1
|
Ding H, Saer RG, Beatty JT. Porphyrin Excretion Resulting From Mutation of a Gene Encoding a Class I Fructose 1,6-Bisphosphate Aldolase in Rhodobacter capsulatus. Front Microbiol 2019; 10:301. [PMID: 30853951 PMCID: PMC6395792 DOI: 10.3389/fmicb.2019.00301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 02/04/2019] [Indexed: 11/17/2022] Open
Abstract
This paper describes a mutant (called SB1707) of the Rhodobacter capsulatus wild type strain SB1003 in which a transposon-disrupted rcc01707 gene resulted in a ∼25-fold increase in the accumulation of coproporphyrin III in the medium of phototrophic (anaerobic) cultures grown in a yeast extract/peptone medium. There was little or no stimulation of pigment accumulation in aerobic cultures. Therefore, this effect of rcc01707 mutation appears to be specific for the anaerobic coproporphyrinogen III oxidase HemN as opposed to the aerobic enzyme HemF. The protein encoded by rcc01707 is homologous to Class I fructose 1,6-bisphosphate aldolases, which catalyze a glycolytic reaction that converts fructose 1, 6-bisphosphate to dihydroxyacetone phosphate and glyceraldehyde 3-phosphate, precursors of pyruvate. There were significant differences in coproporphyrin III accumulation using defined media with individual organic acids and sugars as the sole carbon source: pyruvate, succinate and glutamate stimulated accumulation the most, whereas glucose suppressed coproporphyrin III accumulation to 10% of that of succinate. However, although quantitatively lesser, similar effects of carbon source on the amount of accumulated pigment in the culture medium were seen in a wild type control. Therefore, this mutation appears to exaggerate effects also seen in the wild type strain. It is possible that mutation of rcc01707 causes a metabolic bottleneck or imbalance that was not rectified during growth on the several carbon sources tested. However, we speculate that, analogous to other fructose 1,6-bisphosphate aldolases, the rcc01707 gene product has a “moonlighting” activity that in this case is needed for the maximal expression of the hemN gene. Indeed, it was found that the rcc01707 gene is needed for maximal expression of a hemN promoter-lacZ reporter. With the decrease in hemN expression due to the absence of the rcc01707 gene product, coproporphyrinogen III accumulates and is released from the cell, yielding the spontaneous oxidation product coproporphyrin III.
Collapse
Affiliation(s)
- Hao Ding
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Rafael G Saer
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States.,Department of Chemistry, Washington University in St. Louis, St. Louis, MO, United States
| | - J Thomas Beatty
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Imhoff JF, Rahn T, Künzel S, Neulinger SC. New insights into the metabolic potential of the phototrophic purple bacterium Rhodopila globiformis DSM 161 T from its draft genome sequence and evidence for a vanadium-dependent nitrogenase. Arch Microbiol 2018; 200:847-857. [PMID: 29423563 DOI: 10.1007/s00203-018-1489-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 10/18/2022]
Abstract
Rhodopila globiformis: is the most acidophilic anaerobic anoxygenic phototrophic purple bacterium and was isolated from a warm acidic sulfur spring in Yellowstone Park. Its genome is larger than genomes of other phototrophic purple bacteria, containing 7248 Mb with a G + C content of 67.1% and 6749 protein coding and 53 RNA genes. The genome revealed some previously unknown properties such as the presence of two sets of structural genes pufLMC for the photosynthetic reaction center genes and two types of nitrogenases (Mo-Fe and V-Fe nitrogenase), capabilities of autotrophic carbon dioxide fixation and denitrification using nitrite. Rhodopila globiformis assimilates sulfate and utilizes the C1 carbon substrates CO and methanol and a number of organic compounds, in particular, sugars and aromatic compounds. It is among the few purple bacteria containing a large number of pyrroloquinoline quinone-dependent dehydrogenases. It has extended capacities to resist stress by heavy metals, demonstrates different resistance mechanisms to antibiotics, and employs several toxin/antitoxin systems.
Collapse
Affiliation(s)
- Johannes F Imhoff
- GEOMAR Helmholtz Center for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany.
| | - Tanja Rahn
- GEOMAR Helmholtz Center for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Sven Künzel
- Max Planck Institut für Evolutionsbiologie, 24306, Plön, Germany
| | | |
Collapse
|
3
|
Orzeł Ł, Waś J, Kania A, Susz A, Rutkowska-Zbik D, Staroń J, Witko M, Stochel G, Fiedor L. Factors controlling the reactivity of divalent metal ions towards pheophytin a. J Biol Inorg Chem 2017. [PMID: 28639057 PMCID: PMC5517585 DOI: 10.1007/s00775-017-1472-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this study, we evaluate the factors which determine the reactivity of divalent metal ions in the spontaneous formation of metallochlorophylls, using experimental and computational approaches. Kinetic studies were carried out using pheophytin a in reactions with various divalent metal ions combined with non- or weakly-coordinative counter ions in a series of organic solvents. To obtain detailed insights into the solvent effect, the metalations with the whole set of cations were investigated in three solvents and with Zn2+ in seven solvents. The reactions were monitored using electronic absorption spectroscopy and the stopped-flow technique. DFT calculations were employed to shed light on the role of solvent in activating the metal ions towards porphyrinoids. This experimental and computational analysis gives detailed information regarding how the solvent and the counter ion assist/hinder the metalation reaction as activators/inhibitors. The metalation course is dictated to a large extent by the reaction medium, via either the activation or deactivation of the incoming metal ion. The solvent may affect the metalation in several ways, mainly via H-bonding with pyrrolenine nitrogens and the activation/deactivation of the incoming cation. It also seems to affect the activation enthalpy by causing slight conformational changes in the macrocyclic ligand. These new mechanistic insights contribute to a better understanding of the “metal–counterion–solvent” interplay in the metalation of porphyrinoids. In addition, they are highly relevant to the mechanisms of metalation reactions catalyzed by chelatases and explain the differences between the insertion of Mg2+ and other divalent cations.
Collapse
Affiliation(s)
- Ł Orzeł
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Kraków, Poland.
| | - J Waś
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Kraków, Poland
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - A Kania
- Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Kraków, Poland
| | - A Susz
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Kraków, Poland
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - D Rutkowska-Zbik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland
| | - J Staroń
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
- Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - M Witko
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland
| | - G Stochel
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Kraków, Poland
| | - L Fiedor
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
4
|
Calvano CD, Ventura G, Trotta M, Bianco G, Cataldi TRI, Palmisano F. Electron-Transfer Secondary Reaction Matrices for MALDI MS Analysis of Bacteriochlorophyll a in Rhodobacter sphaeroides and Its Zinc and Copper Analogue Pigments. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:125-135. [PMID: 27730524 DOI: 10.1007/s13361-016-1514-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 09/05/2016] [Accepted: 09/20/2016] [Indexed: 06/06/2023]
Abstract
Bacteriochlorophyll a (BChl a), a photosynthetic pigment performing the same functions of chlorophylls in plants, features a bacteriochlorin macrocycle ring (18 π electrons) with two reduced pyrrole rings along with a hydrophobic terpenoid side chain (i.e., the phytol residue). Chlorophylls analysis by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) is not so straightforward since pheophytinization (i.e., release of the central metal ion) and cleavage of the phytol-ester linkage are invariably observed by employing protonating matrices such as 2,5-dihydroxybenzoic acid, sinapinic acid, and α-cyano-4-hydroxycinnamic acid. Using BChl a from Rhodobacter sphaeroides R26 strain as a model system, different electron-transfer (ET) secondary reaction matrices, leading to the formation of almost stable radical ions in both positive ([M]+•) and negative ([M]-•) ionization modes at m/z 910.55, were evaluated. Compared with ET matrices such as trans-2-[3-(4-t-butyl-phenyl)-2-methyl-2-propenylidene]malononitrile (DCTB), 2,2':5',2''-terthiophene (TER), anthracene (ANT), and 9,10-diphenylanthracene (DP-ANT), 1,5-diaminonaphthalene (DAN) was found to provide the highest ionization yield with a negligible fragmentation. DAN also displayed excellent ionization properties for two metal ion-substituted bacteriochlorophylls, (i.e., Zn- and Cu-BChl a at m/z 950.49 and 949.49), respectively. MALDI MS/MS of both radical charged molecular species provide complementary information, thus making analyte identification more straightforward. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Cosima Damiana Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
- Centro di Ricerca Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Giovanni Ventura
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Massimo Trotta
- Istituto Processi Chimico Fisici CNR, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Giuliana Bianco
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell'Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy.
- Centro di Ricerca Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy.
| | - Francesco Palmisano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
- Centro di Ricerca Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| |
Collapse
|
5
|
Absence of the cbb3 Terminal Oxidase Reveals an Active Oxygen-Dependent Cyclase Involved in Bacteriochlorophyll Biosynthesis in Rhodobacter sphaeroides. J Bacteriol 2016; 198:2056-63. [PMID: 27215788 PMCID: PMC4944227 DOI: 10.1128/jb.00121-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/13/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The characteristic green color associated with chlorophyll pigments results from the formation of an isocyclic fifth ring on the tetrapyrrole macrocycle during the biosynthesis of these important molecules. This reaction is catalyzed by two unrelated cyclase enzymes employing different chemistries. Oxygenic phototrophs such as plants and cyanobacteria utilize an oxygen-dependent enzyme, the major component of which is a diiron protein named AcsF, while BchE, an oxygen-sensitive [4Fe-4S] cluster protein, dominates in phototrophs inhabiting anoxic environments, such as the purple phototrophic bacterium Rhodobacter sphaeroides We identify a potential acsF in this organism and assay for activity of the encoded protein in a strain lacking bchE under various aeration regimes. Initially, cells lacking bchE did not demonstrate AcsF activity under any condition tested. However, on removal of a gene encoding a subunit of the cbb3-type respiratory terminal oxidase, cells cultured under regimes ranging from oxic to micro-oxic exhibited cyclase activity, confirming the activity of the oxygen-dependent enzyme in this model organism. Potential reasons for the utilization of an oxygen-dependent enzyme in anoxygenic phototrophs are discussed. IMPORTANCE The formation of the E ring of bacteriochlorophyll pigments is the least well characterized step in their biosynthesis, remaining enigmatic for over 60 years. Two unrelated enzymes catalyze this cyclization step; O2-dependent and O2-independent forms dominate in oxygenic and anoxygenic phototrophs, respectively. We uncover the activity of an O2-dependent enzyme in the anoxygenic purple phototrophic bacterium Rhodobacter sphaeroides, initially by inactivation of the high-affinity terminal respiratory oxidase, cytochrome cbb3 We propose that the O2-dependent form allows for the biosynthesis of a low level of bacteriochlorophyll under oxic conditions, so that a rapid initiation of photosynthetic processes is possible for this bacterium upon a reduction of oxygen tension.
Collapse
|
6
|
Structural and kinetic properties of Rhodobacter sphaeroides photosynthetic reaction centers containing exclusively Zn-coordinated bacteriochlorophyll as bacteriochlorin cofactors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:366-74. [DOI: 10.1016/j.bbabio.2013.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/21/2013] [Accepted: 11/26/2013] [Indexed: 11/22/2022]
|
7
|
Sousa FL, Shavit-Grievink L, Allen JF, Martin WF. Chlorophyll biosynthesis gene evolution indicates photosystem gene duplication, not photosystem merger, at the origin of oxygenic photosynthesis. Genome Biol Evol 2013; 5:200-16. [PMID: 23258841 PMCID: PMC3595025 DOI: 10.1093/gbe/evs127] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
An open question regarding the evolution of photosynthesis is how cyanobacteria came to possess the two reaction center (RC) types, Type I reaction center (RCI) and Type II reaction center (RCII). The two main competing theories in the foreground of current thinking on this issue are that either 1) RCI and RCII are related via lineage divergence among anoxygenic photosynthetic bacteria and became merged in cyanobacteria via an event of large-scale lateral gene transfer (also called "fusion" theories) or 2) the two RC types are related via gene duplication in an ancestral, anoxygenic but protocyanobacterial phototroph that possessed both RC types before making the transition to using water as an electron donor. To distinguish between these possibilities, we studied the evolution of the core (bacterio)chlorophyll biosynthetic pathway from protoporphyrin IX (Proto IX) up to (bacterio)chlorophyllide a. The results show no dichotomy of chlorophyll biosynthesis genes into RCI- and RCII-specific chlorophyll biosynthetic clades, thereby excluding models of fusion at the origin of cyanobacteria and supporting the selective-loss hypothesis. By considering the cofactor demands of the pathway and the source genes from which several steps in chlorophyll biosynthesis are derived, we infer that the cell that first synthesized chlorophyll was a cobalamin-dependent, heme-synthesizing, diazotrophic anaerobe.
Collapse
Affiliation(s)
- Filipa L Sousa
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany.
| | | | | | | |
Collapse
|
8
|
Owens CP, Chim N, Graves AB, Harmston CA, Iniguez A, Contreras H, Liptak MD, Goulding CW. The Mycobacterium tuberculosis secreted protein Rv0203 transfers heme to membrane proteins MmpL3 and MmpL11. J Biol Chem 2013; 288:21714-28. [PMID: 23760277 DOI: 10.1074/jbc.m113.453076] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis, which is becoming an increasingly global public health problem due to the rise of drug-resistant strains. While residing in the human host, M. tuberculosis needs to acquire iron for its survival. M. tuberculosis has two iron uptake mechanisms, one that utilizes non-heme iron and another that taps into the vast host heme-iron pool. To date, proteins known to be involved in mycobacterial heme uptake are Rv0203, MmpL3, and MmpL11. Whereas Rv0203 transports heme across the bacterial periplasm or scavenges heme from host heme proteins, MmpL3 and MmpL11 are thought to transport heme across the membrane. In this work, we characterize the heme-binding properties of the predicted extracellular soluble E1 domains of both MmpL3 and MmpL11 utilizing absorption, electron paramagnetic resonance, and magnetic circular dichroism spectroscopic methods. Furthermore, we demonstrate that Rv0203 transfers heme to both MmpL3-E1 and MmpL11-E1 domains at a rate faster than passive heme dissociation from Rv0203. This work elucidates a key step in the mycobacterial uptake of heme, and it may be useful in the development of anti-tuberculosis drugs targeting this pathway.
Collapse
Affiliation(s)
- Cedric P Owens
- Department of Molecular Biology and Biochemistry, University of California at Irvine, Irvine, California 92697, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Teper E, Makhov P, Golovine K, Canter DJ, Myers CB, Kutikov A, Sterious SN, Uzzo RG, Kolenko VM. The effect of 5-aminolevulinic acid and its derivatives on protoporphyrin IX accumulation and apoptotic cell death in castrate-resistant prostate cancer cells. Urology 2012; 80:1391.e1-7. [PMID: 22950992 DOI: 10.1016/j.urology.2012.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 06/19/2012] [Accepted: 07/05/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To examine whether pharmacologically relevant zinc-binding agents are capable of depleting X-linked inhibitor of apoptosis protein in tumor cells. Our prior work reveals that treatment with zinc-chelating agents induces selective downregulation of the X-linked inhibitor of apoptosis protein in cancer cells of various origins. A precursor of the heme synthetic pathway, 5-aminolevulinic acid, is metabolized to protoporphyrin IX, which is highly reactive with zinc. We assessed whether modified versions of 5-aminolevulinic acid with lipophilic side chains can enhance efficacy and selectivity with respect to protoporphyrin IX accumulation, X-linked inhibitor of apoptosis protein depletion, and tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in human castration-resistant prostate cancer cells. METHODS Seven modified versions of 5-aminolevulinic acid (5 esters and 2 amides) were synthesized. Levels of endogenous protoporphyrin IX were examined by flow cytometry. X-linked inhibitor of apoptosis protein expression was examined by Western blotting. terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling assay was used to assess cell apoptosis. Results were compared qualitatively. RESULTS Accumulation of endogenous protoporphyrin IX by castration-resistant prostate cancer cells was shown to be directly related to the carbon chain length of the esterified 5-aminolevulinic acid derivatives. In fact, treatment with 5-aminolevulinic acid-HE was superior to that achieved by 5-aminolevulinic acid with respect to X-linked inhibitor of apoptosis protein downregulation. 5-aminolevulinic acid and 5-aminolevulinic acid-HE in combination with tumor necrosis factor-related apoptosis-inducing ligand significantly enhanced apoptotic cell death in castration-resistant prostate cancer cell lines. CONCLUSION Esterified derivatives of 5-aminolevulinic acid alone or in combination with other agents may provide therapeutic opportunities in the treatment of castration-resistant prostate cancer by harnessing apoptotic pathways that are triggered by cellular zinc imbalance.
Collapse
Affiliation(s)
- Ervin Teper
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Andreev VP, Sobolev PS, Zaitsev DO, Remizova LA, Tunina SG. Tetraphenylporphine zinc(II) coordination with primary amines and alcohols in chloroform. RUSS J GEN CHEM+ 2012. [DOI: 10.1134/s1070363212060205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Becker EM, Westermann S, Hansson M, Skibsted LH. Parallel enzymatic and non-enzymatic formation of zinc protoporphyrin IX in pork. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.07.090] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Jaschke PR, Hardjasa A, Digby EL, Hunter CN, Beatty JT. A BchD (magnesium chelatase) mutant of rhodobacter sphaeroides synthesizes zinc bacteriochlorophyll through novel zinc-containing intermediates. J Biol Chem 2011; 286:20313-22. [PMID: 21502322 PMCID: PMC3121458 DOI: 10.1074/jbc.m110.212605] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Heme and bacteriochlorophyll a (BChl) biosyntheses share the same pathway to protoporphyrin IX, which then branches as follows. Fe(2+) chelation into the macrocycle by ferrochelatase results in heme formation, and Mg(2+) addition by Mg-chelatase commits the porphyrin to BChl synthesis. It was recently discovered that a bchD (Mg-chelatase) mutant of Rhodobacter sphaeroides produces an alternative BChl in which Mg(2+) is substituted by Zn(2+). Zn-BChl has been found in only one other organism before, the acidophilic Acidiphilium rubrum. Our objectives in this work on the bchD mutant were to 1) elucidate the Zn-BChl biosynthetic pathway in this organism and 2) understand causes for the low amounts of Zn-BChl produced. The bchD mutant was found to contain a Zn-protoporphyrin IX pool, analogous to the Mg-protoporphyrin IX pool found in the wild type strain. Inhibition of ferrochelatase with N-methylprotoporphyrin IX caused Zn-protoporphyrin IX and Zn-BChl levels to decline by 80-90% in the bchD mutant, whereas in the wild type strain, Mg-protoporphyrin IX and Mg-BChl levels increased by 170-240%. Two early metabolites of the Zn-BChl pathway were isolated from the bchD mutant and identified as Zn-protoporphyrin IX monomethyl ester and divinyl-Zn-protochlorophyllide. Our data support a model in which ferrochelatase synthesizes Zn-protoporphyrin IX, and this metabolite is acted on by enzymes of the BChl pathway to produce Zn-BChl. Finally, the low amounts of Zn-BChl in the bchD mutant may be due, at least in part, to a bottleneck upstream of the step where divinyl-Zn-protochlorophyllide is converted to monovinyl-Zn-protochlorophyllide.
Collapse
Affiliation(s)
- Paul R. Jaschke
- From the Department of Microbiology and Immunology, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada and
| | - Amelia Hardjasa
- From the Department of Microbiology and Immunology, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada and
| | - Elizabeth L. Digby
- From the Department of Microbiology and Immunology, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada and
| | - C. Neil Hunter
- the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - J. Thomas Beatty
- From the Department of Microbiology and Immunology, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada and , To whom correspondence should be addressed: Dept. of Microbiology and Immunology, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada. Fax: 604-822-6041; E-mail:
| |
Collapse
|
13
|
Orzeł Ł, Kania A, Rutkowska-Zbik D, Susz A, Stochel G, Fiedor L. Structural and electronic effects in the metalation of porphyrinoids. Theory and experiment. Inorg Chem 2010; 49:7362-71. [PMID: 20690746 DOI: 10.1021/ic100466s] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure-reactivity relationships in metalation reactions of porphyrinoids have been studied using experimental and theoretical methods. A series of eight porphyrinoic ligands, derivatives of chlorophylls, was prepared in which both the peripheral groups and the degrees of saturation of the macrocycle were systematically varied. To reveal the solvent and structural factors which control the interactions of these macroligands with metal centers, their interactions with reactive Zn(2+) and inert Pt(2+) ions were investigated using absorption spectroscopy. In parallel, quantum chemical calculations (density functional theory, DFT) were performed for the same set of molecules to examine the influence of structural and electronic factors on the energy of the frontier orbitals, the nucleophilicity/electronegativity of the macrocycle, its hardness, and conformation. These static descriptors of chemical reactivity, relevant to metalation reactions, were verified against the results obtained in the experimental model. The experimentally obtained kinetic data clearly show that the solvent has a crucial role in the activation of the incoming metal center. In terms of chelator structure, the largest effects concern the size of the delocalized pi-electron system and the presence of side groups. Both the DFT calculations and experimental results show the strong influence of the macrocycle rigidity and of the peripheral groups on the chelating ability of porphyrinoids. In particular, the peripheral functionalization of the macrocyclic system seems to drastically reduce its reactivity toward metal ions. The effect of peripheral groups is two-fold: (i) a lower electron density on the core nitrogens, and (ii) increased rigidity of the macrocycle. The outcomes of the theoretical and experimental analyses are discussed also in terms of their relevance to the mechanism of biological metal insertion in the biosynthesis of heme and chlorophyll.
Collapse
Affiliation(s)
- Łukasz Orzeł
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland
| | | | | | | | | | | |
Collapse
|
14
|
Gomez Maqueo Chew A, Frigaard NU, Bryant DA. Mutational analysis of three bchH paralogs in (bacterio-)chlorophyll biosynthesis in Chlorobaculum tepidum. PHOTOSYNTHESIS RESEARCH 2009; 101:21-34. [PMID: 19568953 DOI: 10.1007/s11120-009-9460-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 06/10/2009] [Indexed: 05/28/2023]
Abstract
The first committed step in the biosynthesis of (bacterio-)chlorophyll is the insertion of Mg2+ into protoporphyrin IX by Mg-chelatase. In all known (B)Chl-synthesizing organisms, Mg-chelatase is encoded by three genes that are homologous to bchH, bchD, and bchI of Rhodobacter spp. The genomes of all sequenced strains of green sulfur bacteria (Chlorobi) encode multiple bchH paralogs, and in the genome of Chlorobaculum tepidum, there are three bchH paralogs, denoted CT1295 (bchT), CT1955 (bchS), and CT1957 (bchH). Cba. tepidum mutants lacking one or two of these paralogs were constructed and characterized. All of the mutants lacking only one of these BchH homologs, as well as bchS bchT and bchH bchT double mutants, which can only produce BchH or BchS, respectively, were viable. However, attempts to construct a bchH bchS double mutant, in which only BchT was functional, were consistently unsuccessful. This result suggested that BchT alone is unable to support the minimal (B)Chl synthesis requirements of cells required for viability. The pigment compositions of the various mutant strains varied significantly. The BChl c content of the bchS mutant was only approximately 10% of that of the wild type, and this mutant excreted large amounts of protoporphyrin IX into the growth medium. The observed differences in BChl c production of the mutant strains were consistent with the hypothesis that the three BchH homologs function in end product regulation and/or substrate channeling of intermediates in the BChl c biosynthetic pathway.
Collapse
Affiliation(s)
- Aline Gomez Maqueo Chew
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, S-235 Frear Building, PA 16802, University Park, USA
| | | | | |
Collapse
|
15
|
Orzeł Ł, van Eldik R, Fiedor L, Stochel G. Mechanistic Information on Cu
II
Metalation and Transmetalation of Chlorophylls. Eur J Inorg Chem 2009. [DOI: 10.1002/ejic.200800662] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Łukasz Orzeł
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30‐060 Kraków, Poland, Fax: +48‐12‐6340515,
- Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen‐Nürnberg, Egerlandstrasse 1, 91058 Erlangen, Germany, Fax: +49‐9131‐8527387,
| | - Rudi van Eldik
- Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen‐Nürnberg, Egerlandstrasse 1, 91058 Erlangen, Germany, Fax: +49‐9131‐8527387,
| | - Leszek Fiedor
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30‐387 Kraków, Poland, Fax: +48‐12‐6646902
| | - Grażyna Stochel
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30‐060 Kraków, Poland, Fax: +48‐12‐6340515,
| |
Collapse
|
16
|
|
17
|
Schneider J, Wulf J, Surowsky B, Schmidt H, Schwägele F, Schlüter O. Fluorimetric detection of protoporphyrins as an indicator for quality monitoring of fresh intact pork meat. Meat Sci 2008; 80:1320-5. [DOI: 10.1016/j.meatsci.2008.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 06/10/2008] [Accepted: 06/11/2008] [Indexed: 10/22/2022]
|
18
|
Masuda T. Recent overview of the Mg branch of the tetrapyrrole biosynthesis leading to chlorophylls. PHOTOSYNTHESIS RESEARCH 2008; 96:121-43. [PMID: 18273690 DOI: 10.1007/s11120-008-9291-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 01/29/2008] [Indexed: 05/20/2023]
Abstract
In plants, chlorophylls (chlorophyll a and chlorophyll b) are the most abundant tetrapyrrole molecules and are essential for photosynthesis. The first committed step of chlorophyll biosynthesis is the insertion of Mg(2+) into protoporphyrin IX, and thus subsequent steps of the biosynthesis are called the Mg branch. As the Mg branch in higher plants is complex, it was not until the last decade--after many years of intensive research--that most of the genes encoding the enzymes for the pathway were identified. Biochemical and molecular genetic analyses have certainly modified the classic metabolic map of tetrapyrrole biosynthesis, and only recently have the molecular mechanisms of regulatory pathways governing chlorophyll metabolism been elucidated. As a result, novel functions of tetrapyrroles and biosynthetic enzymes have been proposed. In this review, I summarize the recent findings on enzymes involved in the Mg branch, mainly in higher plants.
Collapse
Affiliation(s)
- Tatsuru Masuda
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
19
|
Key function for the CCAAT-binding factor Php4 to regulate gene expression in response to iron deficiency in fission yeast. EUKARYOTIC CELL 2008; 7:493-508. [PMID: 18223116 DOI: 10.1128/ec.00446-07] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The fission yeast Schizosaccharomyces pombe responds to the deprivation of iron by inducing the expression of the php4+ gene, which encodes a negative regulatory subunit of the heteromeric CCAAT-binding factor. Once formed, the Php2/3/4/5 transcription complex is required to inactivate a subset of genes encoding iron-using proteins. Here, we used a pan-S. pombe microarray to study the transcriptional response to iron starvation and identified 86 genes that exhibit php4+-dependent changes on a genome-wide scale. One of these genes encodes the iron-responsive transcriptional repressor Fep1, whose mRNA levels were decreased after treatment with the permeant iron chelator 2,2'-dipyridyl. In addition, several genes encoding the components of iron-dependent biochemical pathways, including the tricarboxylic acid cycle, mitochondrial respiration, amino acid biosynthesis, and oxidative stress defense, were downregulated in response to iron deficiency. Furthermore, Php4 repressed transcription when brought to a promoter using a yeast DNA-binding domain, and iron deprivation was required for this repression. On the other hand, Php4 was constitutively active when glutathione levels were depleted within the cell. Based on these and previous results, we propose that iron-dependent inactivation of Php4 is regulated at two distinct levels: first, at the transcriptional level by the iron-responsive GATA factor Fep1 and second, at the posttranscriptional level by a mechanism yet to be identified, which inhibits Php4-mediated repressive function when iron is abundant.
Collapse
|
20
|
Harada J, Miyago S, Mizoguchi T, Azai C, Inoue K, Tamiaki H, Oh-oka H. Accumulation of chlorophyllous pigments esterified with the geranylgeranyl group and photosynthetic competence in the CT2256-deleted mutant of the green sulfur bacterium Chlorobium tepidum. Photochem Photobiol Sci 2008; 7:1179-87. [DOI: 10.1039/b802435a] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Møller JK, Adamsen CE, Catharino RR, Skibsted LH, Eberlin MN. Mass spectrometric evidence for a zinc–porphyrin complex as the red pigment in dry-cured Iberian and Parma ham. Meat Sci 2007; 75:203-10. [DOI: 10.1016/j.meatsci.2006.07.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 06/01/2006] [Accepted: 07/07/2006] [Indexed: 11/30/2022]
|
22
|
Tomi T, Shibata Y, Ikeda Y, Taniguchi S, Haik C, Mataga N, Shimada K, Itoh S. Energy and electron transfer in the photosynthetic reaction center complex of Acidiphilium rubrum containing Zn-bacteriochlorophyll a studied by femtosecond up-conversion spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:22-30. [PMID: 17169326 DOI: 10.1016/j.bbabio.2006.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 10/11/2006] [Accepted: 10/27/2006] [Indexed: 11/21/2022]
Abstract
A photosynthetic reaction center (RC) complex was isolated from a purple bacterium, Acidiphilium rubrum. The RC contains bacteriochlorophyll a containing Zn as a central metal (Zn-BChl a) and bacteriopheophytin a (BPhe a) but no Mg-BChl a. The absorption peaks of the Zn-BChl a dimer (P(Zn)), the accessory Zn-BChl a (B(Zn)), and BPhe a (H) at 4 K in the RC showed peaks at 875, 792, and 753 nm, respectively. These peaks were shorter than the corresponding peaks in Rhodobacter sphaeroides RC that has Mg-BChl a. The kinetics of fluorescence from P(Zn)(*), measured by fluorescence up-conversion, showed the rise and the major decay with time constants of 0.16 and 3.3 ps, respectively. The former represents the energy transfer from B(Zn)(*) to P(Zn), and the latter, the electron transfer from P(Zn) to H. The angle between the transition dipoles of B(Zn) and P(Zn) was estimated to be 36 degrees based on the fluorescence anisotropy. The time constants and the angle are almost equal to those in the Rb. sphaeroides RC. The high efficiency of A. rubrum RC seems to be enabled by the chemical property of Zn-BChl a and by the L168HE modification of the RC protein that modifies P(Zn).
Collapse
Affiliation(s)
- Tetsuo Tomi
- Department of Material Science (Physics), Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8602, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Sirijovski N, Olsson U, Lundqvist J, Al-Karadaghi S, Willows R, Hansson M. ATPase activity associated with the magnesium chelatase H-subunit of the chlorophyll biosynthetic pathway is an artefact. Biochem J 2006; 400:477-84. [PMID: 16928192 PMCID: PMC1698598 DOI: 10.1042/bj20061103] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Magnesium chelatase inserts Mg2+ into protoporphyrin IX and is the first unique enzyme of the chlorophyll biosynthetic pathway. It is a heterotrimeric enzyme, composed of I- (40 kDa), D- (70 kDa) and H- (140 kDa) subunits. The I- and D-proteins belong to the family of AAA+ (ATPases associated with various cellular activities), but only I-subunit hydrolyses ATP to ADP. The D-subunits provide a platform for the assembly of the I-subunits, which results in a two-tiered hexameric ring complex. However, the D-subunits are unstable in the chloroplast unless ATPase active I-subunits are present. The H-subunit binds protoporphyrin and is suggested to be the catalytic subunit. Previous studies have indicated that the H-subunit also has ATPase activity, which is in accordance with an earlier suggested two-stage mechanism of the reaction. In the present study, we demonstrate that gel filtration chromatography of affinity-purified Rhodobacter capsulatus H-subunit produced in Escherichia coli generates a high- and a low-molecular-mass fraction. Both fractions were dominated by the H-subunit, but the ATPase activity was only found in the high-molecular-mass fraction and magnesium chelatase activity was only associated with the low-molecular-mass fraction. We demonstrated that light converted monomeric low-molecular-mass H-subunit into high-molecular-mass aggregates. We conclude that ATP utilization by magnesium chelatase is solely connected to the I-subunit and suggest that a contaminating E. coli protein, which binds to aggregates of the H-subunit, caused the previously reported ATPase activity of the H-subunit.
Collapse
Affiliation(s)
- Nick Sirijovski
- *Department of Biochemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Ulf Olsson
- *Department of Biochemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Joakim Lundqvist
- †Department of Molecular Biophysics, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Salam Al-Karadaghi
- †Department of Molecular Biophysics, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Robert D. Willows
- ‡Department of Biological Science, Macquarie University, Macquarie Drive, North Ryde 2109, Australia
| | - Mats Hansson
- *Department of Biochemistry, Lund University, Box 124, SE-22100 Lund, Sweden
- To whom correspondence should be addressed (email )
| |
Collapse
|
24
|
Ducey TF, Carson MB, Orvis J, Stintzi AP, Dyer DW. Identification of the iron-responsive genes of Neisseria gonorrhoeae by microarray analysis in defined medium. J Bacteriol 2005; 187:4865-74. [PMID: 15995201 PMCID: PMC1169496 DOI: 10.1128/jb.187.14.4865-4874.2005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Accepted: 04/11/2005] [Indexed: 11/20/2022] Open
Abstract
To ensure survival, most bacteria must acquire iron, a resource that is sequestered by mammalian hosts. Pathogenic bacteria have therefore evolved intricate systems to sense iron limitation and regulate gene expression appropriately. We used a pan-Neisseria microarray to examine genes regulated in Neisseria gonorrhoeae in response to iron availability in defined medium. Overall, 203 genes varied in expression, 109 up-regulated and 94 down-regulated by iron deprivation. In iron-replete medium, genes essential to rapid bacterial growth were preferentially expressed, while iron transport functions, and predominantly genes of unknown function, were expressed in low-iron medium. Of those TonB-dependent proteins encoded in the FA1090 genome with unknown ligand specificity, expression of three was not controlled by iron availability, suggesting that these receptors may not be high-affinity transporters for iron-containing ligands. Approximately 30% of the operons regulated by iron appeared to be directly under control of Fur. Our data suggest a regulatory cascade where Fur indirectly controls gene expression by affecting the transcription of three secondary regulators. Our data also suggest that a second MerR-like regulator may be directly responding to iron availability and controlling transcription independent of the Fur protein. Comparison of our data with those recently published for Neisseria meningitidis revealed that only a small portion of genes were found to be similarly regulated in these closely related pathogens, while a large number of genes derepressed during iron starvation were unique to each organism.
Collapse
Affiliation(s)
- Thomas F Ducey
- Laboratory for Genomics and Bioinformatics, Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Biomedical Research Center, Oklahoma City, 73104, USA.
| | | | | | | | | |
Collapse
|
25
|
Ikegami I, Nemoto A, Sakashita K. The Formation of Zn-Chl a in Chlorella Heterotrophically Grown in the Dark with an Excessive Amount of Zn2+. ACTA ACUST UNITED AC 2005; 46:729-35. [PMID: 15753102 DOI: 10.1093/pcp/pci079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chlorella, when heterotrophically cultivated in the dark, is able to grow with Zn2+ at 10-40 mM, which is 10 times the concentration lethal to autotrophically grown cells. However, the lag phase is prolonged with increasing concentrations of Zn2+; for example, in this study, 1 d of the control lag phase was prolonged to about 16 d with Zn2+ at 16.7 mM (x2,000 of the control). Once the cells started to grow, the log phase was finished within 4-6 d regardless of Zn concentration, which was almost the same as that of the control. The photosysystem I reaction center chlorophyll, P700, and the far-red fluorescence were detected only after the late log phase of the growth curve, suggesting that chlorophyll-protein complexes can be organized after cell division has ceased. Interestingly, at more than 16.7 mM of Zn2+, Zn-chlorophyll a was accumulated and finally accounted for about 25% of the total chlorophyll a in the late stationary phase. We found that the Zn-chlorophyll a was present in the thylakoid membranes and not in the soluble fractions of the cells. The rather low fluorescence yield at around 680 nm in the stationary phase suggests that Zn-chlorophyll a can transfer its excitation energy to other chlorophylls. Before accumulation of Zn-chlorophyll a, a marked amount of pheophytin a was temporally accumulated, suggesting that Zn-chlorophyll a could be chemically synthesized via pheophytin a.
Collapse
Affiliation(s)
- Isamu Ikegami
- Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa, 199-0195 Japan.
| | | | | |
Collapse
|
26
|
Wakamatsu J, Nishimura T, Hattori A. A Zn–porphyrin complex contributes to bright red color in Parma ham. Meat Sci 2004; 67:95-100. [DOI: 10.1016/j.meatsci.2003.09.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Revised: 09/23/2003] [Accepted: 09/23/2003] [Indexed: 10/26/2022]
|
27
|
Hiraishi A, Shimada K. Aerobic anoxygenic photosynthetic bacteria with zinc-bacteriochlorophyll. J GEN APPL MICROBIOL 2001; 47:161-180. [PMID: 12483616 DOI: 10.2323/jgam.47.161] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Naturally occurring chlorophyllous pigments, which function as the cofactor in the early photochemical reaction of photosynthesis, have been proven beyond question to be magnesium-complexed porphyrin derivatives. Phototrophic organisms that use (bacterio)chlorophylls ([B]Chls) containing metals other than Mg were unknown for a long time. This common knowledge of natural photosynthesis has recently been modified by the striking finding that a novel purple pigment, zinc-chelated-BChl (Zn-BChl) a, is present as the major and functional pigment in species of the genus Acidiphilium. Acidiphilium species are obligately acidophilic chemoorganotrophic bacteria that grow and produce photopigments only under aerobic conditions. Although the mechanism of photosynthesis with Zn-BChl a in Acidiphilium species is similar to that seen in common purple bacteria, some characteristic photosynthetic features of the acidophilic bacteria are also found. The discovery of natural photosynthesis with Zn-BChl has not only provided a new insight into our understanding of bacterial photosynthesis but also raised some interesting questions to be clarified. The major questions are why the acidophilic bacteria have selected Zn-BChl for their photosynthesis and how they synthesize Zn-BChl and express photosynthetic activity with it in their natural habitats. In this article we review the current knowledge of the biology of Acidiphilium as aerobic photosynthetic bacteria with Zn-BChl a and discuss the interesting topics noted above.
Collapse
Affiliation(s)
- Akira Hiraishi
- Department of Ecological Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan
| | | |
Collapse
|