1
|
Ibrahim MA, Yamasaki T, Furukawa K, Yamasaki K. Fragment-Based Drug Discovery for Trypanosoma brucei Glycosylphosphatidylinositol-Specific Phospholipase C through Biochemical and WaterLOGSY-NMR Methods. J Biochem 2022; 171:619-629. [PMID: 35191956 DOI: 10.1093/jb/mvac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/16/2022] [Indexed: 11/15/2022] Open
Abstract
Glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC) of Trypanosoma brucei, the causative protozoan parasite of African trypanosomiasis, is a membrane-bound enzyme essential for antigenic variation, because it catalyses the release of the membrane-bound form of variable surface glycoproteins. Here, we performed a fragment-based drug discovery of TbGPI-PLC inhibitors using a combination of enzymatic inhibition assay and water-ligand observed via gradient spectroscopy (WaterLOGSY) NMR experiment. The TbGPI-PLC was cloned and over-expressed using an Escherichia coli expression system followed by purification using three-phase partitioning and gel filtration. Subsequently, the inhibitory activity of 873 fragment compounds against the recombinant TbGPI-PLC led to the identification of 66 primary hits. These primary hits were subjected to the WaterLOGSY NMR experiment where 10 fragment hits were confirmed to directly bind to the TbGPI-PLC. These included benzothiazole, chlorobenzene, imidazole, indole, pyrazol and quinolinone derivatives. Molecular docking simulation indicated that six of them share a common binding site, which corresponds to the catalytic pocket. The present study identified chemically diverse fragment hits that could directly bind and inhibit the TbGPI-PLC activity which constructed a framework for fragment optimisation or linking towards the design of novel drugs for African trypanosomiasis.
Collapse
Affiliation(s)
- Mohammed Auwal Ibrahim
- Biomedical Research Institute, and Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 3058566, Japan.,Department of Biochemistry, Ahmadu Bello University, Zaria, Kaduna 800001, Nigeria
| | - Tomoko Yamasaki
- Biomedical Research Institute, and Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 3058566, Japan
| | - Koji Furukawa
- Biomedical Research Institute, and Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 3058566, Japan
| | - Kazuhiko Yamasaki
- Biomedical Research Institute, and Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 3058566, Japan
| |
Collapse
|
2
|
Garrison P, Umaer K, Bangs JD. The role of glycosylphosphatidylinositol phospholipase C in membrane trafficking in Trypanosoma brucei. Mol Biochem Parasitol 2021; 245:111409. [PMID: 34363902 DOI: 10.1016/j.molbiopara.2021.111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 11/25/2022]
Abstract
Glycosylphosphatidylinositol-phospholipase C (GPI-PLC) is an enzyme that has been implicated in GPI-dependent protein trafficking and phosphoinositide metabolism in the bloodstream stage of African trypanosomes. However, despite the fact that it is associated with the cytoplasmic face of internal organellar compartments, its role in general membrane trafficking has not been investigated. Using a GPI-PLC null cell line, we determine the effect of GPI-PLC deficiency on these processes. Biosynthetic trafficking of lysosomal cargo, soluble cathepsin L and membrane bound p67, are unaffected. Likewise, secretory transport, recycling and ultimate lysosomal turnover of the GPI-anchored and transmembrane glycoproteins, transferrin receptor and invariant surface glycoprotein 65, respectively, were unaffected. A significant decrease in the endocytic uptake of transferrin was observed, confirming a prior report, but ultimate delivery to the lysosome was unimpacted. These results contribute to our understanding of the roles of this enigmatic enzyme in trypanosome cell biology.
Collapse
Affiliation(s)
- Paige Garrison
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA
| | - Khan Umaer
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA
| | - James D Bangs
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA.
| |
Collapse
|
3
|
Abstract
African trypanosomes utilize glycosylphosphatidylinositol (GPI)-anchored variant surface glycoprotein (VSG) to evade the host immune system. VSG turnover is thought to be mediated via cleavage of the GPI anchor by endogenous GPI-specific phospholipase C (GPI-PLC). However, GPI-PLC is topologically sequestered from VSG substrates in intact cells. Recently, A. J. Szempruch, S. E. Sykes, R. Kieft, L. Dennison, et al. (Cell 164:246–257, 2016, https://doi.org/10.1016/j.cell.2015.11.051) demonstrated the release of nanotubes that septate to form free VSG+ extracellular vesicles (EVs). Here, we evaluated the relative contributions of GPI hydrolysis and EV formation to VSG turnover in wild-type (WT) and GPI-PLC null cells. The turnover rate of VSG was consistent with prior measurements (half-life [t1/2] of ∼26 h) but dropped significantly in the absence of GPI-PLC (t1/2 of ∼36 h). Ectopic complementation restored normal turnover rates, confirming the role of GPI-PLC in turnover. However, physical characterization of shed VSG in WT cells indicated that at least 50% is released directly from cell membranes with intact GPI anchors. Shedding of EVs plays an insignificant role in total VSG turnover in both WT and null cells. In additional studies, GPI-PLC was found to have no role in biosynthetic and endocytic trafficking to the lysosome but did influence the rate of receptor-mediated endocytosis. These results indicate that VSG turnover is a bimodal process involving both direct shedding and GPI hydrolysis.
Collapse
|
4
|
Goldston AM, Sharma AI, Paul KS, Engman DM. Acylation in trypanosomatids: an essential process and potential drug target. Trends Parasitol 2014; 30:350-60. [PMID: 24954795 DOI: 10.1016/j.pt.2014.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/06/2014] [Accepted: 05/06/2014] [Indexed: 12/11/2022]
Abstract
Fatty acylation--the addition of fatty acid moieties such as myristate and palmitate to proteins--is essential for the survival, growth, and infectivity of the trypanosomatids: Trypanosoma brucei, Trypanosoma cruzi, and Leishmania. Myristoylation and palmitoylation are critical for parasite growth, targeting and localization, and the intrinsic function of some proteins. The trypanosomatids possess a single N-myristoyltransferase (NMT) and multiple palmitoyl acyltransferases, and these enzymes and their protein targets are only now being characterized. Global inhibition of either process leads to cell death in trypanosomatids, and genetic ablation of NMT compromises virulence. Moreover, NMT inhibitors effectively cure T. brucei infection in rodents. Thus, protein acylation represents an attractive target for the development of new trypanocidal drugs.
Collapse
Affiliation(s)
- Amanda M Goldston
- Departments of Pathology and Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA
| | - Aabha I Sharma
- Departments of Pathology and Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA
| | - Kimberly S Paul
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - David M Engman
- Departments of Pathology and Microbiology-Immunology, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
5
|
Sunter J, Webb H, Carrington M. Determinants of GPI-PLC localisation to the flagellum and access to GPI-anchored substrates in trypanosomes. PLoS Pathog 2013; 9:e1003566. [PMID: 23990786 PMCID: PMC3749955 DOI: 10.1371/journal.ppat.1003566] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 07/05/2013] [Indexed: 02/01/2023] Open
Abstract
In Trypanosoma brucei, glycosylphosphatidylinositol phospholipase C (GPI-PLC) is a virulence factor that releases variant surface glycoprotein (VSG) from dying cells. In live cells, GPI-PLC is localised to the plasma membrane where it is concentrated on the flagellar membrane, so activity or access must be tightly regulated as very little VSG is shed. Little is known about regulation except that acylation within a short internal motif containing three cysteines is necessary for GPI-PLC to access VSG in dying cells. Here, GPI-PLC mutants have been analysed both for subcellular localisation and for the ability to release VSG from dying cells. Two sequence determinants necessary for concentration on the flagellar membrane were identified. First, all three cysteines are required for full concentration on the flagellar membrane. Mutants with two cysteines localise predominantly to the plasma membrane but lose some of their flagellar concentration, while mutants with one cysteine are mainly localised to membranes between the nucleus and flagellar pocket. Second, a proline residue close to the C-terminus, and distant from the acylated cysteines, is necessary for concentration on the flagellar membrane. The localisation of GPI-PLC to the plasma but not flagellar membrane is necessary for access to the VSG in dying cells. Cellular structures necessary for concentration on the flagellar membrane were identified by depletion of components. Disruption of the flagellar pocket collar caused loss of concentration whereas detachment of the flagellum from the cell body after disruption of the flagellar attachment zone did not. Thus, targeting to the flagellar membrane requires: a titratable level of acylation, a motif including a proline, and a functional flagellar pocket. These results provide an insight into how the segregation of flagellar membrane proteins from those present in the flagellar pocket and cell body membranes is achieved. African trypanosomes are unicellular parasites with a single flagellum that maintain a persistent infection through antigenic variation based on changes in a densely packed cell surface coat of variant surface glycoprotein (VSG). The cells also contain an enzyme, GPI-PLC, able to shed the VSG from the cell surface. However, the activity is regulated and substantial shedding only occurs from dying cells. The GPI-PLC is found predominantly on the membrane of this flagellum. Here, we have investigated the relationship between this subcellular localisation and VSG shedding ability of the GPI-PLC. We found that two motifs are important: a cluster of three cysteines that are modified by the addition of fatty acids and a proline, mutation of which caused the redistribution of GPI-PLC from the flagellar to the plasma membrane. Localisation of GPI-PLC to the plasma membrane is necessary for GPI-PLC to access the VSG in dying cells. Finally, the correct localisation of the GPI-PLC was dependent on a functional flagellar pocket. These results have provided a significant and exploitable insight into the regulation of GPI-PLC and more generally into how proteins are targeted to the flagellum membrane.
Collapse
Affiliation(s)
- Jack Sunter
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Helena Webb
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Global analysis of protein palmitoylation in African trypanosomes. EUKARYOTIC CELL 2010; 10:455-63. [PMID: 21193548 DOI: 10.1128/ec.00248-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many eukaryotic proteins are posttranslationally modified by the esterification of cysteine thiols to long-chain fatty acids. This modification, protein palmitoylation, is catalyzed by a large family of palmitoyl acyltransferases that share an Asp-His-His-Cys Cys-rich domain but differ in their subcellular localizations and substrate specificities. In Trypanosoma brucei, the flagellated protozoan parasite that causes African sleeping sickness, protein palmitoylation has been observed for a few proteins, but the extent and consequences of this modification are largely unknown. We undertook the present study to investigate T. brucei protein palmitoylation at both the enzyme and substrate levels. Treatment of parasites with an inhibitor of total protein palmitoylation caused potent growth inhibition, yet there was no effect on growth by the separate, selective inhibition of each of the 12 individual T. brucei palmitoyl acyltransferases. This suggested either that T. brucei evolved functional redundancy for the palmitoylation of essential palmitoyl proteins or that palmitoylation of some proteins is catalyzed by a noncanonical transferase. To identify the palmitoylated proteins in T. brucei, we performed acyl biotin exchange chemistry on parasite lysates, followed by streptavidin chromatography, two-dimensional liquid chromatography-tandem mass spectrometry protein identification, and QSpec statistical analysis. A total of 124 palmitoylated proteins were identified, with an estimated false discovery rate of 1.0%. This palmitoyl proteome includes all of the known palmitoyl proteins in procyclic-stage T. brucei as well as several proteins whose homologues are palmitoylated in other organisms. Their sequences demonstrate the variety of substrate motifs that support palmitoylation, and their identities illustrate the range of cellular processes affected by palmitoylation in these important pathogens.
Collapse
|
7
|
Hanrahan O, Webb H, O'Byrne R, Brabazon E, Treumann A, Sunter JD, Carrington M, Voorheis HP. The glycosylphosphatidylinositol-PLC in Trypanosoma brucei forms a linear array on the exterior of the flagellar membrane before and after activation. PLoS Pathog 2009; 5:e1000468. [PMID: 19503825 PMCID: PMC2685982 DOI: 10.1371/journal.ppat.1000468] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 05/11/2009] [Indexed: 11/30/2022] Open
Abstract
Bloodstream forms of Trypanosoma brucei contain a glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC) that cleaves the GPI-anchor of the variable surface glycoprotein (VSG). Its location in trypanosomes has been controversial. Here, using confocal microscopy and surface labelling techniques, we show that the GPI-PLC is located exclusively in a linear array on the outside of the flagellar membrane, close to the flagellar attachment zone, but does not co-localize with the flagellar attachment zone protein, FAZ1. Consequently, the GPI-PLC and the VSG occupy the same plasma membrane leaflet, which resolves the topological problem associated with the cleavage reaction if the VSG and the GPI-PLC were on opposite sides of the membrane. The exterior location requires the enzyme to be tightly regulated to prevent VSG release under basal conditions. During stimulated VSG release in intact cells, the GPI-PLC did not change location, suggesting that the release mechanism involves lateral diffusion of the VSG in the plane of the membrane to the fixed position of the GPI-PLC. African trypanosomes cause sleeping sickness, for which current therapy is inadequate. The parasite protects its surface from the host immune system by regularly switching its surface coat. The glycosylphosphatidylinositol-PLC only occurs in the bloodstream form, where it removes the surface coat after it enters the tsetse fly vector. Activation of the enzyme in the bloodstream would be fatal for the parasite and it is, therefore, a potential drug target. However, therapeutic strategies have been hampered by confusion over the location of the GPI-PLC despite great effort by many labs. We have used a wide variety of techniques, including one completely novel method, that exploits the dependence of detection for partially buried surface proteins on the temperature of fixation, to identify the location of the GPI-PLC in relation to other markers unequivocally. All approaches consistently show that the GPI-PLC is located exclusively in the outer leaflet of the plasma membrane covering the flagellum, where it is confined to a narrow linear array adjacent to the flagellar attachment zone. Our data have resolved the question of how enzyme and substrate meet and also suggest that chemotherapeutic agents would be able to target the GPI-PLC in its exterior location.
Collapse
Affiliation(s)
- Orla Hanrahan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Helena Webb
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Robert O'Byrne
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Elaine Brabazon
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | | | - Jack D. Sunter
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - H. Paul Voorheis
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
8
|
Subramanya S, Mensa-Wilmot K. Regulated cleavage of intracellular glycosylphosphatidylinositol in a trypanosome. Peroxisome-to-endoplasmic reticulum translocation of a phospholipase C. FEBS J 2006; 273:2110-26. [PMID: 16649989 DOI: 10.1111/j.1742-4658.2006.05225.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell exposure to hypo-osmolarity and alkalinity triggers a spectrum of responses including activation of phospholipases. Glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC) is expressed in Trypanosoma brucei, a protozoan parasite that causes human African trypanosomiasis. We examined possible contributions of GPI-PLC to the response of T. brucei to hypo-osmotic or mildly alkaline conditions. GPIs were detected at the endoplasmic reticulum (ER). They were cleaved after exposure of T. brucei to hypo-osmolarity or mild alkalinity, which also, strikingly, caused translocation of GPI-PLC from glycosomes (peroxisomes) to the ER. A catalytically inactive Gln81Leu mutant of GPI-PLC failed to cleave GPIs despite being transported from glycosomes to the ER after hypo-osmotic or mild alkaline treatment of the parasites. In contrast, a Cys347Ser mutant of the enzyme could not exit glycosomes after treatment of cells expressing the protein with mild base or hypo-osmotic buffer. We conclude that: (a) GPI-PLC contributes to loss of GPIs in T. brucei treated with hypo-osmotic or mildly alkaline buffer; (b) access of GPI-PLC to its substrate in vivo can be regulated post-translationally; (c) translocation of GPI-PLC from glycosomes to the ER is important for in vivo cleavage of GPIs; (d) Cys347 is part of a peptide motif required for post-translational targeting of GPI-PLC to the ER. Glycosome-to-ER movement of GPI-PLC reveals a novel pathway for intracellular protein traffic. The physiological significance of GPI digestion in cells exposed to mildly alkalinity or hypo-osmolarity is discussed.
Collapse
Affiliation(s)
- Sandesh Subramanya
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
9
|
Gruszynski AE, DeMaster A, Hooper NM, Bangs JD. Surface coat remodeling during differentiation of Trypanosoma brucei. J Biol Chem 2003; 278:24665-72. [PMID: 12716904 DOI: 10.1074/jbc.m301497200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
African trypanosomes (Trypanosoma brucei) are digenetic parasites whose lifecycle alternates between the mammalian bloodstream and the midgut of the tsetse fly vector. In mammals, proliferating long slender parasites transform into non-diving short stumpy forms, which differentiate into procyclic forms when ingested by the tsetse fly. A hallmark of differentiation is the replacement of the bloodstream stage surface coat composed of variant surface glycoprotein (VSG) with a new coat composed of procylin. An undefined endoprotease and endogenous glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC) have been implicated in releasing the old VSG coat. However, GPI hydrolysis has been considered unimportant because (i) GPI-PLC null mutants are fully viable and (ii) cytosolic GPI-PLC is localized away from cell surface VSG. Utilizing an in vitro differentiation assay with pleomorphic strains we have investigated these modes of VSG release. Shedding is initially by GPI hydrolysis, which ultimately accounts for a substantial portion of total release. Surface biotinylation assays indicate that GPI-PLC does gain access to extracellular VSG, suggesting that this mode is primed in the starting short stumpy population. Proteolytic release is up-regulated during differentiation and is stereoselectively inhibited by peptidomimetic collagenase inhibitors, implicating a zinc metalloprotease. This protease may be related to TbMSP-B, a trypanosomal homologue of Leishmania major surface protease (MSP) described in the accompanying paper (LaCount, D. J., Gruszynski, A. E., Grandgenett, P. M., Bangs, J. D., and Donelson, J. E. (2003) J. Biol. Chem. 278, 24658-24664). Overall, our results demonstrate that surface coat remodeling during differentiation has multiple mechanisms and that GPI-PLC plays a more significant role in VSG release than previously thought.
Collapse
Affiliation(s)
- Amy E Gruszynski
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison 53706, USA
| | | | | | | |
Collapse
|
10
|
McConville MJ, Mullin KA, Ilgoutz SC, Teasdale RD. Secretory pathway of trypanosomatid parasites. Microbiol Mol Biol Rev 2002; 66:122-54; table of contents. [PMID: 11875130 PMCID: PMC120783 DOI: 10.1128/mmbr.66.1.122-154.2002] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Trypanosomatidae comprise a large group of parasitic protozoa, some of which cause important diseases in humans. These include Trypanosoma brucei (the causative agent of African sleeping sickness and nagana in cattle), Trypanosoma cruzi (the causative agent of Chagas' disease in Central and South America), and Leishmania spp. (the causative agent of visceral and [muco]cutaneous leishmaniasis throughout the tropics and subtropics). The cell surfaces of these parasites are covered in complex protein- or carbohydrate-rich coats that are required for parasite survival and infectivity in their respective insect vectors and mammalian hosts. These molecules are assembled in the secretory pathway. Recent advances in the genetic manipulation of these parasites as well as progress with the parasite genome projects has greatly advanced our understanding of processes that underlie secretory transport in trypanosomatids. This article provides an overview of the organization of the trypanosomatid secretory pathway and connections that exist with endocytic organelles and multiple lytic and storage vacuoles. A number of the molecular components that are required for vesicular transport have been identified, as have some of the sorting signals that direct proteins to the cell surface or organelles in the endosome-vacuole system. Finally, the subcellular organization of the major glycosylation pathways in these parasites is reviewed. Studies on these highly divergent eukaryotes provide important insights into the molecular processes underlying secretory transport that arose very early in eukaryotic evolution. They also reveal unusual or novel aspects of secretory transport and protein glycosylation that may be exploited in developing new antiparasite drugs.
Collapse
Affiliation(s)
- Malcolm J McConville
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | |
Collapse
|