1
|
Zhai C, Wang Y, Qi S, Yang M, Wu S. Ca 2+-calpains axis regulates Yki stability and activity in Drosophila. J Genet Genomics 2024; 51:1020-1029. [PMID: 38663479 DOI: 10.1016/j.jgg.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 06/01/2024]
Abstract
Yorkie (Yki) is a key effector of the Hippo pathway that activates the expression of targets by associating with the transcription factor Scalloped. Various upstream signals, such as cell polarity and mechanical cues, control transcriptional programs by regulating Yki activity. Searching for Yki regulatory factors has far-reaching significance for studying the Hippo pathway in development and human diseases. In this study, we identify Calpain-A (CalpA) and Calpain-B (CalpB), two calcium (Ca2+)-dependent modulatory proteases of the calpain family, as critical regulators of Yki in Drosophila that interact with Yki, respectively. Ca2+ induces Yki cleavage in a CalpA/CalpB-dependent manner, and the protease activity of CalpA/CalpB is pivotal for the cleavage. Furthermore, overexpression of CalpA or CalpB in Drosophila partially restores the large wing phenotype caused by Yki overexpression, and F98 of Yki is an important cleavage site by the Ca2+-calpains axis. Our study uncovers a unique mechanism whereby the Ca2+-calpain axis modulates Yki activity through protein cleavage.
Collapse
Affiliation(s)
- Chaojun Zhai
- The State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunfeng Wang
- The State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shenao Qi
- The State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Muhan Yang
- The State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shian Wu
- The State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Ttm50 facilitates calpain activation by anchoring it to calcium stores and increasing its sensitivity to calcium. Cell Res 2020; 31:433-449. [PMID: 32848200 DOI: 10.1038/s41422-020-0388-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/20/2020] [Indexed: 11/08/2022] Open
Abstract
Calcium-dependent proteolytic calpains are implicated in a variety of physiological processes, as well as pathologies associated with calcium overload. However, the mechanism by which calpain is activated remains elusive since intracellular calcium levels under physiological conditions do not reach the high concentration range required to trigger calpain activation. From a candidate screening using the abundance of the calpain target glutamate receptor GluRIIA at the Drosophila neuromuscular junction as a readout, we uncovered that calpain activity was inhibited upon knockdown of Ttm50, a subunit of the Tim23 complex known to be involved in the import of proteins across the mitochondrial inner membrane. Unexpectedly, Ttm50 and calpain are co-localized at calcium stores Golgi and endoplasmic reticulum (ER), and Ttm50 interacts with calpain via its C-terminal domain. This interaction is required for calpain localization at Golgi/ER, and increases calcium sensitivity of calpain by roughly an order of magnitude. Our findings reveal the regulation of calpain activation by Ttm50, and shed new light on calpain-associated pathologies.
Collapse
|
3
|
Calcium-Activated Calpain Specifically Cleaves Glutamate Receptor IIA But Not IIB at the Drosophila Neuromuscular Junction. J Neurosci 2019; 39:2776-2791. [PMID: 30705102 DOI: 10.1523/jneurosci.2213-17.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/21/2018] [Accepted: 01/16/2019] [Indexed: 11/21/2022] Open
Abstract
Calpains are calcium-dependent, cytosolic proteinases active at neutral pH. They do not degrade but cleave substrates at limited sites. Calpains are implicated in various pathologies, such as ischemia, injuries, muscular dystrophy, and neurodegeneration. Despite so, the physiological function of calpains remains to be clearly defined. Using the neuromuscular junction of Drosophila of both sexes as a model, we performed RNAi screening and uncovered that calpains negatively regulated protein levels of the glutamate receptor GluRIIA but not GluRIIB. We then showed that calpains enrich at the postsynaptic area, and the calcium-dependent activation of calpains induced cleavage of GluRIIA at Q788 of its C terminus. Further genetic and biochemical experiments revealed that different calpains genetically and physically interact to form a protein complex. The protein complex was required for the proteinase activation to downregulate GluRIIA. Our data provide a novel insight into the mechanisms by which different calpains act together as a complex to specifically control GluRIIA levels and consequently synaptic function.SIGNIFICANCE STATEMENT Calpain has been implicated in neural insults and neurodegeneration. However, the physiological function of calpains in the nervous system remains to be defined. Here, we show that calpain enriches at the postsynaptic area and negatively and specifically regulates GluRIIA, but not IIB, level during development. Calcium-dependent activation of calpain cleaves GluRIIA at Q788 of its C terminus. Different calpains constitute an active protease complex to cleave its target. This study reveals a critical role of calpains during development to specifically cleave GluRIIA at synapses and consequently regulate synaptic function.
Collapse
|
4
|
Cardoso M, Oliveira D, Araujo H. Expression and Activity of Calpain A in Drosophila melanogaster. Methods Mol Biol 2019; 1915:93-101. [PMID: 30617798 DOI: 10.1007/978-1-4939-8988-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Detecting calpain activity in Drosophila tissues is a fundamental tool to study calpain function. We use differential centrifugation to prepare membrane- versus cytosol-enriched fractions for measuring calpain activity with the fluorogenic substrate N-LY-AMC. With this method one can measure calpain A activity in wild-type flies and in several mutant fly backgrounds, revealing a strong correlation between in situ membrane distribution and in vitro determined activity measurements. Here we describe the steps for tissue preparation and calpain activity measurement in the Drosophila embryo.
Collapse
Affiliation(s)
- Maira Cardoso
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielle Oliveira
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helena Araujo
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Institute of Molecular Entomology, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Translating genetic, biochemical and structural information to the calpain view of development. Mech Dev 2018; 154:240-250. [DOI: 10.1016/j.mod.2018.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 01/30/2023]
|
6
|
Yi HY, Yang WY, Wu WM, Li XX, Deng XJ, Li QR, Cao Y, Zhong YJ, Huang YD. BmCalpains are involved in autophagy and apoptosis during metamorphosis and after starvation in Bombyx mori. INSECT SCIENCE 2018; 25:379-388. [PMID: 28219118 DOI: 10.1111/1744-7917.12417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/20/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
Apoptosis and autophagy play crucial roles during Bombyx mori metamorphosis and in response to various adverse conditions, including starvation. Recently, calpain, one of the major intracellular proteases, has been reported to be involved in apoptosis and autophagy in mammals. BmATG5 and BmATG6 have been identified to mediate apoptosis following autophagy induced by 20-hydroxyecdysone and starvation in B. mori. However, B. mori calpains and their functions remain unclear. In this study, phylogenetic analysis of calpains from B. mori, Drosophila melanogaster and Homo sapiens were performed and the results showed distinct close relationships of BmCalpain-A/B with DmCalpain-A/B, BmCalpain-C with DmCalpain-C, and BmCalpain-7 with HsCalpain-7. Then, the expression profiles of BmCalpains were analyzed by quantitative real-time polymerase chain reaction, and results showed that expression of BmCalpain-A/B, BmCalpain-C and BmCalpain-7 was significantly increased during B. mori metamorphosis and induced in the fat body and midgut of starved larvae, which is consistent with the expression profiles of BmAtg5, BmAtg6 and BmCaspase-1. Moreover, the apoptosis-associated cleavage of BmATG6 in Bm-12 cells was significantly enhanced when BmCalpain-A/B and BmCalpain-7 were induced by starvation, and was partially inhibited by the inhibitor of either calpain or caspase, but completely inhibited when both types of inhibitors were applied together. Our results indicated that BmCalpains, including BmCalpain-A/B, -C and -7, may be involved in autophagy and apoptosis during B. mori metamorphosis and after starvation, and may also contribute to the apoptosis-associated cleavage of BmATG6.
Collapse
Affiliation(s)
- Hui-Yu Yi
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Wan-Ying Yang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wen-Mei Wu
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xing-Xia Li
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiao-Juan Deng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qing-Rong Li
- The Sericultural and Agri-Food Research Institute of the Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yang Cao
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yang-Jin Zhong
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ya-Dong Huang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Novel calpain families and novel mechanisms for calpain regulation in Aplysia. PLoS One 2017; 12:e0186646. [PMID: 29053733 PMCID: PMC5650170 DOI: 10.1371/journal.pone.0186646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/04/2017] [Indexed: 11/19/2022] Open
Abstract
Calpains are a family of intracellular proteases defined by a conserved protease domain. In the marine mollusk Aplysia californica, calpains are important for the induction of long-term synaptic plasticity and memory, at least in part by cleaving protein kinase Cs (PKCs) into constitutively active kinases, termed protein kinase Ms (PKMs). We identify 14 genes encoding calpains in Aplysia using bioinformatics, including at least one member of each of the four major calpain families into which metazoan calpains are generally classified, as well as additional truncated and atypical calpains. Six classical calpains containing a penta-EF-hand (PEF) domain are present in Aplysia. Phylogenetic analysis determined that these six calpains come from three separate classical calpain families. One of the classical calpains in Aplysia, AplCCal1, has been implicated in plasticity. We identify three splice cassettes and an alternative transcriptional start site in AplCCal1. We characterize several of the possible isoforms of AplCCal1 in vitro, and demonstrate that AplCCal1 can cleave PKCs into PKMs in a calcium-dependent manner in vitro. We also find that AplCCal1 has a novel mechanism of auto-inactivation through N-terminal cleavage that is modulated through its alternative transcriptional start site.
Collapse
|
8
|
Murakami A, Nagao K, Juni N, Hara Y, Umeda M. An N-terminal di-proline motif is essential for fatty acid-dependent degradation of Δ9-desaturase in Drosophila. J Biol Chem 2017; 292:19976-19986. [PMID: 28972163 DOI: 10.1074/jbc.m117.801936] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/13/2017] [Indexed: 12/20/2022] Open
Abstract
The Δ9-fatty acid desaturase introduces a double bond at the Δ9 position of the acyl moiety of acyl-CoA and regulates the cellular levels of unsaturated fatty acids. However, it is unclear how Δ9-desaturase expression is regulated in response to changes in the levels of fatty acid desaturation. In this study, we found that the degradation of DESAT1, the sole Δ9-desaturase in the Drosophila cell line S2, was significantly enhanced when the amounts of unsaturated acyl chains of membrane phospholipids were increased by supplementation with unsaturated fatty acids, such as oleic and linoleic acids. In contrast, inhibition of DESAT1 activity remarkably suppressed its degradation. Of note, removal of the DESAT1 N-terminal domain abolished the responsiveness of DESAT1 degradation to the level of fatty acid unsaturation. Further truncation and amino acid replacement analyses revealed that two sequential prolines, the second and third residues of DESAT1, were responsible for the unsaturated fatty acid-dependent degradation. Although degradation of mouse stearoyl-CoA desaturase 1 (SCD1) was unaffected by changes in fatty acid unsaturation, introduction of the N-terminal sequential proline residues into SCD1 conferred responsiveness to unsaturated fatty acid-dependent degradation. Furthermore, we also found that the Ca2+-dependent cysteine protease calpain is involved in the sequential proline-dependent degradation of DESAT1. In light of these findings, we designated the sequential prolines at the second and third positions of DESAT1 as a "di-proline motif," which plays a crucial role in the regulation of Δ9-desaturase expression in response to changes in the level of cellular unsaturated fatty acids.
Collapse
Affiliation(s)
- Akira Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510
| | - Kohjiro Nagao
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510.
| | - Naoto Juni
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510
| | - Yuji Hara
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510; AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Masato Umeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510.
| |
Collapse
|
9
|
Calpain A controls mitotic synchrony in the Drosophila blastoderm embryo. Mech Dev 2017; 144:141-149. [DOI: 10.1016/j.mod.2016.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 01/10/2023]
|
10
|
Buffolo M, Batista Possidonio AC, Mermelstein C, Araujo H. A conserved role for calpains during myoblast fusion. Genesis 2015; 53:417-30. [DOI: 10.1002/dvg.22870] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/17/2015] [Accepted: 06/25/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Marcio Buffolo
- Laboratório de Diferenciação Muscular e Citoesqueleto, Instituto De Ciências Biomédicas, Universidade Federal Do Rio De Janeiro; Rio De Janeiro Brazil
- Laboratório de Biologia Molecular do Desenvolvimento, Instituto De Ciências Biomédicas, Universidade Federal Do Rio De Janeiro; Rio De Janeiro Brazil
| | - Ana Claudia Batista Possidonio
- Laboratório de Diferenciação Muscular e Citoesqueleto, Instituto De Ciências Biomédicas, Universidade Federal Do Rio De Janeiro; Rio De Janeiro Brazil
| | - Claudia Mermelstein
- Laboratório de Diferenciação Muscular e Citoesqueleto, Instituto De Ciências Biomédicas, Universidade Federal Do Rio De Janeiro; Rio De Janeiro Brazil
| | - Helena Araujo
- Laboratório de Biologia Molecular do Desenvolvimento, Instituto De Ciências Biomédicas, Universidade Federal Do Rio De Janeiro; Rio De Janeiro Brazil
| |
Collapse
|
11
|
Oberhofer G, Grossmann D, Siemanowski JL, Beissbarth T, Bucher G. Wnt/β-catenin signaling integrates patterning and metabolism of the insect growth zone. Development 2014; 141:4740-50. [PMID: 25395458 PMCID: PMC4299277 DOI: 10.1242/dev.112797] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Wnt/β-catenin and hedgehog (Hh) signaling are essential for transmitting signals across cell membranes in animal embryos. Early patterning of the principal insect model, Drosophila melanogaster, occurs in the syncytial blastoderm, where diffusion of transcription factors obviates the need for signaling pathways. However, in the cellularized growth zone of typical short germ insect embryos, signaling pathways are predicted to play a more fundamental role. Indeed, the Wnt/β-catenin pathway is required for posterior elongation in most arthropods, although which target genes are activated in this context remains elusive. Here, we use the short germ beetle Tribolium castaneum to investigate two Wnt and Hh signaling centers located in the head anlagen and in the growth zone of early embryos. We find that Wnt/β-catenin signaling acts upstream of Hh in the growth zone, whereas the opposite interaction occurs in the head. We determine the target gene sets of the Wnt/β-catenin and Hh pathways and find that the growth zone signaling center activates a much greater number of genes and that the Wnt and Hh target gene sets are essentially non-overlapping. The Wnt pathway activates key genes of all three germ layers, including pair-rule genes, and Tc-caudal and Tc-twist. Furthermore, the Wnt pathway is required for hindgut development and we identify Tc-senseless as a novel hindgut patterning gene required in the early growth zone. At the same time, Wnt acts on growth zone metabolism and cell division, thereby integrating growth with patterning. Posterior Hh signaling activates several genes potentially involved in a proteinase cascade of unknown function.
Collapse
Affiliation(s)
- Georg Oberhofer
- Department of Evolutionary Developmental Biology, Johann Friedrich Blumenbach Institute of Zoology and Anthropology, Georg-August-University, Justus von Liebig Weg 11, Göttingen D-37077, Germany
| | - Daniela Grossmann
- Department of Evolutionary Developmental Biology, Johann Friedrich Blumenbach Institute of Zoology and Anthropology, Georg-August-University, Justus von Liebig Weg 11, Göttingen D-37077, Germany
| | - Janna L Siemanowski
- Department of Evolutionary Developmental Biology, Johann Friedrich Blumenbach Institute of Zoology and Anthropology, Georg-August-University, Justus von Liebig Weg 11, Göttingen D-37077, Germany
| | - Tim Beissbarth
- Department of Medical Statistics, University Medical Center Göttingen, Humboldtallee 32, Göttingen D-37073, Germany
| | - Gregor Bucher
- Department of Evolutionary Developmental Biology, Johann Friedrich Blumenbach Institute of Zoology and Anthropology, Georg-August-University, Justus von Liebig Weg 11, Göttingen D-37077, Germany
| |
Collapse
|
12
|
Sorimachi H, Hata S, Ono Y. Expanding members and roles of the calpain superfamily and their genetically modified animals. Exp Anim 2011; 59:549-66. [PMID: 21030783 DOI: 10.1538/expanim.59.549] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Calpains are intracellular Ca²(+)-dependent cysteine proteases (Clan CA, family C02, EC 3.4.22.17) found in almost all eukaryotes and some bacteria. Calpains display limited proteolytic activity at neutral pH, proteolysing substrates to transform and modulate their structures and activities, and are therefore called "modulator proteases". The human genome has 15 genes that encode a calpain-like protease domain, generating diverse calpain homologues that possess combinations of several functional domains such as Ca²(+)-binding domains and Zn-finger domains. The importance of the physiological roles of calpains is reflected in the fact that particular defects in calpain functionality cause a variety of deficiencies in many different organisms, including lethality, muscular dystrophies, lissencephaly, and tumorigenesis. In this review, the unique characteristics of this distinctive protease superfamily are introduced in terms of genetically modified animals, some of which are animal models of calpain deficiency diseases.
Collapse
Affiliation(s)
- Hiroyuki Sorimachi
- Calpain Project, The Tokyo Metropolitan Institute of Medical Science (Rinshoken), Japan
| | | | | |
Collapse
|
13
|
Dubruille R, Murad A, Rosbash M, Emery P. A constant light-genetic screen identifies KISMET as a regulator of circadian photoresponses. PLoS Genet 2009; 5:e1000787. [PMID: 20041201 PMCID: PMC2789323 DOI: 10.1371/journal.pgen.1000787] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 11/24/2009] [Indexed: 12/28/2022] Open
Abstract
Circadian pacemakers are essential to synchronize animal physiology and behavior with the day∶night cycle. They are self-sustained, but the phase of their oscillations is determined by environmental cues, particularly light intensity and temperature cycles. In Drosophila, light is primarily detected by a dedicated blue-light photoreceptor: CRYPTOCHROME (CRY). Upon light activation, CRY binds to the pacemaker protein TIMELESS (TIM) and triggers its proteasomal degradation, thus resetting the circadian pacemaker. To understand further the CRY input pathway, we conducted a misexpression screen under constant light based on the observation that flies with a disruption in the CRY input pathway remain robustly rhythmic instead of becoming behaviorally arrhythmic. We report the identification of more than 20 potential regulators of CRY-dependent light responses. We demonstrate that one of them, the chromatin-remodeling enzyme KISMET (KIS), is necessary for normal circadian photoresponses, but does not affect the circadian pacemaker. KIS genetically interacts with CRY and functions in PDF-negative circadian neurons, which play an important role in circadian light responses. It also affects daily CRY-dependent TIM oscillations in a peripheral tissue: the eyes. We therefore conclude that KIS is a key transcriptional regulator of genes that function in the CRY signaling cascade, and thus it plays an important role in the synchronization of circadian rhythms with the day∶night cycle. In most organisms, intracellular molecular pacemakers called circadian clocks coordinate metabolic, physiological, and behavioral processes during the course of the day. For example, they determine when animals are active or resting. Circadian clocks are self-sustained oscillators, but their free-running period does not exactly match day length. Thus, they have to be reset by environmental inputs to stay properly phased with the day∶night cycle. The fruit fly Drosophila melanogaster relies primarily on CRYPTOCHROME (CRY)—a cell-autonomous blue-light photoreceptor—to synchronize its circadian clocks with the light∶dark cycle. With a genetic screen, we identified over 20 candidate genes that might regulate CRY function. kismet (kis) is among them: it encodes a chromatin remodeling factor essential for the development of Drosophila. We show that, in adult flies, KIS is expressed and functions in brain neurons that control daily behavioral rhythms. KIS determines how Drosophila circadian behavior responds to light, but not its free-running period. Moreover, manipulating simultaneously kis and cry activity demonstrates that these two genes interact to control molecular and behavioral circadian photoresponses. Our work therefore reveals that KIS regulates CRY signaling and thus determines how circadian clocks respond to light input.
Collapse
Affiliation(s)
- Raphaëlle Dubruille
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Alejandro Murad
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Michael Rosbash
- Howard Hughes Medical Institute, National Center for Behavioral Genetics and Department of Biology, Waltham, Massachusetts, United States of America
| | - Patrick Emery
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Kovács L, Alexa A, Klement E, Kókai E, Tantos A, Gógl G, Sperka T, Medzihradszky KF, Tözsér J, Dombrádi V, Friedrich P. Regulation of calpain B from Drosophila melanogaster by phosphorylation. FEBS J 2009; 276:4959-72. [PMID: 19694808 DOI: 10.1111/j.1742-4658.2009.07198.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Calpain B is one of the two catalytically competent calpain (calcium-activated papain) isoenzymes in Drosophila melanogaster. Because structural predictions hinted at the presence of several potential phosphorylation sites in this enzyme, we investigated the in vitro phosphorylation of the recombinant protein by protein kinase A as well as by the extracellular signal-regulated protein kinases (ERK) 1 and 2. By MS, we identified Ser845 in the Ca2+ binding region of an EF-hand motif, and Ser240 close to the autocatalytic activation site of calpain B, as being the residues phosphorylated by protein kinase A. In the transducer region of the protease, Thr747 was shown to be the target of the ERK phosphorylation. Based on the results of three different assays, we concluded that the treatment of calpain B with protein kinase A and ERK1 and ERK2 kinases increases the rate of the autoproteolytic activation of the enzyme, together with the rate of the digestion of external peptide or protein substrates. Phosphorylation also elevates the Ca2+ sensitivity of the protease. The kinetic analysis of phosphorylation mimicking Thr747Glu and Ser845Glu calpain B mutants confirmed the above conclusions. Out of the three phosphorylation events tested in vitro, we verified the in vivo phosphorylation of Thr747 in epidermal growth factor-stimulated Drosophila S2 cells. The data obtained suggest that the activation of the ERK pathway by extracellular signals results in the phosphorylation and activation of calpain B in fruit flies.
Collapse
Affiliation(s)
- László Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
A Drosophila model identifies calpains as modulators of the human leukemogenic fusion protein AML1-ETO. Proc Natl Acad Sci U S A 2009; 106:12043-8. [PMID: 19581587 DOI: 10.1073/pnas.0902449106] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The t(8:21)(q22;q22) translocation is 1 of the most common chromosomal abnormalities linked to acute myeloid leukemia (AML). AML1-ETO, the product of this translocation, fuses the N-terminal portion of the RUNX transcription factor AML1 (also known as RUNX1), including its DNA-binding domain, to the almost entire transcriptional corepressor ETO (also known as MTG8 or RUNX1T1). This fusion protein acts primarily by interfering with endogenous AML1 function during myeloid differentiation, although relatively few genes are known that participate with AML1-ETO during leukemia progression. Here, we assessed the consequences of expressing this chimera in Drosophila blood cells. Reminiscent of what is observed in AML, AML1-ETO specifically inhibited the differentiation of the blood cell lineage whose development depends on the RUNX factor Lozenge (LZ) and induced increased numbers of LZ(+) progenitors. Using an in vivo RNAi-based screen for suppressors of AML1-ETO, we identified calpainB as required for AML1-ETO-induced blood cell disorders in Drosophila. Remarkably, calpain inhibition triggered AML1-ETO degradation and impaired the clonogenic potential of the human t(8;21) leukemic blood cell line Kasumi-1. Therefore Drosophila provides a promising genetically tractable model to investigate the conserved basis of leukemogenesis and to open avenues in AML therapy.
Collapse
|
16
|
Fontenele M, Carneiro K, Agrellos R, Oliveira D, Oliveira-Silva A, Vieira V, Negreiros E, Machado E, Araujo H. The Ca2+-dependent protease Calpain A regulates Cactus/I kappaB levels during Drosophila development in response to maternal Dpp signals. Mech Dev 2009; 126:737-51. [PMID: 19442719 DOI: 10.1016/j.mod.2009.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 04/24/2009] [Accepted: 04/27/2009] [Indexed: 11/15/2022]
Abstract
Regulation of NF kappaB activity is central to many processes during development and disease. Activation of NF kappaB family members depends on degradation of inhibitory I kappaB proteins. In Drosophila, a nuclear gradient of the NF kappaB/c-rel protein Dorsal subdivides the embryonic dorsal-ventral axis, defining the extent and location of mesodermal and ectodermal territories. Activation of the Toll pathway directs Dorsal nuclear translocation by inducing proteosomal degradation of the I kappaB homologue Cactus. Another mechanism that impacts on Dorsal activation involves the Toll-independent pathway, which regulates constitutive Cactus degradation. We have shown that the BMP protein Decapentaplegic (Dpp) inhibits Cactus degradation independent of Toll. Here we report on a novel element of this pathway: the calcium-dependent protease Calpain A. Calpain A knockdowns increase Cactus levels, shifting the Dorsal gradient and dorsal-ventral patterning. As shown for mammalian I kappaB, this effect requires PEST sequences in the Cactus C-terminus, implying a conserved role for calpains. Alteration of Calpain A or dpp results in similar effects on Dorsal target genes. Epistatic analysis confirms Calpain A activity is regulated by Dpp, indicating that Dpp signals increase Cactus levels through Calpain A inhibition, thereby interfering with Dorsal activation. This mechanism may allow coordination of Toll, BMP and Ca(2+) signals, conferring precision to Dorsal-target expression domains.
Collapse
Affiliation(s)
- M Fontenele
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Identifying calpain substrates in intact S2 cells of Drosophila. Arch Biochem Biophys 2008; 481:219-25. [PMID: 19038228 DOI: 10.1016/j.abb.2008.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 11/11/2008] [Accepted: 11/13/2008] [Indexed: 11/21/2022]
Abstract
Calpains are cysteine proteases involved in a number of physiological and pathological processes, yet our knowledge of substrates cleaved in vivo, in intact cells, is scarce. In this work we made an attempt to develop a technique for finding calpain substrates in intact Drosophila Schneider S2 cells. The procedure consists in comparative 2D gelelectrophoresis: three identical samples were treated in different ways: A (control, no addition), B, activated (Ca(2+) and ionomycin added), C, inactivated (additions as in B+specific calpain inhibitor). 2D gel pattern were analyzed by densitometry. Spots showing density relation A>B<<C were identified by mass spectroscopy. In a typical run, 11 candidate substrates were recognized; out of these, four were randomly selected: all four were verified to be calpain substrates, by digestion of the recombinant protein with recombinant calpain.
Collapse
|
18
|
Park MW, Emori Y. Drosophila Calpain B is monomeric and autolyzes intramolecularly. J Biochem 2007; 143:217-28. [PMID: 18032413 DOI: 10.1093/jb/mvm211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Drosophila calpains, Calpain A and Calpain B, show typical calpain domain structures similar to mammalian calpains. However, the small subunit of mammalian calpains, shown to be essential in both genetic and biochemical aspects, is absent in Drosophila calpains and is not required for enzymatic activity. How they compensate for the lack of small subunit is mostly unknown. Here we conducted experiments using recombinant Drosophila Calpain B for further characterization of the enzyme with particular focuses on two issues: possibility of homodimerization and mode of autolysis. The native molecular weight of Calpain B indicates that the active enzyme is primarily monomeric. Co-expression of two recombinant Calpain B proteins each with a unique affinity tag and a subsequent single round of affinity tag purification resulted in isolation of only one recombinant calpain type, suggesting there is no homodimeric interaction. Also the C-termini of Drosophila calpains lack many of the key hydrophobic residues considered to be important in the dimerization of mammalian calpains. Further, initial autolysis of Calpain B seems to occur intramolecularly, which supports the monomeric nature of Drosophila calpains. These results strongly suggest that dimerization is not an essential requirement for Drosophila calpains.
Collapse
Affiliation(s)
- Min Woo Park
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan
| | | |
Collapse
|
19
|
Lin H, Lin TY, Juang JL. Abl deregulates Cdk5 kinase activity and subcellular localization in Drosophila neurodegeneration. Cell Death Differ 2006; 14:607-15. [PMID: 16932754 DOI: 10.1038/sj.cdd.4402033] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Although Abl functions in mature neurons, work to date has not addressed Abl's role on Cdk5 in neurodegeneration. We found that beta-amyloid (Abeta42) initiated Abl kinase activity and that blockade of Abl kinase rescued both Drosophila and mammalian neuronal cells from cell death. We also found activated Abl kinase to be necessary for the binding, activation, and translocalization of Cdk5 in Drosophila neuronal cells. Conversion of p35 into p25 was not observed in Abeta42-triggered Drosophila neurodegeneration, suggesting that Cdk5 activation and protein translocalization can be p25-independent. Our genetic studies also showed that abl mutations repressed Abeta42-induced Cdk5 activity and neurodegeneration in Drosophila eyes. Although Abeta42 induced conversion of p35 to p25 in mammalian cells, it did not sufficiently induce Cdk5 activation when c-Abl kinase activity was suppressed. Therefore, we propose that Abl and p35/p25 cooperate in promoting Cdk5-pY15, which deregulates Cdk5 activity and subcellular localization in Abeta42-triggered neurodegeneration.
Collapse
Affiliation(s)
- H Lin
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | | | | |
Collapse
|
20
|
Kim HW, Chang ES, Mykles DL. Three calpains and ecdysone receptor in the land crab Gecarcinus lateralis: sequences, expression and effects of elevated ecdysteroid induced by eyestalk ablation. ACTA ACUST UNITED AC 2006; 208:3177-97. [PMID: 16081615 DOI: 10.1242/jeb.01754] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Crustacean muscle has four calpain-like proteinase activities (CDP I, IIa, IIb and III) that are involved in molt-induced claw muscle atrophy, as they degrade myofibrillar proteins in vitro and in situ. Using PCR cloning techniques, three full-length calpain cDNAs (Gl-CalpB, Gl-CalpM and Gl-CalpT) were isolated from limb regenerates of the tropical land crab Gecarcinus lateralis. All three had highly conserved catalytic (dII) and C2-like (dIII) domains. Gl-CalpB was classified as a typical, or EF-hand, calpain, as the deduced amino acid sequence had a calmodulin-like domain IV in the C-terminus and was most similar to Drosophila calpains A and B. Based on its estimated mass (approximately 88.9 kDa) and cross-immunoreactivity with a polyclonal antibody raised against Dm-CalpA, Gl-CalpB may encode CDP IIb, which is a homodimer of a 95-kDa subunit. It was expressed in all tissues examined, including skeletal muscle, heart, integument, gill, digestive gland, hindgut, nerve ganglia, gonads and Y-organ (molting gland). Both Gl-CalpM and Gl-CalpT were classified as atypical, or non-EF-hand, calpains, as they lacked a domain IV sequence. Gl-CalpM was a homolog of Ha-CalpM from lobster, based on similarities in deduced amino acid sequence, estimated mass (approximately 65.2 kDa) and structural organization (both were truncated at the C-terminal end of dIII). It was expressed at varying levels in most tissues, except Y-organ. Gl-CalpT (approximately 74.6 kDa) was similar to TRA-3 in the nematode Caenorhabditis elegans; domain IV was replaced by a unique ;T domain' sequence. It was expressed in most tissues, except eyestalk ganglia and Y-organ. The effects of elevated ecdysteroid, induced by eyestalk ablation, on calpain and ecdysone receptor (Gl-EcR) mRNA levels in skeletal muscles were quantified by real-time PCR. At 1 day after eyestalk ablation, Gl-EcR and Gl-CalpT mRNA levels increased 15- and 19.3-fold, respectively, in claw muscle but not in thoracic muscle. At 3 days after eyestalk ablation, Gl-EcR and Gl-CalpT mRNA levels in claw muscle had decreased to 2.8-fold and 4.3-fold higher than those in intact controls, respectively, suggesting a feedback inhibition by ecdysteroid. There was no significant effect of eyestalk ablation on Gl-CalpB and Gl-CalpM mRNA levels. Gl-CalpT and Gl-EcR mRNA levels were significantly correlated in both claw and thoracic muscles from intact and eyestalk-ablated animals. The data suggest that Gl-CalpT is involved in initiation of claw muscle atrophy by ecdysteroids. Premolt reduction in claw muscle mass and concomitant remodeling of the sarcomere probably result from post-transcriptional regulation of calpains.
Collapse
Affiliation(s)
- H-W Kim
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|
21
|
Salem M, Nath J, Rexroad CE, Killefer J, Yao J. Identification and molecular characterization of the rainbow trout calpains (Capn1 and Capn2): their expression in muscle wasting during starvation. Comp Biochem Physiol B Biochem Mol Biol 2005; 140:63-71. [PMID: 15621511 DOI: 10.1016/j.cbpc.2004.09.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Revised: 09/10/2004] [Accepted: 09/13/2004] [Indexed: 11/29/2022]
Abstract
Calpains are calcium regulated proteases involved in cellular functions that include muscle proteolysis both ante- and postmortem. Here, we describe the molecular characterization of the rainbow trout catalytic subunits of the mu- and m-calpains, respectively. The cDNA sequence for Capn1 encodes a protein of 704 amino acids with a calculated molecular mass of 79.9 kDa. The amino acid sequence shows 66% and 86% identity with the mouse and zebrafish Capn1, respectively. The Capn2 cDNA codes for a protein consisting of 701 amino acid residues with a calculated molecular mass of 78.2 kDa. The protein shows 65% amino acid sequence identity with the mouse and chicken Capn2. The two isozymes of rainbow trout have the characteristic domains: I (propeptide), II (cysteine catalytic site), III (electrostatic switch), and IV (contains five EF-hands). Because starvation induces muscle wasting, the hypothesis of this study was that starvation could affect regulation of the calpain system in muscle. Starvation of rainbow trout fingerlings (15-20 g) for 35 days stimulated the expression of Capn1 (2.2-fold increase, P < 0.01), Capn2 (6.0-fold increase, P < 0.01), and calpastatins (1.6-fold increase, P < 0.05) as measured by quantitative real-time RT-PCR. The mRNA changes led to a 1.23-fold increase in the calpain catalytic activity. The results suggest a potential role of calpains in protein mobilization as a source of energy under fasting condition.
Collapse
Affiliation(s)
- Mohamed Salem
- Division of Animal and Veterinary Sciences, West Virginia University, Morgantown, WV 26506-6108, USA
| | | | | | | | | |
Collapse
|
22
|
Farkas A, Nardai G, Csermely P, Tompa P, Friedrich P. DUK114, the Drosophila orthologue of bovine brain calpain activator protein, is a molecular chaperone. Biochem J 2005; 383:165-70. [PMID: 15250825 PMCID: PMC1134055 DOI: 10.1042/bj20040668] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Revised: 07/06/2004] [Accepted: 07/13/2004] [Indexed: 11/17/2022]
Abstract
UK114, the goat liver tumour antigen, is a member of a widely distributed family of conserved low-molecular-mass proteins (YER057c/YjgF/UK114), the function of which is ill understood. To the various orthologues diverse functions have been ascribed, such as translation inhibition, regulation of purine repressor or calpain activation. Owing to a limited sequence similarity to Hsp90 (heat-shock protein 90), they have also been proposed to be molecular chaperones; however, this has never been tested. In the present paper, we report the cloning and characterization of the Drosophila orthologue, DUK114. In brief, DUK114 had no effect that would have qualified it as a calpain activator. In contrast, it proved to be a very potent molecular chaperone in in vitro assays. In a heat-aggregation test, it significantly decelerated the formation of citrate synthase aggregates. In a reverse assay, the recovery of the enzyme from urea- and heat-induced denatured states was accelerated almost 3-fold. On a molar basis, the chaperone activity of the 15-kDa DUK114 is comparable with that of Hsp90, the almost 6-times-larger archetypal molecular chaperone. In similar assays, DUK114 was ineffective with Drosophila calpain A or calpain B. To test for its chaperone activity in vivo, DUK114 was transfected into Schneider (S2) cells; after heat shock, the number of viable non-transfected cells started to increase after a lag time; in the presence of DUK114, cell proliferation started at once. Our work is the first experimental evidence that DUK114, and possibly other members of this family, are molecular chaperones.
Collapse
Affiliation(s)
- Attila Farkas
- *Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Nardai
- †Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Peter Csermely
- †Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Peter Tompa
- *Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | - Peter Friedrich
- *Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
- To whom correspondence should be addressed (email )
| |
Collapse
|
23
|
Friedrich P. The intriguing Ca2+ requirement of calpain activation. Biochem Biophys Res Commun 2004; 323:1131-3. [PMID: 15451413 DOI: 10.1016/j.bbrc.2004.08.194] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Indexed: 10/26/2022]
Abstract
Mammalian ubiquitous micro- and m-calpains, as well as their Drosophila homologs, Calpain A and Calpain B, are Ca(2+)-activated cytoplasmic proteases that act by limited proteolysis of target proteins. Calpains are thought to be part of many cellular signaling pathways. These enzymes, however, require such high Ca(2+) concentration for half-maximal activation in vitro, [Ca(2+)](0.5), that hardly ever occurs in intact cells. This major dilemma has pervaded the literature on calpains for decades. In this paper several considerations are put forward that challenge the orthodox view and envisage mechanisms that may govern calpain action in vivo. The "unphysiologically" high Ca(2+) demand for activation may turn out to be an evolutionarily adjusted safety device.
Collapse
Affiliation(s)
- Peter Friedrich
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 7, H-1518 Budapest, Hungary.
| |
Collapse
|
24
|
Friedrich P, Tompa P, Farkas A. The calpain-system of Drosophila melanogaster: coming of age. Bioessays 2004; 26:1088-96. [PMID: 15382138 DOI: 10.1002/bies.20106] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Drosophila melanogaster is one of the most popular and powerful model organisms that help our understanding of mammalian (human) life processes at the molecular level. Calpains are Ca(2+)-activated cytoplasmic proteases thought to play multiple roles in intracellular signal processing by limited proteolysis of target substrate proteins, thereby changing their function. The calpain superfamily consists of 14 genes in mammals, but only 4 genes in Drosophila. One may assume that the calpain system, i.e. recognizing calpain-dependent life processes and identifying the substrates cleaved while exerting their functions, would prove easier to solve in Drosophila than in mammals. Recently, major progress has been made in characterizing Drosophila Calpain A, Calpain B and Calpain C. The fourth member, Calpain D (or SOL), was analyzed earlier. At this juncture, it seems justifiable to summarize our knowledge about the Drosophila enzymes, in comparison to the ubiquitous mammalian ones, as regards structure-function relations, mode of activation by Ca(2+) and other factors, inhibition, potential targeting, expression pattern in vivo, etc. Equipped with all this information, we may now embark on the genetic modification of family members, interpreting mutant phenotypes in terms of the cell biology of calpains.
Collapse
Affiliation(s)
- Peter Friedrich
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | |
Collapse
|
25
|
Farkas A, Tompa P, Schád E, Sinka R, Jékely G, Friedrich P. Autolytic activation and localization in Schneider cells (S2) of calpain B from Drosophila. Biochem J 2004; 378:299-305. [PMID: 14614768 PMCID: PMC1223968 DOI: 10.1042/bj20031310] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Revised: 11/03/2003] [Accepted: 11/13/2003] [Indexed: 01/14/2023]
Abstract
Calpain B is one of the two calpain homologues in Drosophila melanogaster that are proteolytically active. We studied its activation by Ca2+ both in vitro and in vivo, in Schneider (S2) cells. Activation involves the autolytic cleavage, at two major sites, of the N-terminal segment, the length of which was earlier underestimated. Site-directed mutagenesis at the autolytic sites did not prevent autolysis, but only shifted its sites. Calpain B mRNA was detectable in all developmental stages of the fly. In situ hybridization and immunostaining showed expression in ovaries, embryo and larvae, with high abundance in larval salivary glands. In S2 cells, calpain B was mainly in the cytoplasm and upon a rise in Ca2+ the enzyme adhered to intracellular membranes.
Collapse
Affiliation(s)
- Attila Farkas
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 7, Budapest H-1518, Hungary
| | | | | | | | | | | |
Collapse
|
26
|
Alexa A, Bozóky Z, Farkas A, Tompa P, Friedrich P. Contribution of Distinct Structural Elements to Activation of Calpain by Ca2+ Ions. J Biol Chem 2004; 279:20118-26. [PMID: 14976200 DOI: 10.1074/jbc.m311969200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effect of Ca2+ in calpain activation is mediated via several binding sites in the enzyme molecule. To test the contribution of structural elements suspected to be part of this Ca2+ relay system, we made a site-directed mutagenesis study on calpains, measuring consequential changes in Ca2+ binding and Ca2+ sensitivity of enzyme activity. Evidence is provided for earlier suggestions that an acidic loop in domain III and the transducer region connecting domains III and IV are part of the Ca2+ relay system. Wild-type Drosophila Calpain B domain III binds two to three Ca2+ ions with a K(d) of 3400 microm. Phospholipids lower this value to 220 microm. Ca2+ binding decreases in parallel with the number of mutated loop residues. Deletion of the entire loop abolishes binding of the ion. The Ca2+ dependence of enzyme activity of various acidic-loop mutants of Calpain B and rat m-calpain suggests the importance of the loop in regulating activity. Most conspicuously, the replacement of two adjacent acidic residues in the N-terminal half of the loop evokes a dramatic decrease in the Ca2+ need of both enzymes, lowering half-maximal Ca2+ concentration from 8.6 to 1.3 mm for Calpain B and from 250 to 7 microm for m-calpain. Transducer-region mutations in m-calpain also facilitate Ca2+ activation with the most profound effect seen upon shortening the region by deletion mutagenesis. All of these data along with structural considerations suggest that the acidic loop and the transducer region form an interconnected, extended structural unit that has the capacity to integrate and transduce Ca2+-evoked conformational changes over a long distance. A schematic model of this "extended transducer" mechanism is presented.
Collapse
Affiliation(s)
- Anita Alexa
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, P. O. Box 7, H-1518 Budapest, Hungary
| | | | | | | | | |
Collapse
|
27
|
Tompa P, Buzder-Lantos P, Tantos A, Farkas A, Szilágyi A, Bánóczi Z, Hudecz F, Friedrich P. On the sequential determinants of calpain cleavage. J Biol Chem 2004; 279:20775-85. [PMID: 14988399 DOI: 10.1074/jbc.m313873200] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structural clues of substrate recognition by calpain are incompletely understood. In this study, 106 cleavage sites in substrate proteins compiled from the literature have been analyzed to dissect the signal for calpain cleavage and also to enable the design of an ideal calpain substrate and interfere with calpain action via site-directed mutagenesis. In general, our data underline the importance of the primary structure of the substrate around the scissile bond in the recognition process. Significant amino acid preferences were found to extend over 11 residues around the scissile bond, from P(4) to P(7)'. In compliance with earlier data, preferred residues in the P(2) position are Leu, Thr, and Val, and in P(1) Lys, Tyr, and Arg. In position P(1) ', small hydrophilic residues, Ser and to a lesser extent Thr and Ala, occur most often. Pro dominates the region flanking the P(2)-P(1)' segment, i.e. positions P(3) and P(2)'-P(4)'; most notable is its occurrence 5.59 times above chance in P(3)'. Intriguingly, the segment C-terminal to the cleavage site resembles the consensus inhibitory region of calpastatin, the specific inhibitor of the enzyme. Further, the position of the scissile bond correlates with certain sequential attributes, such as secondary structure and PEST score, which, along with the amino acid preferences, suggests that calpain cleaves within rather disordered segments of proteins. The amino acid preferences were confirmed by site-directed mutagenesis of the autolysis sites of Drosophila calpain B; when amino acids at key positions were changed to less preferred ones, autolytic cleavage shifted to other, adjacent sites. Based on these preferences, a new fluorogenic calpain substrate, DABCYLTPLKSPPPSPR-EDANS, was designed and synthesized. In the case of micro- and m-calpain, this substrate is kinetically superior to commercially available ones, and it can be used for the in vivo assessment of the activity of these ubiquitous mammalian calpains.
Collapse
Affiliation(s)
- Peter Tompa
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 7, H-1518 Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The calpain system originally comprised three molecules: two Ca2+-dependent proteases, mu-calpain and m-calpain, and a third polypeptide, calpastatin, whose only known function is to inhibit the two calpains. Both mu- and m-calpain are heterodimers containing an identical 28-kDa subunit and an 80-kDa subunit that shares 55-65% sequence homology between the two proteases. The crystallographic structure of m-calpain reveals six "domains" in the 80-kDa subunit: 1). a 19-amino acid NH2-terminal sequence; 2). and 3). two domains that constitute the active site, IIa and IIb; 4). domain III; 5). an 18-amino acid extended sequence linking domain III to domain IV; and 6). domain IV, which resembles the penta EF-hand family of polypeptides. The single calpastatin gene can produce eight or more calpastatin polypeptides ranging from 17 to 85 kDa by use of different promoters and alternative splicing events. The physiological significance of these different calpastatins is unclear, although all bind to three different places on the calpain molecule; binding to at least two of the sites is Ca2+ dependent. Since 1989, cDNA cloning has identified 12 additional mRNAs in mammals that encode polypeptides homologous to domains IIa and IIb of the 80-kDa subunit of mu- and m-calpain, and calpain-like mRNAs have been identified in other organisms. The molecules encoded by these mRNAs have not been isolated, so little is known about their properties. How calpain activity is regulated in cells is still unclear, but the calpains ostensibly participate in a variety of cellular processes including remodeling of cytoskeletal/membrane attachments, different signal transduction pathways, and apoptosis. Deregulated calpain activity following loss of Ca2+ homeostasis results in tissue damage in response to events such as myocardial infarcts, stroke, and brain trauma.
Collapse
Affiliation(s)
- Darrell E Goll
- Muscle Biology Group, University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | | | |
Collapse
|
29
|
Spadoni C, Farkas A, Sinka R, Tompa P, Friedrich P. Molecular cloning and RNA expression of a novel Drosophila calpain, Calpain C. Biochem Biophys Res Commun 2003; 303:343-9. [PMID: 12646209 DOI: 10.1016/s0006-291x(03)00350-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The calpains are Ca(2+)-activated cysteine proteases whose biochemical properties have been extensively characterized in vitro. Less is known, however, about the physiological role of calpains. In this respect, Drosophila melanogaster is a useful experimental organism to study calpain activity and regulation in vivo. The sequencing of the fly genome has been recently completed and a novel calpain homologue has been identified in the CG3692 gene product. We embarked on the cloning and characterization of this putative novel calpain. We demonstrate that the actual calpain is different from the predicted protein and we provide experimental evidence for the correction of the genomic annotation. This novel protein, Calpain C, must be catalytically inactive, having mutated active site residues but is otherwise structurally similar to the other known fly calpains. Moreover, we analysed Calpain C RNA expression during Drosophila development by RT-PCR and RNA in situ hybridization, which revealed strong expression in the salivary glands.
Collapse
Affiliation(s)
- Cesare Spadoni
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 7, Budapest H-1518, Hungary
| | | | | | | | | |
Collapse
|
30
|
Yu X, Mykles DL. Cloning of a muscle-specific calpain from the American lobster Homarus americanus: expression associated with muscle atrophy and restoration during moulting. J Exp Biol 2003; 206:561-75. [PMID: 12502777 DOI: 10.1242/jeb.00097] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A cDNA (1977 bp) encoding a crustacean calpain (Ha-CalpM; GenBank accession no. AY124009) was isolated from a lobster fast muscle cDNA library. The open reading frame specified a 575-amino acid (aa) polypeptide with an estimated mass of 66.3 kDa. Ha-CalpM shared high identity with other calpains in the cysteine proteinase domain (domain II; aa 111-396) and domain III (aa 397-575), but most of the N-terminal domain (domain I; aa 1-110) was highly divergent. Domain II contained the cysteine, histidine and asparagine triad essential for catalysis, as well as two conserved aspartate residues that bind Ca(2+). In domain III an acidic loop in the C2-like region, which mediates Ca(2+)-dependent phospholipid binding, had an expanded stretch of 17 aspartate residues. Ha-CalpM was classified as a non-EF-hand calpain, as it lacked domain IV, a calmodulin-like region containing five EF-hand motifs. Northern blot analysis, relative reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR showed that Ha-CalpM was highly expressed in skeletal muscles, but at much lower levels in heart, digestive gland, intestine, integument, gill, nerve cord/thoracic ganglion and antennal gland. An antibody raised against a unique N-terminal sequence recognized a 62 kDa isoform in cutter claw and crusher claw closer muscles and a 68 kDa isoform in deep abdominal muscle. Ha-CalpM was distributed throughout the cytoplasm, as well as in some nuclei, of muscle fibers. Purification of Ha-CalpM showed that the 62 kDa and 68 kDa isoforms co-eluted from gel filtration and ion exchange columns at positions consistent with those of previously described Ca(2+)-dependent proteinase III (CDP III; 59 kDa). Ha-CalpM mRNA and protein did not change during the moulting cycle. The muscle-specific expression of Ha-CalpM and the ability of Ha-CalpM/CDP III to degrade myofibrillar proteins suggest that it is involved in restructuring and/or maintaining contractile structures in crustacean skeletal muscle.
Collapse
Affiliation(s)
- Xiaoli Yu
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|
31
|
Laval M, Pascal M. A calpain-like activity insensitive to calpastatin in Drosophila melanogaster. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1570:121-8. [PMID: 11985896 DOI: 10.1016/s0304-4165(02)00184-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Calpains are neutral Ca2+-dependent cysteine proteases. In this study, we utilized casein zymography to detect such a proteolytic activity in Drosophila melanogaster extracts throughout the life of this organism. One calpain-like activity that was sensitive to the general cysteine protease inhibitors, E64 and calpain inhibitor I, but insensitive to the human calpain-specific inhibitor, calpastatin, is demonstrated. The relevance of this finding is discussed with respect to the absence of a corresponding Drosophila gene, homologous to the vertebrate calpastatin genes, as concluded from our unsuccessful attempts to clone such a gene and our Blast searches using the FlyBase. The mechanisms of Drosophila calpain regulation require further investigation. However, we suggest that single chain, non-heterodimeric calpains may be insensitive to calpastatin and that Drosophila cystatin-like molecules may play a role in negatively regulating Drosophila calpain.
Collapse
Affiliation(s)
- Monique Laval
- Département de Biologie Cellulaire, Institut Jacques Monod, UMR 7592, CNRS/Universités Paris 6 et Paris 7, 2, place Jussieu, F-75251 Paris cedex 05, France.
| | | |
Collapse
|