino ML. Influence of production process design on inclusion bodies protein: the case of an Antarctic flavohemoglobin. Microb Cell Fact 2010; 9:19. [PMID: 20334669 PMCID: PMC2857821 DOI: 10.1186/1475-2859-9-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 03/24/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protein over-production in Escherichia coli often results in formation of inclusion bodies (IBs). Some recent reports have shown that the aggregation into IBs does not necessarily mean that the target protein is inactivated and that IBs may contain a high proportion of correctly folded protein. This proportion is variable depending on the protein itself, the genetic background of the producing cells and the expression temperature. In this paper we have evaluated the influence of other production process parameters on the quality of an inclusion bodies protein. RESULTS The present paper describes the recombinant production in Escherichia coli of the flavohemoglobin from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Flavohemoglobins are multidomain proteins requiring FAD and heme cofactors. The production was carried out in several different experimental setups differing in bioreactor geometry, oxygen supply and the presence of a nitrosating compound. In all production processes, the recombinant protein accumulates in IBs, from which it was solubilized in non-denaturing conditions. Comparing structural properties of the solubilized flavohemoglobins, i.e. deriving from the different process designs, our data demonstrated that the protein preparations differ significantly in the presence of cofactors (heme and FAD) and as far as their secondary and tertiary structure content is concerned. CONCLUSIONS Data reported in this paper demonstrate that other production process parameters, besides growth temperature, can influence the structure of a recombinant product that accumulates in IBs. To the best of our knowledge, this is the first reported example in which the structural properties of a protein solubilized from inclusion bodies have been correlated to the production process design.
Collapse
Affiliation(s)
- Ermenegilda Parrilli
- Department of Organic Chemistry and Biochemistry, Università degli studi di Napoli Federico II-Complesso Universitario M,S, Angelo via Cinthia 4, 80126, Naples, Italy
| | | | | | | |
Collapse
|
35
|
Mowat CG, Gazur B, Campbell LP, Chapman SK. Flavin-containing heme enzymes. Arch Biochem Biophys 2010; 493:37-52. [DOI: 10.1016/j.abb.2009.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 10/13/2009] [Accepted: 10/13/2009] [Indexed: 11/25/2022]
|
36
|
Koskenkorva-Frank TS, Kallio PT. Induction of Pseudomonas aeruginosa fhp and fhpR by reactive oxygen species. Can J Microbiol 2009; 55:657-63. [PMID: 19767835 DOI: 10.1139/w09-024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Pseudomonas aeruginosa, flavohemoglobin (Fhp) and its cognate regulator FhpR (PA2665) form a protective regulatory circuit, which responds to reactive nitrogen species and is also capable of protecting cells against nitrosative stress. Recently, it has been shown that the expression of the fhp promoter is regulated not only by FhpR, but also by two new regulators, PA0779 and PA3697. It has also been suggested that the bacterial flavohemoglobins (flavoHbs) could play a crucial role in the protection of cells against reactive oxygen species (ROS). Therefore, the role and function of the Fhp/FhpR system during oxidative stress were studied by assessing the viability and membrane integrity of P. aeruginosa cells and by analyzing the promoter activities of fhp and fhpR upon exposure to paraquat, hydrogen peroxide, and tert-butyl hydroperoxide, under both aerobic and low-oxygen conditions. The results showed that under aerobic conditions, both fhp and fhpR promoters are induced by ROS generated by the stressors. Thus, the Fhp/FhpR system is implicated in the oxidative stress response. ROS-induced fhp promoter activity was dependent on FhpR, PA0779, and PA3697 regulators. Tert-butyl hydroperoxide-induced fhpR promoter activity was found to be highly repressed by PA0779, and FhpR showed negative autoregulation of its own promoter. Under low-oxygen conditions, the activity of the fhp promoter was not inducible by ROS, but fhpR promoter activity was induced by paraquat, and hydrogen peroxide was repressed in both cases by the regulators PA0779 and PA3697.
Collapse
|
37
|
|
38
|
Resistance of Haemophilus influenzae to reactive nitrogen donors and gamma interferon-stimulated macrophages requires the formate-dependent nitrite reductase regulator-activated ytfE gene. Infect Immun 2009; 77:1945-58. [PMID: 19289513 DOI: 10.1128/iai.01365-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Haemophilus influenzae efficiently colonizes and persists at the human nasopharyngeal mucosa, causing disease when it spreads to other sites. Nitric oxide (NO) represents a major antimicrobial defense deployed by host cells in locations colonized by H. influenzae during pathogenesis that are likely to vary in oxygen levels. Formate-dependent nitrite reductase regulator (FNR) is an oxygen-sensitive regulator in several bacterial pathogens. We report that fnr of H. influenzae is required for anaerobic defense against exposure to NO donors and to resist NO-dependent effects of gamma interferon (IFN-gamma)-activated murine bone marrow-derived macrophages. To understand the mechanism of resistance, we investigated the role of FNR-regulated genes in defense against NO sources. Expression analysis revealed FNR-dependent activation of nrfA, dmsA, napA, and ytfE. Nonpolar deletion mutants of nrfA and ytfE exhibited sensitivity to NO donors, and the ytfE gene was more critical for survival. Compared to the wild-type strain, the ytfE mutant exhibited decreased survival when exposed to macrophages, a defect that was more pronounced after prior stimulation of macrophages with IFN-gamma or lipopolysaccharide. Complementation restored survival of the mutant to the level in the parental strain. Increased sensitivity of the ytfE mutant relative to that of the parent was abrogated by treatment of macrophages with a NO synthase inhibitor, implicating YtfE in resistance to a NO-dependent pathway. These results identify a requirement for FNR in positive control of ytfE and indicate a critical role for ytfE in resistance of H. influenzae to reactive nitrogen species and the antibacterial effects of macrophages.
Collapse
|
39
|
Tsou AM, Cai T, Liu Z, Zhu J, Kulkarni RV. Regulatory targets of quorum sensing in Vibrio cholerae: evidence for two distinct HapR-binding motifs. Nucleic Acids Res 2009; 37:2747-56. [PMID: 19276207 PMCID: PMC2677876 DOI: 10.1093/nar/gkp121] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The quorum-sensing pathway in Vibrio cholerae controls the expression of the master regulator HapR, which in turn regulates several important processes such as virulence factor production and biofilm formation. While HapR is known to control several important phenotypes, there are only a few target genes known to be transcriptionally regulated by HapR. In this work, we combine bioinformatic analysis with experimental validation to discover a set of novel direct targets of HapR. Our results provide evidence for two distinct binding motifs for HapR-regulated genes in V. cholerae. The first binding motif is similar to the motifs recently discovered for orthologs of HapR in V. harveyi and V. vulnificus. However, our results demonstrate that this binding motif can be of variable length in V. cholerae. The second binding motif shares common elements with the first motif, but is of fixed length and lacks dyad symmetry at the ends. The contributions of different bases to HapR binding for this second motif were demonstrated using systematic mutagenesis experiments. The current analysis presents an approach for systematically expanding our knowledge of the quorum-sensing regulon in V. cholerae and other related bacteria.
Collapse
Affiliation(s)
- Amy M. Tsou
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA, Department of Microbiology, MOA Key Lab of Microbiological Engineering of Agricultural Environment, Nanjing Agricultural University, Nanjing, China and Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Tao Cai
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA, Department of Microbiology, MOA Key Lab of Microbiological Engineering of Agricultural Environment, Nanjing Agricultural University, Nanjing, China and Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Zhi Liu
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA, Department of Microbiology, MOA Key Lab of Microbiological Engineering of Agricultural Environment, Nanjing Agricultural University, Nanjing, China and Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Jun Zhu
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA, Department of Microbiology, MOA Key Lab of Microbiological Engineering of Agricultural Environment, Nanjing Agricultural University, Nanjing, China and Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- *To whom correspondence should be addressed. Tel: +1 215 573 4104. Fax: +1 215898 9557;
| | - Rahul V. Kulkarni
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA, Department of Microbiology, MOA Key Lab of Microbiological Engineering of Agricultural Environment, Nanjing Agricultural University, Nanjing, China and Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
40
|
Zhou S, Fushinobu S, Nakanishi Y, Kim SW, Wakagi T, Shoun H. Cloning and characterization of two flavohemoglobins from Aspergillus oryzae. Biochem Biophys Res Commun 2009; 381:7-11. [PMID: 19351585 DOI: 10.1016/j.bbrc.2009.01.112] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 01/21/2009] [Indexed: 11/16/2022]
Abstract
Two flavohemoglobin (FHb) genes, fhb1 and fhb2, were cloned from Aspergillus oryzae. The amino acid sequences of the deduced FHb1 and FHb2 showed high identity to other FHbs except for the predicted mitochondrial targeting signal in the N-terminus of FHb2. The recombinant proteins displayed absorption spectra similar to those of other FHbs. FHb1 and FHb2 were estimated to be a monomer and a dimer in solution, respectively. Both of the isozymes exhibit high NO dioxygenase (NOD) activity. FHb1 utilizes either NADH or NADPH as an electron donor, whereas FHb2 can only use NADH. These results suggest that FHb1 and FHb2 are fungal counterparts of bacterial FHbs and act as NO detoxification enzymes in the cytosol and mitochondria, respectively. This study is the first to show that a microorganism contains two isozymes of FHb and that intracellular localization of the isozymes could differ.
Collapse
Affiliation(s)
- Shengmin Zhou
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Thybert D, Avner S, Lucchetti-Miganeh C, Chéron A, Barloy-Hubler F. OxyGene: an innovative platform for investigating oxidative-response genes in whole prokaryotic genomes. BMC Genomics 2008; 9:637. [PMID: 19117520 PMCID: PMC2631583 DOI: 10.1186/1471-2164-9-637] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 12/31/2008] [Indexed: 11/25/2022] Open
Abstract
Background Oxidative stress is a common stress encountered by living organisms and is due to an imbalance between intracellular reactive oxygen and nitrogen species (ROS, RNS) and cellular antioxidant defence. To defend themselves against ROS/RNS, bacteria possess a subsystem of detoxification enzymes, which are classified with regard to their substrates. To identify such enzymes in prokaryotic genomes, different approaches based on similarity, enzyme profiles or patterns exist. Unfortunately, several problems persist in the annotation, classification and naming of these enzymes due mainly to some erroneous entries in databases, mistake propagation, absence of updating and disparity in function description. Description In order to improve the current annotation of oxidative stress subsystems, an innovative platform named OxyGene has been developed. It integrates an original database called OxyDB, holding thoroughly tested anchor-based signatures associated to subfamilies of oxidative stress enzymes, and a new anchor-driven annotator, for ab initio detection of ROS/RNS response genes. All complete Bacterial and Archaeal genomes have been re-annotated, and the results stored in the OxyGene repository can be interrogated via a Graphical User Interface. Conclusion OxyGene enables the exploration and comparative analysis of enzymes belonging to 37 detoxification subclasses in 664 microbial genomes. It proposes a new classification that improves both the ontology and the annotation of the detoxification subsystems in prokaryotic whole genomes, while discovering new ORFs and attributing precise function to hypothetical annotated proteins. OxyGene is freely available at:
Collapse
Affiliation(s)
- David Thybert
- CNRS UMR 6026, Interactions Cellulaires et Moléculaires, Equipe B@SIC, Université de Rennes 1, IFR140 GFAS, Campus de Beaulieu, Av. du Général Leclerc, 35042 Rennes, France.
| | | | | | | | | |
Collapse
|
42
|
Rhodobacter sphaeroides haem protein: a novel cytochrome with nitric oxide dioxygenase activity. Biochem Soc Trans 2008; 36:992-5. [PMID: 18793176 DOI: 10.1042/bst0360992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rhodobacter sphaeroides produces a novel cytochrome, designated as SHP (sphaeroides haem protein), that is unusual in having asparagine as a redox-labile haem ligand. The gene encoding SHP is contained within an operon that also encodes a DHC (dihaem cytochrome c) and a membrane-associated cytochrome b. DHC and SHP have been shown to have high affinity for each other at low ionic strength (Kd=0.2 microM), and DHC is able to reduce SHP very rapidly. The reduced form of the protein, SHP2+ (reduced or ferrous SHP), has high affinity for both oxygen and nitric oxide (NO). It has been shown that the oxyferrous form, SHP2+-O2 (oxygen-bound form of SHP), reacts rapidly with NO to produce nitrate, whereas SHP2+-NO (the NO-bound form of SHP) will react with superoxide with the same product formed. It is therefore possible that SHP functions physiologically as a nitric oxide dioxygenase, protecting the organism against NO poisoning, and we propose a possible mechanism for this process.
Collapse
|
43
|
Monk CE, Pearson BM, Mulholland F, Smith HK, Poole RK. Oxygen- and NssR-dependent globin expression and enhanced iron acquisition in the response of campylobacter to nitrosative stress. J Biol Chem 2008; 283:28413-25. [PMID: 18682395 DOI: 10.1074/jbc.m801016200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pathogenic bacteria experience nitrosative stress from NO generated in the host and from nitrosating species such as S-nitrosoglutathione. The food-borne pathogen Campylobacter jejuni responds by activating gene expression from a small regulon under the control of the NO-sensitive regulator, NssR. Here, we describe the full extent of the S-nitrosoglutathione response using transcriptomic and proteomic analysis of batch- and chemostat-cultured C. jejuni. In addition to the NssR regulon, which includes two hemoglobins (Cgb and Ctb), we identify more than 90 other up-regulated genes, notably those encoding heat shock proteins and proteins involved in oxidative stress tolerance and iron metabolism/transport. Up-regulation of a subset of these genes, including cgb, is also elicited by NO-releasing compounds. Mutation of the iron-responsive regulator Fur results in insensitivity of growth to NO, suggesting that derepression of iron-regulated genes and augmentation of iron acquisition is a physiological response to nitrosative damage. We describe the effect of oxygen availability on nitrosative stress tolerance; cells cultured at higher rates of oxygen diffusion have elevated levels of hemoglobins, are more resistant to inhibition by NO of both growth and respiration, and consume NO more rapidly. The oxygen response is mediated by NssR. Thus, in addition to NO detoxification catalyzed by the hemoglobins Cgb and possibly Ctb, C. jejuni mounts an extensive stress response. We suggest that inhibition of respiration by NO may increase availability of oxygen for Cgb synthesis and function.
Collapse
Affiliation(s)
- Claire E Monk
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | | | | | | | |
Collapse
|
44
|
Nitric oxide stress induces different responses but mediates comparable protein thiol protection in Bacillus subtilis and Staphylococcus aureus. J Bacteriol 2008; 190:4997-5008. [PMID: 18487332 DOI: 10.1128/jb.01846-07] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The nonpathogenic Bacillus subtilis and the pathogen Staphylococcus aureus are gram-positive model organisms that have to cope with the radical nitric oxide (NO) generated by nitrite reductases of denitrifying bacteria and by the inducible NO synthases of immune cells of the host, respectively. The response of both microorganisms to NO was analyzed by using a two-dimensional gel approach. Metabolic labeling of the proteins revealed major changes in the synthesis pattern of cytosolic proteins after the addition of the NO donor MAHMA NONOate. Whereas B. subtilis induced several oxidative stress-responsive regulons controlled by Fur, PerR, OhrR, and Spx, as well as the general stress response controlled by the alternative sigma factor SigB, the more resistant S. aureus showed an increased synthesis rate of proteins involved in anaerobic metabolism. These data were confirmed by nuclear magnetic resonance analyses indicating that NO causes a drastically higher increase in the formation of lactate and butanediol in S. aureus than in B. subtilis. Monitoring the intracellular protein thiol state, we observed no increase in reversible or irreversible protein thiol modifications after NO stress in either organism. Obviously, NO itself does not cause general protein thiol oxidations. In contrast, exposure of cells to NO prior to peroxide stress diminished the irreversible thiol oxidation caused by hydrogen peroxide.
Collapse
|
45
|
Expression and purification of Cgb and Ctb, the NO-inducible globins of the foodborne bacterial pathogen C. jejuni. Methods Enzymol 2008. [PMID: 18237639 DOI: 10.1016/s0076-6879(08)36016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Campylobacter jejuni is a Gram-negative microaerophilic bacterium that occurs as a common gut commensal in many food-producing animals and birds. Contamination of meat during processing is an important route of transmission, and C. jejuni is now recognized as one of the most important causes of bacterial gastroenteritis worldwide. C. jejuni is notable, but not unique, in possessing two different hemoglobins. The first is termed Cgb and is a single-domain hemoglobin (i.e., having no other protein domain or cofactor) with clear structural similarities (3/3) with myoglobin, the heme domain of flavohemoglobins and Vitreoscilla hemoglobin. It is well established that Cgb plays a key role in providing resistance to C. jejuni in the face of NO and other reactive nitrogen species that might be encountered in its environments. The second globin is Ctb, a truncated globin (2/2trHb) in class III, until recently the least well-understood class of these ubiquitous globins. In C. jejuni, both globin genes are members of a small regulon activated by the NssR protein, which acts as an NO sensor and transcriptional regulator. In this contribution, we describe the cloning of both the cgb and ctb genes from C. jejuni chromosomal DNA, construction of expression vectors in E. coli, and a simple purification procedure for each globin. A brief account of the spectroscopic characteristics of both globins is presented.
Collapse
|
46
|
Nishimura T, Teramoto H, Vertès AA, Inui M, Yukawa H. ArnR, a novel transcriptional regulator, represses expression of the narKGHJI operon in Corynebacterium glutamicum. J Bacteriol 2008; 190:3264-73. [PMID: 18296524 PMCID: PMC2347399 DOI: 10.1128/jb.01801-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 02/12/2008] [Indexed: 11/20/2022] Open
Abstract
The narKGHJI operon that comprises putative nitrate/nitrite transporter (narK) and nitrate reductase (narGHJI) genes is required for the anaerobic growth of Corynebacterium glutamicum with nitrate as a terminal electron acceptor. In this study, we identified a gene, arnR, which encodes a transcriptional regulator that represses the expression of the narKGHJI operon in C. glutamicum cells under aerobic conditions. Disruption of arnR induced nitrate reductase activities of C. glutamicum cells and increased narKGHJI mRNA levels under aerobic growth conditions. DNA microarray analyses revealed that besides the narKGHJI operon, the hmp gene, which encodes flavohemoglobin, is negatively regulated by ArnR under aerobic conditions. Promoter-reporter assays indicated that arnR gene expression was positively autoregulated by its gene product, ArnR, under both aerobic and anaerobic conditions. Electrophoretic mobility shift assay experiments showed that purified hexahistidyl-tagged ArnR protein specifically binds to promoter regions of the narKGHJI operon and the hmp and arnR genes. A consensus sequence, TA(A/T)TTAA(A/T)TA, found in the promoter regions of these genes was demonstrated to be involved in the binding of ArnR. Effects on LacZ activity by deletion of the ArnR binding sites within the promoter regions fused to the reporter gene were consistent with the view that the expression of the narKGHJI operon is repressed by the ArnR protein under aerobic conditions, whereas the expression of the arnR gene is autoinduced by ArnR.
Collapse
Affiliation(s)
- Taku Nishimura
- Research Institute of Innovative Technology for the Earth, 9-2 Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | | | | | | | | |
Collapse
|
47
|
Smagghe BJ, Trent JT, Hargrove MS. NO dioxygenase activity in hemoglobins is ubiquitous in vitro, but limited by reduction in vivo. PLoS One 2008; 3:e2039. [PMID: 18446211 PMCID: PMC2323109 DOI: 10.1371/journal.pone.0002039] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 02/03/2008] [Indexed: 12/02/2022] Open
Abstract
Genomics has produced hundreds of new hemoglobin sequences with examples in nearly every living organism. Structural and biochemical characterizations of many recombinant proteins reveal reactions, like oxygen binding and NO dioxygenation, that appear general to the hemoglobin superfamily regardless of whether they are related to physiological function. Despite considerable attention to “hexacoordinate” hemoglobins, which are found in nearly every plant and animal, no clear physiological role(s) has been assigned to them in any species. One popular and relevant hypothesis for their function is protection against NO. Here we have tested a comprehensive representation of hexacoordinate hemoglobins from plants (rice hemoglobin), animals (neuroglobin and cytoglobin), and bacteria (Synechocystis hemoglobin) for their abilities to scavenge NO compared to myoglobin. Our experiments include in vitro comparisons of NO dioxygenation, ferric NO binding, NO-induced reduction, NO scavenging with an artificial reduction system, and the ability to substitute for a known NO scavenger (flavohemoglobin) in E. coli. We conclude that none of these tests reveal any distinguishing predisposition toward a role in NO scavenging for the hxHbs, but that any hemoglobin could likely serve this role in the presence of a mechanism for heme iron re-reduction. Hence, future research to test the role of Hbs in NO scavenging would benefit more from the identification of cognate reductases than from in vitro analysis of NO and O2 binding.
Collapse
Affiliation(s)
- Benoit J. Smagghe
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - James T. Trent
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Mark S. Hargrove
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
48
|
Mills PC, Rowley G, Spiro S, Hinton JCD, Richardson DJ. A combination of cytochrome c nitrite reductase (NrfA) and flavorubredoxin (NorV) protects Salmonella enterica serovar Typhimurium against killing by NO in anoxic environments. Microbiology (Reading) 2008; 154:1218-1228. [DOI: 10.1099/mic.0.2007/014290-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Paul C. Mills
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Gary Rowley
- Molecular Microbiology Group, Institute of Food Research, Norwich NR4 7UA, UK
| | - Stephen Spiro
- Department of Molecular and Cell Biology, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Jay C. D. Hinton
- Molecular Microbiology Group, Institute of Food Research, Norwich NR4 7UA, UK
| | - David J. Richardson
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
49
|
Pullan ST, Monk CE, Lee L, Poole RK. Microbial responses to nitric oxide and nitrosative stress: growth, "omic," and physiological methods. Methods Enzymol 2008; 437:499-519. [PMID: 18433644 DOI: 10.1016/s0076-6879(07)37025-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The study of bacterial responses to nitric oxide (NO), nitrosating agents, and other agents of nitrosative stress has a short history but has rapidly produced important insights into the interactions of these agents with model microbial systems as well as pathogenic species. Several methodological problems arise in attempting to define the global responses to these agents, whether in simply measuring growth or performing "omic" experiments in which the objective is to determine the genome-wide (transcriptomic) or proteome-wide responses. The first problem is the relatively long timescale over which the experiments are conducted--minutes, hours, or days in the case of slow-growing cultures. The second problem is not unique to NO and its congeners but concerns the difficulties encountered when sensitive and comprehensive analytical techniques (such as transcriptomics) are applied to cultures whose growth and physiology are perturbed by an inhibitor. In essence, the problem is "seeing the wood for the trees." This chapter reviews briefly the state of knowledge of NO responses and mechanisms in bacteria, particularly Escherichia coli and Campylobacter jejuni. Continuous culture has several advantages for investigating the consequences of NO exposure, and this approach is outlined with examples of recent results and conclusions. The major advantage of the chemostat is establishment of a reproducible quasi-steady state in growth, in which the growth rate can be controlled and maintained. Contrary to common belief, neither the concept nor the apparatus is difficult. Commercially available and homemade systems are described with practical advice. Establishing continuous cultures paves the way for other "omic" approaches, particularly proteomics and metabolomics, which are not covered here, as their application to the field of NO biology is in its infancy. A key to the literature describing methods suitable for assessing toxicity to microbes of NO and reactive nitrogen species is given.
Collapse
Affiliation(s)
- Steven T Pullan
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | | | | | | |
Collapse
|
50
|
Angelo M, Hausladen A, Singel DJ, Stamler JS. Interactions of NO with hemoglobin: from microbes to man. Methods Enzymol 2008; 436:131-68. [PMID: 18237631 DOI: 10.1016/s0076-6879(08)36008-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hemoglobins are found in organisms from every major phylum and subserve life-sustaining respiratory functions across a broad continuum. Sustainable aerobic respiration in mammals and birds relies on the regulated delivery of oxygen (O2) and nitric oxide (NO) bioactivity by hemoglobin, through reversible binding of NO and O2 to hemes as well as S-nitrosylation of cysteine thiols (SNO synthase activity). In contrast, bacterial and yeast flavohemoglobins function in vivo as denitrosylases (O2 nitroxylases), and some multimeric, invertebrate hemoglobins function as deoxygenases (Cys-dependent NO dioxygenases), which efficiently consume rather than deliver NO and O2, respectively. Analogous mechanisms may operate in plants. Bacteria and fungi deficient in flavohemoglobin show compromised virulence in animals that results from impaired resistance to NO, whereas animals and humans deficient in S-nitrosylated Hb exhibit altered vasoactivity. NO-related functions of hemoglobins center on reactions with ferric (FeIII) heme iron, which is exploited in enzymatic reactions that address organismal requirements for delivery or detoxification of NO and O2. Delivery versus detoxification of NO/O2 is largely achieved through structural changes and amino acid rearrangements within the heme pockets, thereby influencing the propensity for heme/cysteine thiol redox coupling. Additionally, the behavior exhibited by hemoglobin in vivo may be profoundly dependent both on the abundance of NO and O2 and on the allosteric effects of heterotropic ligands. Here we review well-documented examples of redox interactions between NO and hemoglobin, with an emphasis on biochemical mechanisms and physiological significance.
Collapse
Affiliation(s)
- Michael Angelo
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana
| | | | | | | |
Collapse
|