1
|
Burton-Smith RN, Song C, Ueno H, Murata T, Iino R, Murata K. Six states of Enterococcus hirae V-type ATPase reveals non-uniform rotor rotation during turnover. Commun Biol 2023; 6:755. [PMID: 37507515 PMCID: PMC10382590 DOI: 10.1038/s42003-023-05110-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The vacuolar-type ATPase from Enterococcus hirae (EhV-ATPase) is a thus-far unique adaptation of V-ATPases, as it performs Na+ transport and demonstrates an off-axis rotor assembly. Recent single molecule studies of the isolated V1 domain have indicated that there are subpauses within the three major states of the pseudo three-fold symmetric rotary enzyme. However, there was no structural evidence for these. Herein we activate the EhV-ATPase complex with ATP and identified multiple structures consisting of a total of six states of this complex by using cryo-electron microscopy. The orientations of the rotor complex during turnover, especially in the intermediates, are not as perfectly uniform as expected. The densities in the nucleotide binding pockets in the V1 domain indicate the different catalytic conditions for the six conformations. The off-axis rotor and its' interactions with the stator a-subunit during rotation suggests that this non-uniform rotor rotation is performed through the entire complex.
Collapse
Affiliation(s)
- Raymond N Burton-Smith
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Chihong Song
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8656, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba, 263-8522, Japan
| | - Ryota Iino
- Institute for Molecular Science, National Institute for Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Department of Functional Molecular Science, School of Physical Sciences, The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Kazuyoshi Murata
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
2
|
Iida T, Minagawa Y, Ueno H, Kawai F, Murata T, Iino R. Single-molecule analysis reveals rotational substeps and chemo-mechanical coupling scheme of Enterococcus hirae V 1-ATPase. J Biol Chem 2019; 294:17017-17030. [PMID: 31519751 PMCID: PMC6851342 DOI: 10.1074/jbc.ra119.008947] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/13/2019] [Indexed: 12/13/2022] Open
Abstract
V1-ATPase (V1), the catalytic domain of an ion-pumping V-ATPase, is a molecular motor that converts ATP hydrolysis-derived chemical energy into rotation. Here, using a gold nanoparticle probe, we directly observed rotation of V1 from the pathogen Enterococcus hirae (EhV1). We found that 120° steps in each ATP hydrolysis event are divided into 40 and 80° substeps. In the main pause before the 40° substep and at low ATP concentration ([ATP]), the time constant was inversely proportional to [ATP], indicating that ATP binds during the main pause with a rate constant of 1.0 × 107 m-1 s-1 At high [ATP], we observed two [ATP]-independent time constants (0.5 and 0.7 ms). One of two time constants was prolonged (144 ms) in a rotation driven by slowly hydrolyzable ATPγS, indicating that ATP is cleaved during the main pause. In another subpause before the 80° substep, we noted an [ATP]-independent time constant (2.5 ms). Furthermore, in an ATP-driven rotation of an arginine-finger mutant in the presence of ADP, -80 and -40° backward steps were observed. The time constants of the pauses before -80° backward and +40° recovery steps were inversely proportional to [ADP] and [ATP], respectively, indicating that ADP- and ATP-binding events trigger these steps. Assuming that backward steps are reverse reactions, we conclude that 40 and 80° substeps are triggered by ATP binding and ADP release, respectively, and that the remaining time constant in the main pause represents phosphate release. We propose a chemo-mechanical coupling scheme of EhV1, including substeps largely different from those of F1-ATPases.
Collapse
Affiliation(s)
- Tatsuya Iida
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Yoshihiro Minagawa
- Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Fumihiro Kawai
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.,Japan Science and Technology Agency (JST), PRESTO, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Ryota Iino
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan .,Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
3
|
Singharoy A, Chipot C, Ekimoto T, Suzuki K, Ikeguchi M, Yamato I, Murata T. Rotational Mechanism Model of the Bacterial V 1 Motor Based on Structural and Computational Analyses. Front Physiol 2019; 10:46. [PMID: 30804798 PMCID: PMC6371843 DOI: 10.3389/fphys.2019.00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/16/2019] [Indexed: 12/27/2022] Open
Abstract
V1-ATPase exemplifies the ubiquitous rotary motor, in which a central shaft DF complex rotates inside a hexagonally arranged catalytic A3B3 complex, powered by the energy from ATP hydrolysis. We have recently reported a number of crystal structures of the Enterococcus hirae A3B3DF (V1) complex corresponding to its nucleotide-bound intermediate states, namely the forms waiting for ATP hydrolysis (denoted as catalytic dwell), ATP binding (ATP-binding dwell), and ADP release (ADP-release dwell) along the rotatory catalytic cycle of ATPase. Furthermore, we have performed microsecond-scale molecular dynamics simulations and free-energy calculations to investigate the conformational transitions between these intermediate states and to probe the long-time dynamics of the molecular motor. In this article, the molecular structure and dynamics of the V1-ATPase are reviewed to bring forth a unified model of the motor’s remarkable rotational mechanism.
Collapse
Affiliation(s)
- Abhishek Singharoy
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Chris Chipot
- Laboratoire International Associé Centre, Université de Lorraine, Nancy, France.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Kano Suzuki
- Graduate School of Science and Molecular Chirality Research Center, Chiba University, Chiba, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.,RIKEN Medical Sciences Innovation Hub Program, Yokohama, Japan
| | - Ichiro Yamato
- Graduate School of Science and Molecular Chirality Research Center, Chiba University, Chiba, Japan.,Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Takeshi Murata
- Graduate School of Science and Molecular Chirality Research Center, Chiba University, Chiba, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Chiba, Japan
| |
Collapse
|
4
|
Structure and dynamics of rotary V 1 motor. Cell Mol Life Sci 2018; 75:1789-1802. [PMID: 29387903 PMCID: PMC5910484 DOI: 10.1007/s00018-018-2758-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/25/2017] [Accepted: 01/18/2018] [Indexed: 12/14/2022]
Abstract
Rotary ATPases are unique rotary molecular motors that function as energy conversion machines. Among all known rotary ATPases, F1-ATPase is the best characterized rotary molecular motor. There are many high-resolution crystal structures and the rotation dynamics have been investigated in detail by extensive single-molecule studies. In contrast, knowledge on the structure and rotation dynamics of V1-ATPase, another rotary ATPase, has been limited. However, recent high-resolution structural studies and single-molecule studies on V1-ATPase have provided new insights on how the catalytic sites in this molecular motor change its conformation during rotation driven by ATP hydrolysis. In this review, we summarize recent information on the structural features and rotary dynamics of V1-ATPase revealed from structural and single-molecule approaches and discuss the possible chemomechanical coupling scheme of V1-ATPase with a focus on differences between rotary molecular motors.
Collapse
|
5
|
Isaka Y, Ekimoto T, Kokabu Y, Yamato I, Murata T, Ikeguchi M. Rotation Mechanism of Molecular Motor V 1-ATPase Studied by Multiscale Molecular Dynamics Simulation. Biophys J 2017; 112:911-920. [PMID: 28297650 PMCID: PMC5355535 DOI: 10.1016/j.bpj.2017.01.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/06/2017] [Accepted: 01/30/2017] [Indexed: 11/28/2022] Open
Abstract
Enterococcus hirae V1-ATPase is a molecular motor composed of the A3B3 hexamer ring and the central stalk. In association with ATP hydrolysis, three catalytic AB pairs in the A3B3 ring undergo conformational changes, which lead to a 120° rotation of the central stalk. To understand how the conformational changes of three catalytic pairs induce the 120° rotation of the central stalk, we performed multiscale molecular dynamics (MD) simulations in which coarse-grained and all-atom MD simulations were combined using a fluctuation matching methodology. During the rotation, a catalytic AB pair spontaneously adopted an intermediate conformation, which was not included in the initial inputs of the simulations and was essentially close to the “bindable-like” structure observed in a recently solved crystal structure. Furthermore, the creation of a space between the bindable-like and tight pairs was required for the central stalk to rotate without steric hindrance. These cooperative rearrangements of the three catalytic pairs are crucial for the rotation of the central stalk.
Collapse
Affiliation(s)
- Yuta Isaka
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, Japan
| | - Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, Japan
| | - Yuichi Kokabu
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, Japan
| | - Ichiro Yamato
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Inage, Chiba, Japan; JST, PRESTO, Inage, Chiba, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, Japan.
| |
Collapse
|
6
|
Suzuki K, Mizutani K, Maruyama S, Shimono K, Imai FL, Muneyuki E, Kakinuma Y, Ishizuka-Katsura Y, Shirouzu M, Yokoyama S, Yamato I, Murata T. Crystal structures of the ATP-binding and ADP-release dwells of the V 1 rotary motor. Nat Commun 2016; 7:13235. [PMID: 27807367 PMCID: PMC5095293 DOI: 10.1038/ncomms13235] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/14/2016] [Indexed: 12/21/2022] Open
Abstract
V1-ATPases are highly conserved ATP-driven rotary molecular motors found in various membrane systems. We recently reported the crystal structures for the Enterococcus hirae A3B3DF (V1) complex, corresponding to the catalytic dwell state waiting for ATP hydrolysis. Here we present the crystal structures for two other dwell states obtained by soaking nucleotide-free V1 crystals in ADP. In the presence of 20 μM ADP, two ADP molecules bind to two of three binding sites and cooperatively induce conformational changes of the third site to an ATP-binding mode, corresponding to the ATP-binding dwell. In the presence of 2 mM ADP, all nucleotide-binding sites are occupied by ADP to induce conformational changes corresponding to the ADP-release dwell. Based on these and previous findings, we propose a V1-ATPase rotational mechanism model.
Collapse
Affiliation(s)
- Kano Suzuki
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Kenji Mizutani
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Molecular Chirality Research Center, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | - Shintaro Maruyama
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Kazumi Shimono
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan
| | - Fabiana L. Imai
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Eiro Muneyuki
- Department of Physics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Tokyo 112-8551, Japan
| | - Yoshimi Kakinuma
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Yoshiko Ishizuka-Katsura
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Mikako Shirouzu
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Shigeyuki Yokoyama
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Ichiro Yamato
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Molecular Chirality Research Center, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
- JST, PRESTO, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| |
Collapse
|
7
|
Lucia U, Ponzetto A, Deisboeck TS. A thermo-physical analysis of the proton pump vacuolar-ATPase: the constructal approach. Sci Rep 2014; 4:6763. [PMID: 25342534 PMCID: PMC4208057 DOI: 10.1038/srep06763] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/07/2014] [Indexed: 01/23/2023] Open
Abstract
Pumping protons across a membrane was a critical step at the origin of life on earth, and it is still performed in all living organisms, including in human cells. Proton pumping is paramount to keep normal cells alive, e.g. for lysosomal digestion and for preparing peptides for immune recognition, but it goes awry in cancer cells. They acidify their microenvironment hence membrane voltage is lowered, which in turn induces cell proliferation, a hallmark of cancer. Proton pumping is achieved by means of rotary motors, namely vacuolar ATPases (V-ATPase), which are present at many of the multiple cellular interfaces. Therefore, we undertook an examination of the thermodynamic properties of V-ATPases. The principal result is that the V-ATPase-mediated control of the cell membrane potential and the related and consequent environmental pH can potentially represent a valuable support strategy for anticancer therapies. A constructal theory approach is used as a new viewpoint to study how V-ATPase can be modulated for therapeutic purposes. In particular, V-ATPase can be regulated by using external fields, such as electromagnetic fields, and a theoretical approach has been introduced to quantify the appropriate field strength and frequency for this new adjuvant therapeutic strategy.
Collapse
Affiliation(s)
- Umberto Lucia
- Dipartimento Energia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Antonio Ponzetto
- Department of Medical Sciences, University of Torino, Corso A.M. Dogliotti 14, 10126 Torino, Italy
| | - Thomas S. Deisboeck
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
8
|
Ueno H, Minagawa Y, Hara M, Rahman S, Yamato I, Muneyuki E, Noji H, Murata T, Iino R. Torque generation of Enterococcus hirae V-ATPase. J Biol Chem 2014; 289:31212-23. [PMID: 25258315 DOI: 10.1074/jbc.m114.598177] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
V-ATPase (V(o)V1) converts the chemical free energy of ATP into an ion-motive force across the cell membrane via mechanical rotation. This energy conversion requires proper interactions between the rotor and stator in V(o)V1 for tight coupling among chemical reaction, torque generation, and ion transport. We developed an Escherichia coli expression system for Enterococcus hirae V(o)V1 (EhV(o)V1) and established a single-molecule rotation assay to measure the torque generated. Recombinant and native EhV(o)V1 exhibited almost identical dependence of ATP hydrolysis activity on sodium ion and ATP concentrations, indicating their functional equivalence. In a single-molecule rotation assay with a low load probe at high ATP concentration, EhV(o)V1 only showed the "clear" state without apparent backward steps, whereas EhV1 showed two states, "clear" and "unclear." Furthermore, EhV(o)V1 showed slower rotation than EhV1 without the three distinct pauses separated by 120° that were observed in EhV1. When using a large probe, EhV(o)V1 showed faster rotation than EhV1, and the torque of EhV(o)V1 estimated from the continuous rotation was nearly double that of EhV1. On the other hand, stepping torque of EhV1 in the clear state was comparable with that of EhV(o)V1. These results indicate that rotor-stator interactions of the V(o) moiety and/or sodium ion transport limit the rotation driven by the V1 moiety, and the rotor-stator interactions in EhV(o)V1 are stabilized by two peripheral stalks to generate a larger torque than that of isolated EhV1. However, the torque value was substantially lower than that of other rotary ATPases, implying the low energy conversion efficiency of EhV(o)V1.
Collapse
Affiliation(s)
- Hiroshi Ueno
- From the Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
| | - Yoshihiro Minagawa
- the Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Mayu Hara
- the Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Suhaila Rahman
- the Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Ichiro Yamato
- the Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Eiro Muneyuki
- From the Department of Physics, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
| | - Hiroyuki Noji
- the Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Takeshi Murata
- the Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan, JST, PRESTO, Chiba 263-8522, Japan,
| | - Ryota Iino
- the Okazaki Institute for Integrative Bioscience, Institute for Molecular Science, National Institutes of Natural Sciences, Aichi 444-8787, Japan, and the Department of Functional Molecular Science, School of Physical Sciences, The Graduate University for Advanced Studies (SOKENDAI), Kanagawa 240-0193, Japan
| |
Collapse
|
9
|
Kandori H, Furutani Y, Murata T. Infrared spectroscopic studies on the V-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:134-41. [PMID: 25111748 DOI: 10.1016/j.bbabio.2014.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 11/27/2022]
Abstract
V-ATPase is an ATP-driven rotary motor that vectorially transports ions. Together with F-ATPase, a homologous protein, several models on the ion transport have been proposed, but their molecular mechanisms are yet unknown. V-ATPase from Enterococcus hirae forms a large supramolecular protein complex (total molecular weight: ~700,000) and physiologically transports Na⁺ and Li⁺ across a hydrophobic lipid bilayer. Stabilization of these cations in the binding site has been discussed on the basis of X-ray crystal structures of a membrane-embedded domain, the K-ring (Na⁺ and Li⁺ bound forms). Sodium or lithium ion binding-induced difference FTIR spectra of the intact E. hirae V-ATPase have been measured in aqueous solution at physiological temperature. The results suggest that sodium or lithium ion binding induces the deprotonation of Glu139, a hydrogen-bonding change in the tyrosine residue and rigid α-helical structures. Identical difference FTIR spectra between the entire V-ATPase complex and K-ring strongly suggest that protein interaction with the I subunit does not cause large structural changes in the K-ring. This result supports the previously proposed Na⁺ transport mechanism by V-ATPase stating that a flip-flop movement of a carboxylate group of Glu139 without large conformational changes in the K-ring accelerates the replacement of a Na⁺ ion in the binding site. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
Affiliation(s)
- Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
| | - Yuji Furutani
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan; Department of Structural Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Takeshi Murata
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| |
Collapse
|
10
|
Alam J, Yamato I, Arai S, Saijo S, Mizutani K, Ishizuka-Katsura Y, Ohsawa N, Terada T, Shirouzu M, Yokoyama S, Iwata S, Kakinuma Y, Murata T. Mutant LV(476-7)AA of A-subunit of Enterococcus hirae V1-ATPase: High affinity of A3B3 complex to DF axis and low ATPase activity. SPRINGERPLUS 2014; 2:689. [PMID: 24404436 PMCID: PMC3879392 DOI: 10.1186/2193-1801-2-689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/20/2013] [Indexed: 11/22/2022]
Abstract
Vacuolar ATPase (V-ATPase) of Enterococcus hirae is composed of a soluble functional domain V1 (A3B3DF) and an integral membrane domain Vo (ac), where V1 and Vo domains are connected by a central stalk, composed of D-, F-, and d-subunits; and two peripheral stalks (E- and G-subunits). We identified 120 interacting residues of A3B3 heterohexamer with D-subunit in DF heterodimer in the crystal structures of A3B3 and A3B3DF. In our previous study, we reported 10 mutants of E. hirae V1-ATPase, which showed lower binding affinities of DF with A3B3 complex leading to higher initial specific ATPase activities compared to the wild-type. In this study, we identified a mutation of A-subunit (LV476-7AA) at its C-terminal domain resulting in the A3B3 complex with higher binding affinities for wild-type or mutant DF heterodimers and lower initial ATPase activities compared to the wild-type A3B3 complex, consistent with our previous proposal of reciprocal relationship between the ATPase activity and the protein-protein binding affinity of DF axis to the A3B3 catalytic domain of E. hirae V-ATPase. These observations suggest that the binding of DF axis at the contact region of A3B3 rotary ring is relevant to its rotation activity.
Collapse
Affiliation(s)
- Jahangir Alam
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585 Japan ; Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, 3114 Bangladesh
| | - Ichiro Yamato
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585 Japan
| | - Satoshi Arai
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585 Japan ; Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-choInage, Chiba, 263-8522 Japan
| | - Shinya Saijo
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585 Japan ; RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148 Japan ; Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, 305-0801 Japan
| | - Kenji Mizutani
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585 Japan ; Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-choInage, Chiba, 263-8522 Japan
| | - Yoshiko Ishizuka-Katsura
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan ; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Noboru Ohsawa
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan ; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Takaho Terada
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan ; RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Mikako Shirouzu
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan ; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan ; RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - So Iwata
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan ; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan ; Department of Cell Biology, Faculty of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501 Japan
| | - Yoshimi Kakinuma
- Laboratory of Molecular Physiology and Genetics, Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566 Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-choInage, Chiba, 263-8522 Japan ; RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan ; Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan ; JST, PRESTO, 1-33 Yayoi-cho, Inage, Chiba, 263-8522 Japan
| |
Collapse
|
11
|
Kishikawa JI, Nakanishi A, Furuike S, Tamakoshi M, Yokoyama K. Molecular basis of ADP inhibition of vacuolar (V)-type ATPase/synthase. J Biol Chem 2013; 289:403-12. [PMID: 24247239 DOI: 10.1074/jbc.m113.523498] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reduction of ATP hydrolysis activity of vacuolar-type ATPase/synthase (V0V1) as a result of ADP inhibition occurs as part of the normal mechanism of V0V1 of Thermus thermophilus but not V0V1 of Enterococcus hirae or eukaryotes. To investigate the molecular basis for this difference, domain-swapped chimeric V1 consisting of both T. thermophilus and E. hirae enzymes were generated, and their function was analyzed. The data showed that the interaction between the nucleotide binding and C-terminal domains of the catalytic A subunit from E. hirae V1 is central to increasing binding affinity of the chimeric V1 for phosphate, resulting in reduction of the ADP inhibition. These findings together with a comparison of the crystal structures of T. thermophilus V1 with E. hirae V1 strongly suggest that the A subunit adopts a conformation in T. thermophilus V1 different from that in E. hirae V1. This key difference results in ADP inhibition of T. thermophilus V1 by abolishing the binding affinity for phosphate during ATP hydrolysis.
Collapse
Affiliation(s)
- Jun-ichi Kishikawa
- From the Department of Molecular Biosciences, Kyoto Sangyo University, Motoyama Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | | | | | | | | |
Collapse
|
12
|
Alam MJ, Arai S, Saijo S, Suzuki K, Mizutani K, Ishizuka-Katsura Y, Ohsawa N, Terada T, Shirouzu M, Yokoyama S, Iwata S, Kakinuma Y, Yamato I, Murata T. Loose binding of the DF axis with the A3B3 complex stimulates the initial activity of Enterococcus hirae V1-ATPase. PLoS One 2013; 8:e74291. [PMID: 24058539 PMCID: PMC3772951 DOI: 10.1371/journal.pone.0074291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/30/2013] [Indexed: 11/17/2022] Open
Abstract
Vacuolar ATPases (V-ATPases) function as proton pumps in various cellular membrane systems. The hydrophilic V1 portion of the V-ATPase is a rotary motor, in which a central-axis DF complex rotates inside a hexagonally arranged catalytic A3B3 complex by using ATP hydrolysis energy. We have previously reported crystal structures of Enterococcushirae V-ATPase A3B3 and A3B3DF (V1) complexes; the result suggested that the DF axis induces structural changes in the A3B3 complex through extensive protein-protein interactions. In this study, we mutated 10 residues at the interface between A3B3 and DF complexes and examined the ATPase activities of the mutated V1 complexes as well as the binding affinities between the mutated A3B3 and DF complexes. Surprisingly, several V1 mutants showed higher initial ATPase activities than wild-type V1-ATPase, whereas these mutated A3B3 and DF complexes showed decreased binding affinities for each other. However, the high ATP hydrolysis activities of the mutants decreased faster over time than the activity of the wild-type V1 complex, suggesting that the mutants were unstable in the reaction because the mutant A3B3 and DF complexes bound each other more weakly. These findings suggest that strong interaction between the DF complex and A3B3 complex lowers ATPase activity, but also that the tight binding is responsible for the stable ATPase activity of the complex.
Collapse
Affiliation(s)
- Md Jahangir Alam
- Department of Biological Science and Technology, Tokyo University of Science, Chiba, Japan ; Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Arai S, Saijo S, Suzuki K, Mizutani K, Kakinuma Y, Ishizuka-Katsura Y, Ohsawa N, Terada T, Shirouzu M, Yokoyama S, Iwata S, Yamato I, Murata T. Rotation mechanism of Enterococcus hirae V1-ATPase based on asymmetric crystal structures. Nature 2013; 493:703-7. [PMID: 23334411 DOI: 10.1038/nature11778] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 11/08/2012] [Indexed: 11/09/2022]
Abstract
In various cellular membrane systems, vacuolar ATPases (V-ATPases) function as proton pumps, which are involved in many processes such as bone resorption and cancer metastasis, and these membrane proteins represent attractive drug targets for osteoporosis and cancer. The hydrophilic V(1) portion is known as a rotary motor, in which a central axis DF complex rotates inside a hexagonally arranged catalytic A(3)B(3) complex using ATP hydrolysis energy, but the molecular mechanism is not well defined owing to a lack of high-resolution structural information. We previously reported on the in vitro expression, purification and reconstitution of Enterococcus hirae V(1)-ATPase from the A(3)B(3) and DF complexes. Here we report the asymmetric structures of the nucleotide-free (2.8 Å) and nucleotide-bound (3.4 Å) A(3)B(3) complex that demonstrate conformational changes induced by nucleotide binding, suggesting a binding order in the right-handed rotational orientation in a cooperative manner. The crystal structures of the nucleotide-free (2.2 Å) and nucleotide-bound (2.7 Å) V(1)-ATPase are also reported. The more tightly packed nucleotide-binding site seems to be induced by DF binding, and ATP hydrolysis seems to be stimulated by the approach of a conserved arginine residue. To our knowledge, these asymmetric structures represent the first high-resolution view of the rotational mechanism of V(1)-ATPase.
Collapse
Affiliation(s)
- Satoshi Arai
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Crystal structure of the central axis DF complex of the prokaryotic V-ATPase. Proc Natl Acad Sci U S A 2011; 108:19955-60. [PMID: 22114184 DOI: 10.1073/pnas.1108810108] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
V-ATPases function as ATP-dependent ion pumps in various membrane systems of living organisms. ATP hydrolysis causes rotation of the central rotor complex, which is composed of the central axis D subunit and a membrane c ring that are connected by F and d subunits. Here we determined the crystal structure of the DF complex of the prokaryotic V-ATPase of Enterococcus hirae at 2.0-Å resolution. The structure of the D subunit comprised a long left-handed coiled coil with a unique short β-hairpin region that is effective in stimulating the ATPase activity of V(1)-ATPase by twofold. The F subunit is bound to the middle portion of the D subunit. The C-terminal helix of the F subunit, which was believed to function as a regulatory region by extending into the catalytic A(3)B(3) complex, contributes to tight binding to the D subunit by forming a three-helix bundle. Both D and F subunits are necessary to bind the d subunit that links to the c ring. From these findings, we modeled the entire rotor complex (DFdc ring) of V-ATPase.
Collapse
|
15
|
Structure of the rotor ring modified with N,N'-dicyclohexylcarbodiimide of the Na+-transporting vacuolar ATPase. Proc Natl Acad Sci U S A 2011; 108:13474-9. [PMID: 21813759 DOI: 10.1073/pnas.1103287108] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The prokaryotic V-ATPase of Enterococcus hirae, closely related to the eukaryotic enzymes, provides a unique opportunity to study the ion-translocation mechanism because it transports Na(+), which can be detected by radioisotope (22Na(+)) experiments and X-ray crystallography. In this study, we demonstrated that the binding affinity of the rotor ring (K ring) for 22Na(+) decreased approximately 30-fold by reaction with N,N(')-dicyclohexylcarbodiimide (DCCD), and determined the crystal structures of Na(+)-bound and Na(+)-unbound K rings modified with DCCD at 2.4- and 3.1-Å resolutions, respectively. Overall these structures were similar, indicating that there is no global conformational change associated with release of Na(+) from the DCCD-K ring. A conserved glutamate residue (E139) within all 10 ion-binding pockets of the K ring was neutralized by modification with DCCD, and formed an "open" conformation by losing hydrogen bonds with the Y68 and T64 side chains, resulting in low affinity for Na(+). This open conformation is likely to be comparable to that of neutralized E139 forming a salt bridge with the conserved arginine of the stator during the ion-translocation process. Based on these findings, we proposed the ion-translocation model that the binding affinity for Na(+) decreases due to the neutralization of E139, thus releasing bound Na(+), and that the structures of Na(+)-bound and Na(+)-unbound DCCD-K rings are corresponding to intermediate states before and after release of Na(+) during rotational catalysis of V-ATPase, respectively.
Collapse
|
16
|
Furutani Y, Murata T, Kandori H. Sodium or lithium ion-binding-induced structural changes in the K-ring of V-ATPase from Enterococcus hirae revealed by ATR-FTIR spectroscopy. J Am Chem Soc 2011; 133:2860-3. [PMID: 21319823 DOI: 10.1021/ja1116414] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
V-ATPase from Enterococcus hirae forms a large supramolecular protein complex (total molecular weight ∼700,000) and physiologically transports Na(+) and Li(+) across a hydrophobic lipid bilayer. Stabilization of these cations in the binding site has been discussed on the basis of X-ray crystal structures of a membrane-embedded domain, the K-ring (Na(+)- and Li(+)-bound forms). Here, sodium or lithium ion-binding-induced difference IR spectra of the intact V-ATPase have for the first time been measured at physiological temperature under a sufficient amount of hydration. The results suggest that sodium or lithium ion binding induces the deprotonation of Glu139, a hydrogen-bonding change in the tyrosine residue, and a small conformational change in the K-ring. These structural changes, especially the deprotonation of Glu139, are considered to be important for reducing energetic barriers to the transport of cations through the membrane.
Collapse
Affiliation(s)
- Yuji Furutani
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | | | | |
Collapse
|
17
|
von Ballmoos C, Wiedenmann A, Dimroth P. Essentials for ATP synthesis by F1F0 ATP synthases. Annu Rev Biochem 2009; 78:649-72. [PMID: 19489730 DOI: 10.1146/annurev.biochem.78.081307.104803] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The majority of cellular energy in the form of adenosine triphosphate (ATP) is synthesized by the ubiquitous F(1)F(0) ATP synthase. Power for ATP synthesis derives from an electrochemical proton (or Na(+)) gradient, which drives rotation of membranous F(0) motor components. Efficient rotation not only requires a significant driving force (DeltamuH(+)), consisting of membrane potential (Deltapsi) and proton concentration gradient (DeltapH), but also a high proton concentration at the source P side. In vivo this is maintained by dynamic proton movements across and along the surface of the membrane. The torque-generating unit consists of the interface of the rotating c ring and the stator a subunit. Ion translocation through this unit involves a sophisticated interplay between the c-ring binding sites, the stator arginine, and the coupling ions on both sides of the membrane. c-ring rotation is transmitted to the eccentric shaft gamma-subunit to elicit conformational changes in the catalytic sites of F(1), leading to ATP synthesis.
Collapse
Affiliation(s)
- Christoph von Ballmoos
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden.
| | | | | |
Collapse
|
18
|
Complete ion-coordination structure in the rotor ring of Na+-dependent F-ATP synthases. J Mol Biol 2009; 391:498-507. [PMID: 19500592 DOI: 10.1016/j.jmb.2009.05.082] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 05/28/2009] [Accepted: 05/29/2009] [Indexed: 11/23/2022]
Abstract
The membrane-embedded rotors of Na(+)-dependent F-ATP synthases comprise 11 c-subunits that form a ring, with 11 Na(+) binding sites in between adjacent subunits. Following an updated crystallographic analysis of the c-ring from Ilyobacter tartaricus, we report the complete ion-coordination structure of the Na(+) sites. In addition to the four residues previously identified, there exists a fifth ligand, namely, a buried structural water molecule. This water is itself coordinated by Thr67, which, sequence analysis reveals, is the only residue involved in binding that distinguishes Na(+) synthases from H(+)-ATP synthases known to date. Molecular dynamics simulations and free-energy calculations of the c-ring in a lipid membrane lend clear support to the notion that this fifth ligand is a water molecule, and illustrate its influence on the selectivity of the binding sites. Given the evolutionary ascendancy of sodium over proton bioenergetics, this structure uncovers an ancient strategy for selective ion coupling in ATP synthases.
Collapse
|
19
|
Yamamoto M, Unzai S, Saijo S, Ito K, Mizutani K, Suno-Ikeda C, Yabuki-Miyata Y, Terada T, Toyama M, Shirouzu M, Kobayashi T, Kakinuma Y, Yamato I, Yokoyama S, Iwata S, Murata T. Interaction and Stoichiometry of the Peripheral Stalk Subunits NtpE and NtpF and the N-terminal Hydrophilic Domain of NtpI of Enterococcus hirae V-ATPase. J Biol Chem 2008; 283:19422-31. [DOI: 10.1074/jbc.m801772200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
20
|
Ion binding and selectivity of the rotor ring of the Na+-transporting V-ATPase. Proc Natl Acad Sci U S A 2008; 105:8607-12. [PMID: 18559856 DOI: 10.1073/pnas.0800992105] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The vacuole-type ATPases (V-ATPases) are proton pumps in various intracellular compartments of eukaryotic cells. Prokaryotic V-ATPase of Enterococcus hirae, closely related to the eukaryotic enzymes, provides a unique opportunity to study ion translocation by V-ATPases because it transports Na(+) ions, which are easier to detect by x-ray crystallography and radioisotope experiments. The purified rotor ring (K-ring) of the E. hirae V-ATPase binds one Na(+) ion per K-monomer with high affinity, which is competitively inhibited by Li(+) or H(+), suggesting that the K-ring can also bind these ions. This finding is also supported by the K-ring structure at 2.8 A in the presence of Li(+). Association and dissociation rates of the Na(+) to and from the purified K-ring were extremely slow compared with the Na(+) translocation rate estimated from the enzymatic activity, strongly suggesting that interaction with the stator subunit (I-subunit) is essential for Na(+) binding to /release from the K-ring.
Collapse
|
21
|
Murata T, Yamato I, Kakinuma Y, Leslie AGW, Walker JE. Structure of the rotor of the V-Type Na+-ATPase from Enterococcus hirae. Science 2005; 308:654-9. [PMID: 15802565 DOI: 10.1126/science.1110064] [Citation(s) in RCA: 295] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The membrane rotor ring from the vacuolar-type (V-type) sodium ion-pumping adenosine triphosphatase (Na+-ATPase) from Enterococcus hirae consists of 10 NtpK subunits, which are homologs of the 16-kilodalton and 8-kilodalton proteolipids found in other V-ATPases and in F1Fo- or F-ATPases, respectively. Each NtpK subunit has four transmembrane alpha helices, with a sodium ion bound between helices 2 and 4 at a site buried deeply in the membrane that includes the essential residue glutamate-139. This site is probably connected to the membrane surface by two half-channels in subunit NtpI, against which the ring rotates. Symmetry mismatch between the rotor and catalytic domains appears to be an intrinsic feature of both V- and F-ATPases.
Collapse
Affiliation(s)
- Takeshi Murata
- Medical Research Council Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 2XY, UK
| | | | | | | | | |
Collapse
|
22
|
Hosaka T, Murata T, Kakinuma Y, Yamato I. Identification of nucleotide binding sites in V-type Na+-ATPase from Enterococcus hirae. Biosci Biotechnol Biochem 2004; 68:293-9. [PMID: 14981290 DOI: 10.1271/bbb.68.293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A and B subunits of the V-type Na+-ATPase from Enterococcus hirae were suggested to possess nucleotide binding sites (Murata, T. et al., J. Biochem., 132, 789-794 (2002)), although the B subunit did not have the consensus sequence for nucleotide binding. To further characterize the binding sites in the V-ATPase, we did the photoaffinity labeling study using 8-azido-[alpha-32P]ATP. A and B subunits were labeled with 8-azido-[alpha-32P]ATP when analysed with SDS polyacrylamide gel electrophoresis. The peptide fragment of A subunit obtained by lysyl endopeptidase digestion after labeling showed a molecular size of 9 kDa and its amino acid sequencing revealed that it corresponded to residues Arg423-Lys494. The peptide fragment from B subunit after photoaffinity labeling and lysyl endopeptidase digestion showed the size of 5 kDa and corresponded to residues Phe404-Lys443. In our structure model, these peptides were close to the adenine ring of ATP. We suggest that non-catalytic B subunit of E. hirae V-ATPase has a nucleotide binding site, similarly to eukaryotic V-ATPases and F-ATPases.
Collapse
Affiliation(s)
- Toshiaki Hosaka
- Department of Biological Science and Technology, Tokyo University of Science, Chiba, Japan
| | | | | | | |
Collapse
|
23
|
Kawano M, Igarashi K, Yamato I, Kakinuma Y. Arginine residue at position 573 in Enterococcus hirae vacuolar-type ATPase NtpI subunit plays a crucial role in Na+ translocation. J Biol Chem 2002; 277:24405-10. [PMID: 11983695 DOI: 10.1074/jbc.m200973200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 76-kDa NtpI subunit constitutes the membrane-embedded V(0) moiety of Enterococcus hirae vacuolar type Na+-ATPase with a 16-kDa NtpK hexamer containing Na+ binding sites. In this study, we investigated the role of an arginine residue, which is highly conserved among the corresponding subunits of bacterial vacuolar-type ATPases, at position 573 of NtpI. Substitution of Glu, Leu, or Gln for Arg-573 abolished sodium transport and sodium-stimulated ATP hydrolysis of the enzyme. The conservative replacement of Arg by Lys lowered both activities about one-fifth of those of the wild type enzyme. We have reported previously on ATP-dependent negative cooperativity for Na+ coupling of this enzyme (Murata, T., Kakinuma, Y., and Yamato, I. (2001) J. Biol. Chem. 276, 48337-48340). The negative cooperativity for the Na+ dependence of ATPase activity was weakened by the mutation R573K; the Hill coefficients for the wild type and mutant enzymes at a saturated ATP concentration were 0.22 +/- 0.03 and 0.40 +/- 0.05, respectively. The Hill coefficients of both enzymes at limited ATP concentrations approached 1. These results indicate that NtpI Arg-573 is indispensable for sodium translocation and for the cooperative features of E. hirae vacuolar-type ATPase.
Collapse
Affiliation(s)
- Miyuki Kawano
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | | | | | | |
Collapse
|
24
|
Murata T, Kakinuma Y, Yamato I. ATP-dependent affinity change of Na+-binding sites of V-ATPase. J Biol Chem 2001; 276:48337-40. [PMID: 11557766 DOI: 10.1074/jbc.m106821200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
V-type Na(+)-ATPase of Enterococcus hirae binds about six (6 +/- 1) Na(+) ions/enzyme molecule with a high affinity (Murata, T., Igarashi, K., Kakinuma, Y., and Yamato, I. (2000) J. Biol. Chem. 275, 13415-13419). After the addition of 5 mm ATP, the binding capacity dropped to about 2 (1.8 +/- 0.3) Na(+) ions/enzyme molecule, returning to the initial value concomitant with the decrease of ATP hydrolysis rate. These findings suggest that the affinity of four of six Na(+)-binding sites of the enzyme changes (lowers) in enzyme reaction. The ATP analogs (adenosine 5'-O-(3-thiotriphosphate) or 5'-adenylylimido-diphosphate), ADP, or aluminum fluoride that is postulated to trap ATPases at their transition state did not inhibit the Na(+) binding capacity significantly. Therefore, the affinity decrease of Na(+)-binding sites was unlikely to be due to ATP binding alone or at the transition state of ATP hydrolysis. In the presence of 5 mm ATP, the ATPase showed strong negative cooperativity (n(H) = 0.16 +/- 0.03) for Na(+) stimulation of ATPase activity. The Hill coefficient (n(H)) increased to 1 in parallel to the decrease of ATP concentration in the reaction mixture. Thus, the ATP-dependent affinity change cooperatively occurs in continuous enzyme reaction.
Collapse
Affiliation(s)
- T Murata
- Department of Biological Science and Technology, Science University of Tokyo, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan.
| | | | | |
Collapse
|
25
|
Murata T, Kawano M, Igarashi K, Yamato I, Kakinuma Y. Catalytic properties of Na(+)-translocating V-ATPase in Enterococcus hirae. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1505:75-81. [PMID: 11248190 DOI: 10.1016/s0005-2728(00)00278-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
V-ATPases make up a family of proton pumps distributed widely from bacteria to higher organisms. We found a variant of this family, a Na(+)-translocating ATPase, in a Gram-positive bacterium, Enterococcus hirae. The Na(+)-ATPase was encoded by nine ntp genes from F to D in an ntp operon (ntpFIKECGABDHJ): the ntpJ gene encoded a K(+) transporter independent of the Na(+)-ATPase. Expression of this operon, encoding two transport systems for Na(+) and K(+) ions, was regulated at the transcriptional level by intracellular Na(+) as the signal. Structural aspects and catalytic properties of purified Na(+)-ATPase closely resembled those of other V-type H(+)-ATPases. Interestingly, the E. hirae enzyme showed a very high affinity for Na(+) at catalytic reaction. This property enabled the measurement of ion binding to this ATPase for the first time in the study of V- and F-ATPases. Properties of Na(+) binding to V-ATPase were consistent with the model that V-ATPase proteolipids form a rotor ring consisting of hexamers, each having one cation binding site. We propose here a structure model of Na(+) binding sites of the enzyme.
Collapse
Affiliation(s)
- T Murata
- Department of Biological Science and Technology, Science University of Tokyo, Yamazaki, Chiba, Japan
| | | | | | | | | |
Collapse
|