1
|
Zhang H, Liu W, Wu Y, Chen C. USP3: Key deubiquitylation enzyme in human diseases. Cancer Sci 2024; 115:2094-2106. [PMID: 38651282 PMCID: PMC11247611 DOI: 10.1111/cas.16178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024] Open
Abstract
Ubiquitination and deubiquitylation are pivotal posttranslational modifications essential for regulating cellular protein homeostasis and are implicated in the development of human diseases. Ubiquitin-specific protease 3 (USP3), a member of the ubiquitin-specific protease family, serves as a key deubiquitylation enzyme, playing a critical role in diverse cellular processes including the DNA damage response, cell cycle regulation, carcinogenesis, tumor cell proliferation, migration, and invasion. Despite notable research efforts, our current understanding of the intricate and context-dependent regulatory networks governing USP3 remains incomplete. This review aims to comprehensively synthesize existing published works on USP3, elucidating its multifaceted roles, functions, and regulatory mechanisms, while offering insights for future investigations. By delving into the complexities of USP3, this review strives to provide a foundation for a more nuanced understanding of its specific roles in various cellular processes. Furthermore, the exploration of USP3's regulatory networks may uncover novel therapeutic strategies targeting this enzyme in diverse human diseases, thereby holding promising clinical implications. Overall, an in-depth comprehension of USP3's functions and regulatory pathways is crucial for advancing our knowledge and developing targeted therapeutic approaches for human diseases.
Collapse
Affiliation(s)
- Hongyan Zhang
- Faculty of Life Science and TechnologyKunming University of Science and TechnologyKunmingChina
- Medical SchoolKunming University of Science and TechnologyKunmingChina
| | - Wenjing Liu
- The Third Affiliated Hospital, Kunming Medical UniversityKunmingChina
| | - Yingying Wu
- The First Affiliated Hospital, Kunming Medical UniversityKunmingChina
| | - Ceshi Chen
- The Third Affiliated Hospital, Kunming Medical UniversityKunmingChina
- Academy of Biomedical EngineeringKunming Medical UniversityKunmingChina
| |
Collapse
|
2
|
Wang Y, Shi Y, Niu K, Yang R, Lv Q, Zhang W, Feng K, Zhang Y. Ubiquitin specific peptidase 3: an emerging deubiquitinase that regulates physiology and diseases. Cell Death Discov 2024; 10:243. [PMID: 38773075 PMCID: PMC11109179 DOI: 10.1038/s41420-024-02010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024] Open
Abstract
Proteins are the keystone for the execution of various life activities, and the maintenance of protein normalization is crucial for organisms. Ubiquitination, as a post-transcriptional modification, is widely present in organisms, and it relies on the sophisticated ubiquitin-proteasome (UPS) system that controls protein quality and modulates protein lifespan. Deubiquitinases (DUBs) counteract ubiquitination and are essential for the maintenance of homeostasis. Ubiquitin specific peptidase 3 (USP3) is a member of the DUBs that has received increasing attention in recent years. USP3 is a novel chromatin modifier that tightly regulates the DNA damage response (DDR) and maintains genome integrity. Meanwhile, USP3 acts as a key regulator of inflammatory vesicles and sustains the normal operation of the innate immune system. In addition, USP3 is aberrantly expressed in a wide range of cancers, such as gastric cancer, glioblastoma and neuroblastoma, implicating that USP3 could be an effective target for targeted therapies. In this review, we retrace all the current researches of USP3, describe the structure of USP3, elucidate its functions in DNA damage, immune and inflammatory responses and the cell cycle, and summarize the important role of USP3 in multiple cancers and diseases.
Collapse
Affiliation(s)
- Yizhu Wang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Yanlong Shi
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Kaiyi Niu
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Rui Yang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Qingpeng Lv
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Wenning Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Kun Feng
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210003, China.
| |
Collapse
|
3
|
Kong L, Jin X. Dysregulation of deubiquitination in breast cancer. Gene 2024; 902:148175. [PMID: 38242375 DOI: 10.1016/j.gene.2024.148175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Breast cancer (BC) is a highly frequent malignant tumor that poses a serious threat to women's health and has different molecular subtypes, histological subtypes, and biological features, which act by activating oncogenic factors and suppressing cancer inhibitors. The ubiquitin-proteasome system (UPS) is the main process contributing to protein degradation, and deubiquitinases (DUBs) are reverse enzymes that counteract this process. There is growing evidence that dysregulation of DUBs is involved in the occurrence of BC. Herein, we review recent research findings in BC-associated DUBs, describe their nature, classification, and functions, and discuss the potential mechanisms of DUB-related dysregulation in BC. Furthermore, we present the successful treatment of malignant cancer with DUB inhibitors, as well as analyzing the status of targeting aberrant DUBs in BC.
Collapse
Affiliation(s)
- Lili Kong
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
4
|
Li KQ, Bai X, Ke AT, Ding SQ, Zhang CD, Dai DQ. Ubiquitin-specific proteases: From biological functions to potential therapeutic applications in gastric cancer. Biomed Pharmacother 2024; 173:116323. [PMID: 38401523 DOI: 10.1016/j.biopha.2024.116323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024] Open
Abstract
Deubiquitination, a post-translational modification regulated by deubiquitinases, is essential for cancer initiation and progression. Ubiquitin-specific proteases (USPs) are essential elements of the deubiquitinase family, and are overexpressed in gastric cancer (GC). Through the regulation of several signaling pathways, such as Wnt/β-Catenin and nuclear factor-κB signaling, and the promotion of the expression of deubiquitination- and stabilization-associated proteins, USPs promote the proliferation, metastasis, invasion, and epithelial-mesenchymal transition of GC. In addition, the expression of USPs is closely related to clinicopathological features, patient prognosis, and chemotherapy resistance. USPs therefore could be used as prognostic biomarkers. USP targeting small molecule inhibitors have demonstrated strong anticancer activity. However, they have not yet been tested in the clinic. This article provides an overview of the latest fundamental research on USPs in GC, aiming to enhance the understanding of how USPs contribute to GC progression, and identifying possible targets for GC treatment to improve patient survival.
Collapse
Affiliation(s)
- Kai-Qiang Li
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110032, China
| | - Xiao Bai
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110032, China
| | - Ang-Ting Ke
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110032, China
| | - Si-Qi Ding
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110032, China
| | - Chun-Dong Zhang
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110032, China
| | - Dong-Qiu Dai
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110032, China; Cancer Center, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110032, China.
| |
Collapse
|
5
|
Duan T, Feng Y, Du Y, Xing C, Chu J, Ou J, Liu X, Zhu M, Qian C, Yin B, Wang HY, Cui J, Wang R. USP3 plays a critical role in the induction of innate immune tolerance. EMBO Rep 2023; 24:e57828. [PMID: 37971847 PMCID: PMC10702844 DOI: 10.15252/embr.202357828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
Microbial products, such as lipopolysaccharide (LPS), can elicit efficient innate immune responses against invading pathogens. However, priming with LPS can induce a form of innate immune memory, termed innate immune "tolerance", which blunts subsequent NF-κB signaling. Although epigenetic and transcriptional reprogramming has been shown to play a role in innate immune memory, the involvement of post-translational regulation remains unclear. Here, we report that ubiquitin-specific protease 3 (USP3) participates in establishing "tolerance" innate immune memory through non-transcriptional feedback. Upon NF-κB signaling activation, USP3 is stabilized and exits the nucleus. The cytoplasmic USP3 specifically removes the K63-linked polyubiquitin chains on MyD88, thus negatively regulating TLR/IL1β-induced inflammatory signaling activation. Importantly, cytoplasmic translocation is a prerequisite step for USP3 to deubiquitinate MyD88. Additionally, LPS priming could induce cytoplasmic retention and faster and stronger cytoplasmic translocation of USP3, enabling it to quickly shut down NF-κB signaling upon the second LPS challenge. This work identifies a previously unrecognized post-translational feedback loop in the MyD88-USP3 axis, which is critical for inducing normal "tolerance" innate immune memory.
Collapse
Affiliation(s)
- Tianhao Duan
- Department of Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTXUSA
| | - Yanchun Feng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Yang Du
- Department of Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTXUSA
| | - Changsheng Xing
- Department of Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTXUSA
- Norris Comprehensive Cancer Center, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Junjun Chu
- Department of Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTXUSA
| | - Jiayu Ou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Xin Liu
- Department of Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTXUSA
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Motao Zhu
- Department of Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTXUSA
| | - Chen Qian
- Department of Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTXUSA
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Bingnan Yin
- Department of Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTXUSA
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Helen Y Wang
- Department of Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTXUSA
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Rong‐Fu Wang
- Department of Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Center for Inflammation and EpigeneticsHouston Methodist Research InstituteHoustonTXUSA
- Norris Comprehensive Cancer Center, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| |
Collapse
|
6
|
Shi K, Zhang JZ, Yang L, Li NN, Yue Y, Du XH, Zhang XZ, Lu YC, Guo D. Protein deubiquitylase USP3 stabilizes Aurora A to promote proliferation and metastasis of esophageal squamous cell carcinoma. BMC Cancer 2021; 21:1196. [PMID: 34758762 PMCID: PMC8582154 DOI: 10.1186/s12885-021-08934-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Aurora A kinase is a cell cycle regulator that is dysregulated in several different malignancies. Nevertheless, its regulatory mechanisms are still not fully understood. Here, we report that ubiquitin specific peptidase 3 (USP3) promotes proliferation and metastasis of esophageal squamous cell carcinoma (ESCC) cells by mediating deubiquitination of Aurora A. Analysis of human clinical samples indicated that USP3 and Aurora A are highly expressed in ESCC. Cellular experiments confirmed that high expression of USP3 and Aurora A in ESCC cells promoted malignant cell proliferation and invasion. In this mechanism, USP3 leads to suppression of Aurora A ubiquitination, resulting less proteasome degradation. We constructed the deubiquitinated mimetic K143R of Aurora A and found that K143R significantly promoted the proliferation and invasion of ESCC cells and was not regulated by the deubiquitination of USP3. Moreover, Aurora A K143R potentiated the kinase activity of Aurora A in ESCC cells. Thus, our findings demonstrate that the tumorigenic feature of ESCC is in part mediated by USP3-facilitated deubiquitination of Aurora A.
Collapse
Affiliation(s)
- Ke Shi
- Department of Biochemistry and Molecular Biology, Henan Medical College, Zhengzhou, China
| | - Jin Zhong Zhang
- Department of Biochemistry and Molecular Biology, Henan Medical College, Zhengzhou, China
| | - Liang Yang
- Department of Biochemistry and Molecular Biology, Henan Medical College, Zhengzhou, China
| | - Ning-Ning Li
- Department of Biochemistry and Molecular Biology, Henan Medical College, Zhengzhou, China
| | - Ying Yue
- Henan No.2 Provincial People's Hospital, Henan Medical College Hospital Workers, Zhengzhou, China
| | - Xiu-Hong Du
- Department of Biochemistry and Molecular Biology, Henan Medical College, Zhengzhou, China
| | - Xiu-Zhi Zhang
- Department of Biochemistry and Molecular Biology, Henan Medical College, Zhengzhou, China
| | - Yu Cheng Lu
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong, China.
| | - Dan Guo
- Department of Biochemistry and Molecular Biology, Henan Medical College, Zhengzhou, China.
| |
Collapse
|
7
|
Regulation of Histone Ubiquitination in Response to DNA Double Strand Breaks. Cells 2020; 9:cells9071699. [PMID: 32708614 PMCID: PMC7407225 DOI: 10.3390/cells9071699] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Eukaryotic cells are constantly exposed to both endogenous and exogenous stressors that promote the induction of DNA damage. Of this damage, double strand breaks (DSBs) are the most lethal and must be efficiently repaired in order to maintain genomic integrity. Repair of DSBs occurs primarily through one of two major pathways: non-homologous end joining (NHEJ) or homologous recombination (HR). The choice between these pathways is in part regulated by histone post-translational modifications (PTMs) including ubiquitination. Ubiquitinated histones not only influence transcription and chromatin architecture at sites neighboring DSBs but serve as critical recruitment platforms for repair machinery as well. The reversal of these modifications by deubiquitinating enzymes (DUBs) is increasingly being recognized in a number of cellular processes including DSB repair. In this context, DUBs ensure proper levels of ubiquitin, regulate recruitment of downstream effectors, dictate repair pathway choice, and facilitate appropriate termination of the repair response. This review outlines the current understanding of histone ubiquitination in response to DSBs, followed by a comprehensive overview of the DUBs that catalyze the removal of these marks.
Collapse
|
8
|
Wu Y, Qin J, Li F, Yang C, Li Z, Zhou Z, Zhang H, Li Y, Wang X, Liu R, Tao Q, Chen W, Chen C. USP3 promotes breast cancer cell proliferation by deubiquitinating KLF5. J Biol Chem 2019; 294:17837-17847. [PMID: 31624151 DOI: 10.1074/jbc.ra119.009102] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 10/03/2019] [Indexed: 12/12/2022] Open
Abstract
The Krüppel-like factor 5 (KLF5) transcription factor is highly expressed in basal type breast cancer and promotes breast cancer cell proliferation, survival, migration, and tumorigenesis. KLF5 protein stability is regulated by ubiquitination. In this study, ubiquitin-specific protease 3 (USP3) was identified as a new KLF5 deubiquitinase by genome-wide siRNA library screening. We demonstrated that USP3 interacts with KLF5 and stabilizes KLF5 via deubiquitination. USP3 knockdown inhibits breast cancer cell proliferation in vitro and tumorigenesis in vivo, which can be partially rescued by ectopic expression of KLF5. Furthermore, we observed a positive correlation between USP3 and KLF5 protein expression levels in human breast cancer samples. These findings suggest that USP3 is a new KLF5 deubiquitinase and that USP3 may represent a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Yingying Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,University of the Chinese Academy of Sciences, Beijing 101407, China.,First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Junying Qin
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Fubing Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Chuanyu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Zhen Li
- Department of Breast Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Hailin Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yunxi Li
- Department of Breast Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, China
| | - Xinye Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir Y. K. Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong 518172, China
| | - Wenlin Chen
- Department of Breast Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China .,Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute of Stem Cell and Reproductive Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
9
|
Abstract
Both proteolytic and nonproteolytic functions of ubiquitination are essential regulatory mechanisms for promoting DNA repair and the DNA damage response in mammalian cells. Deubiquitinating enzymes (DUBs) have emerged as key players in the maintenance of genome stability. In this minireview, we discuss the recent findings on human DUBs that participate in genome maintenance, with a focus on the role of DUBs in the modulation of DNA repair and DNA damage signaling.
Collapse
|
10
|
Citterio E. Fine-tuning the ubiquitin code at DNA double-strand breaks: deubiquitinating enzymes at work. Front Genet 2015; 6:282. [PMID: 26442100 PMCID: PMC4561801 DOI: 10.3389/fgene.2015.00282] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/23/2015] [Indexed: 01/23/2023] Open
Abstract
Ubiquitination is a reversible protein modification broadly implicated in cellular functions. Signaling processes mediated by ubiquitin (ub) are crucial for the cellular response to DNA double-strand breaks (DSBs), one of the most dangerous types of DNA lesions. In particular, the DSB response critically relies on active ubiquitination by the RNF8 and RNF168 ub ligases at the chromatin, which is essential for proper DSB signaling and repair. How this pathway is fine-tuned and what the functional consequences are of its deregulation for genome integrity and tissue homeostasis are subject of intense investigation. One important regulatory mechanism is by reversal of substrate ubiquitination through the activity of specific deubiquitinating enzymes (DUBs), as supported by the implication of a growing number of DUBs in DNA damage response processes. Here, we discuss the current knowledge of how ub-mediated signaling at DSBs is controlled by DUBs, with main focus on DUBs targeting histone H2A and on their recent implication in stem cell biology and cancer.
Collapse
Affiliation(s)
- Elisabetta Citterio
- Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam Netherlands
| |
Collapse
|
11
|
The role of deubiquitinating enzymes in chromatin regulation. FEBS Lett 2010; 585:2016-23. [PMID: 20974139 DOI: 10.1016/j.febslet.2010.10.042] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 10/17/2010] [Accepted: 10/18/2010] [Indexed: 11/20/2022]
Abstract
Post-translational modifications of the histones are centrally involved in the regulation of all DNA-templated processes, including gene transcription, DNA replication, recombination, and repair. These modifications are often dynamic, and their removal is just as important as their addition in proper regulation of cellular functions. Although histone acetylation/deacetylation and histone methylation/demethylation are highly studied, the functions and regulation of histone ubiquitination and deubiquitination are less well understood. This review highlights our current understanding of how histone ubiquitination impacts gene transcription, DNA repair, and cell cycle progression, and stresses the importance of deubiquitinases to normal cellular functions as well as to disease states such as cancer.
Collapse
|
12
|
Higashi M, Inoue S, Ito T. Core histone H2A ubiquitylation and transcriptional regulation. Exp Cell Res 2010; 316:2707-12. [DOI: 10.1016/j.yexcr.2010.05.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 05/18/2010] [Accepted: 05/24/2010] [Indexed: 12/26/2022]
|
13
|
Smith NL, Felix JF, Morrison AC, Demissie S, Glazer NL, Loehr LR, Cupples LA, Dehghan A, Lumley T, Rosamond WD, Lieb W, Rivadeneira F, Bis JC, Folsom AR, Benjamin E, Aulchenko YS, Haritunians T, Couper D, Murabito J, Wang YA, Stricker BH, Gottdiener JS, Chang PP, Wang TJ, Rice KM, Hofman A, Heckbert SR, Fox ER, O'Donnell CJ, Uitterlinden AG, Rotter JI, Willerson JT, Levy D, van Duijn CM, Psaty BM, Witteman JCM, Boerwinkle E, Vasan RS. Association of genome-wide variation with the risk of incident heart failure in adults of European and African ancestry: a prospective meta-analysis from the cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium. ACTA ACUST UNITED AC 2010; 3:256-66. [PMID: 20445134 DOI: 10.1161/circgenetics.109.895763] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Although genetic factors contribute to the onset of heart failure (HF), no large-scale genome-wide investigation of HF risk has been published to date. We have investigated the association of 2,478,304 single-nucleotide polymorphisms with incident HF by meta-analyzing data from 4 community-based prospective cohorts: the Atherosclerosis Risk in Communities Study, the Cardiovascular Health Study, the Framingham Heart Study, and the Rotterdam Study. METHODS AND RESULTS Eligible participants for these analyses were of European or African ancestry and free of clinical HF at baseline. Each study independently conducted genome-wide scans and imputed data to the approximately 2.5 million single-nucleotide polymorphisms in HapMap. Within each study, Cox proportional hazards regression models provided age- and sex-adjusted estimates of the association between each variant and time to incident HF. Fixed-effect meta-analyses combined results for each single-nucleotide polymorphism from the 4 cohorts to produce an overall association estimate and P value. A genome-wide significance P value threshold was set a priori at 5.0x10(-7). During a mean follow-up of 11.5 years, 2526 incident HF events (12%) occurred in 20 926 European-ancestry participants. The meta-analysis identified a genome-wide significant locus at chromosomal position 15q22 (1.4x10(-8)), which was 58.8 kb from USP3. Among 2895 African-ancestry participants, 466 incident HF events (16%) occurred during a mean follow-up of 13.7 years. One genome-wide significant locus was identified at 12q14 (6.7x10(-8)), which was 6.3 kb from LRIG3. CONCLUSIONS We identified 2 loci that were associated with incident HF and exceeded genome-wide significance. The findings merit replication in other community-based settings of incident HF.
Collapse
Affiliation(s)
- Nicholas L Smith
- Cardiovascular Health Study: Department of Epidemiology, University of Washington, Seattle, WA 98105, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Jin FL, Xu XX, Yu XQ, Ren SX. High-level expression of active recombinant ubiquitin carboxyl-terminal hydrolase of Drosophila melanogaster in Pichia pastoris. Protein Expr Purif 2008; 65:115-21. [PMID: 18817875 PMCID: PMC7128749 DOI: 10.1016/j.pep.2008.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 07/02/2008] [Accepted: 08/26/2008] [Indexed: 11/28/2022]
Abstract
Ubiquitin carboxyl-terminal hydrolases (UCHs) are implicated in the proteolytic processing of polymeric ubiquitin. The high specificity for the recognition site makes UCHs useful enzymes for in vitro cleavage of ubiquitin fusion proteins. In this work, an active C-terminal His-tagged UCH from Drosophila melanogaster (DmUCH) was produced as a secretory form in a recombinant strain of the methylotrophic yeast Pichia pastoris. The production of recombinant DmUCH by Muts strain was much higher than that by Mut+ strain, which was confirmed by Western blot analysis. When expression was induced at pH 6.0 in a BMMY/methanol medium, the concentration of recombinant DmUCH reached 210 mg l−1. With the (His)6-tag, the recombinant DmUCH was easily purified by Ni-NTA chromatography and 18 mg pure active DmUCH were obtained from 100 ml culture broth supernatant. Ubiquitin–magainin fusion protein was efficiently cleaved by DmUCH, yielding recombinant magainin with high antimicrobial activity. After removing the contaminants by Ni-NTA chromatography, recombinant magainin was purified to homogeneity easily by reversed-phase HPLC. Analysis of the recombinant magainin by ESI-MS showed that the molecular weight of the purified recombinant magainin was 2465 Da, which perfectly matches the mass calculated from the amino acid sequence. The result of mass spectrometry confirmed that the purified His-tagged DmUCH can recognize the ubiquitin–magainin fusion protein and cleave it at the carboxyl terminus of ubquitin precisely. Our results showed that P. pastoris is a robust system to express the secreted form of DmUCH.
Collapse
Affiliation(s)
- Feng-liang Jin
- College of Natural Resources and Environments, South China Agricultural University, Engineering Research Centre of Biological Control, Ministry of Education, Guangzhou 510642, China
| | | | | | | |
Collapse
|
15
|
Vissers JH, Nicassio F, van Lohuizen M, Di Fiore PP, Citterio E. The many faces of ubiquitinated histone H2A: insights from the DUBs. Cell Div 2008; 3:8. [PMID: 18430235 PMCID: PMC2373781 DOI: 10.1186/1747-1028-3-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 04/22/2008] [Indexed: 11/11/2022] Open
Abstract
Monoubiquitination of H2A is a major histone modification in mammalian cells. Understanding how monoubiquitinated H2A (uH2A) regulates DNA-based processes in the context of chromatin is a challenging question. Work in the past years linked uH2A to transcriptional repression by the Polycomb group proteins of developmental regulators. Recently, a number of mammalian deubiquitinating enzymes (DUBs) that catalyze the removal of ubiquitin from H2A have been discovered. These studies provide convincing evidence that H2A deubiquitination is connected with gene activation. In addition, uH2A regulatory enzymes have crucial roles in the cellular response to DNA damage and in cell cycle progression. In this review we will discuss new insights into uH2A biology, with emphasis on the H2A DUBs.
Collapse
Affiliation(s)
- Joseph Ha Vissers
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Francesco Nicassio
- IFOM, Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139, Milan, Italy
| | - Maarten van Lohuizen
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Pier Paolo Di Fiore
- IFOM, Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139, Milan, Italy.,Istituto Europeo di Oncologia, Via Ripamonti 435, 20141, Milan, Italy.,Dipartimento di Medicina, Chirurgia ed Odontoiatria, Universita' di Milano, 20112, Milan, Italy
| | - Elisabetta Citterio
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
16
|
Nicassio F, Corrado N, Vissers JHA, Areces LB, Bergink S, Marteijn JA, Geverts B, Houtsmuller AB, Vermeulen W, Di Fiore PP, Citterio E. Human USP3 is a chromatin modifier required for S phase progression and genome stability. Curr Biol 2007; 17:1972-7. [PMID: 17980597 DOI: 10.1016/j.cub.2007.10.034] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Revised: 10/03/2007] [Accepted: 10/04/2007] [Indexed: 11/16/2022]
Abstract
Protein ubiquitination is critical for numerous cellular functions, including DNA damage response pathways. Histones are the most abundant monoubiquitin conjugates in mammalian cells; however, the regulation and the function of monoubiquitinated H2A (uH2A) and H2B (uH2B) remain poorly understood. In particular, little is known about mammalian deubiquitinating enzymes (DUBs) that catalyze the removal of ubiquitin from uH2A/uH2B. Here we identify the ubiquitin-specific protease 3 USP3 as a deubiquitinating enzyme for uH2A and uH2B. USP3 dynamically associates with chromatin and deubiquitinates H2A/H2B in vivo. The ZnF-UBP domain of USP3 mediates uH2A-USP3 interaction. Functional ablation of USP3 by RNAi leads to delay of S phase progression and to accumulation of DNA breaks, with ensuing activation of DNA damage checkpoint pathways. In addition, we show that in response to ionizing radiation, (1) uH2A redistributes and colocalizes in gamma-H2AX DNA repair foci and (2) USP3 is required for full deubiquitination of ubiquitin-conjugates/uH2A and gamma-H2AX dephosphorylation. Our studies identify USP3 as a novel regulator of H2A and H2B ubiquitination, highlight its role in preventing replication stress, and suggest its involvement in the response to DNA double-strand breaks. Together, our results implicate USP3 as a novel chromatin modifier in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Francesco Nicassio
- IFOM, Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Whalen R, Liu X, Boyer TD. Identification of a short form of ubiquitin-specific protease 3 that is a repressor of rat glutathione S-transferase gene expression. Biochem J 2006; 394:519-26. [PMID: 16279867 PMCID: PMC1408683 DOI: 10.1042/bj20051392] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The transcription rate and protein expression from both GSTA2 (glutathione S-transferase A2) and albumin genes decrease in rat liver after IL-6 (interleukin 6) plus DEX (dexamethasone) treatment of primary hepatocytes or after LPS (lipopolysaccharide)-induced acute-phase response in animals. The down-regulation is associated with the induced expression of a nuclear protein (termed IL6DEX-NP for IL-6/DEX-induced nuclear protein) that binds to a specific site on the promoter of GSTA2, leading to a decrease in transcriptional activity. IL6DEX-NP is not similar to other transcription factors, and, for identification, we functionally cloned it from a rat liver library using a yeast one-hybrid screen based on DNA-binding activity. The cloned sequence was a truncated form of USP3 (ubiquitin-specific protease 3) and the truncated USP3 protein in a yeast extract bound to DNA containing the IL6DEX-NP recognition sequence. Using 5'- and 3'-RACE (rapid amplification of cDNA ends), the complete sequence of USP3 was found in liver from LPS-treated rats. However, using Western blot analysis, only truncated forms of USP3 could be identified in nuclear extracts from LPS-treated rat livers. A GSTA2 promoter-reporter gene plasmid and USP3-expressing plasmids were transfected into rat hepatoma cells. Expression of the short form of USP3, but not the full-length protein, abolished expression from the reporter gene. Chromatin immunoprecipitation localized USP3 to the GSTA2 promoter in rat hepatocytes in vivo. We believe that the short form of USP3 is IL6DEX-NP and that it may play an important role in the negative regulation of proteins during the acute-phase response.
Collapse
Affiliation(s)
- Richard Whalen
- The University of Arizona Liver Research Institute, College of Medicine, University of Arizona, Tucson, AZ 85724-5136, USA.
| | | | | |
Collapse
|
18
|
Tian QB, Okano A, Nakayama K, Miyazawa S, Endo S, Suzuki T. A novel ubiquitin-specific protease, synUSP, is localized at the post-synaptic density and post-synaptic lipid raft. J Neurochem 2003; 87:665-75. [PMID: 14535949 DOI: 10.1046/j.1471-4159.2003.02024.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent reports suggest an important role for protein ubiquitination in synaptic plasticity. We cloned, from the rat brain, a novel gene that encoded an ubiquitin-specific protease (USP), and termed this protein synaptic ubiquitin-specific protease (synUSP, GenBankTM Accession no. AB073880). The homologous human gene was mapped to a locus on chromosome 1p36.12. The deduced synUSP protein consisted of 1036 amino acids, and possessed an ubiquitin-like domain at the C-terminus, Cys- and His-boxes, leucine zipper motifs, and six amino acid-repeats of L/ILCPHG. The protein possessed de-ubiquitinating activity toward a model substrate, as expected from its sequence. The protein of 125 kDa was present in the rat brain; in particular, it was enriched in the post-synaptic density and the dendritic lipid raft fractions. The immunostaining of cortical neurons confirmed the post-synaptic localization. The mRNA for synUSP was localized to dendrites, as well as somas, of neuronal cells. Thus, both the mRNA and the protein were localized in the post-synaptic compartments. These results suggest a regulatory mechanism for the ubiquitin-related system at the post-synaptic sites.
Collapse
Affiliation(s)
- Qing Bao Tian
- Department of Neuroplasty, Research Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Hickman HD, Luis AD, Bardet W, Buchli R, Battson CL, Shearer MH, Jackson KW, Kennedy RC, Hildebrand WH. Cutting edge: class I presentation of host peptides following HIV infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:22-6. [PMID: 12816978 DOI: 10.4049/jimmunol.171.1.22] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Class I MHC molecules bind intracellular peptides for presentation to cytotoxic T lymphocytes. Identification of peptides presented by class I molecules during infection is therefore a priority for detecting and targeting intracellular pathogens. To understand which host-encoded peptides distinguish HIV-infected cells, we have developed a mass spectrometric approach to characterize HLA-B*0702 peptides unique to or up-regulated on infected T cells. In this study, we identify 15 host proteins that are differentially presented on infected human T cells. Peptides with increased expression on HIV-infected cells were derived from multiple categories of cellular proteins including RNA binding proteins and cell cycle regulatory proteins. Therefore, comprehensive analysis of the B*0702 peptide repertoire demonstrates that marked differences in host protein presentation occur after HIV infection.
Collapse
Affiliation(s)
- Heather D Hickman
- Department of Microbiology and Immunology and William K. Warren Medical Research Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Li Z, Na X, Wang D, Schoen SR, Messing EM, Wu G. Ubiquitination of a novel deubiquitinating enzyme requires direct binding to von Hippel-Lindau tumor suppressor protein. J Biol Chem 2002; 277:4656-62. [PMID: 11739384 DOI: 10.1074/jbc.m108269200] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
von Hippel-Lindau (VHL) disease is a hereditary cancer syndrome caused by germline mutations of the VHL gene. Recent studies suggest that VHL protein (pVHL) is a component of an E3 ubiquitin ligase, but the detailed biological function of pVHL remains to be determined. To further elucidate the biological functions of pVHL, we searched pVHL-interacting proteins using yeast two-hybrid screening. A novel protein named VHL-interacting deubiquitinating enzyme 1 (VDU1) was identified as being able to directly interact with pVHL in vitro and in vivo. We have determined the full-length cDNA of this enzyme, which includes two putative subtypes. Type I consists of 942 amino acids, and type II consists of 911 amino acids with predicted molecular masses of 107 and 103 kDa, respectively. We have also cloned a mouse homologue of this enzyme. Sequence analysis reveals that this protein is conserved between human and mouse and contains the signature motifs of the ubiquitin-specific processing protease family. Enzymatic function studies demonstrate its deubiquitinating activity. We have determined that the VDU1-interacting region in pVHL is located in its beta-domain, and several naturally occurring mutations located in this domain disrupt the interaction between pVHL and VDU1 protein. Co-immunoprecipitation demonstrates that VDU1 can be recruited into the pVHL-elongin C-elongin B complex. Finally, we demonstrate that VDU1 is able to be ubiquitinated via a pVHL-dependent pathway for proteasomal degradation, and VHL mutations that disrupt the interaction between VDU1 and pVHL abrogate the ubiquitination of VDU1. Our findings indicate that VDU1, a novel ubiquitin-specific processing protease, is a downstream target for ubiquitination and degradation by pVHL E3 ligase. Targeted degradation of VDU1 by pVHL could be crucial for regulating the ubiquitin-proteasome degradation pathway.
Collapse
Affiliation(s)
- Zaibo Li
- Department of Urology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
21
|
Soncini C, Berdo I, Draetta G. Ras-GAP SH3 domain binding protein (G3BP) is a modulator of USP10, a novel human ubiquitin specific protease. Oncogene 2001; 20:3869-79. [PMID: 11439350 DOI: 10.1038/sj.onc.1204553] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2000] [Revised: 04/18/2001] [Accepted: 04/18/2001] [Indexed: 11/08/2022]
Abstract
Degradation of cellular proteins through ubiquitination is a fundamental strategy for regulating biological pathways. De-ubiquitination, i.e. the removal of ubiquitin from proteins and peptides to which ubiquitin is attached, is catalyzed by processing proteases known as de-ubiquitinating enzymes. We are studying the biology of a family of de-ubiquitinating enzymes, the mammalian ubiquitin-specific proteases (USPs), some of which appear to play a role in growth control. Given the fact that the modes of regulation of USPs and of their substrate specificity are poorly understood, we decided to attempt the identification of USP interacting proteins. Using the yeast two-hybrid system (2HS), we have isolated a cDNA clone whose product specifically interacts with USP10 but not with other USP baits tested. The isolated clone encodes a protein known to interact with the Ras-GTPase activating protein (G3BP). This interaction was further confirmed by performing a 2HS with G3BP, which led to the isolation of USP10 encoding cDNAs. We validated the interaction between the two proteins by performing in vitro binding assays and immunoprecipitations in human cells. G3BP does not appear to be a substrate of USP10; it rather inhibits the ability of USP10 to disassemble ubiquitin chains. The USP10/G3BP complex appears to co-immunoprecipitate with ubiquitinated species that could be substrates of USP10.
Collapse
Affiliation(s)
- C Soncini
- European Institute of Oncology, Department of Experimental Oncology, Via Ripamonti 435, 20141 Milan, Italy
| | | | | |
Collapse
|
22
|
Valero R, Bayés M, Francisca Sánchez-Font M, González-Angulo O, Gonzàlez-Duarte R, Marfany G. Characterization of alternatively spliced products and tissue-specific isoforms of USP28 and USP25. Genome Biol 2001; 2:RESEARCH0043. [PMID: 11597335 PMCID: PMC57798 DOI: 10.1186/gb-2001-2-10-research0043] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2001] [Revised: 07/09/2001] [Accepted: 07/11/2001] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ubiquitin-dependent protein degradation pathway is essential for the proteolysis of intracellular proteins and peptides. Deubiquitinating enzymes constitute a complex protein family involved in a multitude of cellular processes. The ubiquitin-specific proteases (UBP) are a group of enzymes whose predicted function is to reverse the ubiquitinating reaction by removing ubiquitin from a large variety of substrates. We have lately reported the characterization of human USP25, a specific-ubiquitin protease gene at 21q11.2, with a specific pattern of expression in murine fetal brains and adult testis. RESULTS Database homology searches at the DNA and protein levels and cDNA library screenings led to the identification of a new UBP member in the human genome, named USP28, at 11q23. This novel gene showed preferential expression in heart and muscle. Moreover, cDNA, expressed sequence tag and RT-PCR analyses provided evidence for alternatively spliced products and tissue-specific isoforms. Concerning function, USP25 overexpression in Down syndrome fetal brains was shown by real-time PCR. CONCLUSIONS On the basis of the genomic and protein sequence as well as the functional data, USP28 and USP25 establish a new subfamily of deubiquitinating enzymes. Both genes have alternatively spliced exons that could generate protein isoforms with distinct tissue-specific activity. The overexpression of USP25 in Down syndrome fetal brains supports the gene-dosage effects suggested for other UBP members related to aneuploidy syndromes.
Collapse
Affiliation(s)
- R Valero
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Av Diagonal 645, 08028 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
23
|
Baker RT, Wang XW, Woollatt E, White JA, Sutherland GR. Identification, functional characterization, and chromosomal localization of USP15, a novel human ubiquitin-specific protease related to the UNP oncoprotein, and a systematic nomenclature for human ubiquitin-specific proteases. Genomics 1999; 59:264-74. [PMID: 10444327 DOI: 10.1006/geno.1999.5879] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have identified a novel gene, USP15, encoding a human ubiquitin-specific protease (USP). The USP15 protein consists of 952 amino acids with a predicted molecular mass of 109.2 kDa and contains the highly conserved Cys and His boxes present in all members of the UBP family of deubiquitinating enzymes. USP15 shares 60.5% sequence identity and 76% sequence similarity with the human homolog (UNP/Unph/USP4) of the mouse Unp proto-oncogene. Recombinant USP15 demonstrated ubiquitin-specific protease activity against engineered linear fusions of ubiquitin to beta-galactosidase and glutathione S-transferase. USP15 can also cleave the ubiquitin-proline bond, a property previously unique to Unp/UNP. Chromosomal mapping by fluorescence in situ hybridization and radiation hybrid analyses localized the USP15 gene to chromosome band 12q14, a different location than that of UNP (3p21.3). Analysis of expressed sequence tag databases reveals evidence of alternate polyadenylation sites in the USP15 gene and also indicates that the gene may possess an exon/intron structure similar to that of the Unp gene, suggesting they have descended from a common ancestor. A systematic nomenclature for the human USPs is proposed.
Collapse
Affiliation(s)
- R T Baker
- Division of Molecular Medicine, Australian National University, Canberra, ACT, 2601, Australia.
| | | | | | | | | |
Collapse
|