1
|
Fandilolu P, Kumar C, Palia D, Idicula-Thomas S. Investigating role of positively selected genes and mutation sites of ERG11 in drug resistance of Candida albicans. Arch Microbiol 2024; 206:437. [PMID: 39422772 DOI: 10.1007/s00203-024-04159-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
The steep increase in acquired drug resistance in Candida isolates has posed a great challenge in the clinical management of candidiasis globally. Information of genes and codon sites that are positively selected during evolution can provide insights into the mechanisms driving antifungal resistance in Candida. This study aimed to create a manually curated list of genes of Candida spp. reported to be associated with antifungal resistance in literature, and further investigate the structure-function implications of positively selected genes and mutation sites. Sequence analysis of antifungal drug resistance associated gene sequences from various species and strains of Candida revealed that ERG11 and MRR1 of C. albicans were positively selected during evolution. Four sites in ERG11 and two sites in MRR1 of C. albicans were positively selected and associated with drug resistance. These four sites (132, 405, 450, and 464) of ERG11 are predictive markers for azole resistance and have evolved over time. A well-characterized crystal structure of sterol-14-α-demethylase (CYP51) encoded by ERG11 is available in PDB. Therefore, the stability of CYP51 in complex with fluconazole was evaluated using MD simulations and molecular docking studies for two mutations (Y132F and Y132H) reported to be associated with azole resistance in literature. These mutations induced high flexibility in functional motifs of CYP51. It was also observed that residues such as I304, G308, and I379 of CYP51 play a critical role in fluconazole binding affinity. The insights gained from this study can further guide drug design strategies addressing antimicrobial resistance.
Collapse
Affiliation(s)
- Prayagraj Fandilolu
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, 400012, India
| | - Chandan Kumar
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, 400012, India
| | - Dushyant Palia
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, 400012, India
| | - Susan Idicula-Thomas
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, 400012, India.
| |
Collapse
|
2
|
Cui C, Yang LJ, Liu ZW, Shu X, Zhang WW, Gao Y, Wang YX, Wang T, Chen CC, Guo RT, Gao SS. Substrate specificity of a branch of aromatic dioxygenases determined by three distinct motifs. Nat Commun 2024; 15:7682. [PMID: 39227380 PMCID: PMC11371914 DOI: 10.1038/s41467-024-52101-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
The inversion of substrate size specificity is an evolutionary roadblock for proteins. The Duf4243 dioxygenases GedK and BTG13 are known to catalyze the aromatic cleavage of bulky tricyclic hydroquinone. In this study, we discover a Duf4243 dioxygenase PaD that favors small monocyclic hydroquinones from the penicillic-acid biosynthetic pathway. Sequence alignments between PaD and GedK and BTG13 suggest PaD has three additional motifs, namely motifs 1-3, distributed at different positions in the protein sequence. X-ray crystal structures of PaD with the substrate at high resolution show motifs 1-3 determine three loops (loops 1-3). Most intriguing, loops 1-3 stack together at the top of the pocket, creating a lid-like tertiary structure with a narrow channel and a clearly constricted opening. This drastically changes the substrate specificity by determining the entry and binding of much smaller substrates. Further genome mining suggests Duf4243 dioxygenases with motifs 1-3 belong to an evolutionary branch that is extensively involved in the biosynthesis of natural products and has the ability to degrade diverse monocyclic hydroquinone pollutants. This study showcases how natural enzymes alter the substrate specificity fundamentally by incorporating new small motifs, with a fixed overall scaffold-architecture. It will also offer a theoretical foundation for the engineering of substrate specificity in enzymes and act as a guide for the identification of aromatic dioxygenases with distinct substrate specificities.
Collapse
Affiliation(s)
- Chengsen Cui
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Lu-Jia Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Zi-Wei Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, China
| | - Xian Shu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Wei Zhang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yuan Gao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yu-Xuan Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, China
| | - Te Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, China
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, China
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, China.
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China.
| | - Shu-Shan Gao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Ikushiro H, Murakami T, Takahashi A, Katayama A, Sawai T, Goto H, Koolath S, Murai Y, Monde K, Miyahara I, Kamiya N, Yano T. Structural insights into the substrate recognition of serine palmitoyltransferase from Sphingobacterium multivorum. J Biol Chem 2023; 299:104684. [PMID: 37030501 DOI: 10.1016/j.jbc.2023.104684] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 04/10/2023] Open
Abstract
Serine palmitoyltransferase (SPT) is a key enzyme of sphingolipid biosynthesis, which catalyzes the pyridoxal-5'-phosphate-dependent decarboxylative condensation reaction of L-serine (L-Ser) and palmitoyl-CoA (PalCoA) to form 3-ketodihydrosphingosine called long chain base (LCB). SPT is also able to metabolize L-alanine (L-Ala) and glycine (Gly), albeit with much lower efficiency. Human SPT is a membrane-bound large protein complex containing SPTLC1/SPTLC2 heterodimer as the core subunits, and it is known that mutations of the SPTLC1/SPTLC2 genes increase the formation of deoxy-type of LCBs derived from L-Ala and Gly to cause some neurodegenerative diseases. In order to study the substrate recognition of SPT, we examined the reactivity of Sphingobacterium multivorum SPT on various amino acids in the presence of PalCoA. The S. multivorum SPT could convert not only L-Ala and Gly but also L-homoserine, in addition to L-Ser, into the corresponding LCBs. Furthermore, we obtained high-quality crystals of the ligand-free form and the binary complexes with a series of amino acids, including a nonproductive amino acid, L-threonine, and determined the structures at 1.40-1.55 Å resolutions. The S. multivorum SPT accommodated various amino acid substrates through subtle rearrangements of the active-site amino acid residues and water molecules. It was also suggested that non-active-site residues mutated in the human SPT genes might indirectly influence the substrate specificity by affecting the hydrogen-bonding networks involving the bound substrate, water molecules, and amino acid residues in the active site of this enzyme. Collectively, our results highlight SPT structural features affecting substrate specificity for this stage of sphingolipid biosynthesis.
Collapse
Affiliation(s)
- Hiroko Ikushiro
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | - Taiki Murakami
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, Osaka 558-8585, Japan
| | - Aya Takahashi
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, Osaka 558-8585, Japan
| | - Asuka Katayama
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, Osaka 558-8585, Japan
| | - Taiki Sawai
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Haruna Goto
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Sajeer Koolath
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita21 Nishi11, Sapporo, Hokkaido 001-0021, JAPAN
| | - Yuta Murai
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita21 Nishi11, Sapporo, Hokkaido 001-0021, JAPAN
| | - Kenji Monde
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Kita21 Nishi11, Sapporo, Hokkaido 001-0021, JAPAN
| | - Ikuko Miyahara
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, Osaka 558-8585, Japan
| | - Nobuo Kamiya
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, Osaka 558-8585, Japan; Research Center for Artificial Photosynthesis, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, Osaka 558-8585, Japan
| | - Takato Yano
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| |
Collapse
|
4
|
Sugiki S, Niide T, Toya Y, Shimizu H. Logistic Regression-Guided Identification of Cofactor Specificity-Contributing Residues in Enzyme with Sequence Datasets Partitioned by Catalytic Properties. ACS Synth Biol 2022; 11:3973-3985. [PMID: 36321539 PMCID: PMC9764414 DOI: 10.1021/acssynbio.2c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Changing the substrate/cofactor specificity of an enzyme requires multiple mutations at spatially adjacent positions around the substrate pocket. However, this is challenging when solely based on crystal structure information because enzymes undergo dynamic conformational changes during the reaction process. Herein, we proposed a method for estimating the contribution of each amino acid residue to substrate specificity by deploying a phylogenetic analysis with logistic regression. Since this method can estimate the candidate amino acids for mutation by ranking, it is readable and can be used in protein engineering. We demonstrated our concept using redox cofactor conversion of the Escherichia coli malic enzyme as a model, which still lacks crystal structure elucidation. The use of logistic regression with amino acid sequences classified by cofactor specificity showed that the NADP+-dependent malic enzyme completely switched cofactor specificity to NAD+ dependence without the need for a practical screening step. The model showed that surrounding residues made a greater contribution to cofactor specificity than those in the interior of the substrate pocket. These residues might be difficult to identify from crystal structure observations. We show that a highly accurate and inferential machine learning model was obtained using amino acid sequences of structurally homologous and functionally distinct enzymes as input data.
Collapse
|
5
|
Chouhan BPS, Gade M, Martinez D, Toledo‐Patino S, Laurino P. Implications of divergence of methionine adenosyltransferase in archaea. FEBS Open Bio 2022; 12:130-145. [PMID: 34655277 PMCID: PMC8727953 DOI: 10.1002/2211-5463.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 11/12/2022] Open
Abstract
Methionine adenosyltransferase (MAT) catalyzes the biosynthesis of S-adenosyl methionine from l-methionine and ATP. MAT enzymes are ancient, believed to share a common ancestor, and are highly conserved in all three domains of life. However, the sequences of archaeal MATs show considerable divergence compared with their bacterial and eukaryotic counterparts. Furthermore, the structural significance and functional significance of this sequence divergence are not well understood. In the present study, we employed structural analysis and ancestral sequence reconstruction to investigate archaeal MAT divergence. We observed that the dimer interface containing the active site (which is usually well conserved) diverged considerably between the bacterial/eukaryotic MATs and archaeal MAT. A detailed investigation of the available structures supports the sequence analysis outcome: The protein domains and subdomains of bacterial and eukaryotic MAT are more similar than those of archaea. Finally, we resurrected archaeal MAT ancestors. Interestingly, archaeal MAT ancestors show substrate specificity, which is lost during evolution. This observation supports the hypothesis of a common MAT ancestor for the three domains of life. In conclusion, we have demonstrated that archaeal MAT is an ideal system for studying an enzyme family that evolved differently in one domain compared with others while maintaining the same catalytic activity.
Collapse
Affiliation(s)
- Bhanu Pratap Singh Chouhan
- Protein Engineering and Evolution UnitOkinawa Institute of Science and Technology Graduate UniversityOnnaJapan
| | - Madhuri Gade
- Protein Engineering and Evolution UnitOkinawa Institute of Science and Technology Graduate UniversityOnnaJapan
| | - Desirae Martinez
- Protein Engineering and Evolution UnitOkinawa Institute of Science and Technology Graduate UniversityOnnaJapan
| | - Saacnicteh Toledo‐Patino
- Protein Engineering and Evolution UnitOkinawa Institute of Science and Technology Graduate UniversityOnnaJapan
| | - Paola Laurino
- Protein Engineering and Evolution UnitOkinawa Institute of Science and Technology Graduate UniversityOnnaJapan
| |
Collapse
|
6
|
Sande MG, Rodrigues JL, Ferreira D, Silva CJ, Rodrigues LR. Novel Biorecognition Elements against Pathogens in the Design of State-of-the-Art Diagnostics. BIOSENSORS 2021; 11:bios11110418. [PMID: 34821636 PMCID: PMC8615483 DOI: 10.3390/bios11110418] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 05/21/2023]
Abstract
Infectious agents, especially bacteria and viruses, account for a vast number of hospitalisations and mortality worldwide. Providing effective and timely diagnostics for the multiplicity of infectious diseases is challenging. Conventional diagnostic solutions, although technologically advanced, are highly complex and often inaccessible in resource-limited settings. An alternative strategy involves convenient rapid diagnostics which can be easily administered at the point-of-care (POC) and at low cost without sacrificing reliability. Biosensors and other rapid POC diagnostic tools which require biorecognition elements to precisely identify the causative pathogen are being developed. The effectiveness of these devices is highly dependent on their biorecognition capabilities. Naturally occurring biorecognition elements include antibodies, bacteriophages and enzymes. Recently, modified molecules such as DNAzymes, peptide nucleic acids and molecules which suffer a selective screening like aptamers and peptides are gaining interest for their biorecognition capabilities and other advantages over purely natural ones, such as robustness and lower production costs. Antimicrobials with a broad-spectrum activity against pathogens, such as antibiotics, are also used in dual diagnostic and therapeutic strategies. Other successful pathogen identification strategies use chemical ligands, molecularly imprinted polymers and Clustered Regularly Interspaced Short Palindromic Repeats-associated nuclease. Herein, the latest developments regarding biorecognition elements and strategies to use them in the design of new biosensors for pathogens detection are reviewed.
Collapse
Affiliation(s)
- Maria G. Sande
- CEB—Centre of Biological Engineering, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (M.G.S.); (J.L.R.); (D.F.)
| | - Joana L. Rodrigues
- CEB—Centre of Biological Engineering, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (M.G.S.); (J.L.R.); (D.F.)
| | - Débora Ferreira
- CEB—Centre of Biological Engineering, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (M.G.S.); (J.L.R.); (D.F.)
| | - Carla J. Silva
- CENTI—Center for Nanotechnology and Smart Materials, Rua Fernando Mesquita 2785, 4760-034 Vila Nova de Famalicão, Portugal;
- CITEVE—Technological Center for the Textile and Clothing Industries of Portugal, Rua Fernando Mesquita 2785, 4760-034 Vila Nova de Famalicão, Portugal
| | - Ligia R. Rodrigues
- CEB—Centre of Biological Engineering, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (M.G.S.); (J.L.R.); (D.F.)
- Correspondence: ; Tel.: +351-253601978
| |
Collapse
|
7
|
Jia DX, Peng C, Li JL, Wang F, Liu ZQ, Zheng YG. Redesign of (R)-Omega-Transaminase and Its Application for Synthesizing Amino Acids with Bulky Side Chain. Appl Biochem Biotechnol 2021; 193:3624-3640. [PMID: 34347249 DOI: 10.1007/s12010-021-03616-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/12/2021] [Indexed: 11/29/2022]
Abstract
ω-Transaminase (ω-TA) is an attractive biocatalyst for stereospecific preparation of amino acids and derivatives, but low catalytic efficiency and unfavorable substrate specificity hamper their industrial application. In this work, to obtain applicable (R)-ω-TA responsible for amination of α-keto acids substrates, the reactivities of eight previously synthesized ω-TAs toward pyruvate using (R)-α-methylbenzylamine ((R)-α-MBA) as amine donor were investigated, and Gibberella zeae TA (GzTA) with the highest (R)-TA activity and stereoselectivity was selected as starting scaffold for engineering. Site-directed mutagenesis around enzymatic active pocket and access tunnel identified three positive mutation sites, S214A, F113L, and V60A. Kinetic analysis synchronously with molecular docking revealed that these mutations afforded desirable alleviation of steric hindrance for pyruvate and α-MBA. Furthermore, the constructed single-, double-, and triple-mutant exhibited varying degrees of improved specificities toward bulkier α-keto acids. Using 2-oxo-2-phenylacetic acid (1d) as substrate, the conversion rate of triple-mutant F113L/V60A/S214A increased by 3.8-fold relative to that of wide-type GzTA. This study provided a practical engineering strategy for improving catalytic efficiency and substrate specificity of (R)-ω-TA. The obtained experience shed light on creating more industrial ω-TAs mutants that can accommodate structurally diverse substrates.
Collapse
Affiliation(s)
- Dong-Xu Jia
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Chen Peng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Jun-Liang Li
- Hangzhou Zhongmei Huadong Pharmaceutical Co., Ltd., 866 Moganshan Road, Hangzhou, 310005, People's Republic of China
| | - Fan Wang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China. .,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
8
|
Abstract
QM/MM simulations have become an indispensable tool in many chemical and biochemical investigations. Considering the tremendous degree of success, including recognition by a 2013 Nobel Prize in Chemistry, are there still "burning challenges" in QM/MM methods, especially for biomolecular systems? In this short Perspective, we discuss several issues that we believe greatly impact the robustness and quantitative applicability of QM/MM simulations to many, if not all, biomolecules. We highlight these issues with observations and relevant advances from recent studies in our group and others in the field. Despite such limited scope, we hope the discussions are of general interest and will stimulate additional developments that help push the field forward in meaningful directions.
Collapse
Affiliation(s)
- Qiang Cui
- Departments of Chemistry, Physics, and Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Tanmoy Pal
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Luke Xie
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
9
|
Copley SD. Evolution of new enzymes by gene duplication and divergence. FEBS J 2021; 287:1262-1283. [PMID: 32250558 DOI: 10.1111/febs.15299] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/22/2022]
Abstract
Thousands of new metabolic and regulatory enzymes have evolved by gene duplication and divergence since the dawn of life. New enzyme activities often originate from promiscuous secondary activities that have become important for fitness due to a change in the environment or a mutation. Mutations that make a promiscuous activity physiologically relevant can occur in the gene encoding the promiscuous enzyme itself, but can also occur elsewhere, resulting in increased expression of the enzyme or decreased competition between the native and novel substrates for the active site. If a newly useful activity is inefficient, gene duplication/amplification will set the stage for divergence of a new enzyme. Even a few mutations can increase the efficiency of a new activity by orders of magnitude. As efficiency increases, amplified gene arrays will shrink to provide two alleles, one encoding the original enzyme and one encoding the new enzyme. Ultimately, genomic rearrangements eliminate co-amplified genes and move newly evolved paralogs to a distant region of the genome.
Collapse
Affiliation(s)
- Shelley D Copley
- Department of Molecular, Cellular and Developmental Biology and the Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, CO, USA
| |
Collapse
|
10
|
Early detection of cancer: Focus on antibody coated metal and magnetic nanoparticle-based biosensors. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
11
|
Shek R, Hilaire T, Sim J, French JB. Structural Determinants for Substrate Selectivity in Guanine Deaminase Enzymes of the Amidohydrolase Superfamily. Biochemistry 2019; 58:3280-3292. [PMID: 31283204 DOI: 10.1021/acs.biochem.9b00341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Guanine deaminase is a metabolic enzyme, found in all forms of life, which catalyzes the conversion of guanine to xanthine. Despite the availability of several crystal structures, the molecular determinants of substrate orientation and mechanism remain to be elucidated for the amidohydrolase family of guanine deaminase enzymes. Here, we report the crystal structures of Escherichia coli and Saccharomyces cerevisiae guanine deaminase enzymes (EcGuaD and Gud1, respectively), both members of the amidohydrolase superfamily. EcGuaD and Gud1 retain the overall TIM barrel tertiary structure conserved among amidohydrolase enzymes. Both proteins also possess a single zinc cation with trigonal bipyrimidal coordination geometry within their active sites. We also determined a liganded structure of Gud1 bound to the product, xanthine. Analysis of this structure, along with kinetic data of native and site-directed mutants of EcGuaD, identifies several key residues that are responsible for substrate recognition and catalysis. In addition, after a small library of compounds had been screened, two guanine derivatives, 8-azaguanine and 1-methylguanine, were identified as EcGuaD substrates. Interestingly, both EcGuaD and Gud1 also exhibit secondary ammeline deaminase activity. Overall, this work details key structural features of substrate recognition and catalysis of the amidohydrolase family of guanine deaminase enzymes in support of our long-term goal to engineer these enzymes with altered activity and substrate specificity.
Collapse
Affiliation(s)
- Roger Shek
- Department of Biochemistry and Cell Biology , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Tylene Hilaire
- Department of Biochemistry and Cell Biology , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Jasper Sim
- Department of Biochemistry and Cell Biology , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Jarrod B French
- Department of Biochemistry and Cell Biology , Stony Brook University , Stony Brook , New York 11794 , United States.,Department of Chemistry , Stony Brook University , Stony Brook , New York 11794 , United States
| |
Collapse
|
12
|
Morales MA, Halpern JM. Guide to Selecting a Biorecognition Element for Biosensors. Bioconjug Chem 2018; 29:3231-3239. [PMID: 30216055 DOI: 10.1021/acs.bioconjchem.8b00592] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biosensors are powerful diagnostic tools defined as having a biorecognition element for analyte specificity and a transducer for a quantifiable signal. There are a variety of different biorecognition elements, each with unique characteristics. Understanding the advantages and disadvantages of each biorecognition element and their influence on overall biosensor performance is crucial in the planning stages to promote the success of novel biosensor development. Therefore, this review will focus on selecting the optimal biorecognition element in the preliminary design phase for novel biosensors. Included is a review of the typical characteristics and binding mechanisms of various biorecognition elements, and how they relate to biosensor performance characteristics, specifically sensitivity, selectivity, reproducibility, and reusability. The goal is to point toward language needed to improve the design and development of biosensors toward clinical success.
Collapse
Affiliation(s)
- Marissa A Morales
- Department of Chemical Engineering , University of New Hampshire , Durham , New Hampshire 03824 , United States
| | - Jeffrey Mark Halpern
- Department of Chemical Engineering , University of New Hampshire , Durham , New Hampshire 03824 , United States
| |
Collapse
|
13
|
Kaur G, Guruprasad K, Temple BRS, Shirvanyants DG, Dokholyan NV, Pati PK. Structural complexity and functional diversity of plant NADPH oxidases. Amino Acids 2018; 50:79-94. [PMID: 29071531 PMCID: PMC6492275 DOI: 10.1007/s00726-017-2491-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
Abstract
Plant NADPH oxidases also known as respiratory burst oxidase homologs (Rbohs) are a family of membrane-bound enzymes that play diverse roles in the defense response and morphogenetic processes via regulated generation of reactive oxygen species. Rbohs are associated with a variety of functions, although the reason for this is not clear. To evaluate using bioinformatics, the possible mechanisms for the observed functional diversity within the plant kingdom, 127 Rboh protein sequences representing 26 plant species were analyzed. Multiple clusters were identified with gene duplications that were both dicot as well as monocot-specific. The N-terminal sequences were observed to be highly variable. The conserved cysteine (equivalent of Cys890) in C-terminal of AtRbohD suggested that the redox-based modification like S-nitrosylation may regulate the activity of other Rbohs. Three-dimensional models corresponding to the N-terminal domain for Rbohs from Arabidopsis thaliana and Oryza sativa were constructed and molecular dynamics studies were carried out to study the role of Ca2+ in the folding of Rboh proteins. Certain mutations indicated possibly affect the structure and function of the plant NADPH oxidases, thereby providing the rationale for further experimental validation.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
- Bioinformatics, Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Kunchur Guruprasad
- Bioinformatics, Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Brenda R S Temple
- R. L. Juliano Structural Bioinformatics Core Facility, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - David G Shirvanyants
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India.
| |
Collapse
|
14
|
Sun Y, Zhao C, Gao N, Ren J, Qu X. Stereoselective Nanozyme Based on Ceria Nanoparticles Engineered with Amino Acids. Chemistry 2017; 23:18146-18150. [PMID: 29131418 DOI: 10.1002/chem.201704579] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Indexed: 01/05/2023]
Abstract
Stereoselectivity towards substrates is one of the most important characteristics of enzymes. Amino acids, as cofactors of many enzymes, play important roles in stereochemistry. Herein, chiral nanozymes were constructed by grafting a series of d- or l-amino acids onto the surfaces of ceria (cerium oxide) nanoparticles. We selected the most commonly used drug for combating Parkinson's disease, that is, 3,4-dihydroxyphenylalanine (DOPA) enantiomers, as examples for chiral catalysis. Through detailed kinetic studies of cerium oxide nanoparticles (CeNPs) modified with different eight amino acids, we found that phenylalanine-modified CeNP was optimal for the DOPA oxidation reaction and showed excellent stereoselectivity towards its enantiomers. l-Phenylalanine-modified CeNPs showed higher catalytic ability for oxidation of d-DOPA, while d-phenylalanine-modified CeNPs were more effective towards l-DOPA. Taken together, the results indicated that stereoselective nanozyme can be constructed by grafting nanoparticles with chiral molecules. This work may inspire better design of chiral nanozymes.
Collapse
Affiliation(s)
- Yuhuan Sun
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.,University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Nan Gao
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Jinsong Ren
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| |
Collapse
|
15
|
Goldsmith M, Tawfik DS. Enzyme engineering: reaching the maximal catalytic efficiency peak. Curr Opin Struct Biol 2017; 47:140-150. [PMID: 29035814 DOI: 10.1016/j.sbi.2017.09.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/04/2017] [Accepted: 09/20/2017] [Indexed: 01/01/2023]
Abstract
The practical need for highly efficient enzymes presents new challenges in enzyme engineering, in particular, the need to improve catalytic turnover (kcat) or efficiency (kcat/KM) by several orders of magnitude. However, optimizing catalysis demands navigation through complex and rugged fitness landscapes, with optimization trajectories often leading to strong diminishing returns and dead-ends. When no further improvements are observed in library screens or selections, it remains unclear whether the maximal catalytic efficiency of the enzyme (the catalytic 'fitness peak') has been reached; or perhaps, an alternative combination of mutations exists that could yield additional improvements. Here, we discuss fundamental aspects of the process of catalytic optimization, and offer practical solutions with respect to overcoming optimization plateaus.
Collapse
Affiliation(s)
- Moshe Goldsmith
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
16
|
Wrenbeck EE, Azouz LR, Whitehead TA. Single-mutation fitness landscapes for an enzyme on multiple substrates reveal specificity is globally encoded. Nat Commun 2017; 8:15695. [PMID: 28585537 PMCID: PMC5467163 DOI: 10.1038/ncomms15695] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/20/2017] [Indexed: 01/17/2023] Open
Abstract
Our lack of total understanding of the intricacies of how enzymes behave has constrained our ability to robustly engineer substrate specificity. Furthermore, the mechanisms of natural evolution leading to improved or novel substrate specificities are not wholly defined. Here we generate near-comprehensive single-mutation fitness landscapes comprising >96.3% of all possible single nonsynonymous mutations for hydrolysis activity of an amidase expressed in E. coli with three different substrates. For all three selections, we find that the distribution of beneficial mutations can be described as exponential, supporting a current hypothesis for adaptive molecular evolution. Beneficial mutations in one selection have essentially no correlation with fitness for other selections and are dispersed throughout the protein sequence and structure. Our results further demonstrate the dependence of local fitness landscapes on substrate identity and provide an example of globally distributed sequence-specificity determinants for an enzyme. Systematically understanding the sequence determinants to substrate specificity for enzymes has implications in areas from evolutionary biology to biocatalysis. Here, Whitehead and colleagues generate and analyse near-comprehensive single-mutation fitness landscapes for an amidase with three different substrates.
Collapse
Affiliation(s)
- Emily E Wrenbeck
- Department of Chemical Engineering and Materials Science, Michigan State University, Engineering Building, 428 S. Shaw Lane, Room 2100, East Lansing, Michigan 48824, USA
| | - Laura R Azouz
- Department of Chemical Engineering and Materials Science, Michigan State University, Engineering Building, 428 S. Shaw Lane, Room 2100, East Lansing, Michigan 48824, USA
| | - Timothy A Whitehead
- Department of Chemical Engineering and Materials Science, Michigan State University, Engineering Building, 428 S. Shaw Lane, Room 2100, East Lansing, Michigan 48824, USA.,Department of Biosystems and Agricultural Engineering, Michigan State University, Farrall Hall, 524 S. Shaw Lane, Room 216, East Lansing, Michigan 48824, USA
| |
Collapse
|
17
|
Li W, Xu S, Zhang B, Zhu Y, Hua Y, Kong X, Sun L, Hong J. Directed evolution to improve the catalytic efficiency of urate oxidase from Bacillus subtilis. PLoS One 2017; 12:e0177877. [PMID: 28531234 PMCID: PMC5439685 DOI: 10.1371/journal.pone.0177877] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/04/2017] [Indexed: 12/02/2022] Open
Abstract
Urate oxidase is a key enzyme in purine metabolism and catalyzes the oxidation of uric acid to allantoin. It is used to treat hyperuricemia and gout, and also in a diagnostic kit. In this study, error-prone polymerase chain reaction and staggered extension process was used to generate a mutant urate oxidase with improved enzyme activity from Bacillus subtilis. After several rounds of mutagenesis and screening, two mutants 6E9 and 8E279 were obtained which exhibited 2.99 and 3.43 times higher catalytic efficiency, respectively. They also exhibited lower optimal reaction temperature and higher thermo-stability. D44V, Q268R and K285Q were identified as the three most beneficial amino acid substitutions introduced by site-directed mutagenesis. D44V/Q268R, which was obtained through random combination of the three mutants, displayed the highest catalytic activity. The Km,kcat/Km and enzyme activity of D44V/Q268R increased by 68%, 83% and 129% respectively, compared with that of wild-type urate oxidase. Structural modeling indicated that mutations far from the active site can have significant effects on activity. For many of them, the underlying mechanisms are still difficult to explain from the static structural model. We also compared the effects of the same set of single point mutations on the wild type and on the final mutant. The results indicate strong effects of epistasis, which may imply that the mutations affect catalysis through influences on protein dynamics besides equilibrium structures.
Collapse
Affiliation(s)
- Wenjie Li
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Shouteng Xu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Biao Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Yelin Zhu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Yan Hua
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Xin Kong
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Lianhong Sun
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P. R. China
- * E-mail:
| |
Collapse
|
18
|
Manta B, Cassimjee KE, Himo F. Quantum Chemical Study of Dual-Substrate Recognition in ω-Transaminase. ACS OMEGA 2017; 2:890-898. [PMID: 30023618 PMCID: PMC6044752 DOI: 10.1021/acsomega.6b00376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/20/2017] [Indexed: 05/14/2023]
Abstract
ω-Transaminases are attractive biocatalysts for the production of chiral amines. These enzymes usually have a broad substrate range. Their substrates include hydrophobic amines as well as amino acids, a feature referred to as dual-substrate recognition. In the present study, the reaction mechanism for the half-transamination of l-alanine to pyruvate in (S)-selective Chromobacterium violaceum ω-transaminase is investigated using density functional theory calculations. The role of a flexible arginine residue, Arg416, in the dual-substrate recognition is investigated by employing two active-site models, one including this residue and one lacking it. The results of this study are compared to those of the mechanism of the conversion of (S)-1-phenylethylamine to acetophenone. The calculations suggest that the deaminations of amino acids and hydrophobic amines follow essentially the same mechanism, but the energetics of the reactions differ significantly. It is shown that the amine is kinetically favored in the half-transamination of l-alanine/pyruvate, whereas the ketone is kinetically favored in the half-transamination of (S)-1-phenylethylamine/acetophenone. The calculations further support the proposal that the arginine residue facilitates the dual-substrate recognition by functioning as an arginine switch, where the side chain is positioned inside or outside of the active site depending on the substrate. Arg416 participates in the binding of l-alanine by forming a salt bridge to the carboxylate moiety, whereas the conversion of (S)-1-phenylethylamine is feasible in the absence of Arg416, which here represents the case in which the side chain of Arg416 is positioned outside of the active site.
Collapse
Affiliation(s)
- Bianca Manta
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | - Fahmi Himo
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
19
|
Tiwari V. In vitro Engineering of Novel Bioactivity in the Natural Enzymes. Front Chem 2016; 4:39. [PMID: 27774447 PMCID: PMC5054688 DOI: 10.3389/fchem.2016.00039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/21/2016] [Indexed: 11/23/2022] Open
Abstract
Enzymes catalyze various biochemical functions with high efficiency and specificity. In vitro design of the enzyme leads to novel bioactivity in this natural biomolecule that give answers of some vital questions like crucial residues in binding with substrate, molecular evolution, cofactor specificity etc. Enzyme engineering technology involves directed evolution, rational designing, semi-rational designing, and structure-based designing using chemical modifications. Similarly, combined computational and in vitro evolution approaches together help in artificial designing of novel bioactivity in the natural enzyme. DNA shuffling, error prone PCR and staggered extension process are used to artificially redesign active site of enzyme, which can alter its efficiency and specificity. Modifications of the enzyme can lead to the discovery of new path of molecular evolution, designing of efficient enzymes, locating active sites and crucial residues, shift in substrate, and cofactor specificity. The methods and thermodynamics of in vitro designing of the enzyme are also discussed. Similarly, engineered thermophilic and psychrophilic enzymes attain substrate specificity and activity of mesophilic enzymes that may also be beneficial for industry and therapeutics.
Collapse
Affiliation(s)
- Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan Ajmer, India
| |
Collapse
|
20
|
Yang G, Hong N, Baier F, Jackson CJ, Tokuriki N. Conformational Tinkering Drives Evolution of a Promiscuous Activity through Indirect Mutational Effects. Biochemistry 2016; 55:4583-93. [PMID: 27444875 DOI: 10.1021/acs.biochem.6b00561] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
How remote mutations can lead to changes in enzyme function at a molecular level is a central question in evolutionary biochemistry and biophysics. Here, we combine laboratory evolution with biochemical, structural, genetic, and computational analysis to dissect the molecular basis for the functional optimization of phosphotriesterase activity in a bacterial lactonase (AiiA) from the metallo-β-lactamase (MBL) superfamily. We show that a 1000-fold increase in phosphotriesterase activity is caused by a more favorable catalytic binding position of the paraoxon substrate in the evolved enzyme that resulted from conformational tinkering of the active site through peripheral mutations. A nonmutated active site residue, Phe68, was displaced by ∼3 Å through the indirect effects of two second-shell trajectory mutations, allowing molecular interactions between the residue and paraoxon. Comparative mutational scanning, i.e., examining the effects of alanine mutagenesis on different genetic backgrounds, revealed significant changes in the functional roles of Phe68 and other nonmutated active site residues caused by the indirect effects of trajectory mutations. Our work provides a quantitative measurement of the impact of second-shell mutations on the catalytic contributions of nonmutated residues and unveils the underlying intramolecular network of strong epistatic mutational relationships between active site residues and more remote residues. Defining these long-range conformational and functional epistatic relationships has allowed us to better understand the subtle, but cumulatively significant, role of second- and third-shell mutations in evolution.
Collapse
Affiliation(s)
- Gloria Yang
- Michael Smith Laboratories, University of British Columbia , Vancouver, BC V6T 1Z4, Canada
| | - Nansook Hong
- Research School of Chemistry, Australian National University , Canberra, ACT 0200, Australia
| | - Florian Baier
- Michael Smith Laboratories, University of British Columbia , Vancouver, BC V6T 1Z4, Canada
| | - Colin J Jackson
- Research School of Chemistry, Australian National University , Canberra, ACT 0200, Australia
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia , Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
21
|
Miller DV, Brown AM, Xu H, Bevan DR, White RH. Purine salvage inMethanocaldococcus jannaschii: Elucidating the role of a conserved cysteine in adenine deaminase. Proteins 2016; 84:828-40. [DOI: 10.1002/prot.25033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/22/2016] [Accepted: 03/06/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Danielle V. Miller
- Department of Biochemistry; Virginia Polytechnic Institute and State University; Blacksburg Virginia 24061
| | - Anne M. Brown
- Department of Biochemistry; Virginia Polytechnic Institute and State University; Blacksburg Virginia 24061
| | - Huimin Xu
- Department of Biochemistry; Virginia Polytechnic Institute and State University; Blacksburg Virginia 24061
| | - David R. Bevan
- Department of Biochemistry; Virginia Polytechnic Institute and State University; Blacksburg Virginia 24061
| | - Robert H. White
- Department of Biochemistry; Virginia Polytechnic Institute and State University; Blacksburg Virginia 24061
| |
Collapse
|
22
|
Hossain GS, Shin HD, Li J, Wang M, Du G, Liu L, Chen J. Integrating error-prone PCR and DNA shuffling as an effective molecular evolution strategy for the production of α-ketoglutaric acid byl-amino acid deaminase. RSC Adv 2016. [DOI: 10.1039/c6ra02940j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
l-Amino acid deaminases (LAADs; EC 1.4.3.2) belong to a family of amino acid dehydrogenases that catalyze the formation of α-keto acids froml-amino acids.
Collapse
Affiliation(s)
- Gazi Sakir Hossain
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
| | - Hyun-dong Shin
- School of Chemical and Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Miao Wang
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Jian Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| |
Collapse
|
23
|
Building cellular pathways and programs enabled by the genetic diversity of allo-genomes and meta-genomes. Curr Opin Biotechnol 2015; 36:16-31. [DOI: 10.1016/j.copbio.2015.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/06/2015] [Accepted: 08/09/2015] [Indexed: 12/21/2022]
|
24
|
Manipulating the substrate specificity of murine dihydrofolate reductase enzyme using an expanded set of amino acids. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Brodkin HR, DeLateur NA, Somarowthu S, Mills CL, Novak WR, Beuning PJ, Ringe D, Ondrechen MJ. Prediction of distal residue participation in enzyme catalysis. Protein Sci 2015; 24:762-78. [PMID: 25627867 PMCID: PMC4420525 DOI: 10.1002/pro.2648] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 01/10/2015] [Accepted: 01/26/2015] [Indexed: 11/09/2022]
Abstract
A scoring method for the prediction of catalytically important residues in enzyme structures is presented and used to examine the participation of distal residues in enzyme catalysis. Scores are based on the Partial Order Optimum Likelihood (POOL) machine learning method, using computed electrostatic properties, surface geometric features, and information obtained from the phylogenetic tree as input features. Predictions of distal residue participation in catalysis are compared with experimental kinetics data from the literature on variants of the featured enzymes; some additional kinetics measurements are reported for variants of Pseudomonas putida nitrile hydratase (ppNH) and for Escherichia coli alkaline phosphatase (AP). The multilayer active sites of P. putida nitrile hydratase and of human phosphoglucose isomerase are predicted by the POOL log ZP scores, as is the single-layer active site of P. putida ketosteroid isomerase. The log ZP score cutoff utilized here results in over-prediction of distal residue involvement in E. coli alkaline phosphatase. While fewer experimental data points are available for P. putida mandelate racemase and for human carbonic anhydrase II, the POOL log ZP scores properly predict the previously reported participation of distal residues.
Collapse
Affiliation(s)
- Heather R Brodkin
- Department of Chemistry and Chemical Biology, Northeastern UniversityBoston, Massachusetts, 02115
- Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis UniversityWaltham, Massachusetts, 02454–9110
- Department of Chemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis UniversityWaltham, Massachusetts, 02454–9110
| | - Nicholas A DeLateur
- Department of Chemistry and Chemical Biology, Northeastern UniversityBoston, Massachusetts, 02115
| | - Srinivas Somarowthu
- Department of Chemistry and Chemical Biology, Northeastern UniversityBoston, Massachusetts, 02115
| | - Caitlyn L Mills
- Department of Chemistry and Chemical Biology, Northeastern UniversityBoston, Massachusetts, 02115
| | - Walter R Novak
- Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis UniversityWaltham, Massachusetts, 02454–9110
- Department of Chemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis UniversityWaltham, Massachusetts, 02454–9110
| | - Penny J Beuning
- Department of Chemistry and Chemical Biology, Northeastern UniversityBoston, Massachusetts, 02115
| | - Dagmar Ringe
- Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis UniversityWaltham, Massachusetts, 02454–9110
- Department of Chemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis UniversityWaltham, Massachusetts, 02454–9110
| | - Mary Jo Ondrechen
- Department of Chemistry and Chemical Biology, Northeastern UniversityBoston, Massachusetts, 02115
| |
Collapse
|
26
|
Currin A, Swainston N, Day PJ, Kell DB. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem Soc Rev 2015; 44:1172-239. [PMID: 25503938 PMCID: PMC4349129 DOI: 10.1039/c4cs00351a] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Indexed: 12/21/2022]
Abstract
The amino acid sequence of a protein affects both its structure and its function. Thus, the ability to modify the sequence, and hence the structure and activity, of individual proteins in a systematic way, opens up many opportunities, both scientifically and (as we focus on here) for exploitation in biocatalysis. Modern methods of synthetic biology, whereby increasingly large sequences of DNA can be synthesised de novo, allow an unprecedented ability to engineer proteins with novel functions. However, the number of possible proteins is far too large to test individually, so we need means for navigating the 'search space' of possible protein sequences efficiently and reliably in order to find desirable activities and other properties. Enzymologists distinguish binding (Kd) and catalytic (kcat) steps. In a similar way, judicious strategies have blended design (for binding, specificity and active site modelling) with the more empirical methods of classical directed evolution (DE) for improving kcat (where natural evolution rarely seeks the highest values), especially with regard to residues distant from the active site and where the functional linkages underpinning enzyme dynamics are both unknown and hard to predict. Epistasis (where the 'best' amino acid at one site depends on that or those at others) is a notable feature of directed evolution. The aim of this review is to highlight some of the approaches that are being developed to allow us to use directed evolution to improve enzyme properties, often dramatically. We note that directed evolution differs in a number of ways from natural evolution, including in particular the available mechanisms and the likely selection pressures. Thus, we stress the opportunities afforded by techniques that enable one to map sequence to (structure and) activity in silico, as an effective means of modelling and exploring protein landscapes. Because known landscapes may be assessed and reasoned about as a whole, simultaneously, this offers opportunities for protein improvement not readily available to natural evolution on rapid timescales. Intelligent landscape navigation, informed by sequence-activity relationships and coupled to the emerging methods of synthetic biology, offers scope for the development of novel biocatalysts that are both highly active and robust.
Collapse
Affiliation(s)
- Andrew Currin
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| | - Neil Swainston
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- School of Computer Science , The University of Manchester , Manchester M13 9PL , UK
| | - Philip J. Day
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- Faculty of Medical and Human Sciences , The University of Manchester , Manchester M13 9PT , UK
| | - Douglas B. Kell
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| |
Collapse
|
27
|
Taylor JL, Price JE, Toney MD. Directed evolution of the substrate specificity of dialkylglycine decarboxylase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:146-55. [PMID: 25500286 DOI: 10.1016/j.bbapap.2014.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/19/2014] [Accepted: 12/03/2014] [Indexed: 11/19/2022]
Abstract
Dialkylglycine decarboxylase (DGD) is an unusual pyridoxal phosphate dependent enzyme that catalyzes decarboxylation in the first and transamination in the second half-reaction of its ping-pong catalytic cycle. Directed evolution was employed to alter the substrate specificity of DGD from 2-aminoisobutyrate (AIB) to 1-aminocyclohexane-1-carboxylate (AC6C). Four rounds of directed evolution led to the identification of several mutants, with clones in the final rounds containing five persistent mutations. The best clones show ~2.5-fold decrease in KM and ~2-fold increase in kcat, giving a modest ~5-fold increase in catalytic efficiency for AC6C. Additional rounds of directed evolution did not improve catalytic activity toward AC6C. Only one (S306F) of the five persistent mutations is close to the active site. S306F was observed in all 33 clones except one, and the mutation is shown to stabilize the enzyme toward denaturation. The other four persistent mutations are near the surface of the enzyme. The S306F mutation and the distal mutations all have significant effects on the kinetic parameters for AIB and AC6C. Molecular dynamics simulations suggest that the mutations alter the conformational landscape of the enzyme, favoring a more open active site conformation that facilitates the reactivity of the larger substrate. We speculate that the small increases in kcat/KM for AC6C are due to two constraints. The first is the mechanistic requirement for catalyzing oxidative decarboxylation via a concerted decarboxylation/proton transfer transition state. The second is that DGD must catalyze transamination at the same active site in the second half-reaction of the ping-pong catalytic cycle.
Collapse
Affiliation(s)
- Jared L Taylor
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Joseph E Price
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Michael D Toney
- Department of Chemistry, University of California, Davis, CA 95616, USA.
| |
Collapse
|
28
|
Hossain GS, Li J, Shin HD, Liu L, Wang M, Du G, Chen J. Improved production of α-ketoglutaric acid (α-KG) by a Bacillus subtilis whole-cell biocatalyst via engineering of l-amino acid deaminase and deletion of the α-KG utilization pathway. J Biotechnol 2014; 187:71-7. [DOI: 10.1016/j.jbiotec.2014.07.431] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/09/2014] [Accepted: 07/17/2014] [Indexed: 02/04/2023]
|
29
|
Raina M, Moghal A, Kano A, Jerums M, Schnier PD, Luo S, Deshpande R, Bondarenko PV, Lin H, Ibba M. Reduced amino acid specificity of mammalian tyrosyl-tRNA synthetase is associated with elevated mistranslation of Tyr codons. J Biol Chem 2014; 289:17780-90. [PMID: 24828507 DOI: 10.1074/jbc.m114.564609] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Quality control operates at different steps in translation to limit errors to approximately one mistranslated codon per 10,000 codons during mRNA-directed protein synthesis. Recent studies have suggested that error rates may actually vary considerably during translation under different growth conditions. Here we examined the misincorporation of Phe at Tyr codons during synthesis of a recombinant antibody produced in tyrosine-limited Chinese hamster ovary (CHO) cells. Tyr to Phe replacements were previously found to occur throughout the antibody at a rate of up to 0.7% irrespective of the identity or context of the Tyr codon translated. Despite this comparatively high mistranslation rate, no significant change in cellular viability was observed. Monitoring of Phe and Tyr levels revealed that changes in error rates correlated with changes in amino acid pools, suggesting that mischarging of tRNA(Tyr) with noncognate Phe by tyrosyl-tRNA synthetase was responsible for mistranslation. Steady-state kinetic analyses of CHO cytoplasmic tyrosyl-tRNA synthetase revealed a 25-fold lower specificity for Tyr over Phe as compared with previously characterized bacterial enzymes, consistent with the observed increase in translation error rates during tyrosine limitation. Functional comparisons of mammalian and bacterial tyrosyl-tRNA synthetase revealed key differences at residues responsible for amino acid recognition, highlighting differences in evolutionary constraints for translation quality control.
Collapse
Affiliation(s)
- Medha Raina
- From the Department of Microbiology, Ohio State Biochemistry Program, and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210-1292 and
| | - Adil Moghal
- From the Department of Microbiology, Ohio State Biochemistry Program, and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210-1292 and
| | - Amanda Kano
- Amgen Incorporated, Thousand Oaks, California 91320-1799
| | - Mathew Jerums
- Amgen Incorporated, Thousand Oaks, California 91320-1799
| | - Paul D Schnier
- Amgen Incorporated, Thousand Oaks, California 91320-1799
| | - Shun Luo
- Amgen Incorporated, Thousand Oaks, California 91320-1799
| | | | | | - Henry Lin
- Amgen Incorporated, Thousand Oaks, California 91320-1799
| | - Michael Ibba
- From the Department of Microbiology, Ohio State Biochemistry Program, and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210-1292 and
| |
Collapse
|
30
|
Schwans JP, Hanoian P, Lengerich BJ, Sunden F, Gonzalez A, Tsai Y, Hammes-Schiffer S, Herschlag D. Experimental and computational mutagenesis to investigate the positioning of a general base within an enzyme active site. Biochemistry 2014; 53:2541-55. [PMID: 24597914 PMCID: PMC4004248 DOI: 10.1021/bi401671t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The
positioning of catalytic groups within proteins plays an important
role in enzyme catalysis, and here we investigate the positioning
of the general base in the enzyme ketosteroid isomerase (KSI). The
oxygen atoms of Asp38, the general base in KSI, were previously shown
to be involved in anion–aromatic interactions with two neighboring
Phe residues. Here we ask whether those interactions are sufficient,
within the overall protein architecture, to position Asp38 for catalysis
or whether the side chains that pack against Asp38 and/or the residues
of the structured loop that is capped by Asp38 are necessary to achieve
optimal positioning for catalysis. To test positioning, we mutated
each of the aforementioned residues, alone and in combinations, in
a background with the native Asp general base and in a D38E mutant
background, as Glu at position 38 was previously shown to be mispositioned
for general base catalysis. These double-mutant cycles reveal positioning
effects as large as 103-fold, indicating that structural
features in addition to the overall protein architecture and the Phe
residues neighboring the carboxylate oxygen atoms play roles in positioning.
X-ray crystallography and molecular dynamics simulations suggest that
the functional effects arise from both restricting dynamic fluctuations
and disfavoring potential mispositioned states. Whereas it may have
been anticipated that multiple interactions would be necessary for
optimal general base positioning, the energetic contributions from
positioning and the nonadditive nature of these interactions are not
revealed by structural inspection and require functional dissection.
Recognizing the extent, type, and energetic interconnectivity of interactions
that contribute to positioning catalytic groups has implications for
enzyme evolution and may help reveal the nature and extent of interactions
required to design enzymes that rival those found in biology.
Collapse
Affiliation(s)
- Jason P Schwans
- Department of Biochemistry, Stanford University , B400 Beckman Center, 279 Campus Drive, Stanford, California 94305, United States
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Improved activity and pH stability of E. coli ATCC 11105 penicillin acylase by error-prone PCR. Appl Microbiol Biotechnol 2014; 98:4467-77. [DOI: 10.1007/s00253-013-5476-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/13/2013] [Accepted: 12/15/2013] [Indexed: 11/27/2022]
|
32
|
Schallmey M, Floor RJ, Hauer B, Breuer M, Jekel PA, Wijma HJ, Dijkstra BW, Janssen DB. Biocatalytic and structural properties of a highly engineered halohydrin dehalogenase. Chembiochem 2013; 14:870-81. [PMID: 23585096 DOI: 10.1002/cbic.201300005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Indexed: 01/30/2023]
Abstract
Two highly engineered halohydrin dehalogenase variants were characterized in terms of their performance in dehalogenation and epoxide cyanolysis reactions. Both enzyme variants outperformed the wild-type enzyme in the cyanolysis of ethyl (S)-3,4-epoxybutyrate, a conversion yielding ethyl (R)-4-cyano-3-hydroxybutyrate, an important chiral building block for statin synthesis. One of the enzyme variants, HheC2360, displayed catalytic rates for this cyanolysis reaction enhanced up to tenfold. Furthermore, the enantioselectivity of this variant was the opposite of that of the wild-type enzyme, both for dehalogenation and for cyanolysis reactions. The 37-fold mutant HheC2360 showed an increase in thermal stability of 8 °C relative to the wild-type enzyme. Crystal structures of this enzyme were elucidated with chloride and ethyl (S)-3,4-epoxybutyrate or with ethyl (R)-4-cyano-3-hydroxybutyrate bound in the active site. The observed increase in temperature stability was explained in terms of a substantial increase in buried surface area relative to the wild-type HheC, together with enhanced interfacial interactions between the subunits that form the tetramer. The structures also revealed that the substrate binding pocket was modified both by substitutions and by backbone movements in loops surrounding the active site. The observed changes in the mutant structures are partly governed by coupled mutations, some of which are necessary to remove steric clashes or to allow backbone movements to occur. The importance of interactions between substitutions suggests that efficient directed evolution strategies should allow for compensating and synergistic mutations during library design.
Collapse
Affiliation(s)
- Marcus Schallmey
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Evidence for niche partitioning revealed by the distribution of sulfur oxidation genes collected from areas of a terrestrial sulfidic spring with differing geochemical conditions. Appl Environ Microbiol 2012; 79:1171-82. [PMID: 23220955 DOI: 10.1128/aem.02812-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The diversity and phylogenetic significance of bacterial genes in the environment has been well studied, but comparatively little attention has been devoted to understanding the functional significance of different variations of the same metabolic gene that occur in the same environment. We analyzed the geographic distribution of 16S rRNA pyrosequences and soxB genes along a geochemical gradient in a terrestrial sulfidic spring to identify how different taxonomic variations of the soxB gene were naturally distributed within the spring outflow channel and to identify possible evidence for altered SoxB enzyme function in nature. Distinct compositional differences between bacteria that utilize their SoxB enzyme in the Paracoccus sulfide oxidation pathway (e.g., Bradyrhizobium, Paracoccus, and Rhodovulum) and bacteria that utilize their SoxB enzyme in the branched pathway (e.g., Chlorobium, Thiothrix, Thiobacillus, Halothiobacillus, and Thiomonas) were identified. Different variations of the soxB genes were present at different locations within the spring outflow channel in a manner that significantly corresponded to geochemical conditions. The distribution of the different soxB gene sequence variations suggests that the enzymes encoded by these genes are functionally different and could be optimized to specific geochemical conditions that define niche space for bacteria capable of oxidizing reduced sulfur compounds.
Collapse
|
34
|
Structure and mechanism of a cysteine sulfinate desulfinase engineered on the aspartate aminotransferase scaffold. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:339-49. [PMID: 22138634 DOI: 10.1016/j.bbapap.2011.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/27/2011] [Accepted: 10/28/2011] [Indexed: 11/23/2022]
Abstract
The joint substitution of three active-site residues in Escherichia coli (L)-aspartate aminotransferase increases the ratio of l-cysteine sulfinate desulfinase to transaminase activity 10(5)-fold. This change in reaction specificity results from combining a tyrosine-shift double mutation (Y214Q/R280Y) with a non-conservative substitution of a substrate-binding residue (I33Q). Tyr214 hydrogen bonds with O3 of the cofactor and is close to Arg374 which binds the α-carboxylate group of the substrate; Arg280 interacts with the distal carboxylate group of the substrate; and Ile33 is part of the hydrophobic patch near the entrance to the active site, presumably participating in the domain closure essential for the transamination reaction. In the triple-mutant enzyme, k(cat)' for desulfination of l-cysteine sulfinate increased to 0.5s(-1) (from 0.05s(-1) in wild-type enzyme), whereas k(cat)' for transamination of the same substrate was reduced from 510s(-1) to 0.05s(-1). Similarly, k(cat)' for β-decarboxylation of l-aspartate increased from<0.0001s(-1) to 0.07s(-1), whereas k(cat)' for transamination was reduced from 530s(-1) to 0.13s(-1). l-Aspartate aminotransferase had thus been converted into an l-cysteine sulfinate desulfinase that catalyzes transamination and l-aspartate β-decarboxylation as side reactions. The X-ray structures of the engineered l-cysteine sulfinate desulfinase in its pyridoxal-5'-phosphate and pyridoxamine-5'-phosphate form or liganded with a covalent coenzyme-substrate adduct identified the subtle structural changes that suffice for generating desulfinase activity and concomitantly abolishing transaminase activity toward dicarboxylic amino acids. Apparently, the triple mutation impairs the domain closure thus favoring reprotonation of alternative acceptor sites in coenzyme-substrate intermediates by bulk water.
Collapse
|
35
|
Benz-Moy TL, Herschlag D. Structure-function analysis from the outside in: long-range tertiary contacts in RNA exhibit distinct catalytic roles. Biochemistry 2011; 50:8733-55. [PMID: 21815635 PMCID: PMC3186870 DOI: 10.1021/bi2008245] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The conserved catalytic core of the Tetrahymena group I ribozyme is encircled by peripheral elements. We have conducted a detailed structure-function study of the five long-range tertiary contacts that fasten these distal elements together. Mutational ablation of each of the tertiary contacts destabilizes the folded ribozyme, indicating a role of the peripheral elements in overall stability. Once folded, three of the five tertiary contact mutants exhibit defects in overall catalysis that range from 20- to 100-fold. These and the subsequent results indicate that the structural ring of peripheral elements does not act as a unitary element; rather, individual connections have distinct roles as further revealed by kinetic and thermodynamic dissection of the individual reaction steps. Ablation of P14 or the metal ion core/metal ion core receptor (MC/MCR) destabilizes docking of the substrate-containing P1 helix into tertiary interactions with the ribozyme's conserved core. In contrast, ablation of the L9/P5 contact weakens binding of the guanosine nucleophile by slowing its association, without affecting P1 docking. The P13 and tetraloop/tetraloop receptor (TL/TLR) mutations had little functional effect and small, local structural changes, as revealed by hydroxyl radical footprinting, whereas the P14, MC/MCR, and L9/P5 mutants show structural changes distal from the mutation site. These changes extended into regions of the catalytic core involved in docking or guanosine binding. Thus, distinct allosteric pathways couple the long-range tertiary contacts to functional sites within the conserved core. This modular functional specialization may represent a fundamental strategy in RNA structure-function interrelationships.
Collapse
Affiliation(s)
- Tara L. Benz-Moy
- Department of Chemistry, Stanford University, Stanford, California 94305
| | - Daniel Herschlag
- Department of Chemistry, Stanford University, Stanford, California 94305
- Department of Biochemistry, Stanford University, Stanford, California 94305
| |
Collapse
|
36
|
Park ES, Shin JS. Free energy analysis of ω-transaminase reactions to dissect how the enzyme controls the substrate selectivity. Enzyme Microb Technol 2011; 49:380-7. [DOI: 10.1016/j.enzmictec.2011.06.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 05/18/2011] [Accepted: 06/23/2011] [Indexed: 11/25/2022]
|
37
|
Forconi M, Porecha RH, Piccirilli JA, Herschlag D. Tightening of active site interactions en route to the transition state revealed by single-atom substitution in the guanosine-binding site of the Tetrahymena group I ribozyme. J Am Chem Soc 2011; 133:7791-800. [PMID: 21539364 PMCID: PMC3119543 DOI: 10.1021/ja111316y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein enzymes establish intricate networks of interactions to bind and position substrates and catalytic groups within active sites, enabling stabilization of the chemical transition state. Crystal structures of several RNA enzymes also suggest extensive interaction networks, despite RNA's structural limitations, but there is little information on the functional and the energetic properties of these inferred networks. We used double mutant cycles and presteady-state kinetic analyses to probe the putative interaction between the exocyclic amino group of the guanosine nucleophile and the N7 atom of residue G264 of the Tetrahymena group I ribozyme. As expected, the results supported the presence of this interaction, but remarkably, the energetic penalty for introducing a CH group at the 7-position of residue G264 accumulates as the reaction proceeds toward the chemical transition state to a total of 6.2 kcal/mol. Functional tests of neighboring interactions revealed that the presence of the CH group compromises multiple contacts within the interaction network that encompass the reactive elements, apparently forcing the nucleophile to bind and attack from an altered, suboptimal orientation. The energetic consequences of this indirect disruption of neighboring interactions as the reaction proceeds demonstrate that linkage between binding interactions and catalysis hinges critically on the precise structural integrity of a network of interacting groups.
Collapse
Affiliation(s)
- Marcello Forconi
- Department of Biochemistry, Stanford University, Stanford, California, USA
| | - Rishi H. Porecha
- Department of Biochemistry, Stanford University, Stanford, California, USA
| | - Joseph A. Piccirilli
- Department of Chemistry, University of Chicago, Chicago, Illinois, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California, USA
| |
Collapse
|
38
|
Enhancement of the latent 3-isopropylmalate dehydrogenase activity of promiscuous homoisocitrate dehydrogenase by directed evolution. Biochem J 2010; 431:401-10. [DOI: 10.1042/bj20101246] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
HICDH (homoisocitrate dehydrogenase), which is involved in lysine biosynthesis through α-aminoadipate, is a paralogue of IPMDH [3-IPM (3-isopropylmalate) dehydrogenase], which is involved in leucine biosynthesis. TtHICDH (Thermus thermophilus HICDH) can recognize isocitrate, as well as homoisocitrate, as the substrate, and also shows IPMDH activity, although at a considerably decreased rate. In the present study, the promiscuous TtHICDH was evolved into an enzyme showing distinct IPMDH activity by directed evolution using a DNA-shuffling technique. Through five repeats of DNA shuffling/screening, variants that allowed Escherichia coli C600 (leuB−) to grow on a minimal medium in 2 days were obtained. One of the variants LR5–1, with eight amino acid replacements, was found to possess a 65-fold increased kcat/Km value for 3-IPM, compared with TtHICDH. Introduction of a single back-replacement H15Y change caused a further increase in the kcat/Km value and a partial recovery of the decreased thermotolerance of LR5–1. Site-directed mutagenesis revealed that most of the amino acid replacements found in LR5–1 effectively increased IPMDH activity; replacements around the substrate-binding site contributed to the improved recognition for 3-IPM, and other replacements at sites away from the substrate-binding site enhanced the turnover number for the IPMDH reaction. The crystal structure of LR5–1 was determined at 2.4 Å resolution and revealed that helix α4 was displaced in a manner suitable for recognition of the hydrophobic γ-moiety of 3-IPM. On the basis of the crystal structure, possible reasons for enhancement of the turnover number are discussed.
Collapse
|
39
|
Campeotto I, Bolt AH, Harman TA, Dennis C, Trinh CH, Phillips SEV, Nelson A, Pearson AR, Berry A. Structural insights into substrate specificity in variants of N-acetylneuraminic Acid lyase produced by directed evolution. J Mol Biol 2010; 404:56-69. [PMID: 20826162 PMCID: PMC3014015 DOI: 10.1016/j.jmb.2010.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 08/03/2010] [Accepted: 08/05/2010] [Indexed: 11/18/2022]
Abstract
The substrate specificity of Escherichia coli N-acetylneuraminic acid lyase was previously switched from the natural condensation of pyruvate with N-acetylmannosamine, yielding N-acetylneuraminic acid, to the aldol condensation generating N-alkylcarboxamide analogues of N-acetylneuraminic acid. This was achieved by a single mutation of Glu192 to Asn. In order to analyze the structural changes involved and to more fully understand the basis of this switch in specificity, we have isolated all 20 variants of the enzyme at position 192 and determined the activities with a range of substrates. We have also determined five high-resolution crystal structures: the structures of wild-type E. coli N-acetylneuraminic acid lyase in the presence and in the absence of pyruvate, the structures of the E192N variant in the presence and in the absence of pyruvate, and the structure of the E192N variant in the presence of pyruvate and a competitive inhibitor (2R,3R)-2,3,4-trihydroxy-N,N-dipropylbutanamide. All structures were solved in space group P21 at resolutions ranging from 1.65 Å to 2.2 Å. A comparison of these structures, in combination with the specificity profiles of the variants, reveals subtle differences that explain the details of the specificity changes. This work demonstrates the subtleties of enzyme–substrate interactions and the importance of determining the structures of enzymes produced by directed evolution, where the specificity determinants may change from one substrate to another.
Collapse
Affiliation(s)
- Ivan Campeotto
- Astbury Center for Structural Molecular Biology, Garstang Building, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Evolution of enzymatic activities of testis-specific short-chain dehydrogenase/reductase in Drosophila. J Mol Evol 2010; 71:241-9. [PMID: 20809353 DOI: 10.1007/s00239-010-9384-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 08/17/2010] [Indexed: 10/19/2022]
Abstract
The testis-specific gene Jingwei (jgw) is a newly evolved short-chain dehydrogenase/reductase in Drosophila. Preliminary substrate screening indicated that JGW prefers long-chain primary alcohols as substrates, including several exotic alcohols such as farnesol and geraniol. Using steady-state kinetics analyses and molecular docking, we not only confirmed JGW's substrate specificity, but also demonstrated that the new enzymatic activities of JGW evolved extensively after exon-shuffling from a preexisting enzyme. Analysis of JGW orthologs in sister species shows that subsequent evolutionary changes following the birth of JGW altered substrate specificities and enzyme stabilities. Our results lend support to a general mechanism for the evolution of a new enzyme, in which catalytic chemistry evolves first followed by diversification of substrate utilization.
Collapse
|
41
|
Reetz MT. Gerichtete Evolution stereoselektiver Enzyme: Eine ergiebige Katalysator‐Quelle für asymmetrische Reaktionen. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201000826] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Manfred T. Reetz
- Max‐Planck‐Institut für Kohlenforschung, Kaiser‐Wilhelm‐Platz 1, 45470 Mülheim an der Ruhr (Deutschland), Fax: (+49) 208‐306‐2985 http://www.mpi‐muelheim.mpg.de/mpikofo_home.html
| |
Collapse
|
42
|
Reetz MT. Laboratory Evolution of Stereoselective Enzymes: A Prolific Source of Catalysts for Asymmetric Reactions. Angew Chem Int Ed Engl 2010; 50:138-74. [DOI: 10.1002/anie.201000826] [Citation(s) in RCA: 441] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Manfred T. Reetz
- Max‐Planck‐Institut für Kohlenforschung, Kaiser‐Wilhelm‐Platz 1, 45470 Mülheim an der Ruhr (Germany), Fax: (+49) 208‐306‐2985 http://www.mpi‐muelheim.mpg.de/mpikofo_home.html
| |
Collapse
|
43
|
Palmier MO, Fulcher YG, Bhaskaran R, Duong VQ, Fields GB, Van Doren SR. NMR and bioinformatics discovery of exosites that tune metalloelastase specificity for solubilized elastin and collagen triple helices. J Biol Chem 2010; 285:30918-30. [PMID: 20663866 DOI: 10.1074/jbc.m110.136903] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The catalytic domain of metalloelastase (matrix metalloproteinase-12 or MMP-12) is unique among MMPs in exerting high proteolytic activity upon fibrils that resist hydrolysis, especially elastin from lungs afflicted with chronic obstructive pulmonary disease or arteries with aneurysms. How does the MMP-12 catalytic domain achieve this specificity? NMR interface mapping suggests that α-elastin species cover the primed subsites, a strip across the β-sheet from β-strand IV to the II-III loop, and a broad bowl from helix A to helix C. The many contacts may account for the comparatively high affinity, as well as embedding of MMP-12 in damaged elastin fibrils in vivo. We developed a strategy called BINDSIght, for bioinformatics and NMR discovery of specificity of interactions, to evaluate MMP-12 specificity without a structure of a complex. BINDSIght integration of the interface mapping with other ambiguous information from sequences guided choice mutations in binding regions nearer the active site. Single substitutions at each of ten locations impair specific activity toward solubilized elastin. Five of them impair release of peptides from intact elastin fibrils. Eight lesions also impair specific activity toward triple helices from collagen IV or V. Eight sites map to the "primed" side in the III-IV, V-B, and S1' specificity loops. Two map to the "unprimed" side in the IV-V and B-C loops. The ten key residues circumscribe the catalytic cleft, form an exosite, and are distinctive features available for targeting by new diagnostics or therapeutics.
Collapse
Affiliation(s)
- Mark O Palmier
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | |
Collapse
|
44
|
Dietrich JA, McKee AE, Keasling JD. High-throughput metabolic engineering: advances in small-molecule screening and selection. Annu Rev Biochem 2010; 79:563-90. [PMID: 20367033 DOI: 10.1146/annurev-biochem-062608-095938] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabolic engineering for the overproduction of high-value small molecules is dependent upon techniques in directed evolution to improve production titers. The majority of small molecules targeted for overproduction are inconspicuous and cannot be readily obtained by screening. We provide a review on the development of high-throughput colorimetric, fluorescent, and growth-coupled screening techniques, enabling inconspicuous small-molecule detection. We first outline constraints on throughput imposed during the standard directed evolution workflow (library construction, transformation, and screening) and establish a screening and selection ladder on the basis of small-molecule assay throughput and sensitivity. An in-depth analysis of demonstrated screening and selection approaches for small-molecule detection is provided. Particular focus is placed on in vivo biosensor-based detection methods that reduce or eliminate in vitro assay manipulations and increase throughput. We conclude by providing our prospectus for the future, focusing on transcription factor-based detection systems as a natural microbial mode of small-molecule detection.
Collapse
Affiliation(s)
- Jeffrey A Dietrich
- UCSF-UCB Joint Graduate Group in Bioengineering, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
45
|
Induced allostery in the directed evolution of an enantioselective Baeyer-Villiger monooxygenase. Proc Natl Acad Sci U S A 2010; 107:2775-80. [PMID: 20133612 DOI: 10.1073/pnas.0911656107] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The molecular basis of allosteric effects, known to be caused by an effector docking to an enzyme at a site distal from the binding pocket, has been studied recently by applying directed evolution. Here, we utilize laboratory evolution in a different way, namely to induce allostery by introducing appropriate distal mutations that cause domain movements with concomitant reshaping of the binding pocket in the absence of an effector. To test this concept, the thermostable Baeyer-Villiger monooxygenase, phenylacetone monooxygenase (PAMO), was chosen as the enzyme to be employed in asymmetric Baeyer-Villiger reactions of substrates that are not accepted by the wild type. By using the known X-ray structure of PAMO, a decision was made regarding an appropriate site at which saturation mutagenesis is most likely to generate mutants capable of inducing allostery without any effector compound being present. After screening only 400 transformants, a double mutant was discovered that catalyzes the asymmetric oxidative kinetic resolution of a set of structurally different 2-substituted cyclohexanone derivatives as well as the desymmetrization of three different 4-substituted cyclohexanones, all with high enantioselectivity. Molecular dynamics (MD) simulations and covariance maps unveiled the origin of increased substrate scope as being due to allostery. Large domain movements occur that expose and reshape the binding pocket. This type of focused library production, aimed at inducing significant allosteric effects, is a viable alternative to traditional approaches to "designed" directed evolution that address the binding site directly.
Collapse
|
46
|
Gao X, Xie X, Pashkov I, Sawaya MR, Laidman J, Zhang W, Cacho R, Yeates TO, Tang Y. Directed evolution and structural characterization of a simvastatin synthase. ACTA ACUST UNITED AC 2010; 16:1064-74. [PMID: 19875080 DOI: 10.1016/j.chembiol.2009.09.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Revised: 09/24/2009] [Accepted: 09/28/2009] [Indexed: 01/13/2023]
Abstract
Enzymes from natural product biosynthetic pathways are attractive candidates for creating tailored biocatalysts to produce semisynthetic pharmaceutical compounds. LovD is an acyltransferase that converts the inactive monacolin J acid (MJA) into the cholesterol-lowering lovastatin. LovD can also synthesize the blockbuster drug simvastatin using MJA and a synthetic alpha-dimethylbutyryl thioester, albeit with suboptimal properties as a biocatalyst. Here we used directed evolution to improve the properties of LovD toward semisynthesis of simvastatin. Mutants with improved catalytic efficiency, solubility, and thermal stability were obtained, with the best mutant displaying an approximately 11-fold increase in an Escherichia coli-based biocatalytic platform. To understand the structural basis of LovD enzymology, seven X-ray crystal structures were determined, including the parent LovD, an improved mutant G5, and G5 cocrystallized with ligands. Comparisons between the structures reveal that beneficial mutations stabilize the structure of G5 in a more compact conformation that is favorable for catalysis.
Collapse
Affiliation(s)
- Xue Gao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Enzyme engineering for enantioselectivity: from trial-and-error to rational design? Trends Biotechnol 2009; 28:46-54. [PMID: 19913316 DOI: 10.1016/j.tibtech.2009.10.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 10/02/2009] [Accepted: 10/05/2009] [Indexed: 11/23/2022]
Abstract
The availability of tailored enzymes is crucial for the implementation of biocatalysis in organic chemistry. Enantioselectivity is one key parameter defining the usefulness of an enzyme and, therefore, the competitiveness of the corresponding industrial process. Hence, identification of enzymes with high enantioselectivity in the desired transformation is important. Currently, this is achieved by screening collections and libraries comprising natural or man-made diversity for the desired trait. Recently, a variety of improved methods have been developed to generate and screen this diversity more efficiently. Here, we present and discuss the most important advances in both library generation and screening. We also evaluate future trends, such as moving from random evolution to more rational.
Collapse
|
48
|
Hawwa R, Larsen SD, Ratia K, Mesecar AD. Structure-Based and Random Mutagenesis Approaches Increase the Organophosphate-Degrading Activity of a Phosphotriesterase Homologue from Deinococcus radiodurans. J Mol Biol 2009; 393:36-57. [DOI: 10.1016/j.jmb.2009.06.083] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 06/13/2009] [Accepted: 06/15/2009] [Indexed: 10/20/2022]
|
49
|
Wedge DC, Rowe W, Kell DB, Knowles J. In silico modelling of directed evolution: Implications for experimental design and stepwise evolution. J Theor Biol 2008; 257:131-41. [PMID: 19073195 DOI: 10.1016/j.jtbi.2008.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 11/03/2008] [Accepted: 11/03/2008] [Indexed: 11/26/2022]
Abstract
We model the process of directed evolution (DE) in silico using genetic algorithms. Making use of the NK fitness landscape model, we analyse the effects of mutation rate, crossover and selection pressure on the performance of DE. A range of values of K, the epistatic interaction of the landscape, are considered, and high- and low-throughput modes of evolution are compared. Our findings suggest that for runs of or around ten generations' duration-as is typical in DE-there is little difference between the way in which DE needs to be configured in the high- and low-throughput regimes, nor across different degrees of landscape epistasis. In all cases, a high selection pressure (but not an extreme one) combined with a moderately high mutation rate works best, while crossover provides some benefit but only on the less rugged landscapes. These genetic algorithms were also compared with a "model-based approach" from the literature, which uses sequential fixing of the problem parameters based on fitting a linear model. Overall, we find that purely evolutionary techniques fare better than do model-based approaches across all but the smoothest landscapes.
Collapse
Affiliation(s)
- David C Wedge
- Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester, M1 7ND, UK.
| | | | | | | |
Collapse
|
50
|
Lerksuthirat T, Ketterman AJ. Characterization of putative hydrophobic substrate binding site residues of a Delta class glutathione transferase from Anopheles dirus. Arch Biochem Biophys 2008; 479:97-103. [DOI: 10.1016/j.abb.2008.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 08/07/2008] [Accepted: 08/08/2008] [Indexed: 10/21/2022]
|