1
|
Konozy EHE, Dirar AI, Osman MEM. Lectins of the Araceae family: Insights, distinctions, and future avenues-A three-decade investigation. Biochim Biophys Acta Gen Subj 2024; 1868:130667. [PMID: 38971261 DOI: 10.1016/j.bbagen.2024.130667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/09/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The Araceae family boasts >3000 species of flowering plants that thrive across the tropics. Among the focal points of study within this family are lectins, proteins with affinity for binding carbohydrates. This review endeavors to gather data gleaned from numerous studies conducted over the past three decades on lectins extracted from Araceae plants. Our examination spans their extraction and purification methods, their specific interactions with carbohydrates, their molecular structures, and various physicochemical characteristics. Furthermore, we investigated the biological activities of these lectins and investigated the outcomes of cloning their genes. Despite their apparent similarities, these lectins exhibit notable distinctions, particularly regarding their unique preferences in interacting with erythrocytes from animals and humans, their sugar affinities, the critical amino acids for their functionality, the molecular weights of their subunits and their respective topologies, and ultimately, their dimerization and 3D β-prism-II structure, which reportedly diverge from those observed in other GNA-related lectins. These discrepancies not only deepen our understanding of monocot lectins but also render these proteins inherently captivating. This review marks the inaugural attempt at consolidating almost all published reports on lectins from the Araceae family, with the aim of furnishing glycobiology scientists with essential insights into potential laboratory challenges, the characteristics of these lectins, and avenues for future research.
Collapse
Affiliation(s)
- Emadeldin Hassan E Konozy
- Department of Biotechnology, Africa City of Technology (ACT), Khartoum, Sudan; Biomedical and Clinical Research Centre (BCRC), College of Health and Allied Sciences (CoHAS), University of Cape Coast, Cape Coast, Ghana.
| | - Amina I Dirar
- Medicinal, Aromatic Plants and Traditional Medicine Research Institute (MAPTRI), National Center for Research, P.O. Box 2404, Mek Nimr Street, Khartoum, Sudan
| | | |
Collapse
|
2
|
Devi OS, Singh SS, Rana K, Singh SJ, Singh WS. Purification and characterization of an asialofetuin specific lectin from the rhizome of Xanthosoma violaceum Schott. Protein Expr Purif 2024; 213:106357. [PMID: 37652391 DOI: 10.1016/j.pep.2023.106357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Lectins are proteins or glycoproteins that bind specifically and reversibly to the carbohydrate or glycoconjugates. A new lectin is purified from the rhizome of Xanthosoma violaceum Schott. by successive steps of ammonium sulfate fractionation and affinity chromatography with asialofetuin as ligand. The purified lectin was found to be a homotetramer of approximately 49 kDa with a subunit molecular weight of 12 kDa linked by non-covalent bonds. Characterization of the lectin shows that the hemagglutination activity is inhibited by asialofetuin and d-galacturonic acid. Hemagglutination activity is shown only in rabbit RBC but not in the human RBC of all blood groups. It is a metal ion-independent glycoprotein of 1.87% carbohydrate content, stable upto 40 °C and pH from 5.5 to 9. The lectin shows its optimum hemagglutination activity at 0 °C-40 °C and pH 6 to 8.5. From LC-MS/MS analysis it is confirmed that the purified lectin was not purified and characterized earlier.
Collapse
Affiliation(s)
- Oinam Sangita Devi
- Laboratory of Protein Biochemistry, Biochemistry Department, Manipur University, Canchipur, Imphal, 795003, India
| | - Senjam Sunil Singh
- Laboratory of Protein Biochemistry, Biochemistry Department, Manipur University, Canchipur, Imphal, 795003, India.
| | - K Rana
- Laboratory of Protein Biochemistry, Biochemistry Department, Manipur University, Canchipur, Imphal, 795003, India
| | - Sorokhaibam Jibankumar Singh
- Laboratory of Protein Biochemistry, Biochemistry Department, Manipur University, Canchipur, Imphal, 795003, India
| | - Wayenbam Sobhachandra Singh
- Laboratory of Protein Biochemistry, Biochemistry Department, Manipur University, Canchipur, Imphal, 795003, India
| |
Collapse
|
3
|
Barre A, Bourne Y, Van Damme EJM, Rougé P. Overview of the Structure⁻Function Relationships of Mannose-Specific Lectins from Plants, Algae and Fungi. Int J Mol Sci 2019; 20:E254. [PMID: 30634645 PMCID: PMC6359319 DOI: 10.3390/ijms20020254] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/29/2018] [Accepted: 12/31/2018] [Indexed: 01/05/2023] Open
Abstract
To date, a number of mannose-binding lectins have been isolated and characterized from plants and fungi. These proteins are composed of different structural scaffold structures which harbor a single or multiple carbohydrate-binding sites involved in the specific recognition of mannose-containing glycans. Generally, the mannose-binding site consists of a small, central, carbohydrate-binding pocket responsible for the "broad sugar-binding specificity" toward a single mannose molecule, surrounded by a more extended binding area responsible for the specific recognition of larger mannose-containing N-glycan chains. Accordingly, the mannose-binding specificity of the so-called mannose-binding lectins towards complex mannose-containing N-glycans depends largely on the topography of their mannose-binding site(s). This structure⁻function relationship introduces a high degree of specificity in the apparently homogeneous group of mannose-binding lectins, with respect to the specific recognition of high-mannose and complex N-glycans. Because of the high specificity towards mannose these lectins are valuable tools for deciphering and characterizing the complex mannose-containing glycans that decorate both normal and transformed cells, e.g., the altered high-mannose N-glycans that often occur at the surface of various cancer cells.
Collapse
Affiliation(s)
- Annick Barre
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| | - Yves Bourne
- Centre National de la Recherche Scientifique, Aix-Marseille Univ, Architecture et Fonction des Macromolécules Biologiques, 163 Avenue de Luminy, 13288 Marseille, France.
| | - Els J M Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| | - Pierre Rougé
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| |
Collapse
|
4
|
Sharma M, Hotpet V, B R S, A S K, Swamy BM, Inamdar SR. Purification, characterization and biological significance of mannose binding lectin from Dioscorea bulbifera bulbils. Int J Biol Macromol 2017; 102:1146-1155. [PMID: 28472687 DOI: 10.1016/j.ijbiomac.2017.04.085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 10/19/2022]
Abstract
Dioscorea bulbifera or air potato has been used as a folk remedy to treat cancer. A mannose binding lectin from bulbils of D. bulbifera was purified in a single step by affinity chromatography on mucin coupled Sepharose 4B column, determined by its fine sugar specificity by glycan array analysis and studied for its clinical potential in cancer and HIV research. SDS-PAGE showed that lectin is a monomer of Mr 24kDa. DBL agglutinated only rabbit erythrocytes and was inhibited by mucin, asialomucin, fetuin, asialofetuin and transferrin but not by any monosaccharides. Glycan array analysis of DBL revealed its affinity toward high mannose N-linked glycans with enhanced affinity for terminal mannose including N-linked glycans of HIV envelope glycoprotein gp120 and has strong anti-reverse transcriptase activity. DBL showed strong binding to non-metastatic human colon epithelial cancer HT 29, metastatic SW 620 and hepatocellular HepG2 cell lines. DBL showed dose and time dependent growth inhibitory effects on all the three cell lines HT 29, SW 620 and HepG2 with IC50 of 110μg, 9.8μg, 40μg respectively at 72h. Inhibitory effect of DBL was effectively blocked in presence of competing glycans like mucin. DBL has promising clinical potential both in cancer and HIV research.
Collapse
Affiliation(s)
- Mamta Sharma
- Department of Studies in Biochemistry, Karnatak University, Dharwad 580003, India
| | | | - Sindhura B R
- Department of Studies in Biochemistry, Karnatak University, Dharwad 580003, India
| | - Kamalanathan A S
- Centre for Bioseparation Technology, VIT University, Vellore 632014, India
| | - Bale M Swamy
- Department of Studies in Biochemistry, Karnatak University, Dharwad 580003, India
| | - Shashikala R Inamdar
- Department of Studies in Biochemistry, Karnatak University, Dharwad 580003, India.
| |
Collapse
|
5
|
Pereira PR, Meagher JL, Winter HC, Goldstein IJ, Paschoalin VMF, Silva JT, Stuckey JA. High-resolution crystal structures of Colocasia esculenta tarin lectin. Glycobiology 2016; 27:50-56. [PMID: 27558840 DOI: 10.1093/glycob/cww083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 01/24/2023] Open
Abstract
Tarin, the Colocasia esculenta lectin from the superfamily of α-d-mannose-specific plant bulb lectins, is a tetramer of 47 kDa composed of two heterodimers. Each heterodimer possesses homologous monomers of ~11.9 (A chain) and ~12.7 (B chain) kDa. The structures of apo and carbohydrate-bound tarin were solved to 1.7 Å and 1.91 Å, respectively. Each tarin monomer forms a canonical β-prism II fold, common to all members of Galanthus nivalis agglutinin (GNA) family, which is partially stabilized by a disulfide bond and a conserved hydrophobic core. The heterodimer is formed through domain swapping involving the C-terminal β-strand and the β-sheet on face I of the prism. The tetramer is assembled through the dimerization of the B chains from heterodimers involving face II of each prism. The 1.91 Å crystal structure of tarin bound to Manα(1,3)Manα(1,6)Man reveals an expanded carbohydrate-binding sequence (QxDxNxVxYx4/6WX) on face III of the β-prism. Both monomers possess a similar fold, except for the length of the loop, which begins after the conserved tyrosine and creates the binding pocket for the α(1,6)-terminal mannose. This loop differs in size and amino-acid composition from 10 other β-prism II domain proteins, and may confer carbohydrate-binding specificity among members of the GNA-related lectin family.
Collapse
Affiliation(s)
- Patricia R Pereira
- Centro de Tecnologia, Universidade Federal do Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos, 149., Rio de Janeiro 21941-909, Brazil.,Department of Biological Chemistry, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Jennifer L Meagher
- Center for Structural Biology, Life Sciences Institute, University of Michigan, 210 Washtenaw Ave, Ann Arbor, MI 48109, USA
| | - Harry C Winter
- Department of Biological Chemistry, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Irwin J Goldstein
- Department of Biological Chemistry, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Vânia M F Paschoalin
- Centro de Tecnologia, Universidade Federal do Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos, 149., Rio de Janeiro 21941-909, Brazil
| | - Joab T Silva
- Centro de Tecnologia, Universidade Federal do Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos, 149., Rio de Janeiro 21941-909, Brazil
| | - Jeanne A Stuckey
- Department of Biological Chemistry, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA .,Center for Structural Biology, Life Sciences Institute, University of Michigan, 210 Washtenaw Ave, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Purification, characterization, and molecular cloning of lectin from winter buds of Lysichiton camtschatcensis (L.) Schott. Biosci Biotechnol Biochem 2012; 76:25-33. [PMID: 22232238 DOI: 10.1271/bbb.110346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel lectin was purified to homogeneity from winter buds of Lysichiton camtschatcensis (L.) Schott of the Araceae family. It was a tetramer composed of two non-covalently associated polypeptides with small subunits (11 kDa) and large subunits (12 kDa). Sequencing of both subunits yielded unique N-terminal sequences. A cDNA encoding the lectin was cloned. The isolated cDNA contained an open reading frame that encoded 267 amino acids. It encoded both subunits, indicating that the lectin is synthesized as a single precursor protein that is post-translationally processed into two different subunits with 45% sequence identity. Each subunit contained a mannose-binding motif known to be conserved in monocot mannose-binding lectins, but its activity was not inhibited by monosaccharides, including methyl α-mannoside. Asialofetuin and yeast invertase were potent inhibitors. Lectin activity was detected in the buds formed during the winter season but not in the expanded leaves.
Collapse
|
7
|
He XM, Ji N, Xiang XC, Luo P, Bao JK. Purification, characterization, and molecular cloning of a novel antifungal lectin from the roots of Ophioglossum pedunculosum. Appl Biochem Biotechnol 2011; 165:1458-72. [PMID: 21947760 DOI: 10.1007/s12010-011-9367-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 09/01/2011] [Indexed: 10/17/2022]
Abstract
A novel mannan-specific lectin was isolated from the roots of a traditional Chinese herbal medicine, Ophioglossum pedunculosum through ion-exchange chromatography and gel filtration. With a molecular mass of 19,835.7 Da demonstrated by MALDI-TOF analysis, this novel agglutinin was designated as O. pedunculosum agglutinin (OPA), specifically agglutinating human O erythrocytes and rabbit erythrocytes. The hemagglutination could be strongly inhibited by mannan and thyroglobulin, the activity of which was stable in pH range of 4.0-8.0 and at temperatures below 50 °C. Chemical modification studies indicated that tryptophan and arginine residues were essential for its hemagglutinating activity. Meanwhile, it showed antifungal activities toward Sclerotium rolfsii and Fusarium graminearum. In addition, to amplify cDNA of OPA by 3'/5'-rapid amplification of cDNA ends (RACE), the N-terminal 30 amino acids sequence of OPA was determined, and degenerate primers were designed. The obtained full-length cDNA of OPA contained 885 bp with an open-reading frame of 600 bp encoding a precursor protein of 199 amino acids, while the mature protein had 170 amino acids.
Collapse
Affiliation(s)
- Xue-Mei He
- School of Life Sciences, Sichuan University, Chengdu 610064, China
| | | | | | | | | |
Collapse
|
8
|
Shetty KN, Bhat GG, Inamdar SR, Swamy BM, Suguna K. Crystal structure of a β-prism II lectin from Remusatia vivipara. Glycobiology 2011; 22:56-69. [PMID: 21788359 DOI: 10.1093/glycob/cwr100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The crystal structure of a β-prism II (BP2) fold lectin from Remusatia vivipara, a plant of traditional medicinal value, has been determined at a resolution of 2.4 Å. This lectin (RVL, Remusatia vivipara lectin) is a dimer with each protomer having two distinct BP2 domains without a linker between them. It belongs to the "monocot mannose-binding" lectin family, which consists of proteins of high sequence and structural similarity. Though the overall tertiary structure is similar to that of lectins from snowdrop bulbs and garlic, crucial differences in the mannose-binding regions and oligomerization were observed. Unlike most of the other structurally known proteins in this family, only one of the three carbohydrate recognition sites (CRSs) per BP2 domain is found to be conserved. RVL does not recognize simple mannose moieties. RVL binds to only N-linked complex glycans like those present on the gp120 envelope glycoprotein of HIV and mannosylated blood proteins like fetuin, but not to simple mannose moieties. The molecular basis for these features and their possible functional implications to understand the different levels of carbohydrate affinities in this structural family have been investigated through structure analysis, modeling and binding studies. Apart from being the first structure of a lectin to be reported from the Araceae/Arum family, this protein also displays a novel mode of oligomerization among BP2 lectins.
Collapse
Affiliation(s)
- Kartika N Shetty
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | | | |
Collapse
|
9
|
Yu QJ, Li ZY, Yao S, Ming M, Wang SY, Liu B, Bao JK. In silico analysis of molecular mechanisms of Galanthus nivalis agglutinin-related lectin-induced cancer cell death from carbohydrate-binding motif evolution hypothesis. Appl Biochem Biotechnol 2011; 165:1037-46. [PMID: 21748493 DOI: 10.1007/s12010-011-9318-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 06/27/2011] [Indexed: 02/05/2023]
Abstract
Galanthus nivalis agglutinin-related lectins, a superfamily of strictly mannose-binding-specific lectins widespread amongst monotyledonous plants, have drawn a rising attention for their remarkable anti-proliferative and apoptosis-inducing activities toward various types of cancer cells; however, the precise molecular mechanisms by which they induce tumor cell apoptosis are still only rudimentarily understood. Herein, we found that the three conserved motifs "QXDXNXVXY," the mannose-specific binding sites, could mutate at one or more amino acid sites, which might be a driving force for the sequential evolution and thus ultimately leading to the complete disappearance of the three conserved motifs. In addition, we found that the motif evolution could result in the diversification of sugar-binding types that G. nivalis agglutinin-related lectins could bind from specific mannose receptors to more types of sugar-containing receptors in cancer cells. Subsequently, we indicated that some sugar-containing receptors such as TNFR1, EGFR, Hsp90, and Hsp70 could block downstream anti-apoptotic or survival signaling pathways, which, in turn, resulted in tumor cell apoptosis. Taken together, our hypothesis that carbohydrate-binding motif evolution may impact the G. nivalis agglutinin-related lectin-induced survival or anti-apoptotic pathways would provide a new perspective for further elucidating the intricate relationships between the carbohydrate-binding specificities and complex molecular mechanisms by which G. nivalis agglutinin-related lectins induce cancer cell death.
Collapse
Affiliation(s)
- Qi-Jia Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School & School of Life Sciences, Sichuan University, Chengdu 610064, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Purification, characterization and molecular cloning of a monocot mannose-binding lectin from Remusatia vivipara with nematicidal activity. Glycoconj J 2010; 27:309-20. [PMID: 20213246 DOI: 10.1007/s10719-010-9279-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/24/2010] [Accepted: 01/24/2010] [Indexed: 12/13/2022]
Abstract
A mannose-binding lectin (RVL) was purified from the tubers of Remusatia vivipara, a monocot plant by single-step affinity chromatography on asialofetuin-Sepharose 4B. RVL agglutinated only rabbit erythrocytes and was inhibited by mucin, asialomucin, asialofetuin and thyroglobulin. Lectin activity was stable up to 80 degrees C and under wide range of pH (2.0-9.3). SDS-PAGE and gel filtration results showed the lectin is a homotetramer of Mr 49.5 kDa, but MALDI analysis showed two distinct peaks corresponding to subunit mass of 12 kDa and 12.7 kDa. Also the N-terminal sequencing gave two different sequences indicating presence of two polypeptide chains. Cloning of RVL gene indicated posttranslational cleavage of RVL precursor into two mature polypeptides of 116 and 117 amino-acid residues. Dynamic light scattering (DLS) and gel filtration studies together confirmed the homogeneity of the purified lectin and supported RVL as a dimer with Mr 49.5 kDa derived from single polypeptide precursor of 233 amino acids. Purified RVL exerts potent nematicidal activity on Meloidogyne incognita, a root knot nematode. Fluorescent confocal microscopic studies demonstrated the binding of RVL to specific regions of the alimentary-tract and exhibited a potent toxic effect on M. incognita. RVL-mucin complex failed to interact with the gut confirming the receptor mediated lectin interaction. Very high mortality (88%) rate was observed at lectin concentration as low as 30 microg/ml, suggesting its potential application in the development of nematode resistant transgenic-crops.
Collapse
|
11
|
Upadhyay SK, Saurabh S, Rai P, Singh R, Chandrashekar K, Verma PC, Singh PK, Tuli R. SUMO fusion facilitates expression and purification of garlic leaf lectin but modifies some of its properties. J Biotechnol 2010; 146:1-8. [PMID: 20100526 DOI: 10.1016/j.jbiotec.2010.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 01/19/2010] [Accepted: 01/19/2010] [Indexed: 10/19/2022]
Abstract
Over expression of lectin genes in E. coli often gives inclusion bodies that are solubilised to characterize lectins. We made N-terminal fusion of the Allium sativum leaf agglutinin (ASAL) with SUMO (small ubiquitin related modifier) peptide. The SUMO peptide allowed expression of the recombinant lectin in E. coli, predominantly in soluble form. The soluble fusion protein could be purified by immobilized metal affinity column (IMAC), followed by size exclusion chromatography. The SUMO protease failed to cleave the SUMO peptide from ASAL. This may be due to steric hindrance caused by the homodimer structure of the chimeric ASAL. Some properties like dimerization, haemagglutination and insecticidal properties of the recombinant SUMO-ASAL fusion protein were comparable to the plant derived native lectin. However, glycan array analysis revealed that the carbohydrate binding specificity of the recombinant SUMO-ASAL was altered. Further, the fusion protein was not toxic to E. coli (native ASAL exhibited toxicity). The recombinant lectin was more thermo-labile as compared to the native lectin. Three important findings of this study are: (1) sugar specificity of ASAL can be altered by amino-terminal fusion; (2) anti-E. coli activity of ASAL can be eliminated by N-terminal SUMO fusion and (3) SUMO-ASAL may be a preferred candidate insecticidal protein for the development of transgenic plants.
Collapse
Affiliation(s)
- Santosh Kumar Upadhyay
- National Botanical Research Institute, Council of Scientific and Industrial Research, Rana Pratap Marg, Lucknow 226001, India
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Expression and characterization of two domains of Pinellia ternata agglutinin (PTA), a plant agglutinin from Pinellia ternata with antifungal activity. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0204-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Luo Y, Xu X, Liu J, Li J, Sun Y, Liu Z, Liu J, Van Damme E, Balzarini J, Bao J. A Novel Mannose-binding Tuber Lectin from Typhonium divaricatum (L.) Decne (family Araceae) with Antiviral Activity Against HSV-II and Anti-proliferative Effect on Human Cancer Cell Lines. BMB Rep 2007; 40:358-67. [PMID: 17562287 DOI: 10.5483/bmbrep.2007.40.3.358] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A novel mannose-binding tuber lectin with in vitro antiproliferative activity towards human cancer cell lines and antiviral activity against HSV-II was isolated from fresh tubers of a traditional Chinese medicinal herb, Typhonium divaricatum (L.) Decne by a combined procedure involving extraction, ammonium sulfate precipitation, ion exchange chromatography on DEAE-SEPHAROSE, CM-SEPHAROSE and gel-filtration on sephacryl S-200. The apparent molecular mass of the purified Typhonium divaricatum lectin (TDL) was 48 kDa. TDL exhibits hemagglutinating activity toward rabbit erythrocytes at 0.95 microg/ml, and its activity could be strongly inhibited by mannan, ovomucoid, asialofetuin and thyroglobulin. TDL showed antiproliferative activity towards some well established human cancer cell lines, e.g. Pro-01 (56.7 +/- 6.8), Bre-04 (41.5 +/- 4.8), and Lu-04 (11.4 +/- 0.3). The anti-HSV-II activity of TDL was elucidated by testing its HSV-II infection inhibitory activity in Vero cells with TC(50) and EC(50) of 5.176 mg/ml and 3.054 microg/ml respectively. The full-length cDNA sequence of TDL was 1145 bp and contained an 813-bp open reading frame (ORF) encoding a 271 amino acid precursor of 29-kDa. Homology analysis showed that TDL had high homology with many other mannose-binding lectins. Secondary and three-dimensional structures analyses showed that TDL is heterotetramer and similar with lectins from mannose-binding lectin superfamily, especially those from family Araceae.
Collapse
Affiliation(s)
- Yongting Luo
- College of Life Sciences, Sichuan University, Chengdu 610064, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Van Damme EJM, Nakamura-Tsuruta S, Smith DF, Ongenaert M, Winter HC, Rougé P, Goldstein IJ, Mo H, Kominami J, Culerrier R, Barre A, Hirabayashi J, Peumans WJ. Phylogenetic and specificity studies of two-domain GNA-related lectins: generation of multispecificity through domain duplication and divergent evolution. Biochem J 2007; 404:51-61. [PMID: 17288538 PMCID: PMC1868831 DOI: 10.1042/bj20061819] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A re-investigation of the occurrence and taxonomic distribution of proteins built up of protomers consisting of two tandem arrayed domains equivalent to the GNA [Galanthus nivalis (snowdrop) agglutinin] revealed that these are widespread among monotyledonous plants. Phylogenetic analysis of the available sequences indicated that these proteins do not represent a monophylogenetic group but most probably result from multiple independent domain duplication/in tandem insertion events. To corroborate the relationship between inter-domain sequence divergence and the widening of specificity range, a detailed comparative analysis was made of the sequences and specificity of a set of two-domain GNA-related lectins. Glycan microarray analyses, frontal affinity chromatography and surface plasmon resonance measurements demonstrated that the two-domain GNA-related lectins acquired a marked diversity in carbohydrate-binding specificity that strikingly contrasts the canonical exclusive specificity of their single domain counterparts towards mannose. Moreover, it appears that most two-domain GNA-related lectins interact with both high mannose and complex N-glycans and that this dual specificity relies on the simultaneous presence of at least two different independently acting binding sites. The combined phylogenetic, specificity and structural data strongly suggest that plants used domain duplication followed by divergent evolution as a mechanism to generate multispecific lectins from a single mannose-binding domain. Taking into account that the shift in specificity of some binding sites from high mannose to complex type N-glycans implies that the two-domain GNA-related lectins are primarily directed against typical animal glycans, it is tempting to speculate that plants developed two-domain GNA-related lectins for defence purposes.
Collapse
Affiliation(s)
- Els J M Van Damme
- Department of Molecular Biotechnology, Laboratory of Biochemistry and Glycobiology, Ghent University, Coupure Links 653, B-9000 Gent, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kaur M, Singh K, Rup PJ, Kamboj SS, Saxena AK, Sharma M, Bhagat M, Sood SK, Singh J. A Tuber Lectin from Arisaema jacquemontii Blume with Anti-insect and Anti-proliferative Properties. BMB Rep 2006; 39:432-40. [PMID: 16889688 DOI: 10.5483/bmbrep.2006.39.4.432] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A tuber lectin from Arisaema jacquemontii Blume belonging to family Araceae was purified by employing a single step affinity chromatography using column of asialofetuin-linked amino activated silica beads and the bound lectin was eluted with 100 mM glycine-HCl buffer pH 2.5. The purified A. jacquemontii lectin (AJL) showed a single protein band with an apparent molecular mass of 13.4 kDa when submitted to SDS-polyacrylamide gel electrophoresis under reducing as well as non-reducing conditions. The native molecular mass of AJL determined by gel filtration on a Biogel P-200 column was 52 kDa and its carbohydrate content was estimated to be 3.40%. Thus AJL is a tetrameric glycoprotein. The purified lectin agglutinated erythrocytes from rabbit but not from human. Its activity was not inhibited by any of the mono- and disaccharides tested except N-acetyl-D-lactosamine having minimal inhibitory sugar concentration (MIC) 25 mM. Among the glycoproteins tested only asialofetuin was found to be inhibitory (MIC125 microg/mL). A single band was obtained in native PAGE at pH 4.5 while PAGE at pH 8.3 showed two bands. Isoelectric focusing of AJL gave multiple bands in the pI range of 4.6-5.5. When incorporated in artificial diet AJL significantly affected the development of Bactrocera cucurbitae (Coquillett) larvae indicating the possibility of using this lectin in a biotechnological strategy for insect management of cucurbits. Larvae fed on artificial diet containing sublethal dose of AJL showed a significant decrease in acid phosphatase and alkaline phosphatase activity while esterase activity markedly increased as compared to larvae fed on diet without lectin. Out of various human cancer cell lines employed in sulphorhodamine B (SRB) assay, this lectin was found to have appreciable inhibitory effect on the in vitro proliferation of HCT-15, HOP-62, SW-620, HT-29, IMR-32, SKOV-3, Colo-205, PC-3, HEP-2 and A-549 cancer cell lines by 82, 77, 73, 70, 41, 41, 37, 29, 21 and 21% respectively.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143 005, India
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Dhuna V, Bains JS, Kamboj SS, Singh J, Kamboj S, Saxena AK. Purification and characterization of a lectin from Arisaema tortuosum Schott having in-vitro anticancer activity against human cancer cell lines. BMB Rep 2005; 38:526-32. [PMID: 16202230 DOI: 10.5483/bmbrep.2005.38.5.526] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A lectin with in-vitro anticancer activity against established human cancer cell lines has been purified by affinity chromatography on asialofetuin-linked amino activated silica beads from the tubers of Arisaema tortuosum, popularly known as Himalayan Cobra lily, a monocot plant from the family Araceae. The bound Arisaema tortuosum lectin (ATL) was eluted with glycine-HCl buffer, pH 2.5. ATL was effectively inhibited by asialofetuin, a complex desialylated serum glycoprotein as well as by N-acetyl-D-lactosamine, a disaccharide. It gave a single band corresponding to a subunit molecular weight of 13.5 kDa in SDS-PAGE, pH 8.8 both under reducing and non-reducing conditions. When subjected to gel-filtration on Biogel P-200, it was found to have a molecular weight of 54 kDa, suggesting a homotetramer structure, in which individual polypeptides are not bound to each other with disulfide bonds. ATL is a glycoprotein with 0.9 % carbohydrate content, stable up to 55(o)C and at pH 2 to 10. The lectin had no requirement for divalent metal ions i.e. Ca(2+) and Mn(2+) for its activity. However, as reported for other monocot lectins, ATL gave multiple bands in isoelectric focusing and Native PAGE, pH 8.3. The lectin was found to inhibit in vitro proliferation of human cancer cell lines HT29, SiHa and OVCAR-5.
Collapse
Affiliation(s)
- Vikram Dhuna
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar
| | | | | | | | | | | |
Collapse
|
17
|
Singh Bains J, Singh J, Kamboj SS, Nijjar KK, Agrewala JN, Kumar V, Kumar A, Saxena AK. Mitogenic and anti-proliferative activity of a lectin from the tubers of Voodoo lily (Sauromatum venosum). Biochim Biophys Acta Gen Subj 2005; 1723:163-74. [PMID: 15788150 DOI: 10.1016/j.bbagen.2005.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 01/17/2005] [Accepted: 02/09/2005] [Indexed: 11/19/2022]
Abstract
A new lectin with the potent mitogenic and in vitro anti-proliferative activity was isolated from the tubers of a wild monocotyledonous plant Sauromatum venosum (Schott), from the family Araceae, by affinity chromatography on the asialofetuin linked amino-activated silica beads. The apparent native molecular mass of S. venosum lectin (SVL), as determined by gel filtration chromatography, was 54 kDa. In HPLC, size exclusion and cation exchange chromatography, SVL gave a single peak and also a single band of 13.5 kDa in SDS-PAGE, pH 8.3, under reducing and non-reducing conditions, indicating that the lectin is composed of four identical subunits. S. venosum lectin agglutinated rabbit, rat, sheep and guinea pig erythrocytes but reacted with goat erythrocytes after the neuraminidase treatment. However, SVL was unable to agglutinate human ABO blood group erythrocytes even after treatment with neuraminidase. SVL was inhibited by N-acetyl-D-Lactosamine (LacNAc), which is an important marker in various carcinomas and a complex desialylated glycoprotein, asialofetuin. The amino acid composition showed that lectin contained a high amount of aspartic acid and glycine but totally devoid of cysteine. However, trace amounts of methionine was present. The lectin showed a potent mitogenic response towards BALB/c splenocytes and human lymphocytes. As the mitogenic stimulation was more than that of Con A, a standard well-known plant mitogen and the response of this lectin was almost double than that of Con A. This lectin is endowed with proliferation of T cells as revealed by IL-2 bioassay but showed no production of immunoglobulins thus indicating the non-stimulation of B cells. SVL significantly inhibited the proliferation of murine cancer cell-lines, i.e., WEHI-279 to 84.6%, J774 to 81%, P388D1 to 74% and A-20 to 47%. In addition, the in vitro anti-proliferative activity of SVL was also evaluated against nine human cancer cell lines representing different organs and tissues namely, T-47D (breast), SiHa (cervix), SK-N-MC (CNS), SK-N-SH (CNS), SW-620 (colon), HT-29 (colon), HEP-2 (liver), OVCAR-5 (ovary) and PC-3 (prostate). SVL showed a significant inhibition towards the entire cell lines except the cell lines from CNS, which showed partial response in comparison to a standard anticancer drug adriamycin which was used at a concentration of 5 x 10(-5) M. Thus the anti-proliferative ability of SVL may be helpful in identification of new lectin probes that can lead to better understanding in the detection and study of certain types of cancer.
Collapse
Affiliation(s)
- Jagmohan Singh Bains
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143 005, India.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Winter HC, Mostafapour K, Goldstein IJ. The mushroom Marasmius oreades lectin is a blood group type B agglutinin that recognizes the Galalpha 1,3Gal and Galalpha 1,3Galbeta 1,4GlcNAc porcine xenotransplantation epitopes with high affinity. J Biol Chem 2002; 277:14996-5001. [PMID: 11836253 DOI: 10.1074/jbc.m200161200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A blood group B-specific lectin from the mushroom Marasmius oreades (MOA) was investigated with respect to its molecular structure and carbohydrate binding properties. SDS-PAGE mass spectrometric analysis showed it to consist of an intact (H; 33 kDa) and truncated (L; 23 kDa) subunit in addition to a small polypeptide (P; 10 kDa). Isolation in the presence of EDTA produced only the H subunits, indicating that the latter two are formed by metalloprotease cleavage of the intact H subunit. Tryptic digestion of the H, L, and P polypeptide chains followed by mass spectral analysis supports this view. The lectin strongly precipitated blood group type B substance, was nonreactive with type A substance, and reacted weakly with type H substance. Carbohydrate binding studies reveal a high affinity for Galalpha1,3Gal (but not for the isomeric alpha1,2-, alpha1,4-, and alpha1,6-disaccharides); Galalpha1,3Galbeta1,4GlcNAc; and the type B branched trisaccharide. MOA also reacts strongly with murine laminin from the Engelbreth-Holm-Swarm sarcoma and bovine thyroglobulin, both of which contain multiple Galalpha1,3Galbeta1,4GlcNAc end groups. This linear B trisaccharide is a component of porcine tissues and organs, preventing their transplantation into humans. MOA also shares carbohydrate recognition of this trisaccharide with toxin A elaborated by Clostridium difficile.
Collapse
Affiliation(s)
- Harry C Winter
- Department of Biological Chemistry, University of Michigan, Medical School, Ann Arbor, Michigan 48109-0606, USA
| | | | | |
Collapse
|