1
|
Kong L, Price NM. Identification of copper-regulated proteins in an oceanic diatom,Thalassiosira oceanica1005. Metallomics 2020; 12:1106-1117. [DOI: 10.1039/d0mt00033g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plastocyanin-dependent diatoms adjust cellular metabolism to cope with chronic Cu deficiency.
Collapse
Affiliation(s)
- Liangliang Kong
- Department of Biology
- McGill University
- Montréal
- Canada
- College of Marine Life Sciences
| | - Neil M. Price
- Department of Biology
- McGill University
- Montréal
- Canada
| |
Collapse
|
2
|
Blaby-Haas CE, Castruita M, Fitz-Gibbon ST, Kropat J, Merchant SS. Ni induces the CRR1-dependent regulon revealing overlap and distinction between hypoxia and Cu deficiency responses in Chlamydomonas reinhardtii. Metallomics 2017; 8:679-91. [PMID: 27172123 DOI: 10.1039/c6mt00063k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The selectivity of metal sensors for a single metal ion is critical for cellular metal homeostasis. A suite of metal-responsive regulators is required to maintain a prescribed balance of metal ions ensuring that each apo-protein binds the correct metal. However, there are cases when non-essential metals ions disrupt proper metal sensing. An analysis of the Ni-responsive transcriptome of the green alga Chlamydomonas reinhardtii reveals that Ni artificially turns on the CRR1-dependent Cu-response regulon. Since this regulon also responds to hypoxia, a combinatorial transcriptome analysis was leveraged to gain insight into the mechanisms by which Ni interferes with the homeostatic regulation of Cu and oxygen status. Based on parallels with the effect of Ni on the hypoxic response in animals, we propose that a possible link between Cu, oxygen and Ni sensing is an as yet uncharacterized prolyl hydroxylase that regulates a co-activator of CRR1. This analysis also identified transcriptional responses to the pharmacological activation of the Cu-deficiency regulon. Although the Ni-responsive CRR1 regulon is composed of 56 genes (defined as the primary response), 259 transcripts responded to Ni treatment only when a copy of the wild-type CRR1 gene was present. The genome-wide impact of CRR1 target genes on the transcriptome was also evident from the 210 transcripts that were at least 2-fold higher in the crr1 strain, where the abundance of many CRR1 targets was suppressed. Additionally, we identified 120 transcripts that responded to Ni independent of CRR1 function. The putative functions of the proteins encoded by these transcripts suggest that high Ni results in protein damage.
Collapse
Affiliation(s)
- Crysten E Blaby-Haas
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA.
| | - Madeli Castruita
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA.
| | - Sorel T Fitz-Gibbon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA. and Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Janette Kropat
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA.
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA. and Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Zhang H, Zhao X, Li J, Cai H, Deng XW, Li L. MicroRNA408 is critical for the HY5-SPL7 gene network that mediates the coordinated response to light and copper. THE PLANT CELL 2014; 26:4933-53. [PMID: 25516599 PMCID: PMC4311192 DOI: 10.1105/tpc.114.127340] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 11/06/2014] [Accepted: 11/26/2014] [Indexed: 05/18/2023]
Abstract
Light and copper are important environmental determinants of plant growth and development. Despite the wealth of knowledge on both light and copper signaling, the molecular mechanisms that integrate the two pathways remain poorly understood. Here, we use Arabidopsis thaliana to demonstrate an interaction between SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7 (SPL7) and ELONGATED HYPOCOTYL5 (HY5), which mediate copper and light signaling, respectively. Through whole-genome chromatin immunoprecipitation and RNA sequencing analyses, we elucidated the SPL7 regulon and compared it with that of HY5. We found that the two transcription factors coregulate many genes, including those involved in anthocyanin accumulation and photosynthesis. Moreover, SPL7 and HY5 act coordinately to transcriptionally regulate MIR408, which results in differential expression of microRNA408 (miR408) and its target genes in response to changing light and copper conditions. We demonstrate that this regulation is tied to copper allocation to the chloroplast and plastocyanin levels. Finally, we found that constitutively activated miR408 rescues the distinct developmental defects of the hy5, spl7, and hy5 spl7 mutants. These findings revealed the existence of crosstalk between light and copper, mediated by a HY5-SPL7 network. Furthermore, integration of transcriptional and posttranscriptional regulation is critical for governing proper metabolism and development in response to combined copper and light signaling.
Collapse
Affiliation(s)
- Huiyong Zhang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China Department of Biology, University of Virginia, Charlottesville, Virginia 22904 College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xin Zhao
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Jigang Li
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520 State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Huaqing Cai
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205
| | - Xing Wang Deng
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China Department of Biology, University of Virginia, Charlottesville, Virginia 22904
| |
Collapse
|
4
|
Preston JC, Hileman LC. Functional Evolution in the Plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) Gene Family. FRONTIERS IN PLANT SCIENCE 2013; 4:80. [PMID: 23577017 PMCID: PMC3617394 DOI: 10.3389/fpls.2013.00080] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 03/19/2013] [Indexed: 05/18/2023]
Abstract
The SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) family of transcription factors is functionally diverse, controlling a number of fundamental aspects of plant growth and development, including vegetative phase change, flowering time, branching, and leaf initiation rate. In natural plant populations, variation in flowering time and shoot architecture have major consequences for fitness. Likewise, in crop species, variation in branching and developmental rate impact biomass and yield. Thus, studies aimed at dissecting how the various functions are partitioned among different SPL genes in diverse plant lineages are key to providing insight into the genetic basis of local adaptation and have already garnered attention by crop breeders. Here we use phylogenetic reconstruction to reveal nine major SPL gene lineages, each of which is described in terms of function and diversification. To assess evidence for ancestral and derived functions within each SPL gene lineage, we use ancestral character state reconstructions. Our analyses suggest an emerging pattern of sub-functionalization, neo-functionalization, and possible convergent evolution following both ancient and recent gene duplication. Based on these analyses we suggest future avenues of research that may prove fruitful for elucidating the importance of SPL gene evolution in plant growth and development.
Collapse
Affiliation(s)
| | - Lena C. Hileman
- Ecology and Evolutionary Biology, The University of KansasLawrence, KS, USA
| |
Collapse
|
5
|
Zhang H, Li L. SQUAMOSA promoter binding protein-like7 regulated microRNA408 is required for vegetative development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:98-109. [PMID: 23289771 DOI: 10.1111/tpj.12107] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/11/2012] [Accepted: 12/20/2012] [Indexed: 05/20/2023]
Abstract
MicroRNAs (miRNAs) are endogenous small RNAs repressing target gene expression post-transcriptionally and are critically involved in various development processes and responses to environmental stresses. MiR408 is highly conserved in land plants and targets several transcripts encoding copper proteins. Although it has been well documented that expression level of miR408 is strongly influenced by a variety of environmental conditions including copper availability, the biological function of this miRNA is still unknown. Here we show that constitutive expression of miR408 results in enhanced growth of seedling and adult plant while knocking down miR408 level by T-DNA insertions or the artificial miRNA technique causes impaired growth. Further, we found that constitutively activated miR408 is able to complement the growth defects of the T-DNA lines. Regarding the molecular mechanism governing miR408 expression, we found that the transcription factors SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7 (SPL7) binds to the GTAC motifs in the MIR408 promoter in response to copper deficiency. Interestingly, constitutive activation of miR408 in the spl7 background could partially rescue the severe growth defects of the mutant. Together these results demonstrate that miR408 is a powerful modulator of vegetative growth. Our finding thus reveals a novel control mechanism for vegetative development based on calculated miR408 expression in response to environmental cues.
Collapse
Affiliation(s)
- Huiyong Zhang
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | | |
Collapse
|
6
|
Hsieh SI, Castruita M, Malasarn D, Urzica E, Erde J, Page MD, Yamasaki H, Casero D, Pellegrini M, Merchant SS, Loo JA. The proteome of copper, iron, zinc, and manganese micronutrient deficiency in Chlamydomonas reinhardtii. Mol Cell Proteomics 2012; 12:65-86. [PMID: 23065468 DOI: 10.1074/mcp.m112.021840] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trace metals such as copper, iron, zinc, and manganese play important roles in several biochemical processes, including respiration and photosynthesis. Using a label-free, quantitative proteomics strategy (MS(E)), we examined the effect of deficiencies in these micronutrients on the soluble proteome of Chlamydomonas reinhardtii. We quantified >10(3) proteins with abundances within a dynamic range of 3 to 4 orders of magnitude and demonstrated statistically significant changes in ~200 proteins in each metal-deficient growth condition relative to nutrient-replete media. Through analysis of Pearson's coefficient, we also examined the correlation between protein abundance and transcript abundance (as determined via RNA-Seq analysis) and found moderate correlations under all nutritional states. Interestingly, in a subset of transcripts known to significantly change in abundance in metal-replete and metal-deficient conditions, the correlation to protein abundance is much stronger. Examples of new discoveries highlighted in this work include the accumulation of O(2) labile, anaerobiosis-related enzymes (Hyd1, Pfr1, and Hcp2) in copper-deficient cells; co-variation of Cgl78/Ycf54 and coprogen oxidase; the loss of various stromal and lumenal photosynthesis-related proteins, including plastocyanin, in iron-limited cells; a large accumulation (from undetectable amounts to over 1,000 zmol/cell) of two COG0523 domain-containing proteins in zinc-deficient cells; and the preservation of photosynthesis proteins in manganese-deficient cells despite known losses in photosynthetic function in this condition.
Collapse
Affiliation(s)
- Scott I Hsieh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Strenkert D, Schmollinger S, Sommer F, Schulz-Raffelt M, Schroda M. Transcription factor-dependent chromatin remodeling at heat shock and copper-responsive promoters in Chlamydomonas reinhardtii. THE PLANT CELL 2011; 23:2285-301. [PMID: 21705643 PMCID: PMC3160021 DOI: 10.1105/tpc.111.085266] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/09/2011] [Accepted: 06/07/2011] [Indexed: 05/19/2023]
Abstract
How transcription factors affect chromatin structure to regulate gene expression in response to changes in environmental conditions is poorly understood in the green lineage. To shed light on this issue, we used chromatin immunoprecipitation and formaldehyde-assisted isolation of regulatory elements to investigate the chromatin structure at target genes of HSF1 and CRR1, key transcriptional regulators of the heat shock and copper starvation responses, respectively, in the unicellular green alga Chlamydomonas reinhardtii. Generally, we detected lower nucleosome occupancy, higher levels of histone H3/4 acetylation, and lower levels of histone H3 Lys 4 (H3K4) monomethylation at promoter regions of active genes compared with inactive promoters and transcribed and intergenic regions. Specifically, we find that activated HSF1 and CRR1 transcription factors mediate the acetylation of histones H3/4, nucleosome eviction, remodeling of the H3K4 mono- and dimethylation marks, and transcription initiation/elongation. By this, HSF1 and CRR1 quite individually remodel and activate target promoters that may be inactive and embedded into closed chromatin (HSP22F/CYC6) or weakly active and embedded into partially opened (CPX1) or completely opened chromatin (HSP70A/CRD1). We also observed HSF1-independent histone H3/4 deacetylation at the RBCS2 promoter after heat shock, suggesting interplay of specific and presumably more generally acting factors to adapt gene expression to the new requirements of a changing environment.
Collapse
|
8
|
Castruita M, Casero D, Karpowicz SJ, Kropat J, Vieler A, Hsieh SI, Yan W, Cokus S, Loo JA, Benning C, Pellegrini M, Merchant SS. Systems biology approach in Chlamydomonas reveals connections between copper nutrition and multiple metabolic steps. THE PLANT CELL 2011; 23:1273-92. [PMID: 21498682 PMCID: PMC3101551 DOI: 10.1105/tpc.111.084400] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 03/02/2011] [Accepted: 03/27/2011] [Indexed: 05/18/2023]
Abstract
In this work, we query the Chlamydomonas reinhardtii copper regulon at a whole-genome level. Our RNA-Seq data simulation and analysis pipeline validated a 2-fold cutoff and 10 RPKM (reads per kilobase of mappable length per million mapped reads) (~1 mRNA per cell) to reveal 63 CRR1 targets plus another 86 copper-responsive genes. Proteomic and immunoblot analyses captured 25% of the corresponding proteins, whose abundance was also dependent on copper nutrition, validating transcriptional regulation as a major control mechanism for copper signaling in Chlamydomonas. The impact of copper deficiency on the expression of several O₂-dependent enzymes included steps in lipid modification pathways. Quantitative lipid profiles indicated increased polyunsaturation of fatty acids on thylakoid membrane digalactosyldiglycerides, indicating a global impact of copper deficiency on the photosynthetic apparatus. Discovery of a putative plastid copper chaperone and a membrane protease in the thylakoid suggest a mechanism for blocking copper utilization in the chloroplast. We also found an example of copper sparing in the N assimilation pathway: the replacement of copper amine oxidase by a flavin-dependent backup enzyme. Forty percent of the targets are previously uncharacterized proteins, indicating considerable potential for new discovery in the biology of copper.
Collapse
Affiliation(s)
- Madeli Castruita
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - David Casero
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
- Institute of Genomics and Proteomics, University of California, Los Angeles, California 90095
| | - Steven J. Karpowicz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Janette Kropat
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Astrid Vieler
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Scott I. Hsieh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Weihong Yan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Shawn Cokus
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
- Institute of Genomics and Proteomics, University of California, Los Angeles, California 90095
- Department of Biological Chemistry, University of California, Los Angeles, California 90095
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
- Institute of Genomics and Proteomics, University of California, Los Angeles, California 90095
| | - Sabeeha S. Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
- Institute of Genomics and Proteomics, University of California, Los Angeles, California 90095
- Address correspondence to
| |
Collapse
|
9
|
Sommer F, Kropat J, Malasarn D, Grossoehme NE, Chen X, Giedroc DP, Merchant SS. The CRR1 nutritional copper sensor in Chlamydomonas contains two distinct metal-responsive domains. THE PLANT CELL 2010; 22:4098-113. [PMID: 21131558 PMCID: PMC3027176 DOI: 10.1105/tpc.110.080069] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 10/02/2010] [Accepted: 11/15/2010] [Indexed: 05/18/2023]
Abstract
Copper response regulator 1 (CRR1), an SBP-domain transcription factor, is a global regulator of nutritional copper signaling in Chlamydomonas reinhardtii and activates genes necessary during periods of copper deficiency. We localized Chlamydomonas CRR1 to the nucleus in mustard (Sinapis alba) seedlings, a location consistent with its function as a transcription factor. The Zn binding SBP domain of CRR1 binds copper ions in vitro. Cu(I) can replace Zn(II), but the Cu(II) form is unstable. The DNA binding activity is inhibited in vitro by Cu(II) or Hg(II) ions, which also prevent activation of transcription in vivo, but not by Co(II) or Ni(II), which have no effect in vivo. Copper inhibition of DNA binding is reduced by mutation of a conserved His residue. These results implicate the SBP domain in copper sensing. Deletion of a C-terminal metallothionein-like Cys-rich domain impacted neither nutritional copper signaling nor the effect of mercuric supplementation, but rendered CRR1 insensitive to hypoxia and to nickel supplementation, which normally activate the copper deficiency regulon in wild-type cells. Strains carrying the crr1-ΔCys allele upregulate ZRT genes and hyperaccumulate Zn(II), suggesting that the effect of nickel ions may be revealing a role for the C-terminal domain of CRR1 in zinc homeostasis in Chlamydomonas.
Collapse
Affiliation(s)
- Frederik Sommer
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569
- Max Planck Institute of Molecular Plant Physiology-Golm, 14476 Potsdam, Germany
| | - Janette Kropat
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569
| | - Davin Malasarn
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569
| | | | - Xiaohua Chen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | - David P. Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102
| | - Sabeeha S. Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569
- Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095-1569
- Address correspondence to
| |
Collapse
|
10
|
Anaerobic expression of the ferredoxin-encoding FDX5 gene of Chlamydomonas reinhardtii is regulated by the Crr1 transcription factor. EUKARYOTIC CELL 2010; 9:1747-54. [PMID: 20833896 DOI: 10.1128/ec.00127-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The unicellular green alga Chlamydomonas reinhardtii has a complex anaerobic metabolism and reacts to hypoxic or anaerobic conditions with the induced expression of many genes. One gene which is upregulated particularly strongly is the FDX5 gene, encoding one of at least six ferredoxin isoforms in C. reinhardtii. Fdx5 is a typical plant-type 2Fe2S protein that is located in the chloroplast. The FDX5 promoter region contains three GTAC motifs, which are known to be the binding sites for copper response regulator 1 (Crr1) and other SQUAMOSA promoter binding proteins (SBPs). This study shows that two of these GTAC sites are essential to confer oxygen and also copper responsiveness to a reporter gene. The SBP domain of Crr1 is able to bind to both of these GTAC sites in in vitro binding assays. Moreover, in a Crr1-deficient C. reinhardtii strain, FDX5 is not expressed. These results clearly indicate that Crr1 is involved in the transcriptional regulation of the FDX5 gene in the absence of oxygen or copper.
Collapse
|
11
|
Page MD, Kropat J, Hamel PP, Merchant SS. Two Chlamydomonas CTR copper transporters with a novel cys-met motif are localized to the plasma membrane and function in copper assimilation. THE PLANT CELL 2009; 21:928-43. [PMID: 19318609 PMCID: PMC2671701 DOI: 10.1105/tpc.108.064907] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 02/27/2009] [Accepted: 03/09/2009] [Indexed: 05/21/2023]
Abstract
Inducible high-affinity copper uptake is key to copper homeostasis in Chlamydomonas reinhardtii. We generated cDNAs and updated gene models for four genes, CTR1, CTR2, CTR3, and COPT1, encoding CTR-type copper transporters in Chlamydomonas. The expression of CTR1, CTR2, and CTR3 increases in copper deficient cells and in response to hypoxia or Ni(2+) supplementation; this response depends on the transcriptional activator CRR1. A copper response element was identified by mutational analysis of the 5' upstream region of CTR1. Functional analyses identify CTR1 and CTR2 as the assimilatory transporters of Chlamydomonas based on localization to the plasma membrane and ability to rescue a Saccharomyces cerevisiae mutant defective in high-affinity copper transport. The Chlamydomonas CTRs contain a novel Cys-Met motif (CxxMxxMxxC-x(5/6)-C), which occurs also in homologous proteins in other green algae, amoebae, and pathogenic fungi. CTR3 appears to have arisen by duplication of CTR2, but CTR3 lacks the characteristic transmembrane domains found in the transporters, suggesting that it may be a soluble protein. Thus, Chlamydomonas CTR genes encode a distinct subset of the classical CTR family of Cu(I) transporters and represent new targets of CRR1-dependent signaling.
Collapse
Affiliation(s)
- M Dudley Page
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | | | | | | |
Collapse
|
12
|
Allen MD, Kropat J, Merchant SS. Regulation and Localization of Isoforms of the Aerobic Oxidative Cyclase inChlamydomonas reinhardtii†. Photochem Photobiol 2008; 84:1336-42. [DOI: 10.1111/j.1751-1097.2008.00440.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
13
|
Nagae M, Nakata M, Takahashi Y. Identification of negative cis-acting elements in response to copper in the chloroplastic iron superoxide dismutase gene of the moss Barbula unguiculata. PLANT PHYSIOLOGY 2008; 146:1687-96. [PMID: 18258690 PMCID: PMC2287343 DOI: 10.1104/pp.107.114868] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Superoxide dismutases (SODs) are ubiquitous metalloenzymes that catalyze the dismutation of superoxide radicals. Chloroplasts have two isozymes, copper/zinc SOD (Cu/ZnSOD) and iron SOD (FeSOD), encoded by nuclear genes. Because bryophytes are considered as the earliest land plants, they are one of the most interesting plant models for adaptation against oxidative stress. In a previous study, we found that the FeSOD gene was expressed under Cu-deficient conditions and repressed under high-Cu-supply conditions; on the other hand, the Cu/ZnSOD gene was induced by Cu in a moss, Barbula unguiculata. The expression of Cu/ZnSOD and FeSOD is coordinately regulated at the transcriptional level depending on metal bioavailability. Here, using transgenic moss plants, we determined that the GTACT motif is a negative cis-acting element of the moss FeSOD gene in response to Cu. Furthermore, we found that a plant-specific transcription factor, PpSBP2 (for SQUAMOSA promoter-binding protein), and its related proteins bound to the GTACT motif repressed the expression of the FeSOD gene. The moss FeSOD gene was negatively regulated by Cu in transgenic Nicotiana tabacum plants, and the Arabidopsis thaliana FeSOD gene promoter containing the GTACT motif was repressed by Cu. Our results suggested that molecular mechanisms of GTACT motif-dependent transcriptional suppression by Cu are conserved in land plants.
Collapse
Affiliation(s)
- Miwa Nagae
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | | | | |
Collapse
|
14
|
Jamers A, Van der Ven K, Moens L, Robbens J, Potters G, Guisez Y, Blust R, De Coen W. Effect of copper exposure on gene expression profiles in Chlamydomonas reinhardtii based on microarray analysis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2006; 80:249-60. [PMID: 17079029 DOI: 10.1016/j.aquatox.2006.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 09/09/2006] [Accepted: 09/10/2006] [Indexed: 05/12/2023]
Abstract
Copper is a naturally occurring trace metal with toxic properties for man and environment. It is assumed that toxicity is primarily caused by oxidative damage, generated through the production of reactive oxygen species. Copper is, however, also an essential element, which means trace amounts are necessary for biological processes to function properly. Organisms are therefore presented with the challenging problem of maintaining copper concentrations within a well-defined range to avoid stress. We exposed the green alga Chlamydomonas reinhardtii to different copper concentrations and used microarray analysis to investigate the changes in mRNA abundances and to obtain an image of the molecular mechanisms underlying copper homeostasis. The results confirm and extend upon previous findings showing that in the case of lower copper concentrations there is a change in levels of mRNA coding for alternative polypeptides which can take over the function of certain copper containing molecules so as to compensate for the lack of copper. In the case of copper toxicity, there is a strong upregulation of transcripts encoding enzymes involved in oxidative stress defense mechanisms. In both cases, there were significant changes in expression levels of transcripts coding for enzymes involved in several metabolic pathways (photosynthesis, pentose phosphate pathway, glycolysis, gluconeogenesis), in general stress response (heat shock proteins) and in intracellular proteolysis (lysosomal enzymes, proteasome components).
Collapse
Affiliation(s)
- An Jamers
- Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Merchant SS, Allen MD, Kropat J, Moseley JL, Long JC, Tottey S, Terauchi AM. Between a rock and a hard place: trace element nutrition in Chlamydomonas. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:578-94. [PMID: 16766055 DOI: 10.1016/j.bbamcr.2006.04.007] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 04/06/2006] [Accepted: 04/06/2006] [Indexed: 11/23/2022]
Abstract
Photosynthetic organisms are among the earliest life forms on earth and their biochemistry is strictly dependent on a wide range of inorganic nutrients owing to the use of metal cofactor-dependent enzymes in photosynthesis, respiration, inorganic nitrogen and sulfur assimilation. Chlamydomonas reinhardtii is a photosynthetic eukaryotic model organism for the study of trace metal homeostasis. Chlamydomonas spp. are widely distributed and can be found in soil, glaciers, acid mines and sewage ponds, suggesting that the genus has significant capacity for acclimation to micronutrient availability. Analysis of the draft genome indicates that metal homeostasis mechanisms in Chlamydomonas represent a blend of mechanisms operating in animals, plants and microbes. A combination of classical genetics, differential expression and genomic analysis has led to the identification of homologues of components known to operate in fungi and animals (e.g., Fox1, Ftr1, Fre1, Fer1, Ctr1/2) as well as novel molecules involved in copper and iron nutrition (Crr1, Fea1/2). Besides activating iron assimilation pathways, iron-deficient Chlamydomonas cells re-adjust metabolism by reducing light delivery to photosystem I (to avoid photo-oxidative damage resulting from compromised FeS clusters) and by modifying the ferredoxin profile (perhaps to accommodate preferential allocation of reducing equivalents). Up-regulation of a MnSOD isoform may compensate for loss of FeSOD. Ferritin could function to buffer the iron released from programmed degradation of iron-containing enzymes in the chloroplast. Some metabolic adjustments are made in anticipation of deficiency while others occur only with sustained or severe deficiency. Copper-deficient Chlamydomonas cells induce a copper assimilation pathway consisting of a cell surface reductase and a Cu(+) transporter (presumed CTR homologue). There are metabolic adaptations in addition: the synthesis of "back-up" enzymes for plastocyanin in photosynthesis and the ferroxidase in iron assimilation plus activation of alternative oxidase to handle the electron "overflow" resulting from reduced cytochrome oxidase function. Oxygen-dependent enzymes in the tetrapyrrole pathway (coproporphyrinogen oxidase and aerobic oxidative cyclase) are also increased in expression and activity by as much as 10-fold but the connection between copper nutrition and tetrapyrroles is not understood. The copper-deficiency responses are mediated by copper response elements that are defined by a GTAC core sequence and a novel metalloregulator, Crr1, which uses a zinc-dependent SBP domain to bind to the CuRE. The Chlamydomonas model is ideal for future investigation of nutritional manganese deficiency and selenoenzyme function. It is also suited for studies of trace nutrient interactions, nutrition-dependent metabolic changes, the relationship between photo-oxidative stress and metal homeostasis, and the important questions of differential allocation of limiting metal nutrients (e.g., to respiration vs. photosynthesis).
Collapse
Affiliation(s)
- Sabeeha S Merchant
- Department of Chemistry and Biochemistry, Box 951569, University of California-Los Angeles, Los Angeles, CA 90095-1569, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Lohr M, Im CS, Grossman AR. Genome-based examination of chlorophyll and carotenoid biosynthesis in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2005; 138:490-515. [PMID: 15849308 PMCID: PMC1104202 DOI: 10.1104/pp.104.056069] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 02/03/2005] [Accepted: 02/08/2005] [Indexed: 05/19/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a particularly important model organism for the study of photosynthesis since this alga can grow heterotrophically, and mutants in photosynthesis are therefore conditional rather than lethal. The recently developed tools for genomic analyses of this organism have allowed us to identify most of the genes required for chlorophyll and carotenoid biosynthesis and to examine their phylogenetic relationships with homologous genes from vascular plants, other algae, and cyanobacteria. Comparative genome analyses revealed some intriguing features associated with pigment biosynthesis in C. reinhardtii; in some cases, there are additional conserved domains in the algal and plant but not the cyanobacterial proteins that may directly influence their activity, assembly, or regulation. For some steps in the chlorophyll biosynthetic pathway, we found multiple gene copies encoding putative isozymes. Phylogenetic studies, theoretical evaluation of gene expression through analysis of expressed sequence tag data and codon bias of each gene, enabled us to generate hypotheses concerning the function and regulation of the individual genes, and to propose targets for future research. We have also used quantitative polymerase chain reaction to examine the effect of low fluence light on the level of mRNA accumulation encoding key proteins of the biosynthetic pathways and examined differential expression of those genes encoding isozymes that function in the pathways. This work is directing us toward the exploration of the role of specific photoreceptors in the biosynthesis of pigments and the coordination of pigment biosynthesis with the synthesis of proteins of the photosynthetic apparatus.
Collapse
Affiliation(s)
- Martin Lohr
- Institut für Allgemeine Botanik Johannes Gutenberg-Universität, 55099 Mainz, Germany.
| | | | | |
Collapse
|
18
|
Abstract
This review focuses on the biosynthesis of pigments in the unicellular alga Chlamydomonas reinhardtii and their physiological and regulatory functions in the context of information gathered from studies of other photosynthetic organisms. C. reinhardtii is serving as an important model organism for studies of photosynthesis and the pigments associated with the photosynthetic apparatus. Despite extensive information pertaining to the biosynthetic pathways critical for making chlorophylls and carotenoids, we are just beginning to understand the control of these pathways, the coordination between pigment and apoprotein synthesis, and the interactions between the activities of these pathways and those for other important cellular metabolites branching from these pathways. Other exciting areas relating to pigment function are also emerging: the role of intermediates of pigment biosynthesis as messengers that coordinate metabolism in the chloroplast with nuclear gene activity, and the identification of photoreceptors and their participation in critical cellular processes including phototaxis, gametogenesis, and the biogenesis of the photosynthetic machinery. These areas of research have become especially attractive for intensive development with the application of potent molecular and genomic tools currently being applied to studies of C. reinhardtii.
Collapse
Affiliation(s)
- Arthur R Grossman
- The Carnegie Institution of Washington, Department of Plant Biology, Stanford, California 94305, USA.
| | | | | |
Collapse
|
19
|
Eriksson M, Moseley JL, Tottey S, Del Campo JA, Quinn J, Kim Y, Merchant S. Genetic dissection of nutritional copper signaling in chlamydomonas distinguishes regulatory and target genes. Genetics 2005; 168:795-807. [PMID: 15514054 PMCID: PMC1448816 DOI: 10.1534/genetics.104.030460] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A genetic screen for Chlamydomonas reinhardtii mutants with copper-dependent growth or nonphotosynthetic phenotypes revealed three loci, COPPER RESPONSE REGULATOR 1 (CRR1), COPPER RESPONSE DEFECT 1 (CRD1), and COPPER RESPONSE DEFECT 2 (CRD2), distinguished as regulatory or target genes on the basis of phenotype. CRR1 was shown previously to be required for transcriptional activation of target genes like CYC6, CPX1, and CRD1, encoding, respectively, cytochrome c(6) (which is a heme-containing substitute for copper-containing plastocyanin), coproporphyrinogen III oxidase, and Mg-protoporphyrin IX monomethylester cyclase. We show here that CRR1 is required also for normal accumulation of copper proteins like plastocyanin and ferroxidase in copper-replete medium and for apoplastocyanin degradation in copper-deficient medium, indicating that a single pathway controls nutritional copper homeostasis at multiple levels. CRR1 is linked to the SUPPRESSOR OF PCY1-AC208 13 (SOP13) locus, which corresponds to a gain-of-function mutation resulting in copper-independent expression of CYC6. CRR1 is required also for hypoxic growth, pointing to a physiologically meaningful regulatory connection between copper deficiency and hypoxia. The growth phenotype of crr1 strains results primarily from secondary iron deficiency owing to reduced ferroxidase abundance, suggesting a role for CRR1 in copper distribution to a multicopper ferroxidase involved in iron assimilation. Mutations at the CRD2 locus also result in copper-conditional iron deficiency, which is consistent with a function for CRD2 in a pathway for copper delivery to the ferroxidase. Taken together, the observations argue for a specialized copper-deficiency adaptation for iron uptake in Chlamydomonas.
Collapse
Affiliation(s)
- Mats Eriksson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, 90095-1569, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Rutherford JC, Bird AJ. Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells. EUKARYOTIC CELL 2004; 3:1-13. [PMID: 14871932 PMCID: PMC329510 DOI: 10.1128/ec.3.1.1-13.2004] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Julian C Rutherford
- Division of Hematology, Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA
| | | |
Collapse
|
21
|
Quinn JM, Kropat J, Merchant S. Copper response element and Crr1-dependent Ni(2+)-responsive promoter for induced, reversible gene expression in Chlamydomonas reinhardtii. EUKARYOTIC CELL 2004; 2:995-1002. [PMID: 14555481 PMCID: PMC219375 DOI: 10.1128/ec.2.5.995-1002.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Cpx1 and Cyc6 genes of Chlamydomonas reinhardtii are activated in copper-deficient cells via a signal transduction pathway that requires copper response elements (CuREs) and a copper response regulator defined by the CRR1 locus. The two genes can also be activated by provision of nickel or cobalt ions in the medium. The response to nickel ions requires at least one CuRE and also CRR1 function, suggesting that nickel interferes with a component in the nutritional copper signal transduction pathway. Nickel does not act by preventing copper uptake/utilization because (i) holoplastocyanin formation is unaffected in Ni(2+)-treated cells and (ii) provision of excess copper cannot reverse the Ni-dependent activation of the target genes. The CuRE is sufficient for conferring Ni-responsive expression to a reporter gene, which suggests that the system has practical application as a vehicle for inducible gene expression. The inducer can be removed either by replacing the medium or by chelating the inducer with excess EDTA, either of which treatments reverses the activation of the target genes.
Collapse
Affiliation(s)
- Jeanette M Quinn
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California 90095-1569, USA
| | | | | |
Collapse
|
22
|
Del Campo JA, Quinn JM, Merchant S. Evaluation of oxygen response involving differential gene expression in Chlamydomonas reinhardtii. Methods Enzymol 2004; 381:604-17. [PMID: 15063701 DOI: 10.1016/s0076-6879(04)81039-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Affiliation(s)
- José A Del Campo
- Department of Chemistry and Biochemistry, Los Angeles, California 90095-1569, USA
| | | | | |
Collapse
|
23
|
Vasileuskaya Z, Oster U, Beck CF. Involvement of tetrapyrroles in inter-organellar signaling in plants and algae. PHOTOSYNTHESIS RESEARCH 2004; 82:289-99. [PMID: 16143841 DOI: 10.1007/s11120-004-2160-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Accepted: 07/21/2004] [Indexed: 05/04/2023]
Abstract
For the assembly of a functional chloroplast, the coordinated expression of genes distributed between nucleus and chloroplasts is a prerequisite. While the nucleus plays an undisputed dominant role in controling biogenesis and functioning of chloroplasts, plastidic signals appear to control the expression of a subset of nuclear genes; the majority of which encodes chloroplast constituents. Tetrapyrrole biosynthesis intermediates are attractive candidates for one type of plastidic signal ever since an involvement of Mg-porphyrins in signaling from chloroplast to nucleus was first demonstrated in Chlamydomonas reinhardtii. Since then, Mg-protoporphyrin IX has been shown to exert a regulatory function on nuclear genes in higher plants as well. Here we review evidence for the role played by tetrapyrroles in inter-organellar communication. We also report on a screening for nuclear genes that may be subject to regulation by tetrapyrroles. This revealed that (i) >HEMA, the gene encoding the first enzyme specific for porphyrin biosynthesis is induced by Mg-protoporphyrin IX, (ii) several nuclear HSP70 genes are regulated by tetrapyrroles. Members of the gene family induced by the feeding of Mg-rotoporphyrin IX encode chaperones located in either the chloroplast or the cytosol. These results point to an important role of Mg-tetrapyrroles as plastidic signal in controling the initial step of porphyrin biosynthesis, and the synthesis of chaperones involved in protein folding in cytosol/stroma, protein transport into organelles, and the stress response.
Collapse
Affiliation(s)
- Zinaida Vasileuskaya
- Institut fuer Biologie III, Albert-Ludwigs-Universitaet, Schaenzlestrasse 1, 79104, Freiburg, Germany,
| | | | | |
Collapse
|
24
|
Hanikenne M. Chlamydomonas reinhardtii as a eukaryotic photosynthetic model for studies of heavy metal homeostasis and tolerance. THE NEW PHYTOLOGIST 2003; 159:331-340. [PMID: 33873346 DOI: 10.1046/j.1469-8137.2003.00788.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The green alga Chlamydomonas reinhardtii is a useful model of a photosynthetic cell. This unicellular eukaryote has been intensively used for studies of a number of physiological processes such as photosynthesis, respiration, nitrogen assimilation, flagella motility and basal body function. Its easy-to-manipulate and short life cycle make this organism a powerful tool for genetic analysis. Over the past 15 yr, a dramatically increased number of molecular technologies (including nuclear and organellar transformation systems, cosmid, yeast artificial chromosome (YAC) and bacterial artificial chromosome (BAC) libraries, reporter genes, RNA interference, DNA microarrays, etc.) have been applied to Chlamydomonas. Moreover, as parts of the Chlamydomonas genome project, molecular mapping, as well as whole genome and extended expressed sequence tag (EST) sequencing programs, are currently underway. These developments have allowed Chlamydomonas to become an extremely valuable model for molecular approaches to heavy metal homeostasis and tolerance in photosynthetic organisms.
Collapse
Affiliation(s)
- M Hanikenne
- Genetics of Microorganisms, Department of Life Sciences, B22, University of Liège, B4000 Liège, Belgium
| |
Collapse
|
25
|
Kathir P, LaVoie M, Brazelton WJ, Haas NA, Lefebvre PA, Silflow CD. Molecular map of the Chlamydomonas reinhardtii nuclear genome. EUKARYOTIC CELL 2003; 2:362-79. [PMID: 12684385 PMCID: PMC154841 DOI: 10.1128/ec.2.2.362-379.2003] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2002] [Accepted: 12/10/2002] [Indexed: 11/20/2022]
Abstract
We have prepared a molecular map of the Chlamydomonas reinhardtii genome anchored to the genetic map. The map consists of 264 markers, including sequence-tagged sites (STS), scored by use of PCR and agarose gel electrophoresis, and restriction fragment length polymorphism markers, scored by use of Southern blot hybridization. All molecular markers tested map to one of the 17 known linkage groups of C. reinhardtii. The map covers approximately 1,000 centimorgans (cM). Any position on the C. reinhardtii genetic map is, on average, within 2 cM of a mapped molecular marker. This molecular map, in combination with the ongoing mapping of bacterial artificial chromosome (BAC) clones and the forthcoming sequence of the C. reinhardtii nuclear genome, should greatly facilitate isolation of genes of interest by using positional cloning methods. In addition, the presence of easily assayed STS markers on each arm of each linkage group should be very useful in mapping new mutations in preparation for positional cloning.
Collapse
Affiliation(s)
- Pushpa Kathir
- Department of Genetics, University of Minnesota, St. Paul, Minnesota, USA
| | | | | | | | | | | |
Collapse
|
26
|
Dreyfuss BW, Hamel PP, Nakamoto SS, Merchant S. Functional analysis of a divergent system II protein, Ccs1, involved in c-type cytochrome biogenesis. J Biol Chem 2003; 278:2604-13. [PMID: 12427747 DOI: 10.1074/jbc.m208652200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ccs1 gene, encoding a highly divergent novel component of a system II type c-type cytochrome biogenesis pathway, is encoded by the previously defined CCS1 locus in Chlamydomonas reinhardtii. phoA and lacZalpha bacterial topological reporters were used to deduce a topological model of the Synechocystis sp. 6803 Ccs1 homologue, CcsB. CcsB, and therefore by analogy Ccs1, possesses a large soluble lumenal domain at its C terminus that is tethered in the thylakoid membrane by three closely spaced transmembrane domains in the N-terminal portion of the protein. Molecular analysis of ccs1 alleles reveals that the entire C-terminal soluble domain is essential for Ccs1 function and that a stromal loop appears to be important in vivo, at least for maintenance of Ccs1. Site-directed mutational analysis reveals that a single histidine (His(274)) within the last transmembrane domain, preceding the large lumenal domain, is required for c-type cytochrome assembly, whereas an invariant cysteine residue (Cys(199)) is shown to be non-essential. Ccs1 is proposed to interact with other Ccs components based on its reduced accumulation in ccs2, ccs3, ccs4, and ccsA strains.
Collapse
Affiliation(s)
- Beth Welty Dreyfuss
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095-1569, USA
| | | | | | | |
Collapse
|
27
|
Moseley JL, Allinger T, Herzog S, Hoerth P, Wehinger E, Merchant S, Hippler M. Adaptation to Fe-deficiency requires remodeling of the photosynthetic apparatus. EMBO J 2002; 21:6709-20. [PMID: 12485992 PMCID: PMC139087 DOI: 10.1093/emboj/cdf666] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The molecular mechanisms underlying the onset of Fe-deficiency chlorosis and the maintenance of photosynthetic function in chlorotic chloroplasts are relevant to global photosynthetic productivity. We describe a series of graded responses of the photosynthetic apparatus to Fe-deficiency, including a novel response that occurs prior to the onset of chlorosis, namely the disconnection of the LHCI antenna from photosystem I (PSI). We propose that disconnection is mediated by a change in the physical properties of PSI-K in PSI in response to a change in plastid Fe content, which is sensed through the occupancy, and hence activity, of the Fe-containing active site in Crd1. We show further that progression of the response involves remodeling of the antenna complexes-specific degradation of existing proteins coupled to the synthesis of new ones, and establishment of a new steady state with decreased stoichiometry of electron transfer complexes. We suggest that these responses are typical of a dynamic photosynthetic apparatus where photosynthetic function is optimized and photooxidative damage is minimized in graduated responses to a combination of nutrients, light quantity and quality.
Collapse
Affiliation(s)
| | - Tanja Allinger
- Department of Chemistry and Biochemistry and Molecular Biology Institute, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA,
Lehrstuhl für Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, Dornburger Strasse 159, D-07743 Jena and Lehrstuhl für Biochemie der Pflanzen, Institut für Biologie II, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany Corresponding authors e-mail: or
J.L.Moseley and T.Allinger contributed equally to this work
| | - Sebastian Herzog
- Department of Chemistry and Biochemistry and Molecular Biology Institute, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA,
Lehrstuhl für Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, Dornburger Strasse 159, D-07743 Jena and Lehrstuhl für Biochemie der Pflanzen, Institut für Biologie II, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany Corresponding authors e-mail: or
J.L.Moseley and T.Allinger contributed equally to this work
| | - Patric Hoerth
- Department of Chemistry and Biochemistry and Molecular Biology Institute, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA,
Lehrstuhl für Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, Dornburger Strasse 159, D-07743 Jena and Lehrstuhl für Biochemie der Pflanzen, Institut für Biologie II, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany Corresponding authors e-mail: or
J.L.Moseley and T.Allinger contributed equally to this work
| | | | - Sabeeha Merchant
- Department of Chemistry and Biochemistry and Molecular Biology Institute, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA,
Lehrstuhl für Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, Dornburger Strasse 159, D-07743 Jena and Lehrstuhl für Biochemie der Pflanzen, Institut für Biologie II, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany Corresponding authors e-mail: or
J.L.Moseley and T.Allinger contributed equally to this work
| | - Michael Hippler
- Department of Chemistry and Biochemistry and Molecular Biology Institute, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA,
Lehrstuhl für Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, Dornburger Strasse 159, D-07743 Jena and Lehrstuhl für Biochemie der Pflanzen, Institut für Biologie II, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany Corresponding authors e-mail: or
J.L.Moseley and T.Allinger contributed equally to this work
| |
Collapse
|
28
|
La Fontaine S, Quinn JM, Nakamoto SS, Page MD, Göhre V, Moseley JL, Kropat J, Merchant S. Copper-dependent iron assimilation pathway in the model photosynthetic eukaryote Chlamydomonas reinhardtii. EUKARYOTIC CELL 2002; 1:736-57. [PMID: 12455693 PMCID: PMC126744 DOI: 10.1128/ec.1.5.736-757.2002] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2002] [Accepted: 07/24/2002] [Indexed: 11/20/2022]
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a valuable model for studying metal metabolism in a photosynthetic background. A search of the Chlamydomonas expressed sequence tag database led to the identification of several components that form a copper-dependent iron assimilation pathway related to the high-affinity iron uptake pathway defined originally for Saccharomyces cerevisiae. They include a multicopper ferroxidase (encoded by Fox1), an iron permease (encoded by Ftr1), a copper chaperone (encoded byAtx1), and a copper-transporting ATPase. A cDNA, Fer1, encoding ferritin for iron storage also was identified. Expression analysis demonstrated that Fox1 and Ftrl were coordinately induced by iron deficiency, as were Atx1 and Fer1, although to lesser extents. In addition, Fox1 abundance was regulated at the posttranscriptional level by copper availability. Each component exhibited sequence relationship with its yeast, mammalian, or plant counterparts to various degrees; Atx1 of C. reinhardtii is also functionally related with respect to copper chaperone and antioxidant activities. Fox1 is most highly related to the mammalian homologues hephaestin and ceruloplasmin; its occurrence and pattern of expression in Chlamydomonas indicate, for the first time, a role for copper in iron assimilation in a photosynthetic species. Nevertheless, growth of C. reinhardtii under copper- and iron-limiting conditions showed that, unlike the situation in yeast and mammals, where copper deficiency results in a secondary iron deficiency, copper-deficient Chlamydomonas cells do not exhibit symptoms of iron deficiency. We propose the existence of a copper-independent iron assimilation pathway in this organism.
Collapse
Affiliation(s)
- Sharon La Fontaine
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90095-1569, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Quinn JM, Eriksson M, Moseley JL, Merchant S. Oxygen deficiency responsive gene expression in Chlamydomonas reinhardtii through a copper-sensing signal transduction pathway. PLANT PHYSIOLOGY 2002; 128:463-71. [PMID: 11842150 PMCID: PMC148909 DOI: 10.1104/pp.010694] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2001] [Revised: 09/29/2001] [Accepted: 10/22/2001] [Indexed: 05/20/2023]
Abstract
Chlamydomonas reinhardtii activates Cpx1, Cyc6, and Crd1, encoding, respectively, coproporphyrinogen oxidase, cytochrome c(6), and a novel di-iron enzyme when transferred to oxygen-deficient growth conditions. This response is physiologically relevant because C. reinhardtii experiences these growth conditions routinely, and furthermore, one of the target genes, Crd1, is functionally required for normal growth under oxygen-depleted conditions. The same genes are activated also in response to copper-deficiency through copper-response elements that function as target sites for a transcriptional activator. The core of the copper-response element, GTAC, is required also for the hypoxic response, as is a trans-acting locus, CRR1. Mercuric ions, which antagonize the copper-deficiency response, also antagonize the oxygen-deficiency response of these target genes. Taken together, these observations suggest that the oxygen- and copper-deficiency responses share signal transduction components. Nevertheless, whereas the copper-response element is sufficient for the nutritional copper response, the oxygen-deficiency response requires, in addition, a second cis-element, indicating that the response to oxygen depletion is not identical to the nutritional copper response. The distinction between the two responses is also supported by comparative analysis of the response of the target genes, Cyc6, Cpx1, and Crd1, to copper versus oxygen deficiency. A Crr1-independent pathway for Hyd1 expression in oxygen-depleted C. reinhardtii demonstrates the existence of multiple oxygen/redox-responsive circuits in this model organism.
Collapse
Affiliation(s)
- Jeanette M Quinn
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | | | | | | |
Collapse
|
30
|
Harris EH. CHLAMYDOMONAS AS A MODEL ORGANISM. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY 2001; 52:363-406. [PMID: 11337403 DOI: 10.1146/annurev.arplant.52.1.363] [Citation(s) in RCA: 431] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The unicellular green alga Chlamydomonas offers a simple life cycle, easy isolation of mutants, and a growing array of tools and techniques for molecular genetic studies. Among the principal areas of current investigation using this model system are flagellar structure and function, genetics of basal bodies (centrioles), chloroplast biogenesis, photosynthesis, light perception, cell-cell recognition, and cell cycle control. A genome project has begun with compilation of expressed sequence tag data and gene expression studies and will lead to a complete genome sequence. Resources available to the research community include wild-type and mutant strains, plasmid constructs for transformation studies, and a comprehensive on-line database.
Collapse
Affiliation(s)
- Elizabeth H Harris
- Developmental, Cell and Molecular Biology Group, Biology Department, Duke University, Durham, North Carolina 27708-1000; e-mail:
| |
Collapse
|
31
|
Moseley J, Quinn J, Eriksson M, Merchant S. The Crd1 gene encodes a putative di-iron enzyme required for photosystem I accumulation in copper deficiency and hypoxia in Chlamydomonas reinhardtii. EMBO J 2000; 19:2139-51. [PMID: 10811605 PMCID: PMC384357 DOI: 10.1093/emboj/19.10.2139] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chlamydomonas reinhardtii adapts to copper deficiency by degrading apoplastocyanin and inducing Cyc6 and Cpx1 encoding cytochrome c(6) and coproporphyrinogen oxidase, respectively. To identify other components in this pathway, colonies resulting from insertional mutagenesis were screened for copper- conditional phenotypes. Twelve crd (copper response defect) strains were identified. In copper-deficient conditions, the crd strains fail to accumulate photosystem I and light-harvesting complex I, and they contain reduced amounts of light-harvesting complex II. Cyc6, Cpx1 expression and plastocyanin accumulation remain copper responsive. The crd phenotype is rescued by a similar amount of copper as is required for repression of Cyc6 and Cpx1 and for maintenance of plastocyanin at its usual stoichiometry, suggesting that the affected gene is a target of the same signal transduction pathway. The crd strains represent alleles at a single locus, CRD1, which encodes a 47 kDa, hydrophilic protein with a consensus carboxylate-bridged di-iron binding site. Crd1 homologs are present in the genomes of photosynthetic organisms. In Chlamydomonas, Crd1 expression is activated in copper- or oxygen-deficient cells, and Crd1 function is required for adaptation to these conditions.
Collapse
Affiliation(s)
- J Moseley
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1569, USA
| | | | | | | |
Collapse
|
32
|
Quinn JM, Barraco P, Eriksson M, Merchant S. Coordinate copper- and oxygen-responsive Cyc6 and Cpx1 expression in Chlamydomonas is mediated by the same element. J Biol Chem 2000; 275:6080-9. [PMID: 10692397 DOI: 10.1074/jbc.275.9.6080] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chlamydomonas reinhardtii activates the transcription of the Cyc6 and the Cpx1 genes (encoding cytochrome c(6) and coprogen oxidase) in response to copper deficiency. Mutational analysis of promoter regions of the Cyc6 and Cpx1 genes revealed a four nucleotide sequence, GTAC, which was absolutely essential for copper responsiveness. The Cyc6 promoter contains two copper response elements, each with a functionally important GTAC sequence, whereas the Cpx1 promoter contains only one. This may contribute to the stronger and more tightly regulated expression of the Cyc6 gene. Mutation or deletion of sequences flanking the GTACs implicates additional nucleotides contributing to copper-responsive expression, but none are absolutely essential. Metal ion selectivity of Cpx1 expression is identical to that described previously for Cyc6 and is restricted to the copper deficiency-induced Cpx1 transcript. The Cyc6 and Cpx1 genes are also induced by oxygen deficiency. Reporter gene constructs indicate that the induction occurs at the level of transcription and requires the same GTAC sequence that is critical for copper responsiveness. We suggest that components of the copper-responsive signal transduction pathway are used for some of the changes in gene expression in hypoxic cells.
Collapse
Affiliation(s)
- J M Quinn
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, USA
| | | | | | | |
Collapse
|