1
|
Yadav V, Singh T, Sharma D, Garg VK, Chakraborty P, Ghatak S, Satapathy SR. Unraveling the Regulatory Role of HuR/microRNA Axis in Colorectal Cancer Tumorigenesis. Cancers (Basel) 2024; 16:3183. [PMID: 39335155 PMCID: PMC11430344 DOI: 10.3390/cancers16183183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Colorectal cancer (CRC) remains a significant global health burden with high incidence and mortality. MicroRNAs (miRNAs) are small non-protein coding transcripts, conserved throughout evolution, with an important role in CRC tumorigenesis, and are either upregulated or downregulated in various cancers. RNA-binding proteins (RBPs) are known as essential regulators of miRNA activity. Human antigen R (HuR) is a prominent RBP known to drive tumorigenesis with a pivotal role in CRC. In this review, we discuss the regulatory role of the HuR/miRNA axis in CRC. Interestingly, miRNAs can directly target HuR, altering its expression and activity. However, HuR can also stabilize or degrade miRNAs, forming complex feedback loops that either activate or block CRC-associated signaling pathways. Dysregulation of the HuR/miRNA axis contributes to CRC initiation and progression. Additionally, HuR-miRNA regulation by other small non-coding RNAs, circular RNA (circRNAs), or long-non-coding RNAs (lncRNAs) is also explored here. Understanding this HuR-miRNA interplay could reveal novel biomarkers with better diagnostic or prognostic accuracy.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Lund University, 221 00 Malmö, Sweden;
| | - Tejveer Singh
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, University of Delhi, New Delhi 110021, India; (T.S.); (D.S.)
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS-DRDO), New Delhi 110054, India
| | - Deepika Sharma
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, University of Delhi, New Delhi 110021, India; (T.S.); (D.S.)
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, Chandigarh University, Gharuan, Mohali 140413, Punjab, India;
| | - Payel Chakraborty
- Amity Institute of Biotechnology, Amity University Kolkata, Kolkata 700135, West Bengal, India; (P.C.); (S.G.)
| | - Souvik Ghatak
- Amity Institute of Biotechnology, Amity University Kolkata, Kolkata 700135, West Bengal, India; (P.C.); (S.G.)
| | - Shakti Ranjan Satapathy
- Department of Translational Medicine, Clinical Research Centre, Lund University, 221 00 Malmö, Sweden;
| |
Collapse
|
2
|
Finan JM, Sutton TL, Dixon DA, Brody JR. Targeting the RNA-Binding Protein HuR in Cancer. Cancer Res 2023; 83:3507-3516. [PMID: 37683260 DOI: 10.1158/0008-5472.can-23-0972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/12/2023] [Accepted: 09/06/2023] [Indexed: 09/10/2023]
Abstract
The RNA-binding protein human antigen R (HuR) is a well-established regulator of gene expression at the posttranscriptional level. Its dysregulation has been implicated in various human diseases, particularly cancer. In cancer, HuR is considered "active" when it shows increased subcellular localization in the cytoplasm, in addition to its normal nuclear localization. Cytoplasmic HuR plays a crucial role in stabilizing and enhancing the translation of prosurvival mRNAs that are involved in stress responses relevant to cancer progression, such as hypoxia, radiotherapy, and chemotherapy. In general, due to HuR's abundance and function in cancer cells compared with normal cells, it is an appealing target for oncology research. Exploiting the principles underlying HuR's role in tumorigenesis and resistance to stressors, targeting HuR has the potential for synergy with existing and novel oncologic therapies. This review aims to explore HuR's role in homeostasis and cancer pathophysiology, as well as current targeting strategies, which include silencing HuR expression, preventing its translocation and dimerization from the nucleus to the cytoplasm, and inhibiting mRNA binding. Furthermore, this review will discuss recent studies investigating the potential synergy between HuR inhibition and traditional chemotherapeutics.
Collapse
Affiliation(s)
- Jennifer M Finan
- Department of Surgery, Oregon Health & Science University, Portland, Oregon
| | - Thomas L Sutton
- Department of Surgery, Oregon Health & Science University, Portland, Oregon
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Jonathan R Brody
- Department of Surgery, Oregon Health & Science University, Portland, Oregon
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
3
|
Prenatal Activation of Glucocorticoid Receptors Induces Memory Impairment in a Sex-Dependent Manner: Role of Cyclooxygenase-2. Mol Neurobiol 2022; 59:3767-3777. [PMID: 35396693 DOI: 10.1007/s12035-022-02820-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
Abstract
Prenatal exposure to dexamethasone (DEX) results in long-lasting effects on cognitive functions such as learning and memory impairment. However, the mechanisms underlying these DEX-induced deleterious effects are not well known. Here, we assessed whether cyclooxygenase-2 (COX-2) is involved in the impact of prenatal exposure to DEX on learning and memory during adulthood. Pregnant Sprague-Dawley rats received daily injections of either DEX (0.2 mg/kg; i.p.) or saline from gestation day (GD) 14 until GD21. Gene and protein expression of COX-2, as well as presynaptic (synaptophysin) and postsynaptic (postsynaptic density protein-95) proteins, were monitored in the dorsal and ventral hippocampi of adult male and female offspring. A different cohort of adult male and female rat offspring was given daily injections of either vehicle or a specific COX-2 inhibitor (celecoxib 10 mg/kg, i.p.) for 5 consecutive days and was subsequently subjected to Morris water maze memory test. Prenatal DEX enhanced the expression of COX-2 protein and cox-2 mRNA in the dorsal hippocampus of adult female but not male rats. This enhanced COX-2 expression was associated with reduced expression in pre- and postsynaptic proteins and altered memory acquisition and retention. Administration of COX-2-specific inhibitor alleviated prenatal DEX-induced memory impairment in adult female rats. This study suggests that prenatal activation of glucocorticoid receptors stimulates COX-2 gene and protein expression and impairs hippocampal-dependent spatial memory in female but not male rat offspring. Furthermore, COX-2 selective inhibitors can be used to alleviate the long-lasting deleterious effects of corticosteroid medication during pregnancy.
Collapse
|
4
|
Guo S, Huang Z, Zhu J, Yue T, Wang X, Pan Y, Bu D, Liu Y, Wang P, Chen S. CBS-H 2S axis preserves the intestinal barrier function by inhibiting COX-2 through sulfhydrating human antigen R in colitis. J Adv Res 2022; 44:201-212. [PMID: 36725190 PMCID: PMC9936422 DOI: 10.1016/j.jare.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/15/2021] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Lipopolysaccharide (LPS) causes lesions of the epithelial barrier, which allows translocation of pathogens from the intestinal lumen to the host's circulation. Hydrogen sulfide (H2S) regulates multiple physiological and pathological processes in colonic epithelial tissue, and CBS-H2S axis involved in multiple gastrointestinal disorder. However, the mechanism underlying the effect of the CBS-H2S axis on the intestinal and systemic inflammation in colitis remains to be illustrated. OBJECTIVES To investigate the effect of CBS-H2S axis on the intestinal and systematic inflammation related injuries in LPS induced colitis and the underlying mechanisms. METHODS Wild type and CBS-/+ mice were used to evaluate the effect of endogenous and exogenous H2S on LPS-induced colitis in vivo. Cytokine quantitative antibody array, western blot and real-time PCR were applied to detect the key cytokines in the mechanism of action. Biotin switch of S-sulfhydration, CRISPR/Cas9 mediated knockout, immunofluorescence and ActD chase assay were used in the in vitro experiment to further clarify the molecular mechanisms. RESULTS H2S significantly alleviated the symptoms of LPS-induced colitis in vivo and attenuated the increase of COX-2 expression. The sulfhydrated HuR increased when CBS express normally or GYY4137 was administered. While after knocking kown CBS, the expression of COX-2 in mice colon increased significantly, and the sulfhydration level of HuR decreased. The results in vitro illustrated that HuR can increase the stability of COX-2 mRNA, and the decrease of COX-2 were due to increased sulfhydration of HuR rather than the reduction of total HuR levels. CONCLUSION These results indicated that CBS-H2S axis played an important role in protecting intestinal barrier function in colitis. CBS-H2S axis increases the sulfhydration level of HuR, by which reduces the binding of HuR with COX-2 mRNA and inhibited the expression of COX-2.
Collapse
Affiliation(s)
- Shihao Guo
- Division of General Surgery, Peking University First Hospital, Peking University, 8, Beijing 100034, People’s Republic of China,Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Zhihao Huang
- Division of General Surgery, Peking University First Hospital, Peking University, 8, Beijing 100034, People’s Republic of China
| | - Jing Zhu
- Division of General Surgery, Peking University First Hospital, Peking University, 8, Beijing 100034, People’s Republic of China
| | - Taohua Yue
- Division of General Surgery, Peking University First Hospital, Peking University, 8, Beijing 100034, People’s Republic of China
| | - Xin Wang
- Division of General Surgery, Peking University First Hospital, Peking University, 8, Beijing 100034, People’s Republic of China
| | - Yisheng Pan
- Division of General Surgery, Peking University First Hospital, Peking University, 8, Beijing 100034, People’s Republic of China
| | - Dingfang Bu
- Central Laboratory, Peking University First Hospital, Peking University, 8, Beijing 100034, People’s Republic of China
| | - Yucun Liu
- Division of General Surgery, Peking University First Hospital, Peking University, 8, Beijing 100034, People’s Republic of China
| | - Pengyuan Wang
- Division of General Surgery, Peking University First Hospital, Peking University, 8, Beijing 100034, People's Republic of China.
| | - Shanwen Chen
- Division of General Surgery, Peking University First Hospital, Peking University, 8, Beijing 100034, People's Republic of China.
| |
Collapse
|
5
|
Desind SZ, Iacona JR, Yu CY, Mitrofanova A, Lutz CS. PACER lncRNA regulates COX-2 expression in lung cancer cells. Oncotarget 2022; 13:291-306. [PMID: 35136486 PMCID: PMC8815784 DOI: 10.18632/oncotarget.28190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/25/2022] [Indexed: 11/28/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are known to regulate gene expression; however, in many cases, the mechanism of this regulation is unknown. One novel lncRNA relevant to inflammation and arachidonic acid (AA) metabolism is the p50-associated COX-2 extragenic RNA (PACER). We focused our research on the regulation of PACER in lung cancer. While the function of PACER is not entirely understood, PACER is known to play a role in inflammation-associated conditions. Our data suggest that PACER is critically involved in COX-2 transcription and dysregulation in lung cancer cells. Our analysis of The Cancer Genome Atlas (TCGA) expression data revealed that PACER expression is significantly higher in lung adenocarcinomas than normal lung tissues. Additionally, we discovered that elevated PACER expression strongly correlates with COX-2 expression in lung adenocarcinoma patients. Specific siRNA-mediated knockdown of PACER decreases COX-2 expression indicating a direct relationship. Additionally, we show that PACER expression is induced upon treatment with proinflammatory cytokines to mimic inflammation. Treatment with prostaglandin E2 (PGE2) induces both PACER and COX-2 expression, suggesting a PGE2-mediated feedback loop. Inhibition of COX-2 with celecoxib decreased PACER expression, confirming this self-regulatory process. Significant overlap between the COX-2 promotor and the PACER promotor led us to investigate their transcriptional regulatory mechanisms. Treatment with pharmacologic inhibitors of NF-κB or AP-1 showed a modest effect on both PACER and COX-2 expression but did not eliminate expression. These data suggest that the regulation of expression of both PACER and COX-2 is complex and intricately linked.
Collapse
Affiliation(s)
- Samuel Z. Desind
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, School of Graduate Studies, Newark, NJ 07103, USA
- These authors contributed equally to this work
| | - Joseph R. Iacona
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, School of Graduate Studies, Newark, NJ 07103, USA
- These authors contributed equally to this work
| | - Christina Y. Yu
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ 07107, USA
| | - Antonina Mitrofanova
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ 07107, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Carol S. Lutz
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, School of Graduate Studies, Newark, NJ 07103, USA
| |
Collapse
|
6
|
Nuvoli B, Antoniani B, Libener R, Maconi A, Sacconi A, Carosi M, Galati R. Identification of novel COX-2 / CYP19A1 axis involved in the mesothelioma pathogenesis opens new therapeutic opportunities. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:257. [PMID: 34404424 PMCID: PMC8369782 DOI: 10.1186/s13046-021-02050-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/23/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND Based on previous studies highlighting that the induction of cyclooxygenase-2 (COX-2) and high prostaglandin E2 (PGE2) levels contribute to the pathogenesis of malignant pleural mesothelioma (MPM), and that aromatase (CYP19A1), an enzyme that plays a key role in estrogen biosynthesis, along with estradiol (E2) were expressed in MPM, this study aimed to investigate the possible interplay between COX-2 and CYP19A1 in the pathogenesis of mesothelioma, as well as the underlying mechanism. METHODS The interaction between COX-2 and CYP19A1 was first investigated on different MPM lines upon PGE2, and COX-2 inhibitor (rofecoxib) treatment by western blot, RT-PCR. The key regulatory pathways involved in the COX-2 and CYP19A1 axis were further studied in MPM cells, after rofecoxib and exemestane (CYP19A1 inhibitor) treatment in monotherapy and in combination, by cell cycle distribution, western blot, and combination index analysis. To explore the role of COX-2/CYP19A1 axis in 3D preclinical models of MPM cells, we analyzed the effect of combination of COX-2 and CYP19A1 inhibitors in mesosphere formation. Immunohistochemical analysis of MPM mesosphere and specimens was utilized to evaluate the involvement of COX-2 on the CYP19A1 activity and the relationship between E2 and COX-2. RESULTS PGE2 or rofecoxib treatment caused in MPM cells an increased or decreased, respectively, CYP19A1 expression at mRNA and protein levels. The effect of rofecoxib and exemestane combination in MPM cell proliferation was synergistic. Activation of caspase-3 and cleavage of PARP confirmed an apoptotic death for MPM cell lines. Increased expression levels of p53, p21, and p27, downregulation of cyclin D1 and inhibition of Akt activation (pAKT) were also found. The antagonistic effect of rofecoxib and exemestane combination found only in one cell line, was reverted by pretreatment with MK2206, a pAKT inhibitor, indicating pAKT as an actionable mediator in the COX-2-CYP19A1 axis. Reduction of size and sphere-forming efficiency in MPM spheres after treatment with both inhibitor and a decrease in COX-2 and E2 staining was found. Moreover, immunohistochemical analysis of 46 MPM samples showed a significant positive correlation between COX-2 and E2. CONCLUSIONS Collectively, the results highlighted a novel COX-2/CYP19A1 axis in the pathogenesis of MPM that can be pharmacologically targeted, consequently opening up new therapeutic options.
Collapse
Affiliation(s)
- Barbara Nuvoli
- grid.417520.50000 0004 1760 5276Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Barbara Antoniani
- grid.417520.50000 0004 1760 5276Anatomy Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Roberta Libener
- Department of Integrated Activities Research and Innovation, SS Antonio and Biagio General Hospital, Alessandria, Italy
| | - Antonio Maconi
- Department of Integrated Activities Research and Innovation, SS Antonio and Biagio General Hospital, Alessandria, Italy
| | - Andrea Sacconi
- grid.417520.50000 0004 1760 5276Clinical Trial Center, Biostatistics and Bioinformatics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Mariantonia Carosi
- grid.417520.50000 0004 1760 5276Anatomy Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Rossella Galati
- grid.417520.50000 0004 1760 5276Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
7
|
Banerjee S, Bhandary P, Woodhouse M, Sen TZ, Wise RP, Andorf CM. FINDER: an automated software package to annotate eukaryotic genes from RNA-Seq data and associated protein sequences. BMC Bioinformatics 2021; 22:205. [PMID: 33879057 PMCID: PMC8056616 DOI: 10.1186/s12859-021-04120-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/07/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Gene annotation in eukaryotes is a non-trivial task that requires meticulous analysis of accumulated transcript data. Challenges include transcriptionally active regions of the genome that contain overlapping genes, genes that produce numerous transcripts, transposable elements and numerous diverse sequence repeats. Currently available gene annotation software applications depend on pre-constructed full-length gene sequence assemblies which are not guaranteed to be error-free. The origins of these sequences are often uncertain, making it difficult to identify and rectify errors in them. This hinders the creation of an accurate and holistic representation of the transcriptomic landscape across multiple tissue types and experimental conditions. Therefore, to gauge the extent of diversity in gene structures, a comprehensive analysis of genome-wide expression data is imperative. RESULTS We present FINDER, a fully automated computational tool that optimizes the entire process of annotating genes and transcript structures. Unlike current state-of-the-art pipelines, FINDER automates the RNA-Seq pre-processing step by working directly with raw sequence reads and optimizes gene prediction from BRAKER2 by supplementing these reads with associated proteins. The FINDER pipeline (1) reports transcripts and recognizes genes that are expressed under specific conditions, (2) generates all possible alternatively spliced transcripts from expressed RNA-Seq data, (3) analyzes read coverage patterns to modify existing transcript models and create new ones, and (4) scores genes as high- or low-confidence based on the available evidence across multiple datasets. We demonstrate the ability of FINDER to automatically annotate a diverse pool of genomes from eight species. CONCLUSIONS FINDER takes a completely automated approach to annotate genes directly from raw expression data. It is capable of processing eukaryotic genomes of all sizes and requires no manual supervision-ideal for bench researchers with limited experience in handling computational tools.
Collapse
Affiliation(s)
- Sagnik Banerjee
- Program in Bioinformatics and Computational Biology, Iowa State University, Ames, IA, 50011, USA
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA
| | - Priyanka Bhandary
- Program in Bioinformatics and Computational Biology, Iowa State University, Ames, IA, 50011, USA
- Department of Genetics, Developmental and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Margaret Woodhouse
- Corn Insects and Crop Genetics Research Unit, USDA-Agricultural Research Service, Ames, IA, 50011, USA
| | - Taner Z Sen
- Crop Improvement and Genetics Research Unit, USDA-Agricultural Research Service, Albany, CA, 94710, USA
| | - Roger P Wise
- Corn Insects and Crop Genetics Research Unit, USDA-Agricultural Research Service, Ames, IA, 50011, USA
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Carson M Andorf
- Corn Insects and Crop Genetics Research Unit, USDA-Agricultural Research Service, Ames, IA, 50011, USA.
- Department of Computer Science, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
8
|
The influence of environmental and core temperature on cyclooxygenase and PGE2 in healthy humans. Sci Rep 2021; 11:6531. [PMID: 33753764 PMCID: PMC7985197 DOI: 10.1038/s41598-021-84563-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/21/2021] [Indexed: 11/08/2022] Open
Abstract
Whether cyclooxygenase (COX)/prostaglandin E2 (PGE2) thermoregulatory pathways, observed in rodents, present in humans? Participants (n = 9) were exposed to three environments; cold (20 °C), thermoneutral (30 °C) and hot (40 °C) for 120 min. Core (Tc)/skin temperature and thermal perception were recorded every 15 min, with COX/PGE2 concentrations determined at baseline, 60 and 120 min. Linear mixed models identified differences between and within subjects/conditions. Random coefficient models determined relationships between Tc and COX/PGE2. Tc [mean (range)] increased in hot [+ 0.8 (0.4-1.2) °C; p < 0.0001; effect size (ES): 2.9], decreased in cold [- 0.5 (- 0.8 to - 0.2) °C; p < 0.0001; ES 2.6] and was unchanged in thermoneutral [+ 0.1 (- 0.2 to 0.4) °C; p = 0.3502]. A relationship between COX2/PGE2 in cold (p = 0.0012) and cold/thermoneutral [collapsed, condition and time (p = 0.0243)] was seen, with higher PGE2 associated with higher Tc. A within condition relationship between Tc/PGE2 was observed in thermoneutral (p = 0.0202) and cold/thermoneutral [collapsed, condition and time (p = 0.0079)] but not cold (p = 0.0631). The data suggests a thermogenic response of the COX/PGE2 pathway insufficient to defend Tc in cold. Further human in vivo research which manipulates COX/PGE2 bioavailability and participant acclimation/acclimatization are warranted to elucidate the influence of COX/PGE2 on Tc.
Collapse
|
9
|
Akter S, Sharma RK, Sharma S, Rastogi S, Fiebich BL, Akundi RS. Exogenous ATP modulates PGE 2 release in macrophages through sustained phosphorylation of CDK9 and p38 MAPK. J Leukoc Biol 2021; 110:663-677. [PMID: 33438260 DOI: 10.1002/jlb.3a1219-697rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
An important mediator of inflammation is prostaglandin E2 (PGE2 ), whose levels are determined by the activity of the enzyme cyclooxygenase (COX). Of the two isoforms of the enzyme, COX-2 has been shown to be induced in macrophages during inflammation. Although general COX inhibitors, belonging to the class of nonsteroidal anti-inflammatory drugs, or specific COX-2 inhibitors, called coxibs, are useful in the control of acute inflammation, adverse reactions were seen when used chronically in the treatment of rheumatoid arthritis or neurodegenerative diseases. Extracellular ATP (eATP) has been reported as a damage-associated molecular pattern signal. In this report, we show that eATP synergistically increases the levels of COX-2 enzyme and PGE2 in LPS-activated RAW264.7 macrophages and human monocytes. Activation of macrophages also occurred when cultured in media obtained from dying neurons that contained higher levels of ATP. We show that eATP increases the levels of COX-2 protein, which is sustained up to 36 h poststimulation. This is in turn due to sustained levels of phosphorylated, or activated, cyclin-dependent kinase 9 and p38 MAPK in ATP-treated cells compared to LPS-stimulated cells. The eATP-dependent increase in COX-2/PGE2 levels in LPS-activated RAW264.7 cells could be abolished using antagonists for purinergic P2X7 -and P2Y6 receptors. Similarly, the increase in COX-2/PGE2 levels in the peritoneum of LPS-treated mice could be significantly abolished in mice that were preinjected with the nonspecific P2 receptor antagonist, suramin. P2 receptor antagonists, therefore, should be explored in our search for an ideal anti-inflammatory candidate.
Collapse
Affiliation(s)
- Shamima Akter
- Neuroinflammation Research Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Rakesh Kumar Sharma
- Neuroinflammation Research Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Shilpa Sharma
- Neuroinflammation Research Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Saumya Rastogi
- Neuroinflammation Research Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Bernd L Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Ravi Shankar Akundi
- Neuroinflammation Research Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| |
Collapse
|
10
|
Anyona SB, Hengartner NW, Raballah E, Ong'echa JM, Lauve N, Cheng Q, Fenimore PW, Ouma C, Lambert CG, McMahon BH, Perkins DJ. Cyclooxygenase-2 haplotypes influence the longitudinal risk of malaria and severe malarial anemia in Kenyan children from a holoendemic transmission region. J Hum Genet 2020; 65:99-113. [PMID: 31664161 PMCID: PMC7255056 DOI: 10.1038/s10038-019-0692-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/16/2019] [Accepted: 10/09/2019] [Indexed: 02/08/2023]
Abstract
Cyclooxygenase-2 [(COX-2) or prostaglandin endoperoxide H2 synthase-2 (PTGS-2)] induces the production of prostaglandins as part of the host-immune response to infections. Although a number of studies have demonstrated the effects of COX-2 promoter variants on autoimmune and inflammatory diseases, their role in malaria remains undefined. As such, we investigated the relationship between four COX-2 promoter variants (COX-2 -512 C > T, -608 T > C, -765 G > C, and -1195 A > G) and susceptibility to malaria and severe malarial anemia (SMA) upon enrollment and longitudinally over a 36-month follow-up period. All-cause mortality was also explored. The investigation was carried out in children (n = 1081, age; 2-70 months) residing in a holoendemic Plasmodium falciparum transmission region of western Kenya. At enrollment, genotypes/haplotypes (controlling for anemia-promoting covariates) did not reveal any strong effects on susceptibility to either malaria or SMA. Longitudinal analyses showed decreased malaria episodes in children who inherited the -608 CC mutant allele (RR = 0.746, P = 1.811 × 10-4) and -512C/-608T/-765G/-1195G (CTGG) haplotype (RR = 0.856, P = 0.011), and increased risk in TTCA haplotype carriers (RR = 1.115, P = 0.026). Over the follow-up period, inheritance of the rare TTCG haplotype was associated with enhanced susceptibility to both malaria (RR = 1.608, P = 0.016) and SMA (RR = 5.714, P = 0.004), while carriage of the rare TTGG haplotype increased the risk of malaria (RR = 1.755, P = 0.007), SMA (RR = 8.706, P = 3.97 × 10-4), and all-cause mortality (HR = 110.000, P = 0.001). Collectively, these results show that SNP variations in the COX-2 promoter, and their inherited combinations, are associated with the longitudinal risk of malaria, SMA, and all-cause mortality among children living in a high transmission area for P. falciparum.
Collapse
Affiliation(s)
- Samuel B Anyona
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, Kenya
- Department of Medical Biochemistry, School of Medicine, Maseno University, Maseno, Kenya
| | - Nicolas W Hengartner
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Evans Raballah
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, Kenya
- Department of Medical Laboratory Sciences, School of Public Health Biomedical Sciences and Technology, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | | | - Nick Lauve
- Center for Global Health, University of New Mexico, Albuquerque, NM, USA
| | - Qiuying Cheng
- Center for Global Health, University of New Mexico, Albuquerque, NM, USA
| | - Paul W Fenimore
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Collins Ouma
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, Kenya
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | | | - Benjamin H McMahon
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Douglas J Perkins
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, Kenya.
- Center for Global Health, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
11
|
Li XC, Song MF, Sun F, Tian FJ, Wang YM, Wang BY, Chen JH. Fragile X-related protein 1 (FXR1) regulates cyclooxygenase-2 (COX-2) expression at the maternal-fetal interface. Reprod Fertil Dev 2019; 30:1566-1574. [PMID: 29852926 DOI: 10.1071/rd18037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/25/2018] [Indexed: 01/11/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) is regulated post-transcriptionally by the AU-rich element (ARE) in the 3'-untranslated region (UTR) of its mRNA. However, the mechanism of COX-2 induction in infertility has not been thoroughly elucidated to date. The aim of this study was to examine the association between COX-2 and fragile X-related protein 1 (FXR1) in trophoblasts. Using quantitative reverse transcription polymerase chain reaction, our results showed that FXR1 mRNA expression levels were significantly decreased in trophoblasts from recurrent miscarriage patients compared with healthy controls; conversely, COX-2 mRNA expression levels were increased in patient samples. We also observed that FXR1 was highly expressed in human placental villi during early pregnancy. Furthermore, we used western blotting and immunofluorescence to analyse the expression levels of FXR1 and COX-2 in HTR-8 cells that were treated with tumour necrosis factor α; we observed that the expression of COX-2 was clearly increased in HTR-8 cells treated with FXR1 small interfering RNA, whereas the expression of COX-2 was effectively decreased in HTR-8 cells with FXR1 overexpressed via a plasmid. Importantly, bioinformatics analysis identified FXR1 binding sites in the 3'-UTR region of COX-2 and firefly luciferase reporter assay analysis verified that FXR1 binds directly to the 3'-UTR region of COX-2. ELISA assays showed that overexpression of FXR1 enhanced vascular endothelial growth factor-A and interleukin-8 expression in HTR-8 cells, whereas conversely, knockdown of FXR1 effectively repressed these effects. In conclusion, the results of this study indicate that FXR1 is a novel COX-2 regulatory factor.
Collapse
Affiliation(s)
- Xiao-Cui Li
- Department of Obstetrics and Gynaecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Meng-Fan Song
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Feng Sun
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Fu-Ju Tian
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yu-Mei Wang
- Department of Obstetrics and Gynaecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Bei-Ying Wang
- Department of Obstetrics and Gynaecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Jin-Hong Chen
- Department of Obstetrics and Gynaecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| |
Collapse
|
12
|
Saul MJ, Emmerich AC, Steinhilber D, Suess B. Regulation of Eicosanoid Pathways by MicroRNAs. Front Pharmacol 2019; 10:824. [PMID: 31379585 PMCID: PMC6659501 DOI: 10.3389/fphar.2019.00824] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/26/2019] [Indexed: 01/07/2023] Open
Abstract
Over the last years, many microRNAs (miRNAs) have been identified that regulate the formation of bioactive lipid mediators such as prostanoids and leukotrienes. Many of these miRNAs are involved in complex regulatory circuits necessary for the fine-tuning of biological functions including inflammatory processes or cell growth. A better understanding of these networks will contribute to the development of novel therapeutic strategies for the treatment of inflammatory diseases and cancer. In this review, we provide an overview of the current knowledge of miRNA regulation in eicosanoid pathways with special focus on novel miRNA functions and regulatory circuits of leukotriene and prostaglandin biosynthesis.
Collapse
Affiliation(s)
- Meike J Saul
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Anne C Emmerich
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany.,Institute of Pharmaceutical Chemistry, Goethe Universität Frankfurt, Frankfurt, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe Universität Frankfurt, Frankfurt, Germany
| | - Beatrix Suess
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
13
|
Monteleone NJ, Moore AE, Iacona JR, Lutz CS, Dixon DA. miR-21-mediated regulation of 15-hydroxyprostaglandin dehydrogenase in colon cancer. Sci Rep 2019; 9:5405. [PMID: 30931980 PMCID: PMC6443653 DOI: 10.1038/s41598-019-41862-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
Elevated prostaglandin E2 (PGE2) levels are observed in colorectal cancer (CRC) patients, and this increase is associated with poor prognosis. Increased synthesis of PGE2 in CRC has been shown to occur through COX-2-dependent mechanisms; however, loss of the PGE2-catabolizing enzyme, 15-hydroxyprostaglandin dehydrogenase (15-PGDH, HPGD), in colonic tumors contributes to increased prostaglandin levels and poor patient survival. While loss of 15-PGDH can occur through transcriptional mechanisms, we demonstrate that 15-PGDH can be additionally regulated by a miRNA-mediated mechanism. We show that 15-PGDH and miR-21 are inversely correlated in CRC patients, with increased miR-21 levels associating with low 15-PGDH expression. 15-PGDH can be directly regulated by miR-21 through distinct sites in its 3′ untranslated region (3′UTR), and miR-21 expression in CRC cells attenuates 15-PGDH and promotes increased PGE2 levels. Additionally, epithelial growth factor (EGF) signaling suppresses 15-PGDH expression while simultaneously enhancing miR-21 levels. miR-21 inhibition represses CRC cell proliferation, which is enhanced with EGF receptor (EGFR) inhibition. These findings present a novel regulatory mechanism of 15-PGDH by miR-21, and how dysregulated expression of miR-21 may contribute to loss of 15-PGDH expression and promote CRC progression via increased accumulation of PGE2.
Collapse
Affiliation(s)
- Nicholas J Monteleone
- Department of Microbiology, Biochemistry, & Molecular Genetics, Rutgers University - School of Graduate Studies, Newark, NJ, 07103, USA
| | | | - Joseph R Iacona
- Department of Microbiology, Biochemistry, & Molecular Genetics, Rutgers University - School of Graduate Studies, Newark, NJ, 07103, USA
| | - Carol S Lutz
- Department of Microbiology, Biochemistry, & Molecular Genetics, Rutgers University - School of Graduate Studies, Newark, NJ, 07103, USA.
| | - Dan A Dixon
- University of Kansas Cancer Center, Kansas City, KS, 66160, USA. .,Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA.
| |
Collapse
|
14
|
Ohnishi M, Yukawa R, Akagi M, Ohsugi Y, Inoue A. Bradykinin and interleukin-1β synergistically increase the expression of cyclooxygenase-2 through the RNA-binding protein HuR in rat dorsal root ganglion cells. Neurosci Lett 2018; 694:215-219. [PMID: 30528878 DOI: 10.1016/j.neulet.2018.11.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022]
Abstract
Synergistic expression of cyclooxygenase-2 (COX-2) by interleukin-1β (IL-1β) and bradykinin (BK) in peri-sensory neurons results in the production of prostanoids, which affects sensory neuronal activity and responsiveness and causes hyperalgesia. To evaluate the effects of pro-inflammatory mediators on COX-2 expression, cultured rat dorsal root ganglion (DRG) cells were treated with IL-1β and BK, which caused persistent increased COX-2 expression. Co-treatment increased COX-2 transcriptional activities in an additive manner by a COX-2 promoter luciferase assay. Immunoprecipitated HuR, an RNA-binding protein, in co-treated DRG cells contained more COX-2 mRNA than that of the control. The synergistic effects of IL-1β and BK on COX-2 expression may be a result of RNA stabilization mediated by HuR in peri-sensory neurons. Multiple pro-inflammatory cytokines and mediators are produced during neurogenic inflammation and aberrant control of COX-2 mRNA turnover may be implicated in diseases including chronic inflammation, which results in inflammation-derived hyperalgesia around primary sensory neurons.
Collapse
Affiliation(s)
- Masatoshi Ohnishi
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Hiroshima, Japan
| | - Ryota Yukawa
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Hiroshima, Japan
| | - Marina Akagi
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Hiroshima, Japan
| | - Yoshihito Ohsugi
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Hiroshima, Japan
| | - Atsuko Inoue
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Hiroshima, Japan.
| |
Collapse
|
15
|
Ribosomal RACK1:Protein Kinase C βII Phosphorylates Eukaryotic Initiation Factor 4G1 at S1093 To Modulate Cap-Dependent and -Independent Translation Initiation. Mol Cell Biol 2018; 38:MCB.00304-18. [PMID: 30012863 DOI: 10.1128/mcb.00304-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/09/2018] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic ribosomes contain the high-affinity protein kinase C βII (PKCβII) scaffold, receptor for activated C kinase (RACK1), but its role in protein synthesis control remains unclear. We found that RACK1:PKCβII phosphorylates eukaryotic initiation factor 4G1 (eIF4G1) at S1093 and eIF3a at S1364. We showed that reversible eIF4G(S1093) phosphorylation is involved in a global protein synthesis surge upon PKC-Raf-extracellular signal-regulated kinase 1/2 (ERK1/2) activation and in induction of phorbol ester-responsive transcripts, such as cyclooxygenase 2 (Cox-2) and cyclin-dependent kinase inhibitor (p21Cip1), or in 5' 7-methylguanosine (m7G) cap-independent enterovirus translation. Comparison of mRNA and protein levels revealed that eIF4G1 or RACK1 depletion blocked phorbol ester-induced Cox-2 or p21Cip1 expression mostly at the translational level, whereas PKCβ inhibition reduced them both at the translational and transcript levels. Our findings reveal a physiological role for ribosomal RACK1 in providing the molecular scaffold for PKCβII and its role in coordinating the translational response to PKC-Raf-ERK1/2 activation.
Collapse
|
16
|
Kimura S, Matsumiya T, Shiba Y, Nakanishi M, Hayakari R, Kawaguchi S, Yoshida H, Imaizumi T. The Essential Role of Double-Stranded RNA-Dependent Antiviral Signaling in the Degradation of Nonself Single-Stranded RNA in Nonimmune Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:1044-1052. [PMID: 29925678 DOI: 10.4049/jimmunol.1800456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/01/2018] [Indexed: 12/25/2022]
Abstract
The recognition of nonself dsRNA by retinoic acid-inducible gene-I (RIG-I) leads to the engagement of RIG-I-like receptor signaling. In addition, nonself dsRNA triggers a robust latent RNase (RNase L) activation and leads to the degradation of ribosomal structures and cell death. In contrast, nonself ssRNA is known to be recognized by TLR 7/8 in immune cells such as plasmacytoid dendritic cells and B cells, but little is known regarding the involvement of nonself ssRNA in antiviral signaling in nonimmune cells, including epithelial cells. Moreover, the fate of intracellular nonself ssRNA remains unknown. To address this issue, we developed a quantitative RT-PCR-based approach that monitors the kinetics of nonself ssRNA cleavage following the transfection of HeLa human cervical carcinoma cells, using model nonself ssRNA. We discovered that the degradation of ssRNA is independent of RIG-I and type I IFN signaling because ssRNA did not trigger RIG-I-mediated antiviral signaling. We also found that the kinetics of self (5'-capped) and nonself ssRNA decay were unaltered, suggesting that nonself ssRNA is not recognized by nonimmune cells. We further demonstrated that the cleavage of nonself ssRNA is accelerated when nonself dsRNA is also introduced into cells. In addition, the cleavage of nonself ssRNA is completely abolished by knockdown of RNase L. Overall, our data demonstrate the important role of dsRNA-RNase L in nonself ssRNA degradation and may partly explain the positive regulation of the antiviral responses in nonimmune cells.
Collapse
Affiliation(s)
- Sayaka Kimura
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; and
| | - Tomoh Matsumiya
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; and
| | - Yuko Shiba
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; and
| | - Michi Nakanishi
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; and
| | - Ryo Hayakari
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; and
| | - Shogo Kawaguchi
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Hidemi Yoshida
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; and
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; and
| |
Collapse
|
17
|
MiR-155-5p controls colon cancer cell migration via post-transcriptional regulation of Human Antigen R (HuR). Cancer Lett 2018; 421:145-151. [DOI: 10.1016/j.canlet.2018.02.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/29/2018] [Accepted: 02/15/2018] [Indexed: 12/13/2022]
|
18
|
Blanco FF, Preet R, Aguado A, Vishwakarma V, Stevens LE, Vyas A, Padhye S, Xu L, Weir SJ, Anant S, Meisner-Kober N, Brody JR, Dixon DA. Impact of HuR inhibition by the small molecule MS-444 on colorectal cancer cell tumorigenesis. Oncotarget 2018; 7:74043-74058. [PMID: 27677075 PMCID: PMC5342034 DOI: 10.18632/oncotarget.12189] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/11/2016] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and a leading cause of cancer-related mortality. Observed during CRC tumorigenesis is loss of post-transcriptional regulation of tumor-promoting genes such as COX-2, TNFα and VEGF. Overexpression of the RNA-binding protein HuR (ELAVL1) occurs during colon tumorigenesis and is abnormally present within the cytoplasm, where it post-transcriptionally regulates genes through its interaction with 3′UTR AU-rich elements (AREs). Here, we examine the therapeutic potential of targeting HuR using MS-444, a small molecule HuR inhibitor. Treatment of CRC cells with MS-444 resulted in growth inhibition and increased apoptotic gene expression, while similar treatment doses in non-transformed intestinal cells had no appreciable effects. Mechanistically, MS-444 disrupted HuR cytoplasmic trafficking and released ARE-mRNAs for localization to P-bodies, but did not affect total HuR expression levels. This resulted in MS-444-mediated inhibition of COX-2 and other ARE-mRNA expression levels. Importantly, MS-444 was well tolerated and inhibited xenograft CRC tumor growth through enhanced apoptosis and decreased angiogenesis upon intraperitoneal administration. In vivo treatment of MS-444 inhibited HuR cytoplasmic localization and decreased COX-2 expression in tumors. These findings provide evidence that therapeutic strategies to target HuR in CRC warrant further investigation in an effort to move this approach to the clinic.
Collapse
Affiliation(s)
- Fernando F Blanco
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Surgery, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ranjan Preet
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrea Aguado
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Vikalp Vishwakarma
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Laura E Stevens
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Alok Vyas
- Maharashtra Cosmopolitan Education Society's ISTRA, Azam Campus, University of Pune, India
| | - Subhash Padhye
- Maharashtra Cosmopolitan Education Society's ISTRA, Azam Campus, University of Pune, India
| | - Liang Xu
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Scott J Weir
- Department of Pharmacology, University of Kansas Medical Center, Kansas City, KS, USA.,University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Shrikant Anant
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS, USA.,University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Jonathan R Brody
- Department of Surgery, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Dan A Dixon
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA.,University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
19
|
Freitas-Alves DR, Vieira-Monteiro HDA, Piranda DN, Sobral-Leite M, da Silva TSL, Bergmann A, Valença SS, Perini JA, Vianna-Jorge R. PTGS2 polymorphism rs689466 favors breast cancer recurrence in obese patients. Endocr Relat Cancer 2018; 25:351-365. [PMID: 29321183 DOI: 10.1530/erc-17-0374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/10/2018] [Indexed: 11/08/2022]
Abstract
Breast cancer is the leading cancer among women, and its increasing incidence is a challenge worldwide. Estrogen exposure is the main risk factor, but obesity among postmenopausal women has been shown to favor disease onset and progression. The link between obesity and mammary carcinogenesis involves elevated estrogen production and proinflammatory stimuli within the adipose tissue, with activation of the cyclooxygenase-2 pathway. Here, we evaluate the impact of the four most common cyclooxygenase-2 gene polymorphisms (rs689465, rs689466, rs20417 and rs20417), in combination with obesity, on the risk of breast cancer progression in a cohort of Brazilian breast cancer patients (N = 1038). Disease-free survival was evaluated using Kaplan-Meier curves, with multivariate Cox proportional hazards regression models for calculation of adjusted hazard ratios (HRadj). Obesity did not affect disease progression, whereas rs689466 variant genotypes increased the recurrence risk among obese patients (HRadj = 2.5; 95% CI = 1.4-4.3), either for luminal (HRadj = 2.2; 95% CI = 1.1-4.2) or HER2-like and triple-negative tumors (HRadj = 3.2; 95% CI = 1.2-8.5). Likewise, the haplotype *4, which contains variant rs689466, was associated with shorter disease-free survival among obese patients (HRadj = 3.3; 95% CI = 1.8-6.0), either in luminal (HRadj = 3.5; 95% CI = 1.6-7.3) or HER2-like and triple-negative (HRadj = 3.1; 95% CI = 1.1-8.9) tumors. Such deleterious impact of variant rs689466 on disease-free survival of obese breast cancer patients was restricted to postmenopausal women. In conclusion, cyclooxygenase-2 genotyping may add to the prognostic evaluation of obese breast cancer patients.
Collapse
Affiliation(s)
- Daniely Regina Freitas-Alves
- Coordenação de PesquisaInstituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Saúde Pública e Meio AmbienteEscola Nacional de Saúde Pública, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto de Ciências BiomédicasUniversidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Hayra de Andrade Vieira-Monteiro
- Coordenação de PesquisaInstituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Saúde Pública e Meio AmbienteEscola Nacional de Saúde Pública, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Diogo Nascimento Piranda
- Coordenação de PesquisaInstituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto de Ciências BiomédicasUniversidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Marcelo Sobral-Leite
- Coordenação de PesquisaInstituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brasil
- Division of Molecular PathologyThe Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Taiana Sousa Lopes da Silva
- Coordenação de PesquisaInstituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto de Ciências BiomédicasUniversidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Biologia Molecular e CelularInstituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Anke Bergmann
- Coordenação de PesquisaInstituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Samuel Santos Valença
- Instituto de Ciências BiomédicasUniversidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Jamila Alessandra Perini
- Programa de Pós-Graduação em Saúde Pública e Meio AmbienteEscola Nacional de Saúde Pública, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brasil
- Laboratório de Pesquisa de Ciências FarmacêuticasUnidade de Farmácia, Centro Universitário Estadual da Zona Oeste, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Rosane Vianna-Jorge
- Coordenação de PesquisaInstituto Nacional do Câncer, Rio de Janeiro, Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Saúde Pública e Meio AmbienteEscola Nacional de Saúde Pública, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto de Ciências BiomédicasUniversidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
20
|
Clinical Significance and Biological Role of HuR in Head and Neck Carcinomas. DISEASE MARKERS 2018; 2018:4020937. [PMID: 29619127 PMCID: PMC5829322 DOI: 10.1155/2018/4020937] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/27/2017] [Indexed: 12/17/2022]
Abstract
Background Hu-antigen R (HuR) is a posttranscriptional regulator of several target mRNAs, implicated in carcinogenesis. This review aims to present the current evidence regarding the biological role and potential clinical significance of HuR in head and neck carcinomas. Methods The existing literature concerning HuR expression and function in head and neck carcinomas is critically presented and summarised. Results HuR is expressed in the majority of the examined samples, showing higher cytoplasmic levels in malignant or premalignant cases. Moreover, HuR modulates several genes implicated in biological processes important for malignant transformation, growth, and invasiveness. HuR seems to be an adverse prognosticator in patients with OSCCs, whereas a correlation with a more aggressive phenotype is reported in several types of carcinomas. Conclusions A consistent role of HuR in the carcinogenesis and progression of head and neck carcinomas is suggested; nevertheless, further studies are warranted to expand the present information.
Collapse
|
21
|
Gong Y, Hewett JA. Maintenance of the Innate Seizure Threshold by Cyclooxygenase-2 is Not Influenced by the Translational Silencer, T-cell Intracellular Antigen-1. Neuroscience 2018; 373:37-51. [PMID: 29337236 DOI: 10.1016/j.neuroscience.2018.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/23/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022]
Abstract
Activity of neuronal cyclooxygenase-2 (COX-2), a primary source of PG synthesis in the normal brain, is enhanced by excitatory neurotransmission and this is thought to be involved in seizure suppression. Results herein showing that the incidence of pentylenetetrazole (PTZ)-induced convulsions is suppressed in transgenic mice overexpressing COX-2 in neurons support this notion. T-cell intracellular antigen-1 (TIA-1) is an mRNA binding protein that is known to bind to COX-2 mRNA and repress its translation in non-neuronal cell types. An examination of the expression profile of TIA-1 protein in the normal brain indicated that it is expressed broadly by neurons, including those that express COX-2. However, whether TIA-1 regulates COX-2 protein levels in neurons is not known. The purpose of this study was to test the possibility that deletion of TIA-1 increases basal COX-2 expression in neurons and consequently raises the seizure threshold. Results demonstrate that neither the basal nor seizure-induced expression profiles of COX-2 were altered in mice lacking a functional TIA-1 gene suggesting that TIA-1 does not contribute to regulation of COX-2 protein expression in neurons. The acute PTZ-induced seizure threshold was also unchanged in mice lacking TIA-1 protein, indicating that this RNA binding protein does not influence the innate seizure threshold. Nevertheless, the results raise the possibility that the level of neuronal COX-2 expression may be a determinant of the innate seizure threshold and suggest that a better understanding of the regulation of COX-2 expression in the brain could provide new insight into the molecular mechanisms that suppress seizure induction.
Collapse
Affiliation(s)
- Yifan Gong
- Program in Neuroscience, Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - James A Hewett
- Program in Neuroscience, Department of Biology, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
22
|
Piranda DN, Abreu RBV, Freitas-Alves DR, de Carvalho MA, Vianna-Jorge R. Modulation of the prostaglandin-endoperoxide synthase 2 gene expression by variant haplotypes: influence of the 3'-untranslated region. ACTA ACUST UNITED AC 2017; 51:e6546. [PMID: 29211250 PMCID: PMC5711006 DOI: 10.1590/1414-431x20176546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022]
Abstract
The inducible inflammatory enzyme cycloxigenase-2 is up-regulated in cancer, and favors tumor progression. Cycloxigenase-2 is encoded by the prostaglandin-endoperoxide synthase 2 (PTGS2) gene, which presents sequence variations in the promoter region (PR) and in the 3′-untranslated region (3′-UTR). Different PR (rs689465, rs689466, rs20417) and 3′-UTR (rs5275) variants were generated by site-directed mutagenesis, and combined in haplotypes to access expression levels using a reporter system (luciferase) in human cells (MCF-7 and HEK293FT). Luciferase activity did not differ significantly among PTGS2 PR constructs, except for pAAC (containing variant allele rs20417 C), with 40% less activity than pAAG (wild-type sequence) in MCF-7 cells (P<0.01). Despite the lack of individual significant differences, PTGS2 PR constructs enclosing rs689466 G (pAGG and pAGC) showed an approximate two-fold increase in luciferase activity when compared to those containing rs689466 A (pAAG, pGAC, pAAC and pGAG) in both cell lines (P<0.001 for MCF-7 and P=0.03 for HEK293FT). The effect of PTGS2 3′-UTR sequences varied between MCF-7 and HEK293FT: MCF-7 cells showed significant reduction (40–60%) in luciferase activity (at least P<0.01), whereas HEK293FT cells showed more diverse results, with an average 2-fold increase when combined constructs (PR and 3′-UTR) were compared to respective parental PR sequences. The contribution of 3′-UTR variant (rs5275) was not consistent in either cell line. Despite the modulation of the 3′-UTR, with variable effects of rs5275, the enhancing transcriptional effect of rs689466 G was still detectable (P<0.0001 in MCF-7 or P=0.03 in HEK293FT cells).
Collapse
Affiliation(s)
- D N Piranda
- Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brasil.,Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - R B V Abreu
- Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brasil
| | - D R Freitas-Alves
- Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brasil.,Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública Sérgio Arouca, FIOCRUZ, Rio de Janeiro, RJ, Brasil
| | - M A de Carvalho
- Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brasil.,Instituto Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - R Vianna-Jorge
- Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brasil.,Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública Sérgio Arouca, FIOCRUZ, Rio de Janeiro, RJ, Brasil.,Programa de Pesquisa em Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
23
|
Abstract
INTRODUCTION Kinins are peptide mediators exerting their pro-inflammatory actions by the selective stimulation of two distinct G-protein coupled receptors, termed BKB1R and BKB2R. While BKB2R is constitutively expressed in a multitude of tissues, BKB1R is hardly expressed at baseline but highly inducible by inflammatory mediators. In particular, BKB1R was shown to be involved in the pathogenesis of numerous inflammatory diseases. Areas covered: This review intends to evaluate the therapeutic potential of substances interacting with the BKB1R. To this purpose we summarize the published literature on animal studies with antagonists and knockout mice for this receptor. Expert Opinion: In most cases the pharmacological inhibition of BKB1R or its genetic deletion was beneficial for the outcome of the disease in animal models. Therefore, several companies have developed BKB1R antagonists and tested them in phase I and II clinical trials. However, none of the developed BKB1R antagonists was further developed for clinical use. We discuss possible reasons for this failure of translation of preclinical findings on BKB1R antagonists into the clinic.
Collapse
Affiliation(s)
- Fatimunnisa Qadri
- a Max-Delbrück Center for Molecular Medicine (MDC) , Berlin , Germany
| | - Michael Bader
- a Max-Delbrück Center for Molecular Medicine (MDC) , Berlin , Germany.,b Berlin Institute of Health (BIH) , Berlin , Germany.,c Charité University Medicine Berlin , Germany.,d German Center for Cardiovascular Research (DZHK) site Berlin , Berlin , Germany.,e Institute for Biology , University of Lübeck , Lübeck , Germany
| |
Collapse
|
24
|
Alexanian A, Sorokin A. Cyclooxygenase 2: protein-protein interactions and posttranslational modifications. Physiol Genomics 2017; 49:667-681. [PMID: 28939645 DOI: 10.1152/physiolgenomics.00086.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Numerous studies implicate the cyclooxygenase 2 (COX2) enzyme and COX2-derived prostanoids in various human diseases, and thus, much effort has been made to uncover the regulatory mechanisms of this enzyme. COX2 has been shown to be regulated at both the transcriptional and posttranscriptional levels, leading to the development of nonsteroidal anti-inflammatory drugs (NSAIDs) and selective COX2 inhibitors (COXIBs), which inhibit the COX2 enzyme through direct targeting. Recently, evidence of posttranslational regulation of COX2 enzymatic activity by s-nitrosylation, glycosylation, and phosphorylation has also been presented. Additionally, posttranslational regulators that actively downregulate COX2 expression by facilitating increased proteasome degradation of this enzyme have also been reported. Moreover, recent data identified proteins, located in close proximity to COX2 enzyme, that serve as posttranslational modulators of COX2 function, upregulating its enzymatic activity. While the precise mechanisms of the protein-protein interaction between COX2 and these regulatory proteins still need to be addressed, it is likely these interactions could regulate COX2 activity either as a result of conformational changes of the enzyme or by impacting subcellular localization of COX2 and thus affecting its interactions with regulatory proteins, which further modulate its activity. It is possible that posttranslational regulation of COX2 enzyme by such proteins could contribute to manifestation of different diseases. The uncovering of posttranslational regulation of COX2 enzyme will promote the development of more efficient therapeutic strategies of indirectly targeting the COX2 enzyme, as well as provide the basis for the generation of novel diagnostic tools as biomarkers of disease.
Collapse
Affiliation(s)
- Anna Alexanian
- Cardiovascular Center and Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Andrey Sorokin
- Cardiovascular Center and Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
25
|
Tomitão MTP, Nahas SC, Kubrusly MS, Furuya TK, Diniz MA, Marie SKN, Safatle-Ribeiro AV, Eluf-Neto J, Cecconello I, Ribeiro Junior U. Cyclooxygenase-2 gene polymorphisms and susceptibility to colorectal cancer in a Brazilian population. J Gastrointest Oncol 2017; 8:629-635. [PMID: 28890812 DOI: 10.21037/jgo.2017.03.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Multi-ethnicity of Brazilian population displays high levels of genomic diversity. Polymorphism may detect people at higher risk of developing cancer, distinctive response to treatment, and prognosis. Cyclooxygenase-2 (COX-2) is induced in response to growth factors and cytokines, and is expressed in inflammatory diseases, precancerous lesions and colorectal cancer (CRC). The aim of this study was to evaluate the influence of COX-2 -1195A > G and 8473T > C polymorphisms as a risk factor of developing CRC. METHODS We evaluated COX-2 Single Nucleotide Polymorphism (SNP) of 230 CRC patients and 196 healthy controls by Real-Time Polymerase Chain Reaction. RESULTS Populations were in Hardy-Weinberg equilibrium (HWE), except for control group of 8473T > C SNP. The frequencies were similar in both groups for genotypes and haplotypes. There was no association between studied polymorphisms and risk of CRC. CONCLUSIONS The gene polymorphisms studied do not participate in the genetic susceptibility to CRC in a Brazilian population.
Collapse
Affiliation(s)
- Michele Tatiana Pereira Tomitão
- Departamento de Gastroenterologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo/SP, Brasil.,Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, São Paulo/SP, Brasil
| | - Sergio Carlos Nahas
- Departamento de Gastroenterologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo/SP, Brasil.,Instituto do Câncer do Estado de São Paulo, São Paulo/SP, Brasil
| | - Marcia Saldanha Kubrusly
- Divisão de Transplante de Órgãos Digestivos LIM 37, Faculdade de Medicina da Universidade de São Paulo, São Paulo/SP, Brasil
| | - Tatiane Katsue Furuya
- Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, São Paulo/SP, Brasil.,Departamento de Radiologia e Oncologia LIM 24, Faculdade de Medicina da Universidade de São Paulo, São Paulo/SP, Brasil
| | | | | | - Adriana Vaz Safatle-Ribeiro
- Departamento de Gastroenterologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo/SP, Brasil.,Instituto do Câncer do Estado de São Paulo, São Paulo/SP, Brasil
| | - José Eluf-Neto
- Departamento de Medicina Preventiva, Faculdade de Medicina da Universidade de São Paulo, São Paulo/SP, Brasil
| | - Ivan Cecconello
- Departamento de Gastroenterologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo/SP, Brasil
| | - Ulysses Ribeiro Junior
- Departamento de Gastroenterologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo/SP, Brasil.,Instituto do Câncer do Estado de São Paulo, São Paulo/SP, Brasil
| |
Collapse
|
26
|
Lal S, Cheung EC, Zarei M, Preet R, Chand SN, Mambelli-Lisboa NC, Romeo C, Stout MC, Londin E, Goetz A, Lowder CY, Nevler A, Yeo CJ, Campbell PM, Winter JM, Dixon DA, Brody JR. CRISPR Knockout of the HuR Gene Causes a Xenograft Lethal Phenotype. Mol Cancer Res 2017; 15:696-707. [PMID: 28242812 PMCID: PMC5466444 DOI: 10.1158/1541-7786.mcr-16-0361] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/30/2016] [Accepted: 01/25/2017] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is the third leading cause of cancer-related deaths in the United States, whereas colorectal cancer is the third most common cancer. The RNA-binding protein HuR (ELAVL1) supports a pro-oncogenic network in gastrointestinal (GI) cancer cells through enhanced HuR expression. Using a publically available database, HuR expression levels were determined to be increased in primary PDA and colorectal cancer tumor cohorts as compared with normal pancreas and colon tissues, respectively. CRISPR/Cas9 technology was successfully used to delete the HuR gene in both PDA (MIA PaCa-2 and Hs 766T) and colorectal cancer (HCT116) cell lines. HuR deficiency has a mild phenotype, in vitro, as HuR-deficient MIA PaCa-2 (MIA.HuR-KO(-/-)) cells had increased apoptosis when compared with isogenic wild-type (MIA.HuR-WT(+/+)) cells. Using this isogenic system, mRNAs were identified that specifically bound to HuR and were required for transforming a two-dimensional culture into three dimensional (i.e., organoids). Importantly, HuR-deficient MIA PaCa-2 and Hs 766T cells were unable to engraft tumors in vivo compared with control HuR-proficient cells, demonstrating a unique xenograft lethal phenotype. Although not as a dramatic phenotype, CRISPR knockout HuR HCT116 colon cancer cells (HCT.HuR-KO(-/-)) showed significantly reduced in vivo tumor growth compared with controls (HCT.HuR-WT(+/+)). Finally, HuR deletion affects KRAS activity and controls a subset of pro-oncogenic genes.Implications: The work reported here supports the notion that targeting HuR is a promising therapeutic strategy to treat GI malignancies. Mol Cancer Res; 15(6); 696-707. ©2017 AACR.
Collapse
Affiliation(s)
- Shruti Lal
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Edwin C Cheung
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mahsa Zarei
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ranjan Preet
- Department of Cancer Biology and University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas
| | - Saswati N Chand
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nicole C Mambelli-Lisboa
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Carmella Romeo
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Matthew C Stout
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Eric Londin
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Austin Goetz
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Cinthya Y Lowder
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Avinoam Nevler
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Charles J Yeo
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Paul M Campbell
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Jordan M Winter
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Dan A Dixon
- Department of Cancer Biology and University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas.
| | - Jonathan R Brody
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
27
|
Rumzhum NN, Ammit AJ. Cyclooxygenase 2: its regulation, role and impact in airway inflammation. Clin Exp Allergy 2016; 46:397-410. [PMID: 26685098 DOI: 10.1111/cea.12697] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cyclooxygenase 2 (COX-2: official gene symbol - PTGS2) has long been regarded as playing a pivotal role in the pathogenesis of airway inflammation in respiratory diseases including asthma. COX-2 can be rapidly and robustly expressed in response to a diverse range of pro-inflammatory cytokines and mediators. Thus, increased levels of COX-2 protein and prostanoid metabolites serve as key contributors to pathobiology in respiratory diseases typified by dysregulated inflammation. But COX-2 products may not be all bad: prostanoids can exert anti-inflammatory/bronchoprotective functions in airways in addition to their pro-inflammatory actions. Herein, we outline COX-2 regulation and review the diverse stimuli known to induce COX-2 in the context of airway inflammation. We discuss some of the positive and negative effects that COX-2/prostanoids can exert in in vitro and in vivo models of airway inflammation, and suggest that inhibiting COX-2 expression to repress airway inflammation may be too blunt an approach; because although it might reduce the unwanted effects of COX-2 activation, it may also negate the positive effects. Evidence suggests that prostanoids produced via COX-2 upregulation show diverse actions (and herein we focus on prostaglandin E2 as a key example); these can be either beneficial or deleterious and their impact on respiratory disease can be dictated by local concentration and specific interaction with individual receptors. We propose that understanding the regulation of COX-2 expression and associated receptor-mediated functional outcomes may reveal number of critical steps amenable to pharmacological intervention. These may prove invaluable in our quest towards future development of novel anti-inflammatory pharmacotherapeutic strategies for the treatment of airway diseases.
Collapse
Affiliation(s)
- N N Rumzhum
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - A J Ammit
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
28
|
Johnson RF, Mitchell CM, Giles WB, Walters WA, Zakar T. The Control of Prostaglandin Endoperoxide H-Synthase-2 Expression in the Human Chorion Laeve at Term. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/s1071-55760300046-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - William A. Walters
- Division of Obstetrics and Gynaecology, John Hunter Hospital, Newcastle, Australia; Discipline of Reproductive Medicine,, and Mothers and Babies Research Centre, University of Newcastle, Newcastle, Australia
| | - Tamas Zakar
- Division of Obstetrics and Gynaecology, Mothers and Babies Research Centre, John Hunter Hospital, Locked Bag 1, Hunter Region Mail Centre, Newcastle NSW 2310 Australia
| |
Collapse
|
29
|
Zhang Y, Zeng HM, Nie XR, Zhang L, Ma JL, Li JY, Pan KF, You WC. Alterations of Cyclooxygenase-2 Methylation Levels Before and After Intervention Trial to Prevent Gastric Cancer in a Chinese Population. Cancer Prev Res (Phila) 2016; 9:484-90. [PMID: 27020655 DOI: 10.1158/1940-6207.capr-15-0389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/16/2016] [Indexed: 11/16/2022]
Abstract
To explore the epigenetic mechanisms underlying the effects of anti-Helicobacter pylori (H. pylori) alone and combined with COX-2 inhibitor (celecoxib), we dynamically evaluated the associations between COX-2 methylation alterations and gastric lesion evolution during the process of interventions. In a total of 809 trial participants COX-2 methylation levels were quantitatively detected before and after treatment. The self-comparison at the same stomach site for each subject showed significant methylation alteration differences among intervention groups (P < 0.001). With placebo group as reference, COX-2 methylation levels were decreased in anti-H. pylori [OR, 3.30; 95% confidence interval (CI), 2.16-5.02], celecoxib (OR, 2.04; 95% CI, 1.36-3.07), and anti-H. pylori followed by celecoxib (OR, 2.10; 95% CI, 1.38-3.17) groups. When stratified by baseline histology, the three active arms significantly decreased COX-2 methylation levels in indefinite dysplasia/dysplasia subjects, and ORs were 3.65 (95% CI, 1.96-6.80) for anti-H. pylori, 2.43 (95% CI 1.34-4.39) for celecoxib, and 2.80 (95% CI, 1.52-5.15) for anti-H. pylori followed by celecoxib, respectively. No additive effect on COX-2 methylation was found for anti-H. pylori followed by celecoxib than two treatments alone. Compared with subjects without methylation reduction, higher opportunity for gastric lesion regression was found in subjects with decreased COX-2 methylation levels, especially for indefinite dysplasia/dysplasia subjects (OR, 1.92; 95% CI, 1.03-3.60). These findings suggest that anti-H. pylori or celecoxib treatment alone could decrease COX-2 methylation levels in gastric mucosa. COX-2 methylation alteration was associated with the regression of indefinite dysplasia/dysplasia, which might serve as a potential biomarker for chemoprevention efficacy. Cancer Prev Res; 9(6); 484-90. ©2016 AACR.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China. Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hong-Mei Zeng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China. Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiao-Rui Nie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China. Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lian Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China. Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jun-Ling Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China. Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ji-You Li
- Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Kai-Feng Pan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China. Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Wei-Cheng You
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China. Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
30
|
Thomason J, Lunsford K, Mackin A. Anti-platelet therapy in small animal medicine. J Vet Pharmacol Ther 2016; 39:318-35. [DOI: 10.1111/jvp.12301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 01/29/2016] [Indexed: 01/29/2023]
Affiliation(s)
- J. Thomason
- Department of Clinical Sciences; College of Veterinary Medicine; Mississippi State University; Mississippi State MS USA
| | - K. Lunsford
- Department of Clinical Sciences; College of Veterinary Medicine; Mississippi State University; Mississippi State MS USA
| | - A. Mackin
- Department of Clinical Sciences; College of Veterinary Medicine; Mississippi State University; Mississippi State MS USA
| |
Collapse
|
31
|
Li J, Li H, Tian Y, Yang Y, Chen G, Guo W, Tian W. Cytoskeletal binding proteins distinguish cultured dental follicle cells and periodontal ligament cells. Exp Cell Res 2015; 345:6-16. [PMID: 26708290 DOI: 10.1016/j.yexcr.2015.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 02/05/2023]
Abstract
Human dental follicle cells (DFCs) and periodontal ligament cells (PDLCs) derived from the ectomesenchymal tissue, have been shown to exhibit stem/progenitor cell properties and the ability to induce tissue regeneration. Stem cells in dental follicle differentiate into cementoblasts, periodontal ligament fibroblasts and osteoblasts, these cells form cementum, periodontal ligament and alveolar bone, respectively. While stem cells in dental follicle are a precursor to periodontal ligament fibroblasts, the molecular changes that distinguish cultured DFCs from PDLCs are still unknown. In this study, we have compared the immunophenotypic features and cell cycle status of the two cell lines. The results suggest that DFCs and PDLCs displayed similar features related to immunophenotype and cell cycle. Then we employed an isobaric tag for relative and absolute quantitation (iTRAQ) proteomics strategy to reveal the molecular differences between the two cell types. A total of 2138 proteins were identified and 39 of these proteins were consistently differentially expressed between DFCs and PDLCs. Gene ontology analyses revealed that the protein subsets expressed higher in PDLCs were related to actin binding, cytoskeletal protein binding, and structural constituent of muscle. Upon validation by real-time PCR, western blotting, and immunofluorescence staining. Tropomyosin 1 (TPM1) and caldesmon 1 (CALD1) were expressed higher in PDLCs than in DFCs. Our results suggested that PDLCs display enhanced actin cytoskeletal dynamics relative to DFCs while DFCs may exhibit a more robust antioxidant defense ability relative to PDLCs. This study expands our knowledge of the cultured DFCs and PDLCs proteome and provides new insights into possible mechanisms responsible for the different biological features observed in each cell type.
Collapse
Affiliation(s)
- Jie Li
- College of Life Science, Sichuan University, Chengdu, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hui Li
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ye Tian
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaling Yang
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guoqing Chen
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weihua Guo
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Pedodontics, West China School of Stomatology, Sichuan University, Chengdu, China.
| | - Weidong Tian
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral and Maxillofacial Surgery, West China School of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
32
|
Blanco FF, Jimbo M, Wulfkuhle J, Gallagher I, Deng J, Enyenihi L, Meisner-Kober N, Londin E, Rigoutsos I, Sawicki JA, Risbud MV, Witkiewicz AK, McCue PA, Jiang W, Rui H, Yeo CJ, Petricoin E, Winter JM, Brody JR. The mRNA-binding protein HuR promotes hypoxia-induced chemoresistance through posttranscriptional regulation of the proto-oncogene PIM1 in pancreatic cancer cells. Oncogene 2015; 35:2529-41. [PMID: 26387536 DOI: 10.1038/onc.2015.325] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 12/15/2022]
Abstract
Previously, it has been shown that pancreatic ductal adenocarcinoma (PDA) tumors exhibit high levels of hypoxia, characterized by low oxygen pressure (pO2) and decreased O2 intracellular perfusion. Chronic hypoxia is strongly associated with resistance to cytotoxic chemotherapy and chemoradiation in an understudied phenomenon known as hypoxia-induced chemoresistance. The hypoxia-inducible, pro-oncogenic, serine-threonine kinase PIM1 (Proviral Integration site for Moloney murine leukemia virus 1) has emerged as a key regulator of hypoxia-induced chemoresistance in PDA and other cancers. Although its role in therapeutic resistance has been described previously, the molecular mechanism behind PIM1 overexpression in PDA is unknown. Here, we demonstrate that cis-acting AU-rich elements (ARE) present within a 38-base pair region of the PIM1 mRNA 3'-untranslated region mediate a regulatory interaction with the mRNA stability factor HuR (Hu antigen R) in the context of tumor hypoxia. Predominantly expressed in the nucleus in PDA cells, HuR translocates to the cytoplasm in response to hypoxic stress and stabilizes the PIM1 mRNA transcript, resulting in PIM1 protein overexpression. A reverse-phase protein array revealed that HuR-mediated regulation of PIM1 protects cells from hypoxic stress through phosphorylation and inactivation of the apoptotic effector BAD and activation of MEK1/2. Importantly, pharmacological inhibition of HuR by MS-444 inhibits HuR homodimerization and its cytoplasmic translocation, abrogates hypoxia-induced PIM1 overexpression and markedly enhances PDA cell sensitivity to oxaliplatin and 5-fluorouracil under physiologic low oxygen conditions. Taken together, these results support the notion that HuR has prosurvival properties in PDA cells by enabling them with growth advantages in stressful tumor microenvironment niches. Accordingly, these studies provide evidence that therapeutic disruption of HuR's regulation of PIM1 may be a key strategy in breaking an elusive chemotherapeutic resistance mechanism acquired by PDA cells that reside in hypoxic PDA microenvironments.
Collapse
Affiliation(s)
- F F Blanco
- Department of Pharmacology and Experimental Therapeutics, Division of Clinical Pharmacology, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - M Jimbo
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - J Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - I Gallagher
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - J Deng
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - L Enyenihi
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - N Meisner-Kober
- Novartis Institutes for Biomedical Research, Novartis, Switzerland
| | - E Londin
- Center for Computational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - I Rigoutsos
- Center for Computational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - J A Sawicki
- Lankenau Institute for Medical Research, Philadelphia, PA, USA
| | - M V Risbud
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - A K Witkiewicz
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - P A McCue
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA, USA
| | - W Jiang
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA, USA
| | - H Rui
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - C J Yeo
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - E Petricoin
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - J M Winter
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - J R Brody
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
33
|
Sobolewski C, Sanduja S, Blanco FF, Hu L, Dixon DA. Histone Deacetylase Inhibitors Activate Tristetraprolin Expression through Induction of Early Growth Response Protein 1 (EGR1) in Colorectal Cancer Cells. Biomolecules 2015; 5:2035-55. [PMID: 26343742 PMCID: PMC4598787 DOI: 10.3390/biom5032035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/30/2015] [Accepted: 08/10/2015] [Indexed: 02/06/2023] Open
Abstract
The RNA-binding protein tristetraprolin (TTP) promotes rapid decay of mRNAs bearing 3' UTR AU-rich elements (ARE). In many cancer types, loss of TTP expression is observed allowing for stabilization of ARE-mRNAs and their pathologic overexpression. Here we demonstrate that histone deacetylase (HDAC) inhibitors (Trichostatin A, SAHA and sodium butyrate) promote TTP expression in colorectal cancer cells (HCA-7, HCT-116, Moser and SW480 cells) and cervix carcinoma cells (HeLa). We found that HDAC inhibitors-induced TTP expression, promote the decay of COX-2 mRNA, and inhibit cancer cell proliferation. HDAC inhibitors were found to promote TTP transcription through activation of the transcription factor Early Growth Response protein 1 (EGR1). Altogether, our findings indicate that loss of TTP in tumors occurs through silencing of EGR1 and suggests a therapeutic approach to rescue TTP expression in colorectal cancer.
Collapse
Affiliation(s)
- Cyril Sobolewski
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Sandhya Sanduja
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Fernando F Blanco
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Liangyan Hu
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Dan A Dixon
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
34
|
Lei K, Georgiou EX, Chen L, Yulia A, Sooranna SR, Brosens JJ, Bennett PR, Johnson MR. Progesterone and the Repression of Myometrial Inflammation: The Roles of MKP-1 and the AP-1 System. Mol Endocrinol 2015; 29:1454-67. [PMID: 26280733 DOI: 10.1210/me.2015-1122] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Progesterone (P4) maintains uterine quiescence during pregnancy and its functional withdrawal is associated with increased prostaglandin synthesis and the onset of labor. In primary human myometrial cells, the glucocorticoid receptor (GR) rather than the P4 receptor mediates P4 antagonism of IL-1β-induced cyclooxygenase-2 (COX-2) expression, the rate-limiting enzyme in prostaglandin synthesis. We now report that P4 also acts via GR to induce MAPK phosphatase (MKP)-1 and knockdown of MKP-1 impairs the ability of P4 to repress IL-1β-dependent COX-2 induction. Microarray analysis revealed that P4 repressed preferentially activator protein-1-responsive genes in response to IL-1β. Consistent with these observations, we found that the ability of P4 to reduce c-Jun activation was lost upon GR as well as MKP-1 knockdown. Interestingly, c-Jun levels in human myometrial cells declined upon GR and MKP-1 knockdown, which suggests the presence of an activator protein-1 feedback loop. This is supported by our observation that c-Jun levels declined after an initial rise in primary myometrial cells treated with phorbol 12-myrisatate 13-acetate, a potent activator of c-Jun N-terminal kinase. Finally, we show that MKP-1 is an intermediate in P4-mediated repression of some but not all IL-1β-responsive genes. For example, P4 repression of IL11 and IRAK3 was maintained upon MKP-1 knockdown. Taken together, the data show that P4 acts via GR to drive MKP-1 expression, which in turn inhibits IL-1β-dependent c-Jun activation and COX-2 expression.
Collapse
Affiliation(s)
- K Lei
- Imperial College Parturition Research Group (K.L., E.X.G., L.C., A.Y., S.R.S., M.R.J.), Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom; Institute of Reproductive and Developmental Biology (KL.,. E.X.G., A.Y., S.R.S., P.R.B., M.R.J.), Hammersmith Hospital Campus, London W12 0NN, United Kingdom; Obstetrics Department (L.C.), First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, People's Republic of China; and Reproductive Health (J.J.B.), University of Warwick, Coventry CV4 7AL, United Kingdom
| | - E X Georgiou
- Imperial College Parturition Research Group (K.L., E.X.G., L.C., A.Y., S.R.S., M.R.J.), Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom; Institute of Reproductive and Developmental Biology (KL.,. E.X.G., A.Y., S.R.S., P.R.B., M.R.J.), Hammersmith Hospital Campus, London W12 0NN, United Kingdom; Obstetrics Department (L.C.), First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, People's Republic of China; and Reproductive Health (J.J.B.), University of Warwick, Coventry CV4 7AL, United Kingdom
| | - L Chen
- Imperial College Parturition Research Group (K.L., E.X.G., L.C., A.Y., S.R.S., M.R.J.), Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom; Institute of Reproductive and Developmental Biology (KL.,. E.X.G., A.Y., S.R.S., P.R.B., M.R.J.), Hammersmith Hospital Campus, London W12 0NN, United Kingdom; Obstetrics Department (L.C.), First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, People's Republic of China; and Reproductive Health (J.J.B.), University of Warwick, Coventry CV4 7AL, United Kingdom
| | - A Yulia
- Imperial College Parturition Research Group (K.L., E.X.G., L.C., A.Y., S.R.S., M.R.J.), Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom; Institute of Reproductive and Developmental Biology (KL.,. E.X.G., A.Y., S.R.S., P.R.B., M.R.J.), Hammersmith Hospital Campus, London W12 0NN, United Kingdom; Obstetrics Department (L.C.), First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, People's Republic of China; and Reproductive Health (J.J.B.), University of Warwick, Coventry CV4 7AL, United Kingdom
| | - S R Sooranna
- Imperial College Parturition Research Group (K.L., E.X.G., L.C., A.Y., S.R.S., M.R.J.), Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom; Institute of Reproductive and Developmental Biology (KL.,. E.X.G., A.Y., S.R.S., P.R.B., M.R.J.), Hammersmith Hospital Campus, London W12 0NN, United Kingdom; Obstetrics Department (L.C.), First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, People's Republic of China; and Reproductive Health (J.J.B.), University of Warwick, Coventry CV4 7AL, United Kingdom
| | - J J Brosens
- Imperial College Parturition Research Group (K.L., E.X.G., L.C., A.Y., S.R.S., M.R.J.), Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom; Institute of Reproductive and Developmental Biology (KL.,. E.X.G., A.Y., S.R.S., P.R.B., M.R.J.), Hammersmith Hospital Campus, London W12 0NN, United Kingdom; Obstetrics Department (L.C.), First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, People's Republic of China; and Reproductive Health (J.J.B.), University of Warwick, Coventry CV4 7AL, United Kingdom
| | - P R Bennett
- Imperial College Parturition Research Group (K.L., E.X.G., L.C., A.Y., S.R.S., M.R.J.), Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom; Institute of Reproductive and Developmental Biology (KL.,. E.X.G., A.Y., S.R.S., P.R.B., M.R.J.), Hammersmith Hospital Campus, London W12 0NN, United Kingdom; Obstetrics Department (L.C.), First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, People's Republic of China; and Reproductive Health (J.J.B.), University of Warwick, Coventry CV4 7AL, United Kingdom
| | - M R Johnson
- Imperial College Parturition Research Group (K.L., E.X.G., L.C., A.Y., S.R.S., M.R.J.), Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom; Institute of Reproductive and Developmental Biology (KL.,. E.X.G., A.Y., S.R.S., P.R.B., M.R.J.), Hammersmith Hospital Campus, London W12 0NN, United Kingdom; Obstetrics Department (L.C.), First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, People's Republic of China; and Reproductive Health (J.J.B.), University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
35
|
Olszowski T, Gutowska I, Baranowska-Bosiacka I, Piotrowska K, Korbecki J, Kurzawski M, Chlubek D. The Effect of Cadmium on COX-1 and COX-2 Gene, Protein Expression, and Enzymatic Activity in THP-1 Macrophages. Biol Trace Elem Res 2015; 165:135-44. [PMID: 25645360 PMCID: PMC4424267 DOI: 10.1007/s12011-015-0234-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/11/2015] [Indexed: 01/20/2023]
Abstract
The aim of this study was to examine the effects of cadmium in concentrations relevant to those detected in human serum on cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) expression at mRNA, protein, and enzyme activity levels in THP-1 macrophages. Macrophages were incubated with various cadmium chloride (CdCl2) solutions for 48 h at final concentrations of 5 nM, 20 nM, 200 nM, and 2 μM CdCl2. The mRNA expression and protein levels of COXs were analyzed with RT-PCR and Western blotting, respectively. Prostaglandin E2 (PGE2) and stable metabolite of thromboxane B2 (TXB2) concentrations in culture media were determined using ELISA method. Our study demonstrates that cadmium at the highest tested concentrations modulates COX-1 and COX-2 at mRNA level in THP-1 macrophages; however, the lower tested cadmium concentrations appear to inhibit COX-1 protein expression. PGE2 and TXB2 production is not altered by all tested Cd concentrations; however, the significant stimulation of PGE2 and TXB2 production is observed when macrophages are exposed to both cadmium and COX-2 selective inhibitor, NS-398. The stimulatory effect of cadmium on COXs at mRNA level is not reflected at protein and enzymatic activity levels, suggesting the existence of some posttranscriptional, translational, and posttranslational events that result in silencing of those genes' expression.
Collapse
Affiliation(s)
- Tomasz Olszowski
- Department of Hygiene and Epidemiology, Pomeranian Medical University, Powstańców Wlkp. 72 Av, 70-111 Szczecin, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 Str, 71-460 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av, 70-111 Szczecin, Poland
| | - Katarzyna Piotrowska
- Department of Physiology, Pomeranian Medical University, Powstańców Wlkp. 72 Av, 70-111 Szczecin, Poland
| | - Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av, 70-111 Szczecin, Poland
| | - Mateusz Kurzawski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Powstańców Wlkp. 72 Av, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av, 70-111 Szczecin, Poland
| |
Collapse
|
36
|
Patrignani P, Patrono C. Cyclooxygenase inhibitors: From pharmacology to clinical read-outs. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:422-32. [DOI: 10.1016/j.bbalip.2014.09.016] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 12/21/2022]
|
37
|
Aguado A, Rodríguez C, Martínez-Revelles S, Avendaño MS, Zhenyukh O, Orriols M, Martínez-González J, Alonso MJ, Briones AM, Dixon DA, Salaices M. HuR mediates the synergistic effects of angiotensin II and IL-1β on vascular COX-2 expression and cell migration. Br J Pharmacol 2015; 172:3028-42. [PMID: 25653183 DOI: 10.1111/bph.13103] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/20/2015] [Accepted: 02/02/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Angiotensin II (AngII) and IL-1β are involved in cardiovascular diseases through the induction of inflammatory pathways. HuR is an adenylate- and uridylate-rich element (ARE)-binding protein involved in the mRNA stabilization of many genes. This study investigated the contribution of HuR to the increased expression of COX-2 induced by AngII and IL-1β and its consequences on VSMC migration and remodelling. EXPERIMENTAL APPROACH Rat and human VSMCs were stimulated with AngII (0.1 μM) and/or IL-1β (10 ng · mL(-1)). Mice were infused with AngII or subjected to carotid artery ligation. mRNA and protein levels were assayed by quantitative PCR, Western blot, immunohistochemistry and immunofluorescence. Cell migration was measured by wound healing and transwell assays. KEY RESULTS In VSMCs, AngII potentiated COX-2 and tenascin-C expressions and cell migration induced by IL-1β. This effect of AngII on IL-1β-induced COX-2 expression was accompanied by increased COX-2 3' untranslated region reporter activity and mRNA stability, mediated through cytoplasmic HuR translocation and COX-2 mRNA binding. These effects were blocked by ERK1/2 and HuR inhibitors. VSMC migration was reduced by blockade of ERK1/2, HuR, COX-2, TXAS, TP and EP receptors. HuR, COX-2, mPGES-1 and TXAS expressions were increased in AngII-infused mouse aortas and in carotid-ligated arteries. AngII-induced tenascin-C expression and vascular remodelling were abolished by celecoxib and by mPGES-1 deletion. CONCLUSIONS AND IMPLICATIONS The synergistic induction of COX-2 by AngII and IL-1β in VSMCs involves HuR through an ERK1/2-dependent mechanism. The HuR/COX-2 axis participates in cell migration and vascular damage. HuR might be a novel target to modulate vascular remodelling.
Collapse
Affiliation(s)
- A Aguado
- Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz (IdiPAZ), Madrid, Spain
| | - C Rodríguez
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona, Spain
| | - S Martínez-Revelles
- Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz (IdiPAZ), Madrid, Spain
| | - M S Avendaño
- Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz (IdiPAZ), Madrid, Spain
| | - O Zhenyukh
- Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz (IdiPAZ), Madrid, Spain
| | - M Orriols
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona, Spain
| | - J Martínez-González
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona, Spain
| | - M J Alonso
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - A M Briones
- Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz (IdiPAZ), Madrid, Spain
| | - D A Dixon
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - M Salaices
- Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz (IdiPAZ), Madrid, Spain
| |
Collapse
|
38
|
Yao Y, Huang HY, Yang YX, Guo JY. Cinnamic aldehyde treatment alleviates chronic unexpected stress-induced depressive-like behaviors via targeting cyclooxygenase-2 in mid-aged rats. JOURNAL OF ETHNOPHARMACOLOGY 2015; 162:97-103. [PMID: 25556926 DOI: 10.1016/j.jep.2014.12.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 12/21/2014] [Accepted: 12/23/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE COX-2 has been considered as a potent molecular target for prevention and therapy of depression. However, a recent study showed that COX-2 inhibitor does not improve depressive symptoms in persons aged 70 and over. Therefore, whether treatments targeting COX-2 have a clinical efficacy in depression, especially elderly individuals, remains unclear. Cinnamic aldehyde is a major constituent of Cinnamomum cassia, which has exhibited excellent anti-inflammatory activities as a COX-2 inhibitor. To investigate the potential antidepressant effect of cinnamic aldehyde in mid-aged rats. MATERIALS AND METHODS The depressive-like behaviors were measured after the rats exposed to chronic unexpected mild stress (CUMS). Cinnamic aldehyde was administrated by oral gavage to stressed rats (22.5, 45, 90 mg/kg, respectively) for 21 days. The mRNA, protein expression and activity of cyclooxygenase-2 (COX-2), as well as prostaglandin E2 (PGE2) levels were measured in the frontal cortex and hippocampus of stressed animals. RESULTS We found that CUMS procedure not only decreased the sucrose preference, but also elevated the COX-2 activity, mRNA and protein levels, and increased PGE2 concentration in rat brain regions. Treatment with high doses of cinnamic aldehyde (45, 90 mg/kg) reversed the behavioral abnormalities, and decreased the COX-2 protein and activity (but not COX-2 mRNA expression) and PGE2 concentration in frontal cortex and hippocampus of stressed rats. CONCLUSION Cinnamic aldehyde exerted antidepressant-like effects in stressed mid-aged rats, and its mechanism of action appears to decrease COX-2 protein and activity. The current findings suggest that targeting COX-2 system might be benefit to the depression, especially elderly individuals and cinnamic aldehyde might be a promising medicine to treat the subjects in the depression.
Collapse
Affiliation(s)
- Ying Yao
- Pharmacy Department, Zhejiang Medical College, Hangzhou 310053, China
| | - Hai-Ying Huang
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Yuan-Xiao Yang
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jian-You Guo
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16# Lincui Road, Chaoyang District, Beijing 100101, China.
| |
Collapse
|
39
|
Cornett AL, Lutz CS. Regulation of COX-2 expression by miR-146a in lung cancer cells. RNA (NEW YORK, N.Y.) 2014; 20:1419-30. [PMID: 25047043 PMCID: PMC4138325 DOI: 10.1261/rna.044149.113] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 05/24/2014] [Indexed: 06/03/2023]
Abstract
Prostaglandins are a class of molecules that mediate cellular inflammatory responses and control cell growth. The oxidative conversion of arachidonic acid to prostaglandin H2 is carried out by two isozymes of cyclooxygenase, COX-1 and COX-2. COX-1 is constitutively expressed, while COX-2 can be transiently induced by external stimuli, such as pro-inflammatory cytokines. Interestingly, COX-2 is overexpressed in numerous cancers, including lung cancer. MicroRNAs (miRNAs) are small RNA molecules that function to regulate gene expression. Previous studies have implicated an important role for miRNAs in human cancer. We demonstrate here that miR-146a expression levels are significantly lower in lung cancer cells as compared with normal lung cells. Conversely, lung cancer cells have higher levels of COX-2 protein and mRNA expression. Introduction of miR-146a can specifically ablate COX-2 protein and the biological activity of COX-2 as measured by prostaglandin production. The regulation of COX-2 by miR-146a is mediated through a single miRNA-binding site present in the 3' UTR. Therefore, we propose that decreased miR-146a expression contributes to the up-regulation and overexpression of COX-2 in lung cancer cells. Since potential miRNA-mediated regulation is a functional consequence of alternative polyadenylation site choice, understanding the molecular mechanisms that regulate COX-2 mRNA alternative polyadenylation and miRNA targeting will give us key insights into how COX-2 expression is involved in the development of a metastatic condition.
Collapse
Affiliation(s)
- Ashley L Cornett
- Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, New Jersey Medical School and the Graduate School of Biomedical Sciences, Newark, New Jersey 07103, USA
| | - Carol S Lutz
- Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, New Jersey Medical School and the Graduate School of Biomedical Sciences, Newark, New Jersey 07103, USA
| |
Collapse
|
40
|
Qi J, Dong Z, Liu J, Zhang JT. EIF3i promotes colon oncogenesis by regulating COX-2 protein synthesis and β-catenin activation. Oncogene 2014; 33:4156-63. [PMID: 24056964 PMCID: PMC3962800 DOI: 10.1038/onc.2013.397] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 12/21/2022]
Abstract
Translational control of gene expression has recently been recognized as an important mechanism controlling cell proliferation and oncogenesis, and it mainly occurs in the initiation step of protein synthesis that involves multiple eukaryotic initiation factors (eIFs). Many eIFs have been found to have aberrant expression in human tumors and the aberrant expression may contribute to oncogenesis. However, how these previously considered house-keeping proteins are potentially oncogenic remains elusive. In this study, we investigated the expression of eIF3i in human colon cancers, tested its contribution to colon oncogenesis and determined the mechanism of eIF3i action in colon oncogenesis. We found that eIF3i expression was upregulated in both human colon adenocarcinoma and adenoma polyps as well as in model inducible colon tumorigenic cell lines. Overexpression of ectopic eIF3i in intestinal epithelial cells causes oncogenesis by directly upregulating the synthesis of cyclooxygenase-2 (COX-2) protein and activates the β-catenin/T-cell factor 4 signaling pathway that mediates the oncogenic function of eIF3i. Together, we conclude that eIF3i is a proto-oncogene that drives colon oncogenesis by translationally upregulating COX-2 and activating the β-catenin signaling pathway. These findings imply that proto-oncogenic eIFs likely exert their tumorigenic function by regulating/altering the synthesis level of downstream tumor suppressor or oncogenes.
Collapse
Affiliation(s)
- J Qi
- Department of Pharmacology and Toxicology and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Z Dong
- Department of Pharmacology and Toxicology and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J Liu
- Department of Pharmacology and Toxicology and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J-T Zhang
- Department of Pharmacology and Toxicology and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
41
|
Guillem-Llobat P, Dovizio M, Alberti S, Bruno A, Patrignani P. Platelets, Cyclooxygenases, and Colon Cancer. Semin Oncol 2014; 41:385-96. [DOI: 10.1053/j.seminoncol.2014.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Lutz CS, Cornett AL. Regulation of genes in the arachidonic acid metabolic pathway by RNA processing and RNA-mediated mechanisms. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 4:593-605. [PMID: 23956046 DOI: 10.1002/wrna.1183] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 01/22/2023]
Abstract
Arachidonic acid (AA) is converted by enzymes in an important metabolic pathway to produce molecules known collectively as eicosanoids, 20 carbon molecules with significant physiological and pathological functions in the human body. Cyclooxygenase (COX) enzymes work in one arm of the pathway to produce prostaglandins (PGs) and thromboxanes (TXs), while the actions of 5-lipoxygenase (ALOX5 or 5LO) and its associated protein (ALOX5AP or FLAP) work in the other arm of the metabolic pathway to produce leukotrienes (LTs). The expression of the COX and ALOX5 enzymes that convert AA to eicosanoids is highly regulated at the post- or co-transcriptional level by alternative mRNA splicing, alternative mRNA polyadenylation, mRNA stability, and microRNA (miRNA) regulation. This review article will highlight these mechanisms of mRNA modulation.
Collapse
Affiliation(s)
- Carol S Lutz
- Department of Biochemistry and Molecular Biology, New Jersey Medical School and the Graduate School of Biomedical Sciences, Rutgers, NJ, USA.
| | | |
Collapse
|
43
|
Abstract
In the mammalian kidney, prostaglandins (PGs) are important mediators of physiologic processes, including modulation of vascular tone and salt and water. PGs arise from enzymatic metabolism of free arachidonic acid (AA), which is cleaved from membrane phospholipids by phospholipase A2 activity. The cyclooxygenase (COX) enzyme system is a major pathway for metabolism of AA in the kidney. COX are the enzymes responsible for the initial conversion of AA to PGG2 and subsequently to PGH2, which serves as the precursor for subsequent metabolism by PG and thromboxane synthases. In addition to high levels of expression of the "constitutive" rate-limiting enzyme responsible for prostanoid production, COX-1, the "inducible" isoform of cyclooxygenase, COX-2, is also constitutively expressed in the kidney and is highly regulated in response to alterations in intravascular volume. PGs and thromboxane A2 exert their biological functions predominantly through activation of specific 7-transmembrane G-protein-coupled receptors. COX metabolites have been shown to exert important physiologic functions in maintenance of renal blood flow, mediation of renin release and regulation of sodium excretion. In addition to physiologic regulation of prostanoid production in the kidney, increases in prostanoid production are also seen in a variety of inflammatory renal injuries, and COX metabolites may serve as mediators of inflammatory injury in renal disease.
Collapse
Affiliation(s)
- Raymond C Harris
- George M. O'Brien Kidney and Urologic Diseases Center and Division of Nephrology, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee, USA.
| | | |
Collapse
|
44
|
MicroRNA-519a demonstrates significant tumour suppressive activity in laryngeal squamous cells by targeting anti-carcinoma HuR gene. The Journal of Laryngology & Otology 2013; 127:1194-202. [DOI: 10.1017/s0022215113003174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AbstractObjective:This study investigated the expression and functional effects, and related molecular mechanisms, of microRNA-519a in laryngeal squamous cell carcinoma.Methods:MicroRNA-519a and HuR messenger RNA in laryngeal squamous cell carcinoma were measured using reverse transcription polymerase chain reaction. MicroRNA-519a effects on the growth of human epithelial type 2 cells were tested using an MTT assay. The influence of microRNA-519a on the expression levels of HuR and other related genes in protein was tested by Western blotting. Cell cycle analyses were performed using flow cytometry. Associations between expression levels and patients' clinical parameters were analysed with Pearson correlation analysis.Results:Expression of microRNA-519a in laryngeal squamous cell carcinoma tissues was significantly lower than in adjacent non-cancerous tissues. The expression of microRNA-519a was negatively associated with histological differentiation, tumour–node–metastasis stage, lymphatic metastasis and disease-free survival time. After increasing the level of microRNA-519a in laryngeal squamous cell carcinoma human epithelial type 2 cells, cell growth was inhibited and cell cycle was arrested in the G2/M phase. MicroRNA-519a down-regulated HuR gene expression in protein levels without affecting messenger RNA levels.Conclusion:MicroRNA-519a may function as a tumour suppressor by inhibiting HuR expression, and may serve as a therapeutic target for laryngeal squamous cell carcinoma.
Collapse
|
45
|
Prakash G, Umar M, Ajay S, Bali D, Upadhyay R, Gupta KK, Dixit J, Mittal B. COX-2 gene polymorphisms and risk of chronic periodontitis: a case-control study and meta-analysis. Oral Dis 2013; 21:38-45. [PMID: 24267395 DOI: 10.1111/odi.12203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 10/03/2013] [Accepted: 10/21/2013] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Cyclooxygenase-2 (COX-2) enzyme is a major mediator of inflammation in periodontitis, leading to loss of gingival tissues and alveolar bone supporting the teeth. Previous studies have explored the role of COX-2 polymorphisms with the risk of periodontitis in different ethnic groups; however, findings are inconsistent. So, we aimed to investigate the association of COX-2 polymorphisms (rs20417, rs689466, and rs5275) in susceptibility to chronic periodontitis (CP) in northern Indian population. Meta-analysis was also carried out to precisely estimate the effect of COX-2 polymorphisms in CP. MATERIALS AND METHODS Genotyping of COX-2 polymorphisms was carried out through PCR-RFLP in 200 CP cases and 200 controls. For risk estimation, binary logistic regression was applied using SPSS, version 15.0, while meta-analysis was carried using MIX 2.0 software. RESULTS None of the COX-2 polymorphisms independently were associated with the risk of CP. Meta-analysis suggested a significant reduced risk of CP with rs5275+8473 C allele and rs20417 in Chinese population. CONCLUSIONS No association was observed in any of the studied COX-2 polymorphisms with CP in North India. But, the study should be replicated in larger sample size to arrive at a definitive conclusion. Meta-analysis suggested a role of rs5275 COX-2 polymorphisms in susceptibility to overall CP, and on ethnic basis, rs20417 showed reduced risk of CP in Chinese population.
Collapse
Affiliation(s)
- G Prakash
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Transforming growth factor β regulates P-body formation through induction of the mRNA decay factor tristetraprolin. Mol Cell Biol 2013; 34:180-95. [PMID: 24190969 DOI: 10.1128/mcb.01020-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor β (TGF-β) is a potent growth regulator and tumor suppressor in normal intestinal epithelium. Likewise, epithelial cell growth is controlled by rapid decay of growth-related mRNAs mediated through 3' untranslated region (UTR) AU-rich element (ARE) motifs. We demonstrate that treatment of nontransformed intestinal epithelial cells with TGF-β inhibited ARE-mRNA expression. This effect of TGF-β was promoted through increased assembly of cytoplasmic RNA processing (P) bodies where ARE-mRNA localization was observed. P-body formation was dependent on TGF-β/Smad signaling, as Smad3 deletion abrogated P-body formation. In concert with increased P-body formation, TGF-β induced expression of the ARE-binding protein tristetraprolin (TTP), which colocalized to P bodies. TTP expression was necessary for TGF-β-dependent P-body formation and promoted growth inhibition by TGF-β. The significance of this was observed in vivo, where colonic epithelium deficient in TGF-β/Smad signaling or TTP expression showed attenuated P-body levels. These results provide new insight into TGF-β's antiproliferative properties and identify TGF-β as a novel mRNA stability regulator in intestinal epithelium through its ability to promote TTP expression and subsequent P-body formation.
Collapse
|
47
|
Wang J, Guo X, Zhang J, Song J, Ji M, Yu S, Wang J, Cao Z, Dong W. Cyclooxygenase-2 polymorphisms and susceptibility to colorectal cancer: a meta-analysis. Yonsei Med J 2013; 54:1353-61. [PMID: 24142638 PMCID: PMC3809860 DOI: 10.3349/ymj.2013.54.6.1353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Four polymorphisms, -765G>C, -1195G>A, 8473T>C, and Val511Ala, in the cyclooxygenase-2 (COX-2) gene were identified to be associated with colorectal cancer (CRC) risk. However, the results are inconsistent. The objective of this meta-analysis was to evaluate the association between these four polymorphisms and the risk of CRC. MATERIALS AND METHODS All eligible case-control studies published up to December 2012 on the association between the four polymorphisms of COX-2 and CRC risk were identified by searching PubMed and Web of Science. The CRC risk associated with the four polymorphisms of the COX-2 gene was estimated for each study by odds ratio (OR) together with its 95% confidence interval (CI), respectively. RESULTS A total of 15 case-control studies were included. Overall, no evidence has indicated that the -1195A allele, -765C allele, 8473C allele, and 511Ala allele are associated with susceptibility to CRC (-1195G>A: OR=1.11, 95% CI: 0.82-1.51, p=0.78; -765G>C: OR=1.08, 95% CI: 0.96-1.21, p=0.07; 8473T>C: OR=1.03, 95% CI: 0.89-1.18, p=0.91; Val511Ala: OR=0.71, 95% CI: 0.46-1.09, p=0.94). However, stratified analysis with ethnicity indicated that individuals with -765GC or GC/CC genotypes had an increased risk of CRC among Asian populations (GC vs. GG: OR=1.05, 95% CI: 0.87-1.28, p=0.03; GC+CC vs. GG: OR=1.08, 95% CI: 0.96-1.21, p=0.07). CONCLUSION This meta-analysis indicated that -765G>C polymorphism was significantly associated with susceptibility to CRC in Asian populations.
Collapse
Affiliation(s)
- Jun Wang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, Hubei Province, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zago M, Sheridan JA, Nair P, Rico de Souza A, Gallouzi IE, Rousseau S, Di Marco S, Hamid Q, Eidelman DH, Baglole CJ. Aryl hydrocarbon receptor-dependent retention of nuclear HuR suppresses cigarette smoke-induced cyclooxygenase-2 expression independent of DNA-binding. PLoS One 2013; 8:e74953. [PMID: 24086407 PMCID: PMC3785509 DOI: 10.1371/journal.pone.0074953] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/07/2013] [Indexed: 12/02/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to man-made environmental toxicants, has emerged as an endogenous regulator of cyclooxygenase-2 (Cox-2) by a mechanism that is poorly understood. In this study, we first used AhR-deficient (AhR−/−) primary pulmonary cells, together with pharmacological tools to inhibit new RNA synthesis, to show that the AhR is a prominent factor in the destabilization of Cox-2 mRNA. The destabilization of Cox-2 mRNA and subsequent suppression of cigarette smoke-induced COX-2 protein expression by the AhR was independent of its ability to bind the dioxin response element (DRE), thereby differentiating the DRE-driven toxicological AhR pathway from its anti-inflammatory abilities. We further describe that the AhR destabilizes Cox-2 mRNA by sequestering HuR within the nucleus. The role of HuR in AhR stabilization of Cox-2 mRNA was confirmed by knockdown of HuR, which resulted in rapid Cox-2 mRNA degradation. Finally, in the lungs of AhR−/− mice exposed to cigarette smoke, there was little Cox-2 mRNA despite robust COX-2 protein expression, a finding that correlates with almost exclusive cytoplasmic HuR within the lungs of AhR−/− mice. Therefore, we propose that the AhR plays an important role in suppressing the expression of inflammatory proteins, a function that extends beyond the ability of the AhR to respond to man-made toxicants. These findings open the possibility that a DRE-independent AhR pathway may be exploited therapeutically as an anti-inflammatory target.
Collapse
MESH Headings
- Animals
- Azo Compounds/pharmacology
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cells, Cultured
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- DNA/metabolism
- ELAV Proteins/metabolism
- Fibroblasts/drug effects
- Fibroblasts/enzymology
- Fibroblasts/pathology
- Humans
- Lung/pathology
- Mice
- Models, Biological
- Prostaglandins/biosynthesis
- Protein Binding/drug effects
- Protein Structure, Tertiary
- Protein Transport/drug effects
- Pyrazoles/pharmacology
- RNA Stability/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Receptors, Aryl Hydrocarbon/antagonists & inhibitors
- Receptors, Aryl Hydrocarbon/chemistry
- Receptors, Aryl Hydrocarbon/deficiency
- Receptors, Aryl Hydrocarbon/metabolism
- Smoking/adverse effects
Collapse
Affiliation(s)
- Michela Zago
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | - Parameswaran Nair
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Angela Rico de Souza
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Imed-Eddine Gallouzi
- Department of Biochemistry and the Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Simon Rousseau
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Sergio Di Marco
- Department of Biochemistry and the Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Qutayba Hamid
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - David H. Eidelman
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Carolyn J. Baglole
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
49
|
Bruno A, Tacconelli S, Patrignani P. Variability in the response to non-steroidal anti-inflammatory drugs: mechanisms and perspectives. Basic Clin Pharmacol Toxicol 2013; 114:56-63. [PMID: 23953622 DOI: 10.1111/bcpt.12117] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/09/2013] [Indexed: 01/22/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are a chemically heterogeneous group of compounds that provide unmistakable and significant health benefits in the treatment of pain and inflammation. They include traditional NSAIDs (tNSAIDs), which act by inhibiting both cyclooxygenase (COX)-1 and COX-2 and selective COX-2 inhibitors (coxibs). The development of biomarkers predictive of the impact of NSAIDs on COX-1 and COX-2 activities in vitro, ex vivo and in vivo has been essential to read out the clinical consequences of selective and non-selective inhibition of COX isozymes in human beings. The analgesic and anti-inflammatory effects of NSAIDs are COX-2-dependent effects, unrelated to COX-2 selectivity. The intensity and duration of these effects are influenced by dose and half-life of the NSAID. However, the inhibition of COX-1 in cells of the gastrointestinal (GI) system and COX-2 in vascular cells translates into increased risk of serious GI adverse events and atherothrombosis and hypertension, respectively. The COX-2 selectivity of NSAIDs can predict, at least in part, the GI toxicity. In contrast, the CV effects are largely COX-2-dependent effects, unrelated to COX-2 selectivity but are dose dependent. The reduction in the dose is recommended and presumably will limit the number of patients exposed to a CV or a GI hazard by NSAIDs and coxibs. It will not, however, eliminate the risk on an individual level because there is a marked variability in how different people react to these drugs, based on their genetic background. The challenge of the next future will be to develop biomarkers useful to identify the individuals who react abnormally to COX inhibition.
Collapse
Affiliation(s)
- Annalisa Bruno
- Department of Medicine and Aging, Chieti, Italy; Center of Excellence on Aging (CeSI), "Gabriele d'Annunzio" Foundation, Chieti, Italy
| | | | | |
Collapse
|
50
|
Matsumiya T, Xing F, Ebina M, Hayakari R, Imaizumi T, Yoshida H, Kikuchi H, Topham MK, Satoh K, Stafforini DM. Novel role for molecular transporter importin 9 in posttranscriptional regulation of IFN-ε expression. THE JOURNAL OF IMMUNOLOGY 2013; 191:1907-15. [PMID: 23851686 DOI: 10.4049/jimmunol.1201925] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IFN-ε is a unique type I IFN whose constitutive expression in lung, brain, small intestine, and reproductive tissues is only partially understood. Our previous observation that posttranscriptional events participate in the regulation of IFN-ε mRNA expression led us to investigate whether the 5' and/or 3' untranslated regions (UTR) have regulatory functions. Surprisingly, we found that full-length IFN-ε 5'UTR markedly suppressed mRNA expression under basal conditions. Analysis of the secondary structure of this region predicted formation of two stable stem-loop structures, loops 1 and 2. Studies using luciferase constructs harboring various stretches of IFN-ε 5'UTR and mutant constructs in which the conformation of loop structures was disrupted showed that loop 1 is essential for regulation of mRNA expression. Incubation of HeLa cell extracts with agarose-bound RNAs harboring IFN-ε loop structures identified importin 9 (IPO9), a molecular transporter and chaperone, as a candidate that associates with these regions of the 5'UTR. IPO9 overexpression decreased, and IPO9 silencing increased basal IFN-ε expression. Our studies uncover a previously undescribed function for IPO9 as a specific, and negative, posttranscriptional regulator of IFN-ε expression, and they identify key roles for IFN-ε stem-loop structure 1 in this process. IPO9-mediated effects on 5'UTRs appear to extend to additional mRNAs, including hypoxia-inducible factor-1α, that can form specific loop structures.
Collapse
Affiliation(s)
- Tomoh Matsumiya
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|