1
|
Hameed Y, Khan M. Discovery of novel six genes-based cervical cancer-associated biomarkers that are capable to break the heterogeneity barrier and applicable at the global level. J Cancer Res Ther 2022. [DOI: 10.4103/jcrt.jcrt_1588_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
2
|
Replication initiation: Implications in genome integrity. DNA Repair (Amst) 2021; 103:103131. [PMID: 33992866 DOI: 10.1016/j.dnarep.2021.103131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 02/01/2023]
Abstract
In every cell cycle, billions of nucleotides need to be duplicated within hours, with extraordinary precision and accuracy. The molecular mechanism by which cells regulate the replication event is very complicated, and the entire process begins way before the onset of S phase. During the G1 phase of the cell cycle, cells prepare by assembling essential replication factors to establish the pre-replicative complex at origins, sites that dictate where replication would initiate during S phase. During S phase, the replication process is tightly coupled with the DNA repair system to ensure the fidelity of replication. Defects in replication and any error must be recognized by DNA damage response and checkpoint signaling pathways in order to halt the cell cycle before cells are allowed to divide. The coordination of these processes throughout the cell cycle is therefore critical to achieve genomic integrity and prevent diseases. In this review, we focus on the current understanding of how the replication initiation events are regulated to achieve genome stability.
Collapse
|
3
|
Ikui AE, Ueki N, Pecani K, Cross FR. Control of pre-replicative complex during the division cycle in Chlamydomonas reinhardtii. PLoS Genet 2021; 17:e1009471. [PMID: 33909603 PMCID: PMC8081180 DOI: 10.1371/journal.pgen.1009471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/07/2021] [Indexed: 12/31/2022] Open
Abstract
DNA replication is fundamental to all living organisms. In yeast and animals, it is triggered by an assembly of pre-replicative complex including ORC, CDC6 and MCMs. Cyclin Dependent Kinase (CDK) regulates both assembly and firing of the pre-replicative complex. We tested temperature-sensitive mutants blocking Chlamydomonas DNA replication. The mutants were partially or completely defective in DNA replication and did not produce mitotic spindles. After a long G1, wild type Chlamydomonas cells enter a division phase when it undergoes multiple rapid synchronous divisions ('multiple fission'). Using tagged transgenic strains, we found that MCM4 and MCM6 were localized to the nucleus throughout the entire multiple fission division cycle, except for transient cytoplasmic localization during each mitosis. Chlamydomonas CDC6 was transiently localized in nucleus in early division cycles. CDC6 protein levels were very low, probably due to proteasomal degradation. CDC6 levels were severely reduced by inactivation of CDKA1 (CDK1 ortholog) but not the plant-specific CDKB1. Proteasome inhibition did not detectably increase CDC6 levels in the cdka1 mutant, suggesting that CDKA1 might upregulate CDC6 at the transcriptional level. All of the DNA replication proteins tested were essentially undetectable until late G1. They accumulated specifically during multiple fission and then were degraded as cells completed their terminal divisions. We speculate that loading of origins with the MCM helicase may not occur until the end of the long G1, unlike in the budding yeast system. We also developed a simple assay for salt-resistant chromatin binding of MCM4, and found that tight MCM4 loading was dependent on ORC1, CDC6 and MCM6, but not on RNR1 or CDKB1. These results provide a microbial framework for approaching replication control in the plant kingdom.
Collapse
Affiliation(s)
- Amy E. Ikui
- Department of Biology, Brooklyn College, The City University of New York, New York City, New York, United States of America
- * E-mail: (AEI); (FRC)
| | - Noriko Ueki
- Department of Biology, Brooklyn College, The City University of New York, New York City, New York, United States of America
| | - Kresti Pecani
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York City, New York, United States of America
| | - Frederick R. Cross
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York City, New York, United States of America
- * E-mail: (AEI); (FRC)
| |
Collapse
|
4
|
Wu R, Amin A, Wang Z, Huang Y, Man-Hei Cheung M, Yu Z, Yang W, Liang C. The interaction networks of the budding yeast and human DNA replication-initiation proteins. Cell Cycle 2019; 18:723-741. [PMID: 30890025 DOI: 10.1080/15384101.2019.1586509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
DNA replication is a stringently regulated cellular process. In proliferating cells, DNA replication-initiation proteins (RIPs) are sequentially loaded onto replication origins during the M-to-G1 transition to form the pre-replicative complex (pre-RC), a process known as replication licensing. Subsequently, additional RIPs are recruited to form the pre-initiation complex (pre-IC). RIPs and their regulators ensure that chromosomal DNA is replicated exactly once per cell cycle. Origin recognition complex (ORC) binds to, and marks replication origins throughout the cell cycle and recruits other RIPs including Noc3p, Ipi1-3p, Cdt1p, Cdc6p and Mcm2-7p to form the pre-RC. The detailed mechanisms and regulation of the pre-RC and its exact architecture still remain unclear. In this study, pairwise protein-protein interactions among 23 budding yeast and 16 human RIPs were systematically and comprehensively examined by yeast two-hybrid analysis. This study tested 470 pairs of yeast and 196 pairs of human RIPs, from which 113 and 96 positive interactions, respectively, were identified. While many of these interactions were previously reported, some were novel, including various ORC and MCM subunit interactions, ORC self-interactions, and the interactions of IPI3 and NOC3 with several pre-RC and pre-IC proteins. Ten of the novel interactions were further confirmed by co-immunoprecipitation assays. Furthermore, we identified the conserved interaction networks between the yeast and human RIPs. This study provides a foundation and framework for further understanding the architectures, interactions and functions of the yeast and human pre-RC and pre-IC.
Collapse
Affiliation(s)
- Rentian Wu
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China.,b Guangzhou HKUST Fok Ying Tung Research Institute , Guangzhou , China
| | - Aftab Amin
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China.,b Guangzhou HKUST Fok Ying Tung Research Institute , Guangzhou , China.,c School of Chinese Medicine , Hong Kong Baptist University , Guangzhou , China
| | - Ziyi Wang
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China
| | - Yining Huang
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China
| | - Marco Man-Hei Cheung
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China.,b Guangzhou HKUST Fok Ying Tung Research Institute , Guangzhou , China
| | - Zhiling Yu
- c School of Chinese Medicine , Hong Kong Baptist University , Guangzhou , China
| | - Wei Yang
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China.,d Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd , Hong Kong , China
| | - Chun Liang
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China.,b Guangzhou HKUST Fok Ying Tung Research Institute , Guangzhou , China.,e ntelgen Limited , Hong Kong-Guangzhou-Foshan , China
| |
Collapse
|
5
|
Regulation of Mammalian DNA Replication via the Ubiquitin-Proteasome System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:421-454. [PMID: 29357069 DOI: 10.1007/978-981-10-6955-0_19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Proper regulation of DNA replication ensures the faithful transmission of genetic material essential for optimal cellular and organismal physiology. Central to this regulation is the activity of a set of enzymes that induce or reverse posttranslational modifications of various proteins critical for the initiation, progression, and termination of DNA replication. This is particularly important when DNA replication proceeds in cancer cells with elevated rates of genomic instability and increased proliferative capacities. Here, we describe how DNA replication in mammalian cells is regulated via the activity of the ubiquitin-proteasome system as well as the consequence of derailed ubiquitylation signaling involved in this important cellular activity.
Collapse
|
6
|
Saritha VN, Veena VS, Jagathnath Krishna KM, Somanathan T, Sujathan K. Significance of DNA Replication Licensing Proteins (MCM2, MCM5 and CDC6), p16 and p63 as Markers of Premalignant Lesions of the Uterine Cervix: Its Usefulness to Predict Malignant Potential. Asian Pac J Cancer Prev 2018; 19:141-148. [PMID: 29373905 PMCID: PMC5844608 DOI: 10.22034/apjcp.2018.19.1.141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Cervical cancer continues to be a leading cancer among women in many parts of the world. Nation-wide screening
with the Pap smear has not been implemented in India due to the lack of adequately trained cytologists. Identification
of biomarkers to predict malignant potential of the identified low risk lesions is essential to avoid excessive retesting
and follow up. The current study analyzed the expression patterns of DNA replication licensing proteins, proliferation
inhibitor protein p16INK4A and tumor suppresser protein p63 in cervical tissues and smears to assess the ability of
these proteins to predict progression. Methods: Cervical smears and corresponding tissues were immunostained using
mouse monoclonal antibodies against MCM2, MCM5, CDC6, p16 and p63. Smears were treated with a non-ionic
surfactant sodium deoxycholate prior to immuno-cytochemistry. The standard ABC method of immunohistochemistry
was performed using DAB as the chromogen. The immunostained samples were scored on a 0-3+ scale and staining
patterns of smears were compared with those of tissue sections. Sensitivity and specificity for each of these markers were
calculated taking histopathology as the gold standard. Result: All the markers were positive in malignant and dysplastic
cells. MCM protein expression was found to be up-regulated in LSIL, HSIL and in malignancies to a greater extent
than p16 as well as p63. CDC6 protein was preferentially expressed in high grade lesions and in invasive squamous
cell carcinomas. A progressive increase in the expression of DNA replication licensing proteins in accordance with
the grades of cervical intraepithelial lesion suggests these markers as significant to predict malignant potential of low
grade lesions in cervical smears. Conclusion: MCMs and CDC6 can be applied as biomarkers to predict malignant
potential of low grade lesions identified in screening programmes and retesting / follow up might be confined to those
with high risk lesions alone so that overuse of resources can be safely avoided.
Collapse
Affiliation(s)
- V N Saritha
- Division of Cancer Research, , Regional Cancer Centre,Trivandrum, Kerla, India.
| | | | | | | | | |
Collapse
|
7
|
Chen S, Chen X, Xie G, He Y, Yan D, Zheng D, Li S, Fu X, Li Y, Pang X, Hu Z, Li H, Tan W, Li J. Cdc6 contributes to cisplatin-resistance by activation of ATR-Chk1 pathway in bladder cancer cells. Oncotarget 2018; 7:40362-40376. [PMID: 27246979 PMCID: PMC5130013 DOI: 10.18632/oncotarget.9616] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/08/2016] [Indexed: 12/22/2022] Open
Abstract
High activation of DNA damage response is implicated in cisplatin (CDDP) resistance which presents as a serious obstacle for bladder cancer treatment. Cdc6 plays an important role in the malignant progression of tumor. Here, we reported that Cdc6 expression is up-regulated in bladder cancer tissues and is positively correlated to high tumor grade. Cdc6 depletion can attenuate the malignant properties of bladder cancer cells, including DNA replication, migration and invasion. Furthermore, higher levels of chromatin-binding Cdc6 and ATR were detected in CDDP-resistant bladder cancer cells than in the parent bladder cancer cells. Intriguingly, down-regulation of Cdc6 can enhance sensitivity to CDDP both in bladder cancer cells and CDDP-resistant bladder cancer cells. Cdc6 depletion abrogates S phase arrest caused by CDDP, leading to aberrant mitosis by inactivating ATR-Chk1-Cdc25C pathway. Our results indicate that Cdc6 may be a promising target for overcoming CDDP resistance in bladder cancer.
Collapse
Affiliation(s)
- Sansan Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinglu Chen
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Gui'e Xie
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yue He
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Daoyu Yan
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Dianpeng Zheng
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Shi Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinyang Fu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yeping Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiang Pang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiming Hu
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongwei Li
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinlong Li
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Watanabe S, Fujiyama H, Takafuji T, Kayama K, Matsumoto M, Nakayama KI, Yoshida K, Sugimoto N, Fujita M. Glutamate-rich WD40 repeat containing 1 regulates ribosomal protein L23 levels via the ubiquitin-proteasome system. J Cell Sci 2018; 131:jcs.213009. [DOI: 10.1242/jcs.213009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 06/11/2018] [Indexed: 01/01/2023] Open
Abstract
GRWD1 is a Cdt1-binding protein that promotes MCM loading through its histone chaperone activity. GRWD1 acts as a tumor-promoting factor by downregulating p53 via the RPL11-MDM2-p53 axis. Here, we identified GRWD1-interacting proteins using a proteomics approach and showed that GRWD1 interacts with various proteins involved in transcription, translation, DNA replication and repair, chromatin organization, and ubiquitin-mediated proteolysis. We focused on the ribosomal protein RPL23, which positively regulates nucleolar stress responses through MDM2 binding and inhibition, thereby functioning as a tumor suppressor. Overexpression of GRWD1 decreased RPL23 protein levels and stability; this effect was restored by the proteasome inhibitor MG132. EDD, an E3 ubiquitin ligase that interacts with GRWD1, also downregulated RPL23, and the decrease was further enhanced by co-expression of GRWD1. Conversely, siRNA-mediated GRWD1 knockdown upregulated RPL23. Co-expression of GRWD1 and EDD promoted RPL23 ubiquitination. These data suggest that GRWD1 acts together with EDD to negatively regulate RPL23 via the ubiquitin-proteasome system. GRWD1 reversed the RPL23-mediated inhibition of anchorage-independent growth in cancer cells. Our data suggest that GRWD1-induced RPL23 proteolysis plays a role in p53 downregulation and tumorigenesis.
Collapse
Affiliation(s)
- Shinya Watanabe
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroki Fujiyama
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Takuya Takafuji
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kota Kayama
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keiichi I. Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kazumasa Yoshida
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Nozomi Sugimoto
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Fujita
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Izumi M, Mizuno T, Yanagi KI, Sugimura K, Okumura K, Imamoto N, Abe T, Hanaoka F. The Mcm2-7-interacting domain of human mini-chromosome maintenance 10 (Mcm10) protein is important for stable chromatin association and origin firing. J Biol Chem 2017. [PMID: 28646110 DOI: 10.1074/jbc.m117.779371] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein mini-chromosome maintenance 10 (Mcm10) was originally identified as an essential yeast protein in the maintenance of mini-chromosome plasmids. Subsequently, Mcm10 has been shown to be required for both initiation and elongation during chromosomal DNA replication. However, it is not fully understood how the multiple functions of Mcm10 are coordinated or how Mcm10 interacts with other factors at replication forks. Here, we identified and characterized the Mcm2-7-interacting domain in human Mcm10. The interaction with Mcm2-7 required the Mcm10 domain that contained amino acids 530-655, which overlapped with the domain required for the stable retention of Mcm10 on chromatin. Expression of truncated Mcm10 in HeLa cells depleted of endogenous Mcm10 via siRNA revealed that the Mcm10 conserved domain (amino acids 200-482) is essential for DNA replication, whereas both the conserved and the Mcm2-7-binding domains were required for its full activity. Mcm10 depletion reduced the initiation frequency of DNA replication and interfered with chromatin loading of replication protein A, DNA polymerase (Pol) α, and proliferating cell nuclear antigen, whereas the chromatin loading of Cdc45 and Pol ϵ was unaffected. These results suggest that human Mcm10 is bound to chromatin through the interaction with Mcm2-7 and is primarily involved in the initiation of DNA replication after loading of Cdc45 and Pol ϵ.
Collapse
Affiliation(s)
- Masako Izumi
- Accelerator Applications Research Group, Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan.
| | - Takeshi Mizuno
- Cellular Dynamics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | | | - Kazuto Sugimura
- Department of Life Science, Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Katsuzumi Okumura
- Department of Life Science, Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Naoko Imamoto
- Cellular Dynamics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Tomoko Abe
- Accelerator Applications Research Group, Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan
| | - Fumio Hanaoka
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan; Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
10
|
The alpha-fetoprotein (AFP) third domain: a search for AFP interaction sites of cell cycle proteins. Tumour Biol 2016; 37:12697-12711. [DOI: 10.1007/s13277-016-5131-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/29/2016] [Indexed: 01/28/2023] Open
|
11
|
Juríková M, Danihel Ľ, Polák Š, Varga I. Ki67, PCNA, and MCM proteins: Markers of proliferation in the diagnosis of breast cancer. Acta Histochem 2016; 118:544-52. [PMID: 27246286 DOI: 10.1016/j.acthis.2016.05.002] [Citation(s) in RCA: 401] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/05/2016] [Accepted: 05/16/2016] [Indexed: 12/22/2022]
Abstract
The proliferative activity of tumour cells represents an important prognostic marker in the diagnosis of cancer. One of the methods for assessing the proliferative activity of cells is the immunohistochemical detection of cell cycle-specific antigens. For example, Ki67, proliferating cell nuclear antigen (PCNA), and minichromosome maintenance (MCM) proteins are standard markers of proliferation that are commonly used to assess the growth fraction of a cell population. The function of Ki67, the widely used marker of proliferation, still remains unclear. In contrast, PCNA and MCM proteins have been identified as important participants of DNA replication. All three proteins only manifest their expression during the cell division of normal and neoplastic cells. Since the expression of these proliferative markers was confirmed in several malignant tumours, their prognostic and predictive values have been evaluated to determine their significance in the diagnosis of cancer. This review offers insight into the discovery of the abovementioned proteins, as well as their current molecular and biological importance. In addition, the functions and properties of all three proteins and their use as markers of proliferation in the diagnosis of breast cancer are described. This work also reveals new findings about the role of Ki67 during the mitotic phase of the cell cycle. Finally, information is provided about the advantages and disadvantages of using all three antigens in the diagnosis of cancer.
Collapse
Affiliation(s)
- Miroslava Juríková
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Špitálska 24, 813 72 Bratislava, Slovakia.
| | - Ľudovít Danihel
- Institute of Pathological Anatomy, Faculty of Medicine, Comenius University in Bratislava, Špitálska 24, 813 72 Bratislava, Slovakia
| | - Štefan Polák
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Špitálska 24, 813 72 Bratislava, Slovakia
| | - Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Špitálska 24, 813 72 Bratislava, Slovakia
| |
Collapse
|
12
|
Segev H, Zenvirth D, Simpson-Lavy KJ, Melamed-Book N, Brandeis M. Imaging Cell Cycle Phases and Transitions of Living Cells from Yeast to Woman. Methods Mol Biol 2016; 1342:321-36. [PMID: 26254934 DOI: 10.1007/978-1-4939-2957-3_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The eukaryotic cell cycle is comprised of different phases that take place sequentially once, and normally only once, every division cycle. Such a dynamic process is best viewed in real time in living dividing cells. The insights that can be gained from such methods are considerably larger than any alternative technique that only generates snapshots. A great number of studies can gain from live cell imaging; however this method often feels somewhat intimidating to the novice. The purpose of this chapter is to demonstrate that imaging cell cycle phases in living cells from yeast to human is relatively easy and can be performed with equipment that is available in most research institutes. We present the different approaches, review different types of reporters, and discuss in depth all the aspects to be considered to obtain optimal results. We also describe our latest cell cycle markers, which afford unprecedented "sub"-phase temporal resolution.
Collapse
Affiliation(s)
- Hadas Segev
- The Department of Genetics and The Bio-Imaging Unit, The Hebrew University of Jerusalem, Safra Campus, Jerusalem, 91904, Israel
| | | | | | | | | |
Collapse
|
13
|
Fan X, Zhou Y, Chen JJ. Role of Cdc6 in re-replication in cells expressing human papillomavirus E7 oncogene. Carcinogenesis 2016; 37:799-809. [PMID: 27207654 PMCID: PMC4967213 DOI: 10.1093/carcin/bgw059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 04/29/2016] [Indexed: 11/13/2022] Open
Abstract
The E7 oncoprotein of high-risk human papillomavirus (HPV) types induces DNA re-replication that contributes to carcinogenesis; however, the mechanism is not fully understood. To better understand the mechanism by which E7 induces re-replication, we investigated the expression and function of cell division cycle 6 (Cdc6) in E7-expressing cells. Cdc6 is a DNA replication initiation factor and exhibits oncogenic activities when overexpressed. We found that in E7-expressing cells, the steady-state level of Cdc6 protein was upregulated and its half-life was increased. Cdc6 was localized to the nucleus and associated with chromatin, especially upon DNA damage. Importantly, downregulation of Cdc6 reduced E7-induced re-replication. Interestingly, the level of Cdc6 phosphorylation at serine 54 (S54P) was increased in E7-expressing cells. S54P was associated with an increase in the total amount of Cdc6 and chromatin-bound Cdc6. DNA damage-enhanced upregulation and chromatin binding of Cdc6 appeared to be due to downregulation of cyclin-dependent kinase 1 (Cdk1) as Cdk1 knockdown increased Cdc6 levels. Furthermore, Cdk1 knockdown or inhibition led to re-replication. These findings shed light on the mechanism by which HPV induces genomic instability and may help identify potential targets for drug development.
Collapse
Affiliation(s)
- Xueli Fan
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01532, USA, Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xian 710032, China and
| | - Yunying Zhou
- The Cancer Research Center, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Jason J Chen
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01532, USA, The Cancer Research Center, Shandong University School of Medicine, Jinan, Shandong 250012, China
| |
Collapse
|
14
|
Kalfalah FM, Berg E, Christensen MO, Linka RM, Dirks WG, Boege F, Mielke C. Spatio-temporal regulation of the human licensing factor Cdc6 in replication and mitosis. Cell Cycle 2016; 14:1704-15. [PMID: 25875233 PMCID: PMC4614858 DOI: 10.1080/15384101.2014.1000182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To maintain genome stability, the thousands of replication origins of mammalian genomes must only initiate replication once per cell cycle. This is achieved by a strict temporal separation of ongoing replication in S phase, and the formation of pre-replicative complexes in the preceding G1 phase, which "licenses" each origin competent for replication. The contribution of the loading factor Cdc6 to the timing of the licensing process remained however elusive due to seemingly contradictory findings concerning stabilization, degradation and nuclear export of Cdc6. Using fluorescently tagged Cdc6 (Cdc6-YFP) expressed in living cycling cells, we demonstrate here that Cdc6-YFP is stable and chromatin-associated during mitosis and G1 phase. It undergoes rapid proteasomal degradation during S phase initiation followed by active export to the cytosol during S and G2 phases. Biochemical fractionation abolishes this nuclear exclusion, causing aberrant chromatin association of Cdc6-YFP and, likely, endogenous Cdc6, too. In addition, we demonstrate association of Cdc6 with centrosomes in late G2 and during mitosis. These results show that multiple Cdc6-regulatory mechanisms coexist but are tightly controlled in a cell cycle-specific manner.
Collapse
Affiliation(s)
- Faiza M Kalfalah
- a Institute of Clinical Chemistry and Laboratory Diagnostics; University Düsseldorf; Medical Faculty , Düsseldorf , Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Walter D, Hoffmann S, Komseli ES, Rappsilber J, Gorgoulis V, Sørensen CS. SCF(Cyclin F)-dependent degradation of CDC6 suppresses DNA re-replication. Nat Commun 2016; 7:10530. [PMID: 26818844 PMCID: PMC4738361 DOI: 10.1038/ncomms10530] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 12/22/2015] [Indexed: 02/06/2023] Open
Abstract
Maintenance of genome stability requires that DNA is replicated precisely once per cell cycle. This is believed to be achieved by limiting replication origin licensing and thereby restricting the firing of each replication origin to once per cell cycle. CDC6 is essential for eukaryotic replication origin licensing, however, it is poorly understood how CDC6 activity is constrained in higher eukaryotes. Here we report that the SCFCyclin F ubiquitin ligase complex prevents DNA re-replication by targeting CDC6 for proteasomal degradation late in the cell cycle. We show that CDC6 and Cyclin F interact through defined sequence motifs that promote CDC6 ubiquitylation and degradation. Absence of Cyclin F or expression of a stable mutant of CDC6 promotes re-replication and genome instability in cells lacking the CDT1 inhibitor Geminin. Together, our work reveals a novel SCFCyclin F-mediated mechanism required for precise once per cell cycle replication. To ensure genome stability, cells need to restrict DNA replication to once per cell cycle. Here the authors show that Cyclin F interacts with and targets the licensing factor CDC6 for degradation, preventing re-firing of replication origins.
Collapse
Affiliation(s)
- David Walter
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N 2200, Denmark
| | - Saskia Hoffmann
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N 2200, Denmark
| | - Eirini-Stavroula Komseli
- Department of Histology and Embryology, School of Medicine, University of Athens, Athens GR-11527, Greece
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland.,Department of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin 13355, Germany
| | - Vassilis Gorgoulis
- Department of Histology and Embryology, School of Medicine, University of Athens, Athens GR-11527, Greece.,Faculty Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Claus Storgaard Sørensen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N 2200, Denmark
| |
Collapse
|
16
|
Wilson RHC, Hesketh EL, Coverley D. Preparation of the Nuclear Matrix for Parallel Microscopy and Biochemical Analyses. Cold Spring Harb Protoc 2016; 2016:pdb.prot083758. [PMID: 26729903 DOI: 10.1101/pdb.prot083758] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Immobilized proteins within the nucleus are usually identified by treating cells with detergent. The detergent-resistant fraction is often assumed to be chromatin and is described as such in many studies. However, this fraction consists of both chromatin-bound and nuclear-matrix-bound proteins. To investigate nuclear-matrix-bound proteins alone, further separation of these fractions is required; the DNA must be removed so that the remaining proteins can be compared with those from untreated cells. This protocol uses a nonionic detergent (Triton X-100) to remove membranes and soluble proteins from cells under physiologically relevant salt concentrations, followed by extraction with 0.5 m NaCl, digestion with DNase I, and removal of fragmented DNA. It uses a specialized buffer (cytoskeletal buffer) to stabilize the cytoskeleton and nuclear matrix in relatively gentle conditions. Nuclear matrix proteins can then be assessed by either immunofluorescence (IF) and immunoblotting (IB). IB has the advantage of resolving different forms of a protein of interest, and the soluble fractions can be analyzed. The major advantage of IF analysis is that individual cells (rather than homogenized populations) can be monitored, and the spatial arrangement of proteins bound to residual nuclear structures can be revealed.
Collapse
Affiliation(s)
- Rosemary H C Wilson
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| | - Emma L Hesketh
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| | - Dawn Coverley
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| |
Collapse
|
17
|
Abstract
DNA replication must be tightly regulated to ensure that the genome is accurately duplicated during each cell cycle. When these regulatory mechanisms fail, replicative stress and DNA damage ensue. Activated oncogenes promote replicative stress, inducing a DNA damage response (DDR) early in tumorigenesis. Senescence or apoptosis result, forming a barrier against tumour progression. This may provide a selective pressure for acquisition of mutations in the DDR pathway during tumorigenesis. Despite its potential importance in early cancer development, the precise nature of oncogene-induced replicative stress remains poorly understood. Here, we review our current understanding of replication initiation and its regulation, describe mechanisms by which activated oncogenes might interfere with these processes and discuss how replicative stress might contribute to the genomic instability seen in cancers.
Collapse
Affiliation(s)
- Stephanie A Hills
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Herts, EN6 3LD, UK
| | - John F X Diffley
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Herts, EN6 3LD, UK.
| |
Collapse
|
18
|
Wilson RHC, Coverley D. Relationship between DNA replication and the nuclear matrix. Genes Cells 2012; 18:17-31. [PMID: 23134523 PMCID: PMC3564400 DOI: 10.1111/gtc.12010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/10/2012] [Indexed: 01/24/2023]
Abstract
There is an extensive list of primary published work related to the nuclear matrix (NM). Here we review the aspects that are required to understand its relationship with DNA replication, while highlighting some of the difficulties in studying such a structure, and possible differences that arise from the choice of model system. We consider NM attachment regions of DNA and discuss their characteristics and potential function before reviewing data that deal specifically with functional interaction with DNA replication factors. Data have long existed indicating that newly synthesized DNA is associated with a nuclease-resistant NM, allowing the conclusion that the elongation step of DNA synthesis is immobilized within the nucleus. We review in more detail the emerging data that suggest that prereplication complex proteins and origins of replication are transiently recruited to the NM during late G1 and early S-phase. Collectively, these data suggest that the initiation step of the DNA replication process is also immobilized by attachment to the NM. We outline models that discuss the possible spatial relationships and highlight the emerging evidence that suggests there may be important differences between cell types.
Collapse
|
19
|
Dynamic changes in nuclear localization of a DNA-binding protein tyrosine phosphatase TCPTP in response to DNA damage and replication arrest. Cell Biol Toxicol 2012; 28:409-19. [DOI: 10.1007/s10565-012-9232-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 08/28/2012] [Indexed: 01/07/2023]
|
20
|
Symeonidou IE, Taraviras S, Lygerou Z. Control over DNA replication in time and space. FEBS Lett 2012; 586:2803-12. [PMID: 22841721 DOI: 10.1016/j.febslet.2012.07.042] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 07/18/2012] [Accepted: 07/18/2012] [Indexed: 12/23/2022]
Abstract
DNA replication is precisely regulated in time and space, thereby safeguarding genomic integrity. In eukaryotes, replication initiates from multiple sites along the genome, termed origins of replication, and propagates bidirectionally. Dynamic origin bound complexes dictate where and when replication should initiate. During late mitosis and G1 phase, putative origins are recognized and become "licensed" through the assembly of pre-replicative complexes (pre-RCs) that include the MCM2-7 helicases. Subsequently, at the G1/S phase transition, a fraction of pre-RCs are activated giving rise to the establishment of replication forks. Origin location is influenced by chromatin and nuclear organization and origin selection exhibits stochastic features. The regulatory mechanisms that govern these cell cycle events rely on the periodic fluctuation of cyclin dependent kinase (CDK) activity through the cell cycle.
Collapse
|
21
|
Xiong XD, Zeng LQ, Xiong QY, Lu SX, Zhang ZZ, Luo XP, Liu XG. Association between the CDC6 G1321A polymorphism and the risk of cervical cancer. Int J Gynecol Cancer 2010; 20:856-61. [PMID: 20606534 DOI: 10.1111/igc.0b013e3181df3cab] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Cell division cycle protein 6 (CDC6) plays critical roles in DNA replication and carcinogenesis. The biological significance of the CDC6 G1321A polymorphism (V441I, rs13706) on cervical carcinogenesis is still unknown. Here, we examined the potential influence of this polymorphism on cell proliferation and the individual's susceptibility to cervical cancer. METHODS We genotyped the CDC6 G1321A polymorphism in 87 cervical cancer cases and 110 healthy female subjects. Unconditional logistic regression analysis was used to estimate the association between the genotypes and the risk of cervical cancer. The BrdU incorporation assay was applied to analyze the effect of this polymorphism on cell proliferation. RESULTS Compared with the GG homozygotes, the cervical cancer risk was significantly reduced in the individuals with the heterozygous AG genotype (odds ratio [OR], 0.53; 95% confidence interval [CI], 0.28-0.98; P = 0.042) or the homozygous AA genotype (OR, 0.29; 95% CI, 0.09-0.89; P = 0.030). Further stratified analyses showed that the decreased risk of cervical cancer was more evident among younger subjects (≤44 years old) with the AG or AA genotypes (OR, 0.44; 95% CI, 0.21-0.92; P = 0.029 and OR, 0.12; 95% CI, 0.03-0.61; P = 0.010, respectively). The BrdU incorporation assay showed that 293T cells transfected with CDC6-441I (1321A) had a lower proliferation rate in comparison with those transfected with CDC6-441V (1321G), although the difference did not reach statistical significance at the 0.05 level. CONCLUSIONS The CDC6 G1321A polymorphism may contribute to the risk of cervical cancer. Further studies with more subjects and in diverse ethnic populations are necessary to confirm the general validity of our findings.
Collapse
Affiliation(s)
- Xing-Dong Xiong
- Department of Biochemistry and Molecular Biology, Guangdong Medical College, Dongguan, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Shen H, Maki CG. Persistent p21 expression after Nutlin-3a removal is associated with senescence-like arrest in 4N cells. J Biol Chem 2010; 285:23105-14. [PMID: 20489208 DOI: 10.1074/jbc.m110.124990] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nutlin-3a is a preclinical drug that stabilizes p53 by blocking the interaction between p53 and MDM2. In our previous study, Nutlin-3a promoted a tetraploid G(1) arrest in two p53 wild-type cell lines (HCT116 and U2OS), and both cell lines underwent endoreduplication after Nutlin-3a removal. Endoreduplication gave rise to stable tetraploid clones resistant to therapy-induced apoptosis. Prior knowledge of whether cells are susceptible to Nutlin-induced endoreduplication and therapy resistance could help direct Nutlin-3a-based therapies. In the present study, Nutlin-3a promoted a tetraploid G(1) arrest in multiple p53 wild-type cell lines. However, some cell lines underwent endoreduplication to relatively high extents after Nutlin-3a removal whereas other cell lines did not. The resistance to endoreduplication observed in some cell lines was associated with a prolonged 4N arrest after Nutlin-3a removal. Knockdown of either p53 or p21 immediately after Nutlin-3a removal could drive endoreduplication in otherwise resistant 4N cells. Finally, 4N-arrested cells retained persistent p21 expression; expressed senescence-associated beta-galactosidase; displayed an enlarged, flattened phenotype; and underwent a proliferation block that lasted at least 2 weeks after Nutlin-3a removal. These findings demonstrate that transient Nutlin-3a treatment can promote an apparently permanent proliferative block in 4N cells of certain cell lines associated with persistent p21 expression and resistance to endoreduplication.
Collapse
Affiliation(s)
- Hong Shen
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois 60612, USA
| | | |
Collapse
|
23
|
Kawakami H, Katayama T. DnaA, ORC, and Cdc6: similarity beyond the domains of life and diversity. Biochem Cell Biol 2010; 88:49-62. [PMID: 20130679 DOI: 10.1139/o09-154] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To initiate chromosomal DNA replication, specific proteins bind to the replication origin region and form multimeric and dynamic complexes. Bacterial DnaA, the eukaryotic origin recognition complex (ORC), and Cdc6 proteins, most of which include an AAA+(-like) motif, play crucial roles in replication initiation. The importance of ATP binding and hydrolysis in these proteins has recently become recognized. ATP binding of Escherichia coli DnaA is required for the formation of the activated form of a DnaA multimer on the replication origin. The ATP-DnaA multimer can unwind duplex DNA in an origin-dependent manner, which is supported by various specific functions of several AAA+ motifs. DnaA-ATP hydrolysis is stimulated after initiation, repressing extra initiations, and sustaining once-per-cell cycle replication. ATP binding of ORC and Cdc6 in Saccharomyces cerevisiae is required for heteromultimeric complex formation and specific DNA binding. ATP hydrolysis of these proteins is important for the efficient loading of the minichromosome maintenance protein complex, a component of the putative replicative helicase. In this review, we discuss the roles of DnaA, ORC, and Cdc6 in replication initiation and its regulation. We also summarize the functional features of the AAA+ domains of these proteins, and the functional divergence of ORC in chromosomal dynamics.
Collapse
Affiliation(s)
- Hironori Kawakami
- Cold Spring Harbor Laboratory, 1 Bungtown Rd., Cold Spring Harbor, NY 11724, USA.
| | | |
Collapse
|
24
|
Yoshida K, Sugimoto N, Iwahori S, Yugawa T, Narisawa-Saito M, Kiyono T, Fujita M. CDC6 interaction with ATR regulates activation of a replication checkpoint in higher eukaryotic cells. J Cell Sci 2010; 123:225-35. [PMID: 20048340 DOI: 10.1242/jcs.058693] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
CDC6, a replication licensing protein, is partially exported to the cytoplasm in human cells through phosphorylation by Cdk during S phase, but a significant proportion remains in the nucleus. We report here that human CDC6 physically interacts with ATR, a crucial checkpoint kinase, in a manner that is stimulated by phosphorylation by Cdk. CDC6 silencing by siRNAs affected ATR-dependent inhibition of mitotic entry elicited by modest replication stress. Whereas a Cdk-phosphorylation-mimicking CDC6 mutant could rescue the checkpoint defect by CDC6 silencing, a phosphorylation-deficient mutant could not. Furthermore, we found that the CDC6-ATR interaction is conserved in Xenopus. We show that the presence of Xenopus CDC6 during S phase is essential for Xenopus ATR to bind to chromatin in response to replication inhibition. In addition, when human CDC6 amino acid fragment 180-220, which can bind to both human and Xenopus ATR, was added to Xenopus egg extracts after assembly of the pre-replication complex, Xenopus Chk1 phosphorylation was significantly reduced without lowering replication, probably through a sequestration of CDC6-mediated ATR-chromatin interaction. Thus, CDC6 might regulate replication-checkpoint activation through the interaction with ATR in higher eukaryotic cells.
Collapse
Affiliation(s)
- Kazumasa Yoshida
- Virology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuohku, Tokyo 104-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Gautier VW, Gu L, O'Donoghue N, Pennington S, Sheehy N, Hall WW. In vitro nuclear interactome of the HIV-1 Tat protein. Retrovirology 2009; 6:47. [PMID: 19454010 PMCID: PMC2702331 DOI: 10.1186/1742-4690-6-47] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 05/19/2009] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND One facet of the complexity underlying the biology of HIV-1 resides not only in its limited number of viral proteins, but in the extensive repertoire of cellular proteins they interact with and their higher-order assembly. HIV-1 encodes the regulatory protein Tat (86-101aa), which is essential for HIV-1 replication and primarily orchestrates HIV-1 provirus transcriptional regulation. Previous studies have demonstrated that Tat function is highly dependent on specific interactions with a range of cellular proteins. However they can only partially account for the intricate molecular mechanisms underlying the dynamics of proviral gene expression. To obtain a comprehensive nuclear interaction map of Tat in T-cells, we have designed a proteomic strategy based on affinity chromatography coupled with mass spectrometry. RESULTS Our approach resulted in the identification of a total of 183 candidates as Tat nuclear partners, 90% of which have not been previously characterised. Subsequently we applied in silico analysis, to validate and characterise our dataset which revealed that the Tat nuclear interactome exhibits unique signature(s). First, motif composition analysis highlighted that our dataset is enriched for domains mediating protein, RNA and DNA interactions, and helicase and ATPase activities. Secondly, functional classification and network reconstruction clearly depicted Tat as a polyvalent protein adaptor and positioned Tat at the nexus of a densely interconnected interaction network involved in a range of biological processes which included gene expression regulation, RNA biogenesis, chromatin structure, chromosome organisation, DNA replication and nuclear architecture. CONCLUSION We have completed the in vitro Tat nuclear interactome and have highlighted its modular network properties and particularly those involved in the coordination of gene expression by Tat. Ultimately, the highly specialised set of molecular interactions identified will provide a framework to further advance our understanding of the mechanisms of HIV-1 proviral gene silencing and activation.
Collapse
Affiliation(s)
- Virginie W Gautier
- UCD-Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin (UCD), Belfield, Dublin 4, Ireland.
| | | | | | | | | | | |
Collapse
|
26
|
Homologous recombinational repair factors are recruited and loaded onto the viral DNA genome in Epstein-Barr virus replication compartments. J Virol 2009; 83:6641-51. [PMID: 19386720 DOI: 10.1128/jvi.00049-09] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homologous recombination is an important biological process that facilitates genome rearrangement and repair of DNA double-strand breaks (DSBs). The induction of Epstein-Barr virus (EBV) lytic replication induces ataxia telangiectasia-mutated (ATM)-dependent DNA damage checkpoint signaling, leading to the clustering of phosphorylated ATM and Mre11/Rad50/Nbs1 (MRN) complexes to sites of viral genome synthesis in nuclei. Here we report that homologous recombinational repair (HRR) factors such as replication protein A (RPA), Rad51, and Rad52 as well as MRN complexes are recruited and loaded onto the newly synthesized viral genome in replication compartments. The 32-kDa subunit of RPA is extensively phosphorylated at sites in accordance with those with ATM. The hyperphosphorylation of RPA32 causes a change in RPA conformation, resulting in a switch from the catalysis of DNA replication to the participation in DNA repair. The levels of Rad51 and phosphorylated RPA were found to increase with the progression of viral productive replication, while that of Rad52 proved constant. Furthermore, biochemical fractionation revealed increases in levels of DNA-bound forms of these HRRs. Bromodeoxyuridine-labeled chromatin immunoprecipitation and PCR analyses confirmed the loading of RPA, Rad 51, Rad52, and Mre11 onto newly synthesized viral DNA, and terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling analysis demonstrated DSBs in the EBV replication compartments. HRR factors might be recruited to repair DSBs on the viral genome in viral replication compartments. RNA interference knockdown of RPA32 and Rad51 prevented viral DNA synthesis remarkably, suggesting that homologous recombination and/or repair of viral DNA genome might occur, coupled with DNA replication to facilitate viral genome synthesis.
Collapse
|
27
|
Sugimoto N, Yoshida K, Tatsumi Y, Yugawa T, Narisawa-Saito M, Waga S, Kiyono T, Fujita M. Redundant and differential regulation of multiple licensing factors ensures prevention of re-replication in normal human cells. J Cell Sci 2009; 122:1184-91. [DOI: 10.1242/jcs.041889] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When human cells enter S-phase, overlapping differential inhibitory mechanisms downregulate the replication licensing factors ORC1, CDC6 and Cdt1. Such regulation prevents re-replication so that deregulation of any individual factor alone would not be expected to induce overt re-replication. However, this has been challenged by the fact that overexpression of Cdt1 or Cdt1+CDC6 causes re-replication in some cancer cell lines. We thought it important to analyze licensing regulations in human non-cancerous cells that are resistant to Cdt1-induced re-replication and examined whether simultaneous deregulation of these licensing factors induces re-replication in two such cell lines, including human fibroblasts immortalized by telomerase. Individual overexpression of either Cdt1, ORC1 or CDC6 induced no detectable re-replication. However, with Cdt1+ORC1 or Cdt1+CDC6, some re-replication was detectable and coexpression of Cdt1+ORC1+CDC6 synergistically acted to give strong re-replication with increased mini-chromosome maintenance (MCM) loading. Coexpression of ORC1+CDC6 was without effect. These results suggest that, although Cdt1 regulation is the key step, differential regulation of multiple licensing factors ensures prevention of re-replication in normal human cells. Our findings also show for the first time the importance of ORC1 regulation for prevention of re-replication.
Collapse
Affiliation(s)
- Nozomi Sugimoto
- Virology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuohku, Tokyo 104-0045, Japan
- Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyouku, Tokyo 112-8679, Japan
| | - Kazumasa Yoshida
- Virology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuohku, Tokyo 104-0045, Japan
| | - Yasutoshi Tatsumi
- Virology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuohku, Tokyo 104-0045, Japan
- Division of Biochemistry, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuohku, Chiba 260-8717, Japan
| | - Takashi Yugawa
- Virology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuohku, Tokyo 104-0045, Japan
| | - Mako Narisawa-Saito
- Virology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuohku, Tokyo 104-0045, Japan
| | - Shou Waga
- Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyouku, Tokyo 112-8679, Japan
| | - Tohru Kiyono
- Virology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuohku, Tokyo 104-0045, Japan
| | - Masatoshi Fujita
- Virology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuohku, Tokyo 104-0045, Japan
| |
Collapse
|
28
|
Deng M, Li F, Ballif BA, Li S, Chen X, Guo L, Ye X. Identification and functional analysis of a novel cyclin e/cdk2 substrate ankrd17. J Biol Chem 2009; 284:7875-88. [PMID: 19150984 DOI: 10.1074/jbc.m807827200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cyclin E/Cdk2 is a key regulator in G(1)-S transition. We have identified a novel cyclin E/Cdk2 substrate called Ankrd17 (ankyrin repeat protein 17) using the TAP tag purification technique. Ankrd17 protein contains two clusters of a total 25 ankyrin repeats at its N terminus, one NES (nuclear exporting signal) and one NLS (nuclear localization signal) in the middle, and one RXL motif at its C terminus. Ankrd17 is expressed in various tissues and associates with cyclin E/Cdk2 in an RXL-dependent manner. It can be phosphorylated by cyclin E/Cdk2 at 3 phosphorylation sites (Ser(1791), Ser(1794), and Ser(2150)). Overexpression of Ankrd17 promotes S phase entry, whereas depletion of Ankrd17 expression by small interfering RNA inhibits DNA replication and blocks cell cycle progression as well as up-regulates the expression of p53 and p21. Ankrd17 is localized to the nucleus and interacts with DNA replication factors including MCM family members, Cdc6 and PCNA. Depletion of Ankrd17 results in decreased loading of Cdc6 and PCNA onto DNA suggesting that Ankrd17 may be directly involved in the DNA replication process. Taken together, these data indicate that Ankrd17 is an important downstream effector of cyclin E/Cdk2 and positively regulates G(1)/S transition.
Collapse
Affiliation(s)
- Min Deng
- Department of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Ueda S, Kondoh N, Tsuda H, Yamamoto S, Asakawa H, Fukatsu K, Kobayashi T, Yamamoto J, Tamura K, Ishida J, Abe Y, Yamamoto M, Mochizuki H. Expression of centromere protein F (CENP-F) associated with higher FDG uptake on PET/CT, detected by cDNA microarray, predicts high-risk patients with primary breast cancer. BMC Cancer 2008; 8:384. [PMID: 19102762 PMCID: PMC2631591 DOI: 10.1186/1471-2407-8-384] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 12/22/2008] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Higher standardized uptake value (SUV) detected by 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) correlates with proliferation of primary breast cancer. The purpose of this study is to identify specific molecules upregulated in primary breast cancers with a high SUV and to examine their clinical significance. METHODS We compared mRNA expression profiles between 14 tumors with low SUVs and 24 tumors with high SUVs by cDNA microarray. We identified centromere protein F (CENP-F) and CDC6 were upregulated in tumors with high SUVs. RT-PCR and immunohistochemical analyses were performed to validate these data. Clinical implication of CENP-F and CDC6 was examined for 253 archival breast cancers by the tissue microarray. RESULTS The relative ratios of CENP-F and CDC6 expression levels to beta-actin were confirmed to be significantly higher in high SUV tumors than in low SUV tumors (p = 0.027 and 0.025, respectively) by RT-PCR. In immunohistochemical analysis of 47 node-negative tumors, the CENP-F expression was significantly higher in the high SUV tumors (74%) than the low SUV tumors (45%) (p = 0.04), but membranous and cytoplasmic CDC6 expressions did not significantly differ between both groups (p = 0.9 each). By the tissue microarray, CENP-F (HR = 2.94) as well as tumor size (HR = 4.49), nodal positivity (HR = 4.1), and Ki67 (HR = 2.05) showed independent impact on the patients' prognosis. CONCLUSION High CENP-F expression, correlated with high SUV, was the prognostic indicators of primary breast cancer. Tumoral SUV levels may serve as a pretherapeutic indicator of aggressiveness of breast cancer.
Collapse
Affiliation(s)
- Shigeto Ueda
- Department of Basic Pathology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Shen H, Moran DM, Maki CG. Transient nutlin-3a treatment promotes endoreduplication and the generation of therapy-resistant tetraploid cells. Cancer Res 2008; 68:8260-8. [PMID: 18922897 DOI: 10.1158/0008-5472.can-08-1901] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
p53 Activity is controlled in large part by MDM2, an E3 ubiquitin ligase that binds p53 and promotes its degradation. The MDM2 antagonist Nutlin-3a stabilizes p53 by blocking its interaction with MDM2. Several studies have supported the potential use of Nutlin-3a in cancer therapy. Two different p53 wild-type cancer cell lines (U2OS and HCT116) treated with Nutlin-3a for 24 hours accumulated 2N and 4N DNA content, suggestive of G(1) and G(2) phase cell cycle arrest. This coincided with increased p53 and p21 expression, hypophosphorylation of pRb, and depletion of Cyclin B1, Cyclin A, and CDC2. Upon removal of Nutlin-3a, 4N cells entered S phase and re-replicated their DNA without an intervening mitotic division, a process known as endoreduplication. p53-p21 pathway activation was required for the depletion of Cyclin B1, Cyclin A, and CDC2 in Nutlin-3a-treated cells and for endoreduplication after Nutlin-3a removal. Stable tetraploid clones could be isolated from Nutlin-3a treated cells, and these tetraploid clones were more resistant to ionizing radiation and cisplatin-induced apoptosis than diploid counterparts. These data indicate that transient Nutlin-3a treatment of p53 wild-type cancer cells can promote endoreduplication and the generation of therapy-resistant tetraploid cells. These findings have important implications regarding the use of Nutlin-3a in cancer therapy
Collapse
Affiliation(s)
- Hong Shen
- Department of Radiation Oncology, University of Chicago, Chicago, Illinois60637, USA
| | | | | |
Collapse
|
31
|
van Leuken R, Clijsters L, Wolthuis R. To cell cycle, swing the APC/C. Biochim Biophys Acta Rev Cancer 2008; 1786:49-59. [DOI: 10.1016/j.bbcan.2008.05.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 05/05/2008] [Accepted: 05/13/2008] [Indexed: 11/30/2022]
|
32
|
Xiong XD, Fang JH, Qiu FE, Zhao J, Cheng J, Yuan Y, Li SP, Zhuang SM. A novel functional polymorphism in the Cdc6 promoter is associated with the risk for hepatocellular carcinoma. Mutat Res 2008; 643:70-4. [PMID: 18640135 DOI: 10.1016/j.mrfmmm.2008.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 06/06/2008] [Accepted: 06/19/2008] [Indexed: 11/25/2022]
Abstract
Cdc6 is essential for DNA replication and its deregulation is involved in carcinogenesis. To date, the biological significance of the polymorphism in Cdc6 promoter is still unknown. In this study, we aimed to evaluate the influence of the Cdc6 -515A>G polymorphism (rs4134994) on the individual's susceptibility to cancer and on the function of Cdc6. The Cdc6 -515A>G polymorphism was genotyped in 387 hepatocellular carcinoma (HCC) and 389 age- and sex-matched healthy subjects. The association between the genotypes and the risk for HCC was then estimated by unconditional logistic regression analysis with adjustment for age, sex and HBV status. Compared with the AA homozygotes, the homozygous GG genotype (adjusted OR=0.36, 95% confidence interval (CI)=0.18-0.72, P=0.004) or the combined AG/GG genotypes (adjusted OR=0.56, 95% CI=0.36-0.86, P=0.008) were statistically significantly associated with the reduced risk for HCC. Moreover, the analysis using luciferase reporter system showed that the G-allelic Cdc6 promoter displayed a decreased transcriptional activity compared with the A-allelic one. These results indicate that the individuals with G allele may have reduced Cdc6 expression and are therefore in reduced risk for HCC. Further investigation using electrophoretic mobility shift assay (EMSA) revealed that the G allele had a stronger binding strength to nuclear protein(s) which might function as negative regulator(s) for Cdc6 transcription. Our findings suggest that the -515A>G polymorphism may affect the Cdc6 promoter binding affinity with nuclear protein(s) and in turn the Cdc6 expression, which consequently modulates the individual's susceptibility to HCC.
Collapse
Affiliation(s)
- Xing-Dong Xiong
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Mizushina Y, Takeuchi T, Hada T, Maeda N, Sugawara F, Yoshida H, Fujita M. The inhibitory action of SQDG (sulfoquinovosyl diacylglycerol) from spinach on Cdt1-geminin interaction. Biochimie 2008; 90:947-56. [DOI: 10.1016/j.biochi.2008.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 02/18/2008] [Indexed: 11/17/2022]
|
34
|
Mizushina Y, Takeuchi T, Takakusagi Y, Yonezawa Y, Mizuno T, Yanagi KI, Imamoto N, Sugawara F, Sakaguchi K, Yoshida H, Fujita M. Coenzyme Q10 as a potent compound that inhibits Cdt1–geminin interaction. Biochim Biophys Acta Gen Subj 2008; 1780:203-13. [DOI: 10.1016/j.bbagen.2007.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 08/31/2007] [Accepted: 09/10/2007] [Indexed: 11/26/2022]
|
35
|
Porter AC. Preventing DNA over-replication: a Cdk perspective. Cell Div 2008; 3:3. [PMID: 18211690 PMCID: PMC2245919 DOI: 10.1186/1747-1028-3-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Accepted: 01/22/2008] [Indexed: 12/24/2022] Open
Abstract
The cell cycle is tightly controlled to ensure that replication origins fire only once per cycle and that consecutive S-phases are separated by mitosis. When controls fail, DNA over-replication ensues: individual origins fire more than once per S-phase (re-replication) or consecutive S-phases occur without intervening mitoses (endoreduplication). In yeast the cell cycle is controlled by a single cyclin dependent kinase (Cdk) that prevents origin licensing at times when it promotes origin firing, and that is inactivated, via proteolysis of its partner cyclin, as cells undergo mitosis. A quantitative model describes three levels of Cdk activity: low activity allows licensing, intermediate activity allows firing but prevents licensing, and high activity promotes mitosis. In higher eukaryotes the situation is complicated by the existence of additional proteins (geminin, Cul4-Ddb1Cdt2, and Emi1) that control licensing. A current challenge is to understand how these various control mechanisms are co-ordinated and why the degree of redundancy between them is so variable. Here the experimental induction of DNA over-replication is reviewed in the context of the quantitative model of Cdk action. Endoreduplication is viewed as a consequence of procedures that cause Cdk activity to fall below the threshold required to prevent licensing, and re-replication as the result of procedures that increase that threshold value. This may help to explain why over-replication does not necessarily require reduced Cdk activity and how different mechanisms conspire to prevent over-replication. Further work is nevertheless required to determine exactly how losing just one licensing control mechanism often causes over-replication, and why this varies between cell systems.
Collapse
Affiliation(s)
- Andrew Cg Porter
- Department of Haematology, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 ONN, UK.
| |
Collapse
|
36
|
Borlado LR, Méndez J. CDC6: from DNA replication to cell cycle checkpoints and oncogenesis. Carcinogenesis 2007; 29:237-43. [PMID: 18048387 DOI: 10.1093/carcin/bgm268] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cell division cycle 6 (CDC6) is an essential regulator of DNA replication in eukaryotic cells. Its best-characterized function is the assembly of prereplicative complexes at origins of replication during the G(1) phase of the cell division cycle. However, CDC6 also plays important roles in the activation and maintenance of the checkpoint mechanisms that coordinate S phase and mitosis, and recent studies have unveiled its proto-oncogenic activity. CDC6 overexpression interferes with the expression of INK4/ARF tumor suppressor genes through a mechanism involving the epigenetic modification of chromatin at the INK4/ARF locus. In addition, CDC6 overexpression in primary cells may promote DNA hyperreplication and induce a senescence response similar to that caused by oncogene activation. These findings indicate that deregulation of CDC6 expression in human cells poses a serious risk of carcinogenesis.
Collapse
Affiliation(s)
- Luis R Borlado
- DNA replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre, Melchor Fernández Almagro 3, E-28029 Madrid, Spain
| | | |
Collapse
|
37
|
Rahman FA, Ainscough JFX, Copeland N, Coverley D. Cancer-associated missplicing of exon 4 influences the subnuclear distribution of the DNA replication factor CIZ1. Hum Mutat 2007; 28:993-1004. [PMID: 17508423 DOI: 10.1002/humu.20550] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cip1-interacting zinc finger protein 1 (CIZ1, also known as CDKN1A-interacting zinc finger protein 1) stimulates initiation of mammalian DNA replication and is normally tethered to the nuclear matrix within DNA replication foci. Here, we show that an alternatively spliced human CIZ1 variant, lacking exon 4 (Delta E4), is misexpressed as a consequence of intronic mutation in Ewing tumor (ET) cell lines. In all ET lines tested, exon 4 is skipped and an upstream mononucleotide repeat element is expanded to contain up to 28 thymidines, compared to 16 in controls. In exon-trap experiments, a 24T variant produced three-fold more exon skipping than a 16T variant, demonstrating a direct effect on splicing. In functional assays, Delta E4 protein retains replication activity, but fails to form subnuclear foci. Furthermore, coexpression of mouse Delta E4 with Ciz1 prevents Ciz1 from localizing appropriately, having a dominant negative effect on foci formation. The data show that conditional exclusion of exon 4 influences the spatial distribution of the Ciz1 protein within the nucleus, and raise the possibility that CIZ1 alternative splicing could influence organized patterns of DNA replication.
Collapse
|
38
|
Kim J, Feng H, Kipreos ET. C. elegans CUL-4 prevents rereplication by promoting the nuclear export of CDC-6 via a CKI-1-dependent pathway. Curr Biol 2007; 17:966-72. [PMID: 17509881 PMCID: PMC1945017 DOI: 10.1016/j.cub.2007.04.055] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 04/23/2007] [Accepted: 04/23/2007] [Indexed: 10/23/2022]
Abstract
Genome stability requires that genomic DNA is replicated only once per cell cycle. The replication-licensing system ensures that the formation of prereplicative complexes is temporally separated from the initiation of DNA replication [1-4]. The replication-licensing factors Cdc6 and Cdt1 are required for the assembly of prereplicative complexes during G1 phase. During S phase, metazoan Cdt1 is targeted for degradation by the CUL4 ubiquitin ligase [5-8], and vertebrate Cdc6 is translocated from the nucleus to the cytoplasm [9, 10]. However, because residual vertebrate Cdc6 remains in the nucleus throughout S phase [10-13], it has been unclear whether Cdc6 translocation to the cytoplasm prevents rereplication [1, 2, 14]. The inactivation of C. elegans CUL-4 is associated with dramatic levels of DNA rereplication [5]. Here, we show that C. elegans CDC-6 is exported from the nucleus during S phase in response to the phosphorylation of multiple CDK sites. CUL-4 promotes the phosphorylation and subsequent translocation of CDC-6 via negative regulation of the CDK-inhibitor CKI-1. Rereplication can be induced by coexpression of nonexportable CDC-6 with nondegradable CDT-1, indicating that redundant regulation of CDC-6 and CDT-1 prevents rereplication. This demonstrates that CDC-6 translocation is critical for preventing rereplication and that CUL-4 independently controls both replication-licensing factors.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602-2607, USA
| | | | | |
Collapse
|
39
|
Jaeger J, Koczan D, Thiesen HJ, Ibrahim SM, Gross G, Spang R, Kunz M. Gene expression signatures for tumor progression, tumor subtype, and tumor thickness in laser-microdissected melanoma tissues. Clin Cancer Res 2007; 13:806-15. [PMID: 17289871 DOI: 10.1158/1078-0432.ccr-06-1820] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To better understand the molecular mechanisms of malignant melanoma progression and metastasis, gene expression profiling was done of primary melanomas and melanoma metastases. EXPERIMENTAL DESIGN Tumor cell-specific gene expression in 19 primary melanomas and 22 melanoma metastases was analyzed using oligonucleotide microarrays after laser-capture microdissection of melanoma cells. Statistical analysis was done by random permutation analysis and support vector machines. Microarray data were further validated by immunohistochemistry and immunoblotting. RESULTS Overall, 308 genes were identified that showed significant differential expression between primary melanomas and melanoma metastases (false discovery rate<or=0.05). Significantly overrepresented gene ontology categories in the list of 308 genes were cell cycle regulation, mitosis, cell communication, and cell adhesion. Overall, 47 genes showed up-regulation in metastases. These included Cdc6, Cdk1, septin 6, mitosin, kinesin family member 2C, osteopontin, and fibronectin. Down-regulated genes included E-cadherin, fibroblast growth factor binding protein, and desmocollin 1 and desmocollin 3, stratifin/14-3-3sigma, and the chemokine CCL27. Using support vector machine analysis of gene expression data, a performance of >85% correct classifications for primary melanomas and metastases was reached. Further analysis showed that subtypes of primary melanomas displayed characteristic gene expression patterns, as do thin tumors (<or=1.0 mm Breslow thickness) compared with intermediate and thick tumors (>2.0 mm Breslow thickness). CONCLUSIONS Taken together, this large-scale gene expression study of malignant melanoma identified molecular signatures related to metastasis, melanoma subtypes, and tumor thickness. These findings not only provide deeper insights into the pathogenesis of melanoma progression but may also guide future research on innovative treatments.
Collapse
Affiliation(s)
- Jochen Jaeger
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Emi1 (early mitotic inhibitor) inhibits APC/C (anaphase-promoting complex/cyclosome) activity during S and G2 phases, and is believed to be required for proper mitotic entry. We report that Emi1 plays an essential function in cell proliferation by preventing rereplication. Rereplication seen after Emi1 depletion is due to premature activation of APC/C that results in destabilization of geminin and cyclin A, two proteins shown here to play redundant roles in preventing rereplication in mammalian cells. Geminin is known to inhibit the replication initiation factor Cdt1. The rereplication block by cyclin A is mediated through its association with S and G2/M cyclin-dependent kinases (Cdks), Cdk2 and Cdk1, suggesting that phosphorylation of proteins by cyclin A-Cdk is responsible for the block. Rereplication upon Emi1 depletion activates the DNA damage checkpoint pathways. These data suggest that Emi1 plays a critical role in preserving genome integrity by blocking rereplication, revealing a previously unrecognized function of this inhibitor of APC/C.
Collapse
Affiliation(s)
- Yuichi J. Machida
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- Corresponding author.E-MAIL ; FAX (434) 924-5069
| |
Collapse
|
41
|
Ainscough JFX, Rahman FA, Sercombe H, Sedo A, Gerlach B, Coverley D. C-terminal domains deliver the DNA replication factor Ciz1 to the nuclear matrix. J Cell Sci 2007; 120:115-24. [PMID: 17182902 DOI: 10.1242/jcs.03327] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cip1-interacting zinc finger protein 1 (Ciz1) stimulates DNA replication in vitro and is required for mammalian cells to enter S phase. Here, we show that a significant proportion of Ciz1 is retained in nuclear foci following extraction with nuclease and high salt. This suggests that Ciz1 is normally immobilized by interaction with non-chromatin nuclear structures, consistent with the nuclear matrix. Furthermore, matrix-associated Ciz1 foci strikingly colocalize with sites of newly synthesized DNA in S phase nuclei, suggesting that Ciz1 is present in DNA replication factories. Analysis of green fluorescent protein-tagged fragments indicates that nuclear immobilization of Ciz1 is mediated by sequences in its C-terminal third, encoded within amino acids 708-830. Immobilization occurs in a cell-cycle-dependent manner, most probably during late G1 or early S phase, to coincide with its reported point of action. Although C-terminal domains are sufficient for immobilization, N-terminal domains are also required to specify focal organization. Combined with previous work, which showed that the DNA replication activity of Ciz1 is encoded by N-terminal sequences, we suggest that Ciz1 is composed of two functionally distinct domains: an N-terminal replication domain and a C-terminal nuclear matrix anchor. This could contribute to the formation or function of DNA replication factories in mammalian cells.
Collapse
|
42
|
Phosphorylation of MCM4 at sites inactivating DNA helicase activity of the MCM4-MCM6-MCM7 complex during Epstein-Barr virus productive replication. J Virol 2006. [PMID: 17005684 DOI: 10.1128/jvi.00678-06j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Induction of Epstein-Barr virus (EBV) lytic replication blocks chromosomal DNA replication notwithstanding an S-phase-like cellular environment with high cyclin-dependent kinase (CDK) activity. We report here that the phosphorylated form of MCM4, a subunit of the MCM complex essential for chromosomal DNA replication, increases with progression of lytic replication, Thr-19 and Thr-110 being CDK2/CDK1 targets whose phosphorylation inactivates MCM4-MCM6-MCM7 (MCM4-6-7) complex-associated DNA helicase. Expression of EBV-encoded protein kinase (EBV-PK) in HeLa cells caused phosphorylation of these sites on MCM4, leading to cell growth arrest. In vitro, the sites of MCM4 of the MCM4-6-7 hexamer were confirmed to be phosphorylated with EBV-PK, with the same loss of helicase activity as with CDK2/cyclin A. Introducing mutations in the N-terminal six Ser and Thr residues of MCM4 reduced the inhibition by CDK2/cyclin A, while EBV-PK inhibited the helicase activities of both wild-type and mutant MCM4-6-7 hexamers, probably since EBV-PK can phosphorylate MCM6 and another site(s) of MCM4 in addition to the N-terminal residues. Therefore, phosphorylation of the MCM complex by redundant actions of CDK and EBV-PK during lytic replication might provide one mechanism to block chromosomal DNA replication in the infected cells through inactivation of DNA unwinding by the MCM4-6-7 complex.
Collapse
|
43
|
Kudoh A, Daikoku T, Ishimi Y, Kawaguchi Y, Shirata N, Iwahori S, Isomura H, Tsurumi T. Phosphorylation of MCM4 at sites inactivating DNA helicase activity of the MCM4-MCM6-MCM7 complex during Epstein-Barr virus productive replication. J Virol 2006; 80:10064-72. [PMID: 17005684 PMCID: PMC1617282 DOI: 10.1128/jvi.00678-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Induction of Epstein-Barr virus (EBV) lytic replication blocks chromosomal DNA replication notwithstanding an S-phase-like cellular environment with high cyclin-dependent kinase (CDK) activity. We report here that the phosphorylated form of MCM4, a subunit of the MCM complex essential for chromosomal DNA replication, increases with progression of lytic replication, Thr-19 and Thr-110 being CDK2/CDK1 targets whose phosphorylation inactivates MCM4-MCM6-MCM7 (MCM4-6-7) complex-associated DNA helicase. Expression of EBV-encoded protein kinase (EBV-PK) in HeLa cells caused phosphorylation of these sites on MCM4, leading to cell growth arrest. In vitro, the sites of MCM4 of the MCM4-6-7 hexamer were confirmed to be phosphorylated with EBV-PK, with the same loss of helicase activity as with CDK2/cyclin A. Introducing mutations in the N-terminal six Ser and Thr residues of MCM4 reduced the inhibition by CDK2/cyclin A, while EBV-PK inhibited the helicase activities of both wild-type and mutant MCM4-6-7 hexamers, probably since EBV-PK can phosphorylate MCM6 and another site(s) of MCM4 in addition to the N-terminal residues. Therefore, phosphorylation of the MCM complex by redundant actions of CDK and EBV-PK during lytic replication might provide one mechanism to block chromosomal DNA replication in the infected cells through inactivation of DNA unwinding by the MCM4-6-7 complex.
Collapse
Affiliation(s)
- Ayumi Kudoh
- Division of Virology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Fujita M. Cdt1 revisited: complex and tight regulation during the cell cycle and consequences of deregulation in mammalian cells. Cell Div 2006; 1:22. [PMID: 17042960 PMCID: PMC1621056 DOI: 10.1186/1747-1028-1-22] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 10/17/2006] [Indexed: 12/31/2022] Open
Abstract
In eukaryotic cells, replication of genomic DNA initiates from multiple replication origins distributed on multiple chromosomes. To ensure that each origin is activated precisely only once during each S phase, a system has evolved which features periodic assembly and disassembly of essential pre-replication complexes (pre-RCs) at replication origins. The pre-RC assembly reaction involves the loading of a presumptive replicative helicase, the MCM2-7 complexes, onto chromatin by the origin recognition complex (ORC) and two essential factors, CDC6 and Cdt1. The eukaryotic cell cycle is driven by the periodic activation and inactivation of cyclin-dependent kinases (Cdks) and assembly of pre-RCs can only occur during the low Cdk activity period from late mitosis through G1 phase, with inappropriate re-assembly suppressed during S, G2, and M phases. It was originally suggested that inhibition of Cdt1 function after S phase in vertebrate cells is due to geminin binding and that Cdt1 hyperfunction resulting from Cdt1-geminin imbalance induces re-replication. However, recent progress has revealed that Cdt1 activity is more strictly regulated by two other mechanisms in addition to geminin: (1) functional and SCFSkp2-mediated proteolytic regulation through phosphorylation by Cdks; and (2) replication-coupled proteolysis mediated by the Cullin4-DDB1Cdt2 ubiquitin ligase and PCNA, an eukaryotic sliding clamp stimulating replicative DNA polymerases. The tight regulation implies that Cdt1 control is especially critical for the regulation of DNA replication in mammalian cells. Indeed, Cdt1 overexpression evokes chromosomal damage even without re-replication. Furthermore, deregulated Cdt1 induces chromosomal instability in normal human cells. Since Cdt1 is overexpressed in cancer cells, this could be a new molecular mechanism leading to carcinogenesis. In this review, recent insights into Cdt1 function and regulation in mammalian cells are discussed.
Collapse
Affiliation(s)
- Masatoshi Fujita
- Virology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuohku, Tokyo 104-0045, Japan.
| |
Collapse
|
45
|
Tatsumi Y, Sugimoto N, Yugawa T, Narisawa-Saito M, Kiyono T, Fujita M. Deregulation of Cdt1 induces chromosomal damage without rereplication and leads to chromosomal instability. J Cell Sci 2006; 119:3128-40. [PMID: 16835273 DOI: 10.1242/jcs.03031] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The activity of human Cdt1 is negatively regulated by multiple mechanisms. This suggests that Cdt1 deregulation may have a deleterious effect. Indeed, it has been suggested that overexpression of Cdt1 can induce rereplication in cancer cells and that rereplication activates Ataxia-telangiectasia-mutated (ATM) kinase and/or ATM- and Rad3-related (ATR) kinase-dependent checkpoint pathways. In this report, we highlight a new and interesting aspect of Cdt1 deregulation: data from several different systems all strongly indicate that unregulated Cdt1 overexpression at pathophysiological levels can induce chromosomal damage other than rereplication in non-transformed cells. The most important finding in these studies is that deregulated Cdt1 induces chromosomal damage and activation of the ATM-Chk2 DNA damage checkpoint pathway even in quiescent cells. These Cdt1 activities are negatively regulated by cyclin A/Cdks, probably through modification by phosphorylation. Furthermore, we found that deregulated Cdt1 induces chromosomal instability in normal human cells. Since Cdt1 is overexpressed in cancer cells, this would be a new molecular mechanism leading to carcinogenesis.
Collapse
Affiliation(s)
- Yasutoshi Tatsumi
- Virology Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuohku, Tokyo 104-0045, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Regulation of DNA replication is critical for accurate and timely dissemination of genomic material to daughter cells. The cell uses a variety of mechanisms to control this aspect of the cell cycle. There are various determinants of origin identification, as well as a large number of proteins required to load replication complexes at these defined genomic regions. A pre-Replication Complex (pre-RC) associates with origins in the G1 phase. This complex includes the Origin Recognition Complex (ORC), which serves to recognize origins, the putative helicase MCM2-7, and other factors important for complex assembly. Following pre-RC loading, a pre-Initiation Complex (pre-IC) builds upon the helicase with factors required for eventual loading of replicative polymerases. The chromatin association of these two complexes is temporally distinct, with pre-RC being inhibited, and pre-IC being activated by cyclin-dependent kinases (Cdks). This regulation is the basis for replication licensing, which allows replication to occur at a specific time once, and only once, per cell cycle. By preventing extra rounds of replication within a cell cycle, or by ensuring the cell cycle cannot progress until the environmental and intracellular conditions are most optimal, cells are able to carry out a successful replication cycle with minimal mutations.
Collapse
Affiliation(s)
- Jamie K Teer
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
47
|
Daikoku T, Kudoh A, Sugaya Y, Iwahori S, Shirata N, Isomura H, Tsurumi T. Postreplicative Mismatch Repair Factors Are Recruited to Epstein-Barr Virus Replication Compartments. J Biol Chem 2006; 281:11422-30. [PMID: 16510450 DOI: 10.1074/jbc.m510314200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The mismatch repair (MMR) system, highly conserved throughout evolution, corrects nucleotide mispairing that arise during cellular DNA replication. We report here that proliferating cell nuclear antigen (PCNA), the clamp loader complex (RF-C), and a series of MMR proteins like MSH-2, MSH-6, MLH1, and hPSM2 can be assembled to Epstein-Barr virus replication compartments, the sites of viral DNA synthesis. Levels of the DNA-bound form of PCNA increased with progression of viral productive replication. Bromodeoxyuridine-labeled chromatin immunodepletion analyses confirmed that PCNA is loaded onto newly synthesized viral DNA as well as BALF2 and BMRF1 viral proteins during lytic replication. Furthermore, the anti-PCNA, -MSH2, -MSH3, or -MSH6 antibodies could immunoprecipitate BMRF1 replication protein probably via the viral DNA genome. PCNA loading might trigger transfer of a series of host MMR proteins to the sites of viral DNA synthesis. The MMR factors might function for the repair of mismatches that arise during viral replication or act to inhibit recombination between moderately divergent (homologous) sequences.
Collapse
Affiliation(s)
- Tohru Daikoku
- Division of Virology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Ren B, Yu G, Tseng GC, Cieply K, Gavel T, Nelson J, Michalopoulos G, Yu YP, Luo JH. MCM7 amplification and overexpression are associated with prostate cancer progression. Oncogene 2006; 25:1090-8. [PMID: 16247466 DOI: 10.1038/sj.onc.1209134] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The genomic DNA profiles of prostate cancers with aggressive features were compared to the profiles of matched normal DNA to identify genes that are selectively amplified in the cancer cells. One of the identified genes, MCM7, which is a component of the DNA replication licensing complex, has been studied extensively both at the DNA and protein levels in human prostate tissues. Approximately half of the prostate cancer specimens studied showed MCM7 gene amplification, and 60% of the aggressive prostate cancer specimens had increased MCM7 protein expression. Amplification or overexpression of MCM7 was significantly associated with relapse, local invasion and a worse tumor grade. Constitutive expression of MCM7 in a human prostate cancer cell line, DU145, resulted in markedly increased DNA synthesis and cell proliferation compared to vector-only controls, and an increased cell invasion in vitro. Indeed, MCM7 overexpression produced primary tumors 12 times larger than vector-only controls and resulted in a rapid demise of mice bearing those tumors. These studies implicate MCM7, and the DNA replication licensing gene family, in prostate cancer progression, growth and invasion.
Collapse
Affiliation(s)
- B Ren
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lau E, Zhu C, Abraham RT, Jiang W. The functional role of Cdc6 in S-G2/M in mammalian cells. EMBO Rep 2006; 7:425-30. [PMID: 16439999 PMCID: PMC1456921 DOI: 10.1038/sj.embor.7400624] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 10/18/2005] [Accepted: 12/07/2005] [Indexed: 11/08/2022] Open
Abstract
The Cdc6 protein is required for licensing of replication origins before the onset of DNA replication in eukaryotic cells. Here, we examined whether Cdc6 has other roles in mammalian cell-cycle progression from S to G2/M phase. Using RNA interference, we showed that depletion of Cdc6 in synchronous G1 cells blocks G1 to S transition, confirming the essential role of Cdc6 in the initiation of DNA replication. In contrast, depletion of Cdc6 in synchronous S-phase cells slowed DNA replication and led to mitotic lethality. The Cdc6-depleted S-phase cells showed fewer newly fired origins; however, established replication forks remained active, even during chromatin condensation. Despite such DNA replication abnormalities, loss of Cdc6 failed to activate Chk1 kinase. These results show that Cdc6 is not only required for G1 origin licensing, but is also crucial for proper S-phase DNA replication that is essential for DNA segregation during mitosis.
Collapse
Affiliation(s)
- Eric Lau
- The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
- Graduate Program in Molecular Pathology, University of California, 9500 Gilman Drive 0612, La Jolla, California 92093, USA
| | - Changjun Zhu
- The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Robert T Abraham
- The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Wei Jiang
- The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
- Tel: +1 858 646 3186; Fax: +1 858 713 6247; E-mail:
| |
Collapse
|
50
|
Zhu W, Abbas T, Dutta A. DNA replication and genomic instability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 570:249-79. [PMID: 18727504 DOI: 10.1007/1-4020-3764-3_9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Wenge Zhu
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|