1
|
Sharma J, Douglas T. Tuning the catalytic properties of P22 nanoreactors through compositional control. NANOSCALE 2020; 12:336-346. [PMID: 31825057 PMCID: PMC8859858 DOI: 10.1039/c9nr08348k] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Enzymes are biomacromolecular protein catalysts that are widely used in a plethora of industrial-scale applications due to their high selectivity, efficiency and ability to work under mild conditions. Many industrial processes require the immobilization of enzymes to enhance their performance and stability. Encapsulation of enzymes in protein cages provides an excellent immobilization platform to create nanoreactors with enhanced enzymatic stability and desired catalytic activities. Here we show that the catalytic activity of nanoreactors, derived from the bacteriophage P22 viral capsids, can be finely-tuned by controlling the packaging stoichiometry and packing density of encapsulated enzymes. The packaging stoichiometry of the enzyme alcohol dehydrogenase (AdhD) was controlled by co-encapsulating it with wild-type scaffold protein (wtSP) at different stoichiometric ratios using an in vitro assembly approach and the packing density was controlled by selectively removing wtSP from the assembled nanoreactors. An inverse relationship was observed between the catalytic activity (kcat) of AdhD enzyme and the concentration of co-encapsulated wtSP. Selective removal of the wtSP resulted in the similar activity of AdhD in all nanoreactors despite the difference in the volume occupied by enzymes inside nanoreactors, indicating that the AdhD enzymes do not experience self-crowding even under high molarity of confinement (Mconf) conditions. The approach demonstrated here not only allowed us to tailor the activity of encapsulated AdhD catalysts but also the overall functional output of nanoreactors (enzyme-VLP complex). The approach also allowed us to differentiate the effects of crowding and confinement on the functional properties of enzymes encapsulated in an enclosed system, which could pave the way for designing more efficient nanoreactors.
Collapse
Affiliation(s)
- Jhanvi Sharma
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, USA.
| | - Trevor Douglas
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, USA.
| |
Collapse
|
2
|
Whitehead RD, Teschke CM, Alexandrescu AT. NMR Mapping of Disordered Segments from a Viral Scaffolding Protein Enclosed in a 23 MDa Procapsid. Biophys J 2019; 117:1387-1392. [PMID: 31585705 DOI: 10.1016/j.bpj.2019.08.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 01/10/2023] Open
Abstract
Scaffolding proteins (SPs) are required for the capsid shell assembly of many tailed double-stranded DNA bacteriophages, some archaeal viruses, herpesviruses, and adenoviruses. Despite their importance, only one high-resolution structure is available for SPs within procapsids. Here, we use the inherent size limit of NMR to identify mobile segments of the 303-residue phage P22 SP free in solution and when incorporated into a ∼23 MDa procapsid complex. Free SP gives NMR signals from its acidic N-terminus (residues 1-40) and basic C-terminus (residues 264-303), whereas NMR signals from the middle segment (residues 41-263) are missing because of intermediate conformational exchange on the NMR chemical shift timescale. When SP is incorporated into P22 procapsids, NMR signals from the C-terminal helix-turn-helix domain disappear because of binding to the procapsid interior. Signals from the N-terminal domain persist, indicating that this segment retains flexibility when bound to procapsids. The unstructured character of the N-terminus, coupled with its high content of negative charges, is likely important for dissociation and release of SP during the double-stranded DNA genome packaging step accompanying phage maturation.
Collapse
Affiliation(s)
- Richard D Whitehead
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Carolyn M Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut; Department of Chemistry, University of Connecticut, Storrs, Connecticut.
| | - Andrei T Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut.
| |
Collapse
|
3
|
Oh B, Moyer CL, Hendrix RW, Duda RL. The delta domain of the HK97 major capsid protein is essential for assembly. Virology 2014; 456-457:171-8. [PMID: 24889236 DOI: 10.1016/j.virol.2014.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 01/14/2014] [Accepted: 03/21/2014] [Indexed: 10/25/2022]
Abstract
The 102 residue N-terminal extension of the HK97 major capsid protein, the delta domain, is normally present during the assembly of immature HK97 procapsids, but it is removed during maturation like well-known internal scaffolding proteins of other tailed phages and herpesviruses. The delta domain also shares other unusual properties usually found in other viral and phage scaffolding proteins, including its location on the inside of the capsid, a high predicted and measured α-helical content, and an additional prediction for the ability to form parallel coiled-coils. Viral scaffolding proteins are essential for capsid assembly and phage viability, so we tested whether the HK97 delta domain was essential for capsid assembly. We studied the effects of deleting all or parts of the delta domain on capsid assembly and on complementation of capsid-protein-defective phage, and our results demonstrate that the delta domain is required for HK97 capsid assembly.
Collapse
Affiliation(s)
- Bonnie Oh
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Crystal L Moyer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Roger W Hendrix
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Robert L Duda
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
4
|
Padilla-Meier GP, Gilcrease EB, Weigele PR, Cortines JR, Siegel M, Leavitt JC, Teschke CM, Casjens SR. Unraveling the role of the C-terminal helix turn helix of the coat-binding domain of bacteriophage P22 scaffolding protein. J Biol Chem 2012; 287:33766-80. [PMID: 22879595 DOI: 10.1074/jbc.m112.393132] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many viruses encode scaffolding and coat proteins that co-assemble to form procapsids, which are transient precursor structures leading to progeny virions. In bacteriophage P22, the association of scaffolding and coat proteins is mediated mainly by ionic interactions. The coat protein-binding domain of scaffolding protein is a helix turn helix structure near the C terminus with a high number of charged surface residues. Residues Arg-293 and Lys-296 are particularly important for coat protein binding. The two helices contact each other through hydrophobic side chains. In this study, substitution of the residues of the interface between the helices, and the residues in the β-turn, by aspartic acid was used examine the importance of the conformation of the domain in coat binding. These replacements strongly affected the ability of the scaffolding protein to interact with coat protein. The severity of the defect in the association of scaffolding protein to coat protein was dependent on location, with substitutions at residues in the turn and helix 2 causing the most significant effects. Substituting aspartic acid for hydrophobic interface residues dramatically perturbs the stability of the structure, but similar substitutions in the turn had much less effect on the integrity of this domain, as determined by circular dichroism. We propose that the binding of scaffolding protein to coat protein is dependent on angle of the β-turn and the orientation of the charged surface on helix 2. Surprisingly, formation of the highly complex procapsid structure depends on a relatively simple interaction.
Collapse
Affiliation(s)
- G Pauline Padilla-Meier
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Cortines JR, Weigele PR, Gilcrease EB, Casjens SR, Teschke CM. Decoding bacteriophage P22 assembly: identification of two charged residues in scaffolding protein responsible for coat protein interaction. Virology 2011; 421:1-11. [PMID: 21974803 DOI: 10.1016/j.virol.2011.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/15/2011] [Accepted: 09/08/2011] [Indexed: 11/17/2022]
Abstract
Proper assembly of viruses must occur through specific interactions between capsid proteins. Many double-stranded DNA viruses and bacteriophages require internal scaffolding proteins to assemble their coat proteins into icosahedral capsids. The 303 amino acid bacteriophage P22 scaffolding protein is mostly helical, and its C-terminal helix-turn-helix (HTH) domain binds to the coat protein during virion assembly, directing the formation of an intermediate structure called the procapsid. The interaction between coat and scaffolding protein HTH domain is electrostatic, but the amino acids that form the protein-protein interface have yet to be described. In the present study, we used alanine scanning mutagenesis of charged surface residues of the C-terminal HTH domain of scaffolding protein. We have determined that P22 scaffolding protein residues R293 and K296 are crucial for binding to coat protein and that the neighboring charges are not essential but do modulate the affinity between the two proteins.
Collapse
Affiliation(s)
- Juliana R Cortines
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | |
Collapse
|
6
|
Padilla-Meier GP, Teschke CM. Conformational changes in bacteriophage P22 scaffolding protein induced by interaction with coat protein. J Mol Biol 2011; 410:226-40. [PMID: 21605566 DOI: 10.1016/j.jmb.2011.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/28/2011] [Accepted: 05/05/2011] [Indexed: 11/25/2022]
Abstract
Many prokaryotic and eukaryotic double-stranded DNA viruses use a scaffolding protein to assemble their capsid. Assembly of the double-stranded DNA bacteriophage P22 procapsids requires the interaction of 415 molecules of coat protein and 60-300 molecules of scaffolding protein. Although the 303-amino-acid scaffolding protein is essential for proper assembly of procapsids, little is known about its structure beyond an NMR structure of the extreme C-terminus, which is known to interact with coat protein. Deletion mutagenesis indicates that other regions of scaffolding protein are involved in interactions with coat protein and other capsid proteins. Single-cysteine and double-cysteine variants of scaffolding protein were generated for use in fluorescence resonance energy transfer and cross-linking experiments designed to probe the conformation of scaffolding protein in solution and within procapsids. We showed that the N-terminus and the C-terminus are proximate in solution, and that the middle of the protein is near the N-terminus but not accessible to the C-terminus. In procapsids, the N-terminus was no longer accessible to the C-terminus, indicating that there is a conformational change in scaffolding protein upon assembly. In addition, our data are consistent with a model where scaffolding protein dimers are positioned parallel with one another with the associated C-termini.
Collapse
|
7
|
Poh SL, el Khadali F, Berrier C, Lurz R, Melki R, Tavares P. Oligomerization of the SPP1 scaffolding protein. J Mol Biol 2008; 378:551-64. [PMID: 18377930 DOI: 10.1016/j.jmb.2008.02.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 02/11/2008] [Accepted: 02/12/2008] [Indexed: 11/29/2022]
Abstract
Viral scaffolding proteins direct polymerization of major capsid protein subunits into icosahedral procapsid structures. The scaffolding protein of bacteriophage SPP1 was engineered with a C-terminal hexahistidine tag (gp11-His(6)) and purified. The protein is an alpha-helical-rich molecule with a very elongated shape as found for internal scaffolding proteins from other phages. It is a 3.3 S tetramer of 93.6 kDa at micromolar concentrations. Intersubunit cross-linking of these tetramers generated preferentially covalently bound dimers, revealing that gp11-His(6) is structurally a dimer of dimers. Incubation at temperatures above 37 degrees C correlated with a reduction of its alpha-helical content and a less effective intersubunit cross-linking. Complete loss of secondary structure was observed at temperatures above 60 degrees C. Refolding of gp11-His(6) thermally denatured at 65 degrees C led to reacquisition of the protein native ellipticity spectrum but the resulting population of molecules was heterogeneous. Its hydrodynamic behavior was compatible with a mix of 3.3 S elongated tetramers (approximately 90%) and a smaller fraction of 2.4 S dimers (approximately 10%). This population of gp11-His(6) was competent to direct polymerization of the SPP1 major capsid protein gp13 into procapsid-like structures in a newly developed assembly assay in vitro. Although native tetramers were active in assembly, refolded gp11-His(6) showed enhanced binding to gp13 revealing a more active species for interaction with the major capsid protein than native gp11-His(6).
Collapse
Affiliation(s)
- Siew Lay Poh
- Unité de Virologie Moléculaire et Structurale, UMR CNRS 2472, UMR INRA 1157 and IFR 115, Bât. 14B, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | |
Collapse
|
8
|
Weigele PR, Sampson L, Winn-Stapley D, Casjens SR. Molecular genetics of bacteriophage P22 scaffolding protein's functional domains. J Mol Biol 2005; 348:831-44. [PMID: 15843016 DOI: 10.1016/j.jmb.2005.03.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 02/18/2005] [Accepted: 03/01/2005] [Indexed: 11/24/2022]
Abstract
The assembly intermediates of the Salmonella bacteriophage P22 are well defined but the molecular interactions between the subunits that participate in its assembly are not. The first stable intermediate in the assembly of the P22 virion is the procapsid, a preformed protein shell into which the viral genome is packaged. The procapsid consists of an icosahedrally symmetric shell of 415 molecules of coat protein, a dodecameric ring of portal protein at one of the icosahedral vertices through which the DNA enters, and approximately 250 molecules of scaffolding protein in the interior. Scaffolding protein is required for assembly of the procapsid but is not present in the mature virion. In order to define regions of scaffolding protein that contribute to the different aspects of its function, truncation mutants of the scaffolding protein were expressed during infection with scaffolding deficient phage P22, and the products of assembly were analyzed. Scaffolding protein amino acids 1-20 are not essential, since a mutant missing them is able to fully complement scaffolding deficient phage. Mutants lacking 57 N-terminal amino acids support the assembly of DNA containing virion-like particles; however, these particles have at least three differences from wild-type virions: (i) a less than normal complement of the gene 16 protein, which is required for DNA injection from the virion, (ii) a fraction of the truncated scaffolding protein was retained within the virions, and (iii) the encapsidated DNA molecule is shorter than the wild-type genome. Procapsids assembled in the presence of a scaffolding protein mutant consisting of only the C-terminal 75 amino acids contained the portal protein, but procapsids assembled with the C-terminal 66 did not, suggesting portal recruitment function for the region about 75 amino acids from the C terminus. Finally, scaffolding protein amino acids 280 through 294 constitute its minimal coat protein binding site.
Collapse
Affiliation(s)
- Peter R Weigele
- Department of Pathology, University of Utah School of Medicine, 50 North 1900 East, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|
9
|
Affiliation(s)
- Bentley A Fane
- Department of Veterinary Sciences and Microbiology, University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
10
|
Bernal RA, Hafenstein S, Olson NH, Bowman VD, Chipman PR, Baker TS, Fane BA, Rossmann MG. Structural studies of bacteriophage alpha3 assembly. J Mol Biol 2003; 325:11-24. [PMID: 12473449 PMCID: PMC4130226 DOI: 10.1016/s0022-2836(02)01201-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacteriophage alpha3 is a member of the Microviridae, a family of small, single-stranded, icosahedral phages that include phiX174. These viruses have an ssDNA genome associated with approximately 12 copies of an H pilot protein and 60 copies of a small J DNA-binding protein. The surrounding capsid consists of 60 F coat proteins decorated with 12 pentameric spikes of G protein. Assembly proceeds via a 108S empty procapsid that requires the external D and internal B scaffolding proteins for its formation. The alpha3 "open" procapsid structural intermediate was determined to 15A resolution by cryo-electron microscopy (cryo-EM). Unlike the phiX174 "closed" procapsid and the infectious virion, the alpha3 open procapsid has 30A wide pores at the 3-fold vertices and 20A wide gaps between F pentamers as a result of the disordering of two helices in the F capsid protein. The large pores are probably used for DNA entry and internal scaffolding protein exit during DNA packaging. Portions of the B scaffolding protein are located at the 5-fold axes under the spike and in the hydrophobic pocket on the inner surface of the capsid. Protein B appears to have autoproteolytic activity that cleaves at an Arg-Phe motif and probably facilitates the removal of the protein through the 30A wide pores. The structure of the alpha3 mature virion was solved to 3.5A resolution by X-ray crystallography and was used to interpret the open procapsid cryo-EM structure. The main differences between the alpha3 and phiX174 virion structures are in the spike and the DNA-binding proteins. The alpha3 pentameric spikes have a rotation of 3.5 degrees compared to those of phiX174. The alpha3 DNA-binding protein, which is shorter by 13 amino acid residues at its amino end when compared to the phiX174 J protein, retains its carboxy-terminal-binding site on the internal surface of the capsid protein. The icosahedrally ordered structural component of the ssDNA appears to be substantially increased in alpha3 compared to phiX174, allowing the building of about 10% of the ribose-phosphate backbone.
Collapse
Affiliation(s)
- Ricardo A. Bernal
- Department of Biological Sciences, Purdue University 1392 Lilly Hall, West Lafayette IN 47907-1392, USA
| | - Susan Hafenstein
- Department of Veterinary Science and Microbiology University of Arizona Building 90, Room 201, Tucson AZ 85721, USA
| | - Norman H. Olson
- Department of Biological Sciences, Purdue University 1392 Lilly Hall, West Lafayette IN 47907-1392, USA
| | - Valorie D. Bowman
- Department of Biological Sciences, Purdue University 1392 Lilly Hall, West Lafayette IN 47907-1392, USA
| | - Paul R. Chipman
- Department of Biological Sciences, Purdue University 1392 Lilly Hall, West Lafayette IN 47907-1392, USA
| | - Timothy S. Baker
- Department of Biological Sciences, Purdue University 1392 Lilly Hall, West Lafayette IN 47907-1392, USA
| | - Bentley A. Fane
- Department of Veterinary Science and Microbiology University of Arizona Building 90, Room 201, Tucson AZ 85721, USA
| | - Michael G. Rossmann
- Department of Biological Sciences, Purdue University 1392 Lilly Hall, West Lafayette IN 47907-1392, USA
- E-mail address of the corresponding author:
| |
Collapse
|
11
|
Guo P. Structure and function of phi29 hexameric RNA that drives the viral DNA packaging motor: review. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 72:415-72. [PMID: 12206459 DOI: 10.1016/s0079-6603(02)72076-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
One notable feature of linear dsDNA viruses is that, during replication, their lengthy genome is squeezed with remarkable velocity into a preformed procapsid and packed into near crystalline density. A molecular motor using ATP as energy accomplishes this energetically unfavorable motion tack. In bacterial virus phi29, an RNA (pRNA) molecule is a vital component of this motor. This 120-base RNA has many novel and distinctive features. It contains strong secondary structure, is tightly folded, and unusually stable. Upon interaction with ion and proteins, it has a knack to adapt numerous conformations to perform versatile function. It can be easily manipulated to form stable homologous monomers, dimers, trimers and hexamers. As a result, many unknown properties of RNA have been and will be unfolded by the study of this extraordinary molecule. This article reviews the structure and function of this pRNA and focuses on novel methods and unique approaches that lead to the illumination of its structure and function.
Collapse
Affiliation(s)
- Peixuan Guo
- Department of Pathobiology and Purdue Cancer Center, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
12
|
Aramli LA, Teschke CM. Alleviation of a defect in protein folding by increasing the rate of subunit assembly. J Biol Chem 2001; 276:25372-7. [PMID: 11304542 DOI: 10.1074/jbc.m101759200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Understanding the nature of protein grammar is critical because amino acid substitutions in some proteins cause misfolding and aggregation of the mutant protein resulting in a disease state. Amino acid substitutions in phage P22 coat protein, known as tsf (temperature-sensitive folding) mutations, cause folding defects that result in aggregation at high temperatures. We have isolated global su (suppressor) amino acid substitutions that alleviate the tsf phenotype in coat protein (Aramli, L. A., and Teschke, C. M. (1999) J. Biol. Chem. 274, 22217-22224). Unexpectedly, we found that a global su amino acid substitution in tsf coat proteins made aggregation worse and that the tsf phenotype was suppressed by increasing the rate of subunit assembly, thereby decreasing the concentration of aggregation-prone folding intermediates.
Collapse
Affiliation(s)
- L A Aramli
- University of Connecticut, Department of Molecular and Cell Biology, 75 N. Eagleville Road, Storrs, CT 06269-3125, USA
| | | |
Collapse
|
13
|
Sheaffer AK, Newcomb WW, Brown JC, Gao M, Weller SK, Tenney DJ. Evidence for controlled incorporation of herpes simplex virus type 1 UL26 protease into capsids. J Virol 2000; 74:6838-48. [PMID: 10888623 PMCID: PMC112201 DOI: 10.1128/jvi.74.15.6838-6848.2000] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) capsids are initially assembled with an internal protein scaffold. The scaffold proteins, encoded by overlapping in-frame UL26 and UL26.5 transcripts, are essential for formation and efficient maturation of capsids. UL26 encodes an N-terminal protease domain, and its C-terminal oligomerization and capsid protein-binding domains are identical to those of UL26.5. The UL26 protease cleaves itself, releasing minor scaffold proteins VP24 and VP21, and the more abundant UL26.5 protein, releasing the major scaffold protein VP22a. Unlike VP21 and VP22a, which are removed from capsids upon DNA packaging, we demonstrate that VP24 (containing the protease domain) is quantitatively retained. To investigate factors controlling UL26 capsid incorporation and retention, we used a mutant virus that fails to express UL26.5 (DeltaICP35 virus). Purified DeltaICP35 B capsids showed altered sucrose gradient sedimentation and lacked the dense scaffold core seen in micrographs of wild-type B capsids but contained capsid shell proteins in wild-type amounts. Despite C-terminal sequence identity between UL26 and UL26.5, DeltaICP35 capsids lacking UL26.5 products did not contain compensatory high levels of UL26 proteins. Therefore, HSV capsids can be maintained and/or assembled on a minimal scaffold containing only wild-type levels of UL26 proteins. In contrast to UL26.5, increased expression of UL26 did not compensate for the DeltaICP35 growth defect. While indirect, these findings are consistent with the view that UL26 products are restricted from occupying abundant UL26.5 binding sites within the capsid and that this restriction is not controlled by the level of UL26 protein expression. Additionally, DeltaICP35 capsids contained an altered complement of DNA cleavage and packaging proteins, suggesting a previously unrecognized role for the scaffold in this process.
Collapse
Affiliation(s)
- A K Sheaffer
- Department of Virology, Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, Connecticut 06492, USA
| | | | | | | | | | | |
Collapse
|
14
|
Thuman-Commike PA, Greene B, Jakana J, McGough A, Prevelige PE, Chiu W. Identification of additional coat-scaffolding interactions in a bacteriophage P22 mutant defective in maturation. J Virol 2000; 74:3871-3. [PMID: 10729161 PMCID: PMC111895 DOI: 10.1128/jvi.74.8.3871-3873.2000] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Scaffolding proteins play a critical role in the assembly of certain viruses by directing the formation and maturation of a precursor capsid. Using electron cryomicroscopy difference mapping, we have identified an altered arrangement of a mutant scaffolding within the bacteriophage P22 procapsid. This mutant scaffolding allows us to directly visualize scaffolding density within the P22 procapsid. Based on these observations we propose a model for why the mutant prevents scaffolding release and capsid maturation.
Collapse
Affiliation(s)
- P A Thuman-Commike
- Verna and Marrs McLean, Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
15
|
Greene B, King J. Folding and stability of mutant scaffolding proteins defective in P22 capsid assembly. J Biol Chem 1999; 274:16141-6. [PMID: 10347166 DOI: 10.1074/jbc.274.23.16141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriophage P22 scaffolding subunits are elongated molecules that interact through their C termini with coat subunits to direct icosahedral capsid assembly. The soluble state of the subunit exhibits a partially folded intermediate during equilibrium unfolding experiments, whose C-terminal domain is unfolded (Greene, B., and King, J. (1999) J. Biol. Chem. 274, 16135-16140). Four mutant scaffolding proteins exhibiting temperature-sensitive defects in different stages of particle assembly were purified. The purified mutant proteins adopted a similar conformation to wild type, but all were destabilized with respect to wild type. Analysis of the thermal melting transitions showed that the mutants S242F and Y214W further destabilized the C-terminal domain, whereas substitutions near the N terminus either destabilized a different domain or affected interactions between domains. Two mutant proteins carried an additional cysteine residue, which formed disulfide cross-links but did not affect the denaturation transition. These mutants differed both from temperature-sensitive folding mutants found in other P22 structural proteins and from the thermolabile temperature-sensitive mutants described for T4 lysozyme. The results suggest that the defects in these mutants are due to destabilization of domains affecting the weak subunit-subunit interactions important in the assembly and function of the virus precursor shell.
Collapse
Affiliation(s)
- B Greene
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|