1
|
Lebedeva M, Nikonova E, Babakov A, Kolesnikova V, Razhina O, Zlobin N, Taranov V, Nikonov O. Interaction of Solanum tuberosum L. translation initiation factors eIF4E with potato virus Y VPg: Apprehend and avoid. Biochimie 2024; 219:1-11. [PMID: 37562705 DOI: 10.1016/j.biochi.2023.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Potato virus Y (PVY) is one of the most dangerous agricultural pathogens that causes substantial harm to vegetative propagated crops, such as potatoes (Solanum tuberosum L.). A necessary condition for PVY infection is an interaction between the plant cap-binding translation initiation factors eIF4E and a viral protein VPg, which mimics the cap-structure. In this study, we identified the point mutations in potato eIF4E1 and eIF4E2 that disrupt VPg binding while preserving the functional activity. For the structural interpretation of the obtained results, molecular models of all the studied forms of eIF4E1 and eIF4E2 were constructed and analyzed via molecular dynamics. The results of molecular dynamics simulations corresponds to the biochemical results and suggests that the β1β2 loop plays a key role in the stabilization of both eIF4E-cap and eIF4E-VPg complexes.
Collapse
Affiliation(s)
- Marina Lebedeva
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550, Moscow, Russia.
| | - Ekaterina Nikonova
- Institute of Protein Research, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - Alexey Babakov
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550, Moscow, Russia
| | - Victoria Kolesnikova
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550, Moscow, Russia; Institute of Protein Research, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - Oksana Razhina
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550, Moscow, Russia
| | - Nikolay Zlobin
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550, Moscow, Russia
| | - Vasiliy Taranov
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, 127550, Moscow, Russia
| | - Oleg Nikonov
- Institute of Protein Research, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| |
Collapse
|
2
|
Lebedeva MV, Nikonova EY, Terentiev AA, Taranov VV, Babakov AV, Nikonov OS. VPg of Potato Virus Y and Potato Cap-Binding eIF4E Factors: Selective Interaction and Its Supposed Mechanism. BIOCHEMISTRY (MOSCOW) 2021; 86:1128-1138. [PMID: 34565316 DOI: 10.1134/s000629792109008x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Potato virus Y (PVY) is one of the most common and harmful plant viruses. Translation of viral RNA starts with the interaction between the plant cap-binding translation initiation factors eIF4E and viral genome-linked protein (VPg) covalently attached to the viral RNA. Disruption of this interaction is one of the natural mechanisms of plant resistance to PVY. The multigene eIF4E family in the potato (Solanum tuberosum L.) genome contains genes for the translation initiation factors eIF4E1, eIF4E2, and eIF(iso)4E. However, which of these factors can be recruited by the PVY, as well as the mechanism of this interaction, remain obscure. Here, we showed that the most common VPg variant from the PVY strain NTN interacts with eIF4E1 and eIF4E2, but not with eIF(iso)4E. Based on the VPg, eIF4E1, and eIF4E2 models and data on the natural polymorphism of VPg amino acid sequence, we suggested that the key role in the recognition of potato cap-binding factors belongs to the R104 residue of VPg. To verify this hypothesis, we created VPg mutants with substitutions at position 104 and examined their ability to interact with potato eIF4E factors. The obtained data were used to build the theoretical model of the VPg-eIF4E2 complex that differs significantly from the earlier models of VPg complexes with eIF4E proteins, but is in a good agreement with the current biochemical data.
Collapse
Affiliation(s)
- Marina V Lebedeva
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, 127550, Russia.
| | - Ekaterina Y Nikonova
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alexey A Terentiev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Russia.,Scientific and Educational Center in Chernogolovka, Moscow Region State University, Mytishchi, Moscow Region, 141014, Russia.,Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vasiliy V Taranov
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, 127550, Russia
| | - Alexey V Babakov
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, 127550, Russia
| | - Oleg S Nikonov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
3
|
Han NC, Kelly P, Ibba M. Translational quality control and reprogramming during stress adaptation. Exp Cell Res 2020; 394:112161. [PMID: 32619498 DOI: 10.1016/j.yexcr.2020.112161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022]
Abstract
Organisms encounter stress throughout their lives, and therefore require the ability to respond rapidly to environmental changes. Although transcriptional responses are crucial for controlling changes in gene expression, regulation at the translational level often allows for a faster response at the protein levels which permits immediate adaptation. The fidelity and robustness of protein synthesis are actively regulated under stress. For example, mistranslation can be beneficial to cells upon environmental changes and also alters cellular stress responses. Additionally, stress modulates both global and selective translational regulation through mechanisms including the change of aminoacyl-tRNA activity, tRNA pool reprogramming and ribosome heterogeneity. In this review, we draw on studies from both the prokaryotic and eukaryotic systems to discuss current findings of cellular adaptation at the level of translation, specifically translational fidelity and activity changes in response to a wide array of environmental stressors including oxidative stress, nutrient depletion, temperature variation, antibiotics and host colonization.
Collapse
Affiliation(s)
- Nien-Ching Han
- Department of Microbiology, The Ohio State University, Columbus, OH, 43220, USA
| | - Paul Kelly
- The Ohio State University Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH, 43220, USA
| | - Michael Ibba
- Department of Microbiology, The Ohio State University, Columbus, OH, 43220, USA.
| |
Collapse
|
4
|
eIF4E and Interactors from Unicellular Eukaryotes. Int J Mol Sci 2020; 21:ijms21062170. [PMID: 32245232 PMCID: PMC7139794 DOI: 10.3390/ijms21062170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 12/22/2022] Open
Abstract
eIF4E, the mRNA cap-binding protein, is well known as a general initiation factor allowing for mRNA-ribosome interaction and cap-dependent translation in eukaryotic cells. In this review we focus on eIF4E and its interactors in unicellular organisms such as yeasts and protozoan eukaryotes. In a first part, we describe eIF4Es from yeast species such as Saccharomyces cerevisiae, Candida albicans, and Schizosaccharomyces pombe. In the second part, we will address eIF4E and interactors from parasite unicellular species—trypanosomatids and marine microorganisms—dinoflagellates. We propose that different strategies have evolved during evolution to accommodate cap-dependent translation to differing requirements. These evolutive “adjustments” involve various forms of eIF4E that are not encountered in all microorganismic species. In yeasts, eIF4E interactors, particularly p20 and Eap1 are found exclusively in Saccharomycotina species such as S. cerevisiae and C. albicans. For protozoan parasites of the Trypanosomatidae family beside a unique cap4-structure located at the 5′UTR of all mRNAs, different eIF4Es and eIF4Gs are active depending on the life cycle stage of the parasite. Additionally, an eIF4E-interacting protein has been identified in Leishmania major which is important for switching from promastigote to amastigote stages. For dinoflagellates, little is known about the structure and function of the multiple and diverse eIF4Es that have been identified thanks to widespread sequencing in recent years.
Collapse
|
5
|
Bruns AN, Li S, Mohannath G, Bisaro DM. Phosphorylation of Arabidopsis eIF4E and eIFiso4E by SnRK1 inhibits translation. FEBS J 2019; 286:3778-3796. [PMID: 31120171 DOI: 10.1111/febs.14935] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/28/2019] [Accepted: 05/21/2019] [Indexed: 01/01/2023]
Abstract
Regulation of protein synthesis is critical for maintaining cellular homeostasis. In mammalian systems, translational regulatory networks have been elucidated in considerable detail. In plants, however, regulation occurs through different mechanisms that remain largely elusive. In this study, we present evidence that the Arabidopsis thaliana energy sensing kinase SnRK1, a homologue of mammalian AMP-activated kinase and yeast sucrose non-fermenting 1 (SNF1), inhibits translation by phosphorylating the cap binding proteins eIF4E and eIFiso4E. We establish that eIF4E and eIFiso4E contain two deeply conserved SnRK1 consensus target sites and that both interact with SnRK1 in vivo. We then demonstrate that SnRK1 phosphorylation inhibits the ability of Arabidopsis eIF4E and eIFiso4E to complement a yeast strain lacking endogenous eIF4E, and that inhibition correlates with repression of polysome formation. Finally, we show that SnRK1 over-expression in Nicotiana benthamiana plants reduces polysome formation, and that this effect can be counteracted by transient expression of eIF4E or mutant eIF4E containing non-phosphorylatable SnRK1 target residues, but not by a phosphomimic eIF4E. Together, these studies elucidate a novel and direct pathway for translational control in plant cells. In light of previous findings that SnRK1 conditions an innate antiviral defense and is inhibited by geminivirus pathogenicity factors, we speculate that phosphorylation of cap binding proteins may be a component of the resistance mechanism.
Collapse
Affiliation(s)
- Aaron N Bruns
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA.,Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Sizhun Li
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Gireesha Mohannath
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - David M Bisaro
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA.,Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
6
|
Lu H, Mazumder M, Jaikaran ASI, Kumar A, Leis EK, Xu X, Altmann M, Cochrane A, Woolley GA. A Yeast System for Discovering Optogenetic Inhibitors of Eukaryotic Translation Initiation. ACS Synth Biol 2019; 8:744-757. [PMID: 30901519 DOI: 10.1021/acssynbio.8b00386] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The precise spatiotemporal regulation of protein synthesis is essential for many complex biological processes such as memory formation, embryonic development, and tumor formation. Current methods used to study protein synthesis offer only a limited degree of spatiotemporal control. Optogenetic methods, in contrast, offer the prospect of controlling protein synthesis noninvasively within minutes and with a spatial scale as small as a single synapse. Here, we present a hybrid yeast system where growth depends on the activity of human eukaryotic initiation factor 4E (eIF4E) that is suitable for screening optogenetic designs for the down-regulation of protein synthesis. We used this system to screen a diverse initial panel of 15 constructs designed to couple a light switchable domain (PYP, RsLOV, AsLOV, Dronpa) to 4EBP2 (eukaryotic initiation factor 4E binding protein 2), a native inhibitor of translation initiation. We identified cLIPS1 (circularly permuted LOV inhibitor of protein synthesis 1), a fusion of a segment of 4EBP2 and a circularly permuted version of the LOV2 domain from Avena sativa, as a photoactivated inhibitor of translation. Adapting the screen for higher throughput, we tested small libraries of cLIPS1 variants and found cLIPS2, a construct with an improved degree of optical control. We show that these constructs can both inhibit translation in yeast harboring a human eIF4E in vivo, and bind human eIF4E in vitro in a light-dependent manner. This hybrid yeast system thus provides a convenient way for discovering optogenetic constructs that can regulate human eIF4E-dependent translation initiation in a mechanistically defined manner.
Collapse
Affiliation(s)
- Huixin Lu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Mostafizur Mazumder
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Anna S. I. Jaikaran
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Anil Kumar
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Eric K. Leis
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Xiuling Xu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Michael Altmann
- Institut für Biochemie und Molekulare Medizin, Universität Bern, Bühlstr. 28, CH-3012 Bern, Switzerland
| | - Alan Cochrane
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - G. Andrew Woolley
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
7
|
Severance AL, Latham KE. Meeting the meiotic challenge: Specializations in mammalian oocyte spindle formation. Mol Reprod Dev 2018; 85:178-187. [PMID: 29411912 DOI: 10.1002/mrd.22967] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 01/02/2023]
Abstract
Oocytes uniquely accumulate cytoplasmic constituents to support early embryogenesis. This unique specialization is accompanied by acquisition of a large size and by execution of asymmetric meiotic divisions that preserve precious ooplasm through the expulsion of minimal size polar bodies. While often taken for granted, these basic features of oogenesis necessitate unique specializations of the meiotic apparatus. These include a chromatin-sourced RanGTP gradient that restricts spindle size by defining a spatial domain where meiotic spindles form, acentriolar centrosomes that rely on microtubule organizing centers to form spindle poles, and an actin-based mechanism for asymmetric spindle positioning. Additionally, localized protein synthesis to support spindle formation is achieved in the spindle forming region, whilst protein synthesis is reduced elsewhere in the ooplasm. This is achieved through enrichment of spindle-related mRNAs in the spindle forming region combined with local PLK1-mediated phosphorylation and inactivation of the translational repressor EIF4EBP1. This allows PLK1 to function as an important regulatory nexus through which endogenous and exogenous signals can impact spindle formation and function, and highlights the important role that PLK1 may have in maintaining oocyte quality and fertility.
Collapse
Affiliation(s)
- Ashley L Severance
- Genetics Graduate Program, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, East Lansing, Michigan
| | - Keith E Latham
- Reproductive and Developmental Sciences Program, East Lansing, Michigan.,Department of Animal Science, Michigan State University, East Lansing, Michigan.,Department of Obstetrics, Gynecology and Reproductive Biology, East Lansing, Michigan
| |
Collapse
|
8
|
Poulicard N, Pacios LF, Gallois JL, Piñero D, García-Arenal F. Human Management of a Wild Plant Modulates the Evolutionary Dynamics of a Gene Determining Recessive Resistance to Virus Infection. PLoS Genet 2016; 12:e1006214. [PMID: 27490800 PMCID: PMC4973933 DOI: 10.1371/journal.pgen.1006214] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/01/2016] [Indexed: 02/07/2023] Open
Abstract
This work analyses the genetic variation and evolutionary patterns of recessive resistance loci involved in matching-allele (MA) host-pathogen interactions, focusing on the pvr2 resistance gene to potyviruses of the wild pepper Capsicum annuum glabriusculum (chiltepin). Chiltepin grows in a variety of wild habitats in Mexico, and its cultivation in home gardens started about 25 years ago. Potyvirus infection of Capsicum plants requires the physical interaction of the viral VPg with the pvr2 product, the translation initiation factor eIF4E1. Mutations impairing this interaction result in resistance, according to the MA model. The diversity of pvr2/eIF4E1 in wild and cultivated chiltepin populations from six biogeographical provinces in Mexico was analysed in 109 full-length coding sequences from 97 plants. Eleven alleles were found, and their interaction with potyvirus VPg in yeast-two-hybrid assays, plus infection assays of plants, identified six resistance alleles. Mapping resistance mutations on a pvr2/eIF4E1 model structure showed that most were around the cap-binding pocket and strongly altered its surface electrostatic potential, suggesting resistance-associated costs due to functional constraints. The pvr2/eIF4E1 phylogeny established that susceptibility was ancestral and resistance was derived. The spatial structure of pvr2/eIF4E1 diversity differed from that of neutral markers, but no evidence of selection for resistance was found in wild populations. In contrast, the resistance alleles were much more frequent, and positive selection stronger, in cultivated chiltepin populations, where diversification of pvr2/eIF4E1 was higher. This analysis of the genetic variation of a recessive resistance gene involved in MA host-pathogen interactions in populations of a wild plant show that evolutionary patterns differ according to the plant habitat, wild or cultivated. It also demonstrates that human management of the plant population has profound effects on the diversity and the evolution of the resistance gene, resulting in the selection of resistance alleles.
Collapse
Affiliation(s)
- Nils Poulicard
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Luis Fernández Pacios
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de Montegancedo, Pozuelo de Alarcón (Madrid) and Departamento de Sistemas y Recursos Naturales, E.T.S.I. Montes, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Jean-Luc Gallois
- Institut National de Recherche Agronomique (INRA), UR1052, Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Domaine Saint Maurice, CS60094, 84143, Montfavet, France
| | - Daniel Piñero
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, México, D.F., México
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
9
|
Abstract
Although the eukaryotic TOR (target of rapamycin) kinase signalling pathway has emerged as a key player for integrating nutrient-, energy- and stress-related cues with growth and metabolic outputs, relatively little is known of how this ancient regulatory mechanism has been adapted in higher plants. Drawing comparisons with the substantial knowledge base around TOR kinase signalling in fungal and animal systems, functional aspects of this pathway in plants are reviewed. Both conserved and divergent elements are discussed in relation to unique aspects associated with an autotrophic mode of nutrition and adaptive strategies for multicellular development exhibited by plants.
Collapse
|
10
|
Hackl EV. Effect of Temperature on the Conformation of Natively Unfolded Protein 4E-BP1 in Aqueous and Mixed Solutions Containing Trifluoroethanol and Hexafluoroisopropanol. Protein J 2014; 34:18-28. [DOI: 10.1007/s10930-014-9595-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Ashby JA, Stevenson CEM, Jarvis GE, Lawson DM, Maule AJ. Structure-based mutational analysis of eIF4E in relation to sbm1 resistance to pea seed-borne mosaic virus in pea. PLoS One 2011; 6:e15873. [PMID: 21283665 PMCID: PMC3025909 DOI: 10.1371/journal.pone.0015873] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 11/26/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Pea encodes eukaryotic translation initiation factor eIF4E (eIF4E(S)), which supports the multiplication of Pea seed-borne mosaic virus (PSbMV). In common with hosts for other potyviruses, some pea lines contain a recessive allele (sbm1) encoding a mutant eIF4E (eIF4E(R)) that fails to interact functionally with the PSbMV avirulence protein, VPg, giving genetic resistance to infection. METHODOLOGY/PRINCIPAL FINDINGS To study structure-function relationships between pea eIF4E and PSbMV VPg, we obtained an X-ray structure for eIF4E(S) bound to m(7)GTP. The crystallographic asymmetric unit contained eight independent copies of the protein, providing insights into the structurally conserved and flexible regions of eIF4E. To assess indirectly the importance of key residues in binding to VPg and/or m(7)GTP, an extensive range of point mutants in eIF4E was tested for their ability to complement PSbMV multiplication in resistant pea tissues and for complementation of protein translation, and hence growth, in an eIF4E-defective yeast strain conditionally dependent upon ectopic expression of eIF4E. The mutants also dissected individual contributions from polymorphisms present in eIF4E(R) and compared the impact of individual residues altered in orthologous resistance alleles from other crop species. The data showed that essential resistance determinants in eIF4E differed for different viruses although the critical region involved (possibly in VPg-binding) was conserved and partially overlapped with the m(7)GTP-binding region. This overlap resulted in coupled inhibition of virus multiplication and translation in the majority of cases, although the existence of a few mutants that uncoupled the two processes supported the view that the specific role of eIF4E in potyvirus infection may not be restricted to translation. CONCLUSIONS/SIGNIFICANCE The work describes the most extensive structural analysis of eIF4E in relation to potyvirus resistance. In addition to defining functional domains within the eIF4E structure, we identified eIF4E alleles with the potential to convey novel virus resistance phenotypes.
Collapse
Affiliation(s)
- Jamie A. Ashby
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Gavin E. Jarvis
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - David M. Lawson
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Andrew J. Maule
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
12
|
German-Retana S, Walter J, Doublet B, Roudet-Tavert G, Nicaise V, Lecampion C, Houvenaghel MC, Robaglia C, Michon T, Le Gall O. Mutational analysis of plant cap-binding protein eIF4E reveals key amino acids involved in biochemical functions and potyvirus infection. J Virol 2008; 82:7601-12. [PMID: 18480444 PMCID: PMC2493313 DOI: 10.1128/jvi.00209-08] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 05/06/2008] [Indexed: 12/16/2022] Open
Abstract
The eukaryotic translation initiation factor 4E (eIF4E) (the cap-binding protein) is involved in natural resistance against several potyviruses in plants. In lettuce, the recessive resistance genes mo1(1) and mo1(2) against Lettuce mosaic virus (LMV) are alleles coding for forms of eIF4E unable, or less effective, to support virus accumulation. A recombinant LMV expressing the eIF4E of a susceptible lettuce variety from its genome was able to produce symptoms in mo1(1) or mo1(2) varieties. In order to identify the eIF4E amino acid residues necessary for viral infection, we constructed recombinant LMV expressing eIF4E with point mutations affecting various amino acids and compared the abilities of these eIF4E mutants to complement LMV infection in resistant plants. Three types of mutations were produced in order to affect different biochemical functions of eIF4E: cap binding, eIF4G binding, and putative interaction with other virus or host proteins. Several mutations severely reduced the ability of eIF4E to complement LMV accumulation in a resistant host and impeded essential eIF4E functions in yeast. However, the ability of eIF4E to bind a cap analogue or to fully interact with eIF4G appeared unlinked to LMV infection. In addition to providing a functional mutational map of a plant eIF4E, this suggests that the role of eIF4E in the LMV cycle might be distinct from its physiological function in cellular mRNA translation.
Collapse
Affiliation(s)
- Sylvie German-Retana
- Interactions Plante-Virus, UMR GDPP 1090, INRA Université de Bordeaux 2, BP 81, F-33883 Villenave d'Ornon Cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Charron C, Nicolaï M, Gallois JL, Robaglia C, Moury B, Palloix A, Caranta C. Natural variation and functional analyses provide evidence for co-evolution between plant eIF4E and potyviral VPg. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:56-68. [PMID: 18182024 DOI: 10.1111/j.1365-313x.2008.03407.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Amino acid substitutions in the eukaryotic translation initiation factor 4E (eIF4E) result in recessive resistance to potyviruses in a range of plant species, including Capsicum spp. Correspondingly, amino acid changes in the central part of the viral genome-linked protein (VPg) are responsible for the potyvirus's ability to overcome eIF4E-mediated resistance. A key observation was that physical interaction between eIF4E and the VPg is required for viral infection, and eIF4E mutations that cause resistance prevent VPg binding and inhibit the viral cycle. In this study, polymorphism analysis of the pvr2-eIF4E coding sequence in a worldwide sample of 25 C. annuum accessions identified 10 allelic variants with exclusively non-synonymous variations clustered in two surface loops of eIF4E. Resistance and genetic complementation assays demonstrated that pvr2 variants, each with signature amino acid changes, corresponded to potyvirus resistance alleles. Systematic analysis of the interactions between eIF4E proteins encoded by the 10 pvr2 alleles and VPgs of virulent and avirulent potato virus Y (PVY) and tobacco etch virus (TEV) strains demonstrated that resistance phenotypes arose from disruption of the interaction between eIF4E and VPg, and that viral adaptation to eIF4E-mediated resistance resulted from restored interaction with the resistance protein. Complementation of an eIF4E knockout yeast strain by C. annuum eIF4E proteins further shows that amino acid changes did not impede essential eIF4E functions. Altogether, these results argue in favour of a co-evolutionary 'arms race' between Capsicum eIF4E and potyviral VPg.
Collapse
Affiliation(s)
- Carine Charron
- INRA-UR1052, Genetics and Breeding of Fruits and Vegetables, Domaine St Maurice, BP94, F-84143 Montfavet, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Ramirez CV, Vilela C, Berthelot K, McCarthy JEG. Modulation of eukaryotic mRNA stability via the cap-binding translation complex eIF4F. J Mol Biol 2002; 318:951-62. [PMID: 12054793 DOI: 10.1016/s0022-2836(02)00162-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Decapping by Dcp1 in Saccharomyces cerevisiae is a key step in mRNA degradation. However, the cap also binds the eukaryotic initiation factor (eIF) complex 4F and its associated proteins. Characterisation of the relationship between decapping and interactions involving eIF4F is an essential step towards understanding polysome disassembly and mRNA decay. Three types of observation suggest how changes in the functional status of eIF4F modulate mRNA stability in vivo. First, partial disruption of the interaction between eIF4E and eIF4G, caused by mutations in eIF4E or the presence of the yeast 4E-binding protein p20, stabilised mRNAs. The interactions of eIF4G and p20 with eIF4E may therefore act to modulate the decapping process. Since we also show that the in vitro decapping rate is not directly affected by the nature of the body of the mRNA, this suggests that changes in eIF4F structure could play a role in triggering decapping during mRNA decay. Second, these effects were seen in the absence of extreme changes in global translation rates in the cell, and are therefore relevant to normal mRNA turnover. Third, a truncated form of eIF4E (Delta196) had a reduced capacity to inhibit Dcp1-mediated decapping in vitro, yet did not change cellular mRNA half-lives. Thus, the accessibility of the cap to Dcp1 in vivo is not simply controlled by competition with eIF4E, but is subject to switching between molecular states with different levels of access.
Collapse
Affiliation(s)
- Carmen Velasco Ramirez
- Posttranscriptional Control Group, Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), P.O. Box 88, M60 1QD, UK
| | | | | | | |
Collapse
|
15
|
Ptushkina M, Berthelot K, von der Haar T, Geffers L, Warwicker J, McCarthy JE. A second eIF4E protein in Schizosaccharomyces pombe has distinct eIF4G-binding properties. Nucleic Acids Res 2001; 29:4561-9. [PMID: 11713305 PMCID: PMC92561 DOI: 10.1093/nar/29.22.4561] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The eukaryotic cap-binding proteins belonging to the eIF4E family are generally involved in mediating the recruitment of ribosomes to capped mRNA. We described previously a cap-binding protein (now called eIF4E1) in Schizosaccharomyces pombe that appears to have all of the usual structural and functional attributes of an eIF4E. We have now characterised a new type of cap-binding protein (eIF4E2) from this organism, which at the amino acid sequence level, is 52% identical and 59% similar to eIF4E1. eIF4E2 is not essential in S.pombe but has some novel properties that may be related to a special function in the cell. The ratio of eIF4E2:eIF4E1 in the cell shifts in favour of eIF4E2 at higher temperatures. Despite having all of the dorsal face amino acids that have so far been associated with eIF4G binding to eIF4E1, eIF4E2 binds the eIF4E-binding domain of S.pombe eIF4G >10(2)-times weaker than eIF4E1 in vitro. The eIF4E2 cap-binding affinity is in the typical micromolar range. The results suggest that eIF4E2 is not active on the main pathway of translation initiation in fission yeast but might play a role in the adaptation strategy of this organism under specific growth conditions. Moreover, they provide insight into the molecular characteristics required for tight binding to eIF4G.
Collapse
Affiliation(s)
- M Ptushkina
- Posttranscriptional Control Group, Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, Manchester M60 1QD, UK
| | | | | | | | | | | |
Collapse
|
16
|
Karim MM, Hughes JM, Warwicker J, Scheper GC, Proud CG, McCarthy JE. A quantitative molecular model for modulation of mammalian translation by the eIF4E-binding protein 1. J Biol Chem 2001; 276:20750-7. [PMID: 11278829 DOI: 10.1074/jbc.m011068200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Translation initiation is a key point of regulation in eukaryotic gene expression. 4E-binding proteins (4E-BPs) inhibit initiation by blocking the association of eIF4E with eIF4G, two integral components of the mRNA cap-binding complex. Phosphorylation of 4E-BP1 reduces its ability to bind to eIF4E and thereby to compete with eIF4G. A novel combination of biophysical and biochemical tools was used to measure the impact of phosphorylation and acidic side chain substitution at each potentially modulatory site in 4E-BP1. For each individual site, we have analyzed the effects of modification on eIF4E binding using affinity chromatography and surface plasmon resonance analysis, and on the regulatory function of the 4E-BP1 protein using a yeast in vivo model system and a mammalian in vitro translation assay. We find that modifications at the two sites immediately flanking the eIF4E-binding domain, Thr(46) and Ser(65), consistently have the most significant effects, and that phosphorylation of Ser(65) causes the greatest reduction in binding affinity. These results establish a quantitative framework that should contribute to understanding of the molecular interactions underlying 4E-BP1-mediated translational regulation.
Collapse
Affiliation(s)
- M M Karim
- Posttranscriptional Control Group, Department of Biomolecular Sciences, UMIST, P. O. Box 88, Manchester M60 1QD, United Kingdom
| | | | | | | | | | | |
Collapse
|