1
|
Rua AJ, Mitchell W, Claypool SM, Alder NN, Alexandrescu AT. Perturbations in mitochondrial metabolism associated with defective cardiolipin biosynthesis: An in-organello real-time NMR study. J Biol Chem 2024; 300:107746. [PMID: 39236875 PMCID: PMC11470594 DOI: 10.1016/j.jbc.2024.107746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
Mitochondria are central to cellular metabolism; hence, their dysfunction contributes to a wide array of human diseases. Cardiolipin, the signature phospholipid of the mitochondrion, affects proper cristae morphology, bioenergetic functions, and metabolic reactions carried out in mitochondrial membranes. To match tissue-specific metabolic demands, cardiolipin typically undergoes an acyl tail remodeling process with the final step carried out by the phospholipid-lysophospholipid transacylase tafazzin. Mutations in tafazzin are the primary cause of Barth syndrome. Here, we investigated how defects in cardiolipin biosynthesis and remodeling impacts metabolic flux through the TCA cycle and associated yeast pathways. Nuclear magnetic resonance was used to monitor in real-time the metabolic fate of 13C3-pyruvate in isolated mitochondria from three isogenic yeast strains. We compared mitochondria from a WT strain to mitochondria from a Δtaz1 strain that lacks tafazzin and contains lower amounts of unremodeled cardiolipin and mitochondria from a Δcrd1 strain that lacks cardiolipin synthase and cannot synthesize cardiolipin. We found that the 13C-label from the pyruvate substrate was distributed through twelve metabolites. Several of the metabolites were specific to yeast pathways including branched chain amino acids and fusel alcohol synthesis. While most metabolites showed similar kinetics among the different strains, mevalonate concentrations were significantly increased in Δtaz1 mitochondria. Additionally, the kinetic profiles of α-ketoglutarate, as well as NAD+ and NADH measured in separate experiments, displayed significantly lower concentrations for Δtaz1 and Δcrd1 mitochondria at most time points. Taken together, the results show how cardiolipin remodeling influences pyruvate metabolism, tricarboxylic acid cycle flux, and the levels of mitochondrial nucleotides.
Collapse
Affiliation(s)
- Antonio J Rua
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Wayne Mitchell
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Mitochondrial Phospholipid Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nathan N Alder
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut, USA.
| | - Andrei T Alexandrescu
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut, USA.
| |
Collapse
|
2
|
Pérez I, Heitkamp T, Börsch M. Mechanism of ADP-Inhibited ATP Hydrolysis in Single Proton-Pumping F oF 1-ATP Synthase Trapped in Solution. Int J Mol Sci 2023; 24:ijms24098442. [PMID: 37176150 PMCID: PMC10178918 DOI: 10.3390/ijms24098442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
FoF1-ATP synthases in mitochondria, in chloroplasts, and in most bacteria are proton-driven membrane enzymes that supply the cells with ATP made from ADP and phosphate. Different control mechanisms exist to monitor and prevent the enzymes' reverse chemical reaction of fast wasteful ATP hydrolysis, including mechanical or redox-based blockade of catalysis and ADP inhibition. In general, product inhibition is expected to slow down the mean catalytic turnover. Biochemical assays are ensemble measurements and cannot discriminate between a mechanism affecting all enzymes equally or individually. For example, all enzymes could work more slowly at a decreasing substrate/product ratio, or an increasing number of individual enzymes could be completely blocked. Here, we examined the effect of increasing amounts of ADP on ATP hydrolysis of single Escherichia coli FoF1-ATP synthases in liposomes. We observed the individual catalytic turnover of the enzymes one after another by monitoring the internal subunit rotation using single-molecule Förster resonance energy transfer (smFRET). Observation times of single FRET-labeled FoF1-ATP synthases in solution were extended up to several seconds using a confocal anti-Brownian electrokinetic trap (ABEL trap). By counting active versus inhibited enzymes, we revealed that ADP inhibition did not decrease the catalytic turnover of all FoF1-ATP synthases equally. Instead, increasing ADP in the ADP/ATP mixture reduced the number of remaining active enzymes that operated at similar catalytic rates for varying substrate/product ratios.
Collapse
Affiliation(s)
- Iván Pérez
- Single-Molecule Microscopy Group, Jena University Hospital, 07743 Jena, Germany
| | - Thomas Heitkamp
- Single-Molecule Microscopy Group, Jena University Hospital, 07743 Jena, Germany
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, 07743 Jena, Germany
| |
Collapse
|
3
|
F1·Fo ATP Synthase/ATPase: Contemporary View on Unidirectional Catalysis. Int J Mol Sci 2023; 24:ijms24065417. [PMID: 36982498 PMCID: PMC10049701 DOI: 10.3390/ijms24065417] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
F1·Fo-ATP synthases/ATPases (F1·Fo) are molecular machines that couple either ATP synthesis from ADP and phosphate or ATP hydrolysis to the consumption or production of a transmembrane electrochemical gradient of protons. Currently, in view of the spread of drug-resistant disease-causing strains, there is an increasing interest in F1·Fo as new targets for antimicrobial drugs, in particular, anti-tuberculosis drugs, and inhibitors of these membrane proteins are being considered in this capacity. However, the specific drug search is hampered by the complex mechanism of regulation of F1·Fo in bacteria, in particular, in mycobacteria: the enzyme efficiently synthesizes ATP, but is not capable of ATP hydrolysis. In this review, we consider the current state of the problem of “unidirectional” F1·Fo catalysis found in a wide range of bacterial F1·Fo and enzymes from other organisms, the understanding of which will be useful for developing a strategy for the search for new drugs that selectively disrupt the energy production of bacterial cells.
Collapse
|
4
|
Turina P. Modulation of the H +/ATP coupling ratio by ADP and ATP as a possible regulatory feature in the F-type ATP synthases. Front Mol Biosci 2022; 9:1023031. [PMID: 36275634 PMCID: PMC9583940 DOI: 10.3389/fmolb.2022.1023031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
F-type ATP synthases are transmembrane enzymes, which play a central role in the metabolism of all aerobic and photosynthetic cells and organisms, being the major source of their ATP synthesis. Catalysis occurs via a rotary mechanism, in which the free energy of a transmembrane electrochemical ion gradient is converted into the free energy of ATP phosphorylation from ADP and Pi, and vice versa. An ADP, tightly bound to one of the three catalytic sites on the stator head, is associated with catalysis inhibition, which is relieved by the transmembrane proton gradient and by ATP. By preventing wasteful ATP hydrolysis in times of low osmotic energy and low ATP/ADP ratio, such inhibition constitutes a classical regulatory feedback effect, likely to be an integral component of in vivo regulation. The present miniview focuses on an additional putative regulatory phenomenon, which has drawn so far little attention, consisting in a substrate-induced tuning of the H+/ATP coupling ratio during catalysis, which might represent an additional key to energy homeostasis in the cell. Experimental pieces of evidence in support of such a phenomenon are reviewed.
Collapse
Affiliation(s)
- Paola Turina
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Vazulka S, Schiavinato M, Wagenknecht M, Cserjan-Puschmann M, Striedner G. Interaction of Periplasmic Fab Production and Intracellular Redox Balance in Escherichia coli Affects Product Yield. ACS Synth Biol 2022; 11:820-834. [PMID: 35041397 PMCID: PMC8859853 DOI: 10.1021/acssynbio.1c00502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibody fragments such as Fab's require the formation of disulfide bonds to achieve a proper folding state. During their recombinant, periplasmic expression in Escherichia coli, oxidative folding is mediated by the DsbA/DsbB system in concert with ubiquinone. Thereby, overexpression of Fab's is linked to the respiratory chain, which is not only immensely important for the cell's energy household but also known as a major source of reactive oxygen species. However, the effects of an increased oxidative folding demand and the consequently required electron flux via ubiquinone on the host cell have not been characterized so far. Here, we show that Fab expression in E. coli BL21(DE3) interfered with the intracellular redox balance, thereby negatively impacting host cell performance. Production of four different model Fab's in lab-scale fed-batch cultivations led to increased oxygen consumption rates and strong cell lysis. An RNA sequencing analysis revealed transcription activation of the oxidative stress-responsive soxS gene in the Fab-producing strains. We attributed this to the accumulation of intracellular superoxide, which was measured using flow cytometry. An exogenously supplemented ubiquinone analogue improved Fab yields up to 82%, indicating that partitioning of the quinone pool between aerobic respiration and oxidative folding limited ubiquinone availability and hence disulfide bond formation capacity. Combined, our results provide a more in-depth understanding of the profound effects that periplasmic Fab expression and in particular disulfide bond formation has on the host cell. Thereby, we show new possibilities to elaborate cell engineering and process strategies for improved host cell fitness and process outcome.
Collapse
Affiliation(s)
- Sophie Vazulka
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Matteo Schiavinato
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Martin Wagenknecht
- Boehringer Ingelheim RCV GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Gerald Striedner
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
6
|
Sielaff H, Dienerowitz F, Dienerowitz M. Single-molecule FRET combined with electrokinetic trapping reveals real-time enzyme kinetics of individual F-ATP synthases. NANOSCALE 2022; 14:2327-2336. [PMID: 35084006 DOI: 10.1039/d1nr05754e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Single-molecule Förster resonance energy transfer (smFRET) is a key technique to observe conformational changes in molecular motors and to access the details of single-molecule static and dynamic disorder during catalytic processes. However, studying freely diffusing molecules in solution is limited to a few tens of milliseconds, while surface attachment often bears the risk to restrict their natural motion. In this paper we combine smFRET and electrokinetic trapping (ABEL trap) to non-invasively hold single FOF1-ATP synthases for up to 3 s within the detection volume, thereby extending the observation time by a factor of 10 as compared to Brownian diffusion without surface attachment. In addition, we are able to monitor complete reaction cycles and to selectively trap active molecules based on their smFRET signal, thus speeding up the data acquisition process. We demonstrate the capability of our method to study the dynamics of single molecules by recording the ATP-hydrolysis driven rotation of individual FOF1-ATP synthase molecules over numerous reaction cycles and extract their kinetic rates. We argue that our method is not limited to motor proteins. Instead, it can be applied to monitor conformational changes with millisecond time resolution for a wide range of enzymes, thereby making it a versatile tool for studying protein dynamics.
Collapse
Affiliation(s)
- Hendrik Sielaff
- Department of Chemistry, Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, 117557 Singapore, Singapore
| | - Frank Dienerowitz
- Ernst-Abbe-Hochschule Jena, University of Applied Sciences, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
| | - Maria Dienerowitz
- Single-Molecule Microscopy Group, Universitätsklinikum Jena, Nonnenplan 2-4, 07743 Jena, Germany.
| |
Collapse
|
7
|
Yanagisawa S, Frasch WD. pH-dependent 11° F 1F O ATP synthase sub-steps reveal insight into the F O torque generating mechanism. eLife 2021; 10:70016. [PMID: 34970963 PMCID: PMC8754430 DOI: 10.7554/elife.70016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/27/2021] [Indexed: 12/04/2022] Open
Abstract
Most cellular ATP is made by rotary F1FO ATP synthases using proton translocation-generated clockwise torque on the FO c-ring rotor, while F1-ATP hydrolysis can force counterclockwise rotation and proton pumping. The FO torque-generating mechanism remains elusive even though the FO interface of stator subunit-a, which contains the transmembrane proton half-channels, and the c-ring is known from recent F1FO structures. Here, single-molecule F1FO rotation studies determined that the pKa values of the half-channels differ, show that mutations of residues in these channels change the pKa values of both half-channels, and reveal the ability of FO to undergo single c-subunit rotational stepping. These experiments provide evidence to support the hypothesis that proton translocation through FO operates via a Grotthuss mechanism involving a column of single water molecules in each half-channel linked by proton translocation-dependent c-ring rotation. We also observed pH-dependent 11° ATP synthase-direction sub-steps of the Escherichia coli c10-ring of F1FO against the torque of F1-ATPase-dependent rotation that result from H+ transfer events from FO subunit-a groups with a low pKa to one c-subunit in the c-ring, and from an adjacent c-subunit to stator groups with a high pKa. These results support a mechanism in which alternating proton translocation-dependent 11° and 25° synthase-direction rotational sub-steps of the c10-ring occur to sustain F1FO ATP synthesis.
Collapse
Affiliation(s)
- Seiga Yanagisawa
- 1School of Life Sciences, Arizona State University, Tempe, United States
| | - Wayne D Frasch
- School of Life Sciences, Arizona State University, Tempe, United States
| |
Collapse
|
8
|
Heitkamp T, Börsch M. Fast ATP-Dependent Subunit Rotation in Reconstituted F oF 1-ATP Synthase Trapped in Solution. J Phys Chem B 2021; 125:7638-7650. [PMID: 34254808 DOI: 10.1021/acs.jpcb.1c02739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
FoF1-ATP synthases are ubiquitous membrane-bound, rotary motor enzymes that can catalyze ATP synthesis and hydrolysis. Their enzyme kinetics are controlled by internal subunit rotation, by substrate and product concentrations, and by mechanical inhibitory mechanisms but also by the electrochemical potential of protons across the membrane. Single-molecule Förster resonance energy transfer (smFRET) has been used to detect subunit rotation within FoF1-ATP synthases embedded in freely diffusing liposomes. We now report that kinetic monitoring of functional rotation can be prolonged from milliseconds to seconds by utilizing an anti-Brownian electrokinetic trap (ABEL trap). These extended observation times allowed us to observe fluctuating rates of functional rotation for individual FoF1-liposomes in solution. Broad distributions of ATP-dependent catalytic rates were revealed. The buildup of an electrochemical potential of protons was confirmed to limit the maximum rate of ATP hydrolysis. In the presence of ionophores or uncouplers, the fastest subunit rotation speeds measured in single reconstituted FoF1-ATP synthases were 180 full rounds per second. This was much faster than measured by biochemical ensemble averaging, but not as fast as the maximum rotational speed reported previously for isolated single F1 complexes uncoupled from the membrane-embedded Fo complex. Further application of ABEL trap measurements should help resolve the mechanistic causes of such fluctuating rates of subunit rotation.
Collapse
Affiliation(s)
- Thomas Heitkamp
- Single-Molecule Microscopy Group, Jena University Hospital, Nonnenplan 2-4, 07743 Jena, Germany
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Nonnenplan 2-4, 07743 Jena, Germany
| |
Collapse
|
9
|
Jarman OD, Biner O, Hirst J. Regulation of ATP hydrolysis by the ε subunit, ζ subunit and Mg-ADP in the ATP synthase of Paracoccus denitrificans. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148355. [PMID: 33321110 PMCID: PMC8039183 DOI: 10.1016/j.bbabio.2020.148355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022]
Abstract
F1FO-ATP synthase is a crucial metabolic enzyme that uses the proton motive force from respiration to regenerate ATP. For maximum thermodynamic efficiency ATP synthesis should be fully reversible, but the enzyme from Paracoccus denitrificans catalyzes ATP hydrolysis at far lower rates than it catalyzes ATP synthesis, an effect often attributed to its unique ζ subunit. Recently, we showed that deleting ζ increases hydrolysis only marginally, indicating that other common inhibitory mechanisms such as inhibition by the C-terminal domain of the ε subunit (ε-CTD) or Mg-ADP may be more important. Here, we created mutants lacking the ε-CTD, and double mutants lacking both the ε-CTD and ζ subunit. No substantial activation of ATP hydrolysis was observed in any of these strains. Instead, hydrolysis in even the double mutant strains could only be activated by oxyanions, the detergent lauryldimethylamine oxide, or a proton motive force, which are all considered to release Mg-ADP inhibition. Our results establish that P. denitrificans ATP synthase is regulated by a combination of the ε and ζ subunits and Mg-ADP inhibition.
Collapse
Affiliation(s)
- Owen D Jarman
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Olivier Biner
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Judy Hirst
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
10
|
Milgrom YM, Duncan TM. F-ATP-ase of Escherichia coli membranes: The ubiquitous MgADP-inhibited state and the inhibited state induced by the ε-subunit's C-terminal domain are mutually exclusive. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148189. [PMID: 32194063 DOI: 10.1016/j.bbabio.2020.148189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
ATP synthases are important energy-coupling, rotary motor enzymes in all kingdoms of life. In all F-type ATP synthases, the central rotor of the catalytic F1 complex is composed of the γ subunit and the N-terminal domain (NTD) of the ε subunit. In the enzymes of diverse bacteria, the C-terminal domain of ε (εCTD) can undergo a dramatic conformational change to trap the enzyme in a transiently inactive state. This inhibitory mechanism is absent in the mitochondrial enzyme, so the εCTD could provide a means to selectively target ATP synthases of pathogenic bacteria for antibiotic development. For Escherichia coli and other bacterial model systems, it has been difficult to dissect the relationship between ε inhibition and a MgADP-inhibited state that is ubiquitous for FOF1 from bacteria and eukaryotes. A prior study with the isolated catalytic complex from E. coli, EcF1, showed that these two modes of inhibition are mutually exclusive, but it has long been known that interactions of F1 with the membrane-embedded FO complex modulate inhibition by the εCTD. Here, we study membranes containing EcFOF1 with wild-type ε, ε lacking the full εCTD, or ε with a small deletion at the C-terminus. By using compounds with distinct activating effects on F-ATP-ase activity, we confirm that εCTD inhibition and ubiquitous MgADP inhibition are mutually exclusive for membrane-bound E. coli F-ATP-ase. We determine that most of the enzyme complexes in wild-type membranes are in the ε-inhibited state (>50%) or in the MgADP-inhibited state (30%).
Collapse
Affiliation(s)
- Yakov M Milgrom
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY 13210, USA.
| | - Thomas M Duncan
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY 13210, USA.
| |
Collapse
|
11
|
Functional importance of αAsp-350 in the catalytic sites of Escherichia coli ATP synthase. Arch Biochem Biophys 2019; 672:108050. [PMID: 31330132 DOI: 10.1016/j.abb.2019.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/10/2019] [Accepted: 07/18/2019] [Indexed: 12/21/2022]
Abstract
Negatively charged residue αAsp-350 of the highly conserved VISIT-DG sequence is required for Pi binding and maintenance of the phosphate-binding subdomain in the catalytic sites of Escherichia coli F1Fo ATP synthase. αAsp-350 is situated in close proximity, 2.88 Å and 3.5 Å, to the conserved known phosphate-binding residues αR376 and βR182. αD350 is also in close proximity, 1.3 Å, to another functionally important residue αG351. Mutation of αAsp-350 to Ala, Gln, or Arg resulted in substantial loss of oxidative phosphorylation and reduction in ATPase activity by 6- to 16-fold. The loss of the acidic side chain in the form of αD350A, αD350Q, and αD350R caused loss of Pi binding. While removal of Arg in the form of αR376D resulted in the loss of Pi binding, the addition of Arg in the form of αG351R did not affect Pi binding. Our data demonstrates that αD350R helps in the proper orientation of αR376 and βR182 for Pi binding. Fluoroaluminate, fluoroscandium, and sodium azide caused almost complete inhibition of wild type enzyme and caused variable inhibition of αD350 mutant enzymes. NBD-Cl (4-chloro-7-nitrobenzo-2-oxa-1, 3-diazole) caused complete inhibition of wild type enzyme while some residual activity was left in mutant enzymes. Inhibition characteristics supported the conclusion that NBD-Cl reacts in βE (empty) catalytic sites. Phosphate protected against NBD-Cl inhibition of wild type and αG351R mutant enzymes but not inhibition of αD350A, αD350Q, αD350R, or αR376D mutant enzymes. These results demonstrate that αAsp-350 is an essential residue required for phosphate binding, through its interaction with αR376 and βR182, for normal function of phosphate binding subdomain and for transition state stabilization in ATP synthase catalytic sites.
Collapse
|
12
|
Lapashina AS, Shugaeva TE, Berezina KM, Kholina TD, Feniouk BA. Amino Acid Residues β139, β189, and β319 Modulate ADP-Inhibition in Escherichia coli H+-F OF 1-ATP Synthase. BIOCHEMISTRY (MOSCOW) 2019; 84:407-415. [PMID: 31228932 DOI: 10.1134/s0006297919040084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proton-translocating FOF1-ATP synthase (F-type ATPase, F-ATPase or FOF1) performs ATP synthesis/hydrolysis coupled to proton transport across the membrane in mitochondria, chloroplasts, and most eubacteria. The ATPase activity of the enzyme is suppressed in the absence of protonmotive force by several regulatory mechanisms. The most conserved of these mechanisms is noncompetitive inhibition of ATP hydrolysis by the MgADP complex (ADP-inhibition) which has been found in all the enzymes studied. When MgADP binds without phosphate in the catalytic site, the enzyme enters an inactive state, and MgADP gets locked in the catalytic site and does not exchange with the medium. The degree of ADP-inhibition varies in FOF1 enzymes from different organisms. In the Escherichia coli enzyme, ADP-inhibition is relatively weak and, in contrast to other organisms, is enhanced rather than suppressed by phosphate. In this study, we used site-directed mutagenesis to investigate the role of amino acid residues β139, β158, β189, and β319 of E. coli FOF1-ATP synthase in the mechanism of ADP-inhibition and its modulation by the protonmotive force. The amino acid residues in these positions differ in the enzymes from beta- and gammaproteobacteria (including E. coli) and FOF1-ATP synthases from other eubacteria, mitochondria, and chloroplasts. The βN158L substitution produced no effect on the enzyme activity, while substitutions βF139Y, βF189L, and βV319T only slightly affected ATP (1 mM) hydrolysis. However, in a mixture of ATP and ADP, the activity of the mutants was less suppressed than that of the wild-type enzyme. In addition, mutations βF189L and βV319T weakened the ATPase activity inhibition by phosphate in the presence of ADP. We suggest that residues β139, β189, and β319 are involved in the mechanism of ADP-inhibition and its modulation by phosphate.
Collapse
Affiliation(s)
- A S Lapashina
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - T E Shugaeva
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia
| | - K M Berezina
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia
| | - T D Kholina
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia
| | - B A Feniouk
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
13
|
Mutation Q259L in subunit beta in Bacillus subtilis ATP synthase attenuates ADP-inhibition and decreases fitness in mixed cultures. Biochem Biophys Res Commun 2018; 509:102-107. [PMID: 30580998 DOI: 10.1016/j.bbrc.2018.12.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/11/2018] [Indexed: 11/23/2022]
Abstract
The ATPase activity of H+-FOF1-ATP synthase (FOF1) is down-regulated by several mechanisms. The most universal of them found in bacterial, chloroplast and mitochondrial enzymes is non-competitive inhibition by MgADP (ADP-inhibition). When MgADP binds in a catalytic site in the absence of phosphate, the nucleotide might be trapped instead of being released and replaced by new MgATP. In this case the enzyme becomes inactivated, and MgADP release is required for re-activation. The degree of ADP-inhibition varies between different organisms: it is strong in mitochondrial and chloroplast FOF1 and in enzymes of some bacteria (including Bacillus PS3 sp., and Bacillus subtilis), but in FOF1 of Escherichia coli it is much weaker. It was shown that mutation betaGln259Leu in Bacillus PS3 FOF1 noticeably relieves its strong ADP-inhibition. In this work, we introduced the same mutation in FOF1 from B. subtilis. ADP-inhibition in the mutant FOF1 was also attenuated in comparison to the wild-type enzyme. The ATPase activity in membrane preparations was 3 fold higher in the mutant. Mutant enzyme was capable of ATP-driven proton pumping, and its ATPase activity was stimulated by dissipation of the protonmotive force, implying that the coupling efficiency between ATP hydrolysis and proton transport was not impaired by the mutation. We observed no effect of mutation on the growth rate of B. subtilis in pure cultures. However, in competition growth experiments when the wild type and the mutant strains were cultivated together in mixed cultures, the wild type strain always crowded out the mutant. To our knowledge, this is the first demonstration of the negative effect of FOF1 ADP-inhibition attenuation in vivo.
Collapse
|
14
|
Lapashina AS, Feniouk BA. ADP-Inhibition of H+-F OF 1-ATP Synthase. BIOCHEMISTRY (MOSCOW) 2018; 83:1141-1160. [PMID: 30472953 DOI: 10.1134/s0006297918100012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
H+-FOF1-ATP synthase (F-ATPase, F-type ATPase, FOF1 complex) catalyzes ATP synthesis from ADP and inorganic phosphate in eubacteria, mitochondria, chloroplasts, and some archaea. ATP synthesis is powered by the transmembrane proton transport driven by the proton motive force (PMF) generated by the respiratory or photosynthetic electron transport chains. When the PMF is decreased or absent, ATP synthase catalyzes the reverse reaction, working as an ATP-dependent proton pump. The ATPase activity of the enzyme is regulated by several mechanisms, of which the most conserved is the non-competitive inhibition by the MgADP complex (ADP-inhibition). When ADP binds to the catalytic site without phosphate, the enzyme may undergo conformational changes that lock bound ADP, resulting in enzyme inactivation. PMF can induce release of inhibitory ADP and reactivate ATP synthase; the threshold PMF value required for enzyme reactivation might exceed the PMF for ATP synthesis. Moreover, membrane energization increases the catalytic site affinity to phosphate, thereby reducing the probability of ADP binding without phosphate and preventing enzyme transition to the ADP-inhibited state. Besides phosphate, oxyanions (e.g., sulfite and bicarbonate), alcohols, lauryldimethylamine oxide, and a number of other detergents can weaken ADP-inhibition and increase ATPase activity of the enzyme. In this paper, we review the data on ADP-inhibition of ATP synthases from different organisms and discuss the in vivo role of this phenomenon and its relationship with other regulatory mechanisms, such as ATPase activity inhibition by subunit ε and nucleotide binding in the noncatalytic sites of the enzyme. It should be noted that in Escherichia coli enzyme, ADP-inhibition is relatively weak and rather enhanced than prevented by phosphate.
Collapse
Affiliation(s)
- A S Lapashina
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - B A Feniouk
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
15
|
Lapashina AS, Prikhodko AS, Shugaeva TE, Feniouk BA. Residue 249 in subunit beta regulates ADP inhibition and its phosphate modulation in Escherichia coli ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:181-188. [PMID: 30528692 DOI: 10.1016/j.bbabio.2018.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 11/29/2022]
Abstract
ATPase activity of proton-translocating FOF1-ATP synthase (F-type ATPase or F-ATPase) is suppressed in the absence of protonmotive force by several regulatory mechanisms. The most conservative of these mechanisms found in all enzymes studied so far is allosteric inhibition of ATP hydrolysis by MgADP (ADP-inhibition). When MgADP is bound without phosphate in the catalytic site, the enzyme lapses into an inactive state with MgADP trapped. In chloroplasts and mitochondria, as well as in most bacteria, phosphate prevents MgADP inhibition. However, in Escherichia coli ATP synthase ADP-inhibition is relatively weak and phosphate does not prevent it but seems to enhance it. We found that a single amino acid residue in subunit β is responsible for these features of E. coli enzyme. Mutation βL249Q significantly enhanced ADP-inhibition in E. coli ATP synthase, increased the extent of ATP hydrolysis stimulation by sulfite, and rendered the ADP-inhibition sensitive to phosphate in the same manner as observed in FOF1 from mitochondria, chloroplasts, and most aerobic\photosynthetic bacteria.
Collapse
Affiliation(s)
- Anna S Lapashina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasia S Prikhodko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Tatiana E Shugaeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Boris A Feniouk
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
16
|
Zarco-Zavala M, Mendoza-Hoffmann F, García-Trejo JJ. Unidirectional regulation of the F 1F O-ATP synthase nanomotor by the ζ pawl-ratchet inhibitor protein of Paracoccus denitrificans and related α-proteobacteria. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2018; 1859:762-774. [PMID: 29886048 DOI: 10.1016/j.bbabio.2018.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/28/2018] [Accepted: 06/05/2018] [Indexed: 12/20/2022]
Abstract
The ATP synthase is a reversible nanomotor that gyrates its central rotor clockwise (CW) to synthesize ATP and in counter clockwise (CCW) direction to hydrolyse it. In bacteria and mitochondria, two natural inhibitor proteins, namely the ε and IF1 subunits, prevent the wasteful CCW F1FO-ATPase activity by blocking γ rotation at the αDP/βDP/γ interface of the F1 portion. In Paracoccus denitrificans and related α-proteobacteria, we discovered a different natural F1-ATPase inhibitor named ζ. Here we revise the functional and structural data showing that this novel ζ subunit, although being different to ε and IF1, it also binds to the αDP/βDP/γ interface of the F1 of P. denitrificans. ζ shifts its N-terminal inhibitory domain from an intrinsically disordered protein region (IDPr) to an α-helix when inserted in the αDP/βDP/γ interface. We showed for the first time the key role of a natural ATP synthase inhibitor by the distinctive phenotype of a Δζ knockout mutant in P. denitrificans. ζ blocks exclusively the CCW F1FO-ATPase rotation without affecting the CW-F1FO-ATP synthase turnover, confirming that ζ is important for respiratory bacterial growth by working as a unidirectional pawl-ratchet PdF1FO-ATPase inhibitor, thus preventing the wasteful consumption of cellular ATP. In summary, ζ is a useful model that mimics mitochondrial IF1 but in α-proteobacteria. The structural, functional, and endosymbiotic evolutionary implications of this ζ inhibitor are discussed to shed light on the natural control mechanisms of the three natural inhibitor proteins (ε, ζ, and IF1) of this unique ATP synthase nanomotor, essential for life.
Collapse
Affiliation(s)
- Mariel Zarco-Zavala
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Delegación Coyoacán, Ciudad de México (CDMX), CP 04510, Mexico; Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Francisco Mendoza-Hoffmann
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Delegación Coyoacán, Ciudad de México (CDMX), CP 04510, Mexico
| | - José J García-Trejo
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Delegación Coyoacán, Ciudad de México (CDMX), CP 04510, Mexico.
| |
Collapse
|
17
|
Sielaff H, Duncan TM, Börsch M. The regulatory subunit ε in Escherichia coli F OF 1-ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:775-788. [PMID: 29932911 DOI: 10.1016/j.bbabio.2018.06.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 11/16/2022]
Abstract
F-type ATP synthases are extraordinary multisubunit proteins that operate as nanomotors. The Escherichia coli (E. coli) enzyme uses the proton motive force (pmf) across the bacterial plasma membrane to drive rotation of the central rotor subunits within a stator subunit complex. Through this mechanical rotation, the rotor coordinates three nucleotide binding sites that sequentially catalyze the synthesis of ATP. Moreover, the enzyme can hydrolyze ATP to turn the rotor in the opposite direction and generate pmf. The direction of net catalysis, i.e. synthesis or hydrolysis of ATP, depends on the cell's bioenergetic conditions. Different control mechanisms have been found for ATP synthases in mitochondria, chloroplasts and bacteria. This review discusses the auto-inhibitory behavior of subunit ε found in FOF1-ATP synthases of many bacteria. We focus on E. coli FOF1-ATP synthase, with insights into the regulatory mechanism of subunit ε arising from structural and biochemical studies complemented by single-molecule microscopy experiments.
Collapse
Affiliation(s)
- Hendrik Sielaff
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Thomas M Duncan
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
18
|
Mendoza-Hoffmann F, Pérez-Oseguera Á, Cevallos MÁ, Zarco-Zavala M, Ortega R, Peña-Segura C, Espinoza-Simón E, Uribe-Carvajal S, García-Trejo JJ. The Biological Role of the ζ Subunit as Unidirectional Inhibitor of the F 1F O-ATPase of Paracoccus denitrificans. Cell Rep 2018; 22:1067-1078. [PMID: 29386127 DOI: 10.1016/j.celrep.2017.12.106] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/09/2017] [Accepted: 12/28/2017] [Indexed: 11/16/2022] Open
Abstract
The biological roles of the three natural F1FO-ATPase inhibitors, ε, ζ, and IF1, on cell physiology remain controversial. The ζ subunit is a useful model for deletion studies since it mimics mitochondrial IF1, but in the F1FO-ATPase of Paracoccus denitrificans (PdF1FO), it is a monogenic and supernumerary subunit. Here, we constructed a P. denitrificans 1222 derivative (PdΔζ) with a deleted ζ gene to determine its role in cell growth and bioenergetics. The results show that the lack of ζ in vivo strongly restricts respiratory P. denitrificans growth, and this is restored by complementation in trans with an exogenous ζ gene. Removal of ζ increased the coupled PdF1FO-ATPase activity without affecting the PdF1FO-ATP synthase turnover, and the latter was not affected at all by ζ reconstitution in vitro. Therefore, ζ works as a unidirectional pawl-ratchet inhibitor of the PdF1FO-ATPase nanomotor favoring the ATP synthase turnover to improve respiratory cell growth and bioenergetics.
Collapse
Affiliation(s)
- Francisco Mendoza-Hoffmann
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Delegación Coyoacán, Ciudad de México (CDMX) 04510, México
| | - Ángeles Pérez-Oseguera
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, U.N.A.M., Cuernavaca, Morelos, México
| | - Miguel Ángel Cevallos
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, U.N.A.M., Cuernavaca, Morelos, México
| | | | - Raquel Ortega
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Delegación Coyoacán, Ciudad de México (CDMX) 04510, México
| | | | | | | | - José J García-Trejo
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Delegación Coyoacán, Ciudad de México (CDMX) 04510, México.
| |
Collapse
|
19
|
Tan Z, Khakbaz P, Chen Y, Lombardo J, Yoon JM, Shanks JV, Klauda JB, Jarboe LR. Engineering Escherichia coli membrane phospholipid head distribution improves tolerance and production of biorenewables. Metab Eng 2017; 44:1-12. [DOI: 10.1016/j.ymben.2017.08.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/26/2017] [Accepted: 08/29/2017] [Indexed: 12/27/2022]
|
20
|
Zharova TV, Vinogradov AD. Functional heterogeneity of F o·F 1H +-ATPase/synthase in coupled Paracoccus denitrificans plasma membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:939-944. [PMID: 28803911 DOI: 10.1016/j.bbabio.2017.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/10/2017] [Accepted: 08/09/2017] [Indexed: 11/16/2022]
Abstract
Fo·F1H+-ATPase/synthase in coupled plasma membrane vesicles of Paracoccus denitrificans catalyzes ATP hydrolysis and/or ATP synthesis with comparable enzyme turnover. Significant difference in pH-profile of these alternative activities is seen: decreasing pH from 8.0 to 7.0 results in reversible inhibition of hydrolytic activity, whereas ATP synthesis activity is not changed. The inhibition of ATPase activity upon acidification results from neither change in ADP(Mg2+)-induced deactivation nor the energy-dependent enzyme activation. Vmax, not apparent KmATP is affected by lowering the pH. Venturicidin noncompetitively inhibits ATP synthesis and coupled ATP hydrolysis, showing significant difference in the affinity to its inhibitory site depending on the direction of the catalysis. This difference cannot be attributed to variations of the substrate-enzyme intermediates for steady-state forward and back reactions or to possible equilibrium between ATP hydrolase and ATP synthase Fo·F1 modes of the opposite directions of catalysis. The data are interpreted as to suggest that distinct non-equilibrated molecular isoforms of Fo·F1 ATP synthase and ATP hydrolase exist in coupled energy-transducing membranes.
Collapse
Affiliation(s)
- Tatyana V Zharova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119234, Russian Federation
| | - Andrei D Vinogradov
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119234, Russian Federation.
| |
Collapse
|
21
|
D'Alessandro M, Turina P, Melandri BA, Dunn SD. Modulation of coupling in the Escherichia coli ATP synthase by ADP and P i: Role of the ε subunit C-terminal domain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1858:34-44. [PMID: 27751906 DOI: 10.1016/j.bbabio.2016.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 08/06/2016] [Accepted: 10/13/2016] [Indexed: 01/28/2023]
Abstract
The ε-subunit of ATP-synthase is an endogenous inhibitor of the hydrolysis activity of the complex and its α-helical C-terminal domain (εCTD) undergoes drastic changes among at least two different conformations. Even though this domain is not essential for ATP synthesis activity, there is evidence for its involvement in the coupling mechanism of the pump. Recently, it was proposed that coupling of the ATP synthase can vary as a function of ADP and Pi concentration. In the present work, we have explored the possible role of the εCTD in this ADP- and Pi-dependent coupling, by examining an εCTD-lacking mutant of Escherichia coli. We show that the loss of Pi-dependent coupling can be observed also in the εCTD-less mutant, but the effects of Pi on both proton pumping and ATP hydrolysis were much weaker in the mutant than in the wild-type. We also show that the εCTD strongly influences the binding of ADP to a very tight binding site (half-maximal effect≈1nM); binding at this site induces higher coupling in EFOF1 and increases responses to Pi. It is proposed that one physiological role of the εCTD is to regulate the kinetics and affinity of ADP/Pi binding, promoting ADP/Pi-dependent coupling.
Collapse
Affiliation(s)
- M D'Alessandro
- Department of Biology, Laboratory of Biochemistry and Biophysics, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - P Turina
- Department of Biology, Laboratory of Biochemistry and Biophysics, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy.
| | - B A Melandri
- Department of Biology, Laboratory of Biochemistry and Biophysics, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - S D Dunn
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
22
|
Gutiérrez-Sanz Ó, Natale P, Márquez I, Marques MC, Zacarias S, Pita M, Pereira IAC, López-Montero I, De Lacey AL, Vélez M. H2 -Fueled ATP Synthesis on an Electrode: Mimicking Cellular Respiration. Angew Chem Int Ed Engl 2016; 55:6216-20. [PMID: 26991333 PMCID: PMC5132028 DOI: 10.1002/anie.201600752] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/16/2016] [Indexed: 12/21/2022]
Abstract
ATP, the molecule used by living organisms to supply energy to many different metabolic processes, is synthesized mostly by the ATPase synthase using a proton or sodium gradient generated across a lipid membrane. We present evidence that a modified electrode surface integrating a NiFeSe hydrogenase and a F1F0‐ATPase in a lipid membrane can couple the electrochemical oxidation of H2 to the synthesis of ATP. This electrode‐assisted conversion of H2 gas into ATP could serve to generate this biochemical fuel locally when required in biomedical devices or enzymatic synthesis of valuable products.
Collapse
Affiliation(s)
- Óscar Gutiérrez-Sanz
- Instituto de Catálisis y Petroleoquímica, CSIC, c/ Marie Curie 2, 28049, Madrid, Spain
| | - Paolo Natale
- Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain.,Instituto de Investigación i+12 hospital 12 de Octubre, Avda. Córdoba s/n, 28041, Madrid, Spain
| | - Ileana Márquez
- Instituto de Catálisis y Petroleoquímica, CSIC, c/ Marie Curie 2, 28049, Madrid, Spain
| | - Marta C Marques
- Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Apartado 127, 2781-901, Oeiras, Portugal
| | - Sonia Zacarias
- Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Apartado 127, 2781-901, Oeiras, Portugal
| | - Marcos Pita
- Instituto de Catálisis y Petroleoquímica, CSIC, c/ Marie Curie 2, 28049, Madrid, Spain
| | - Inês A C Pereira
- Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Apartado 127, 2781-901, Oeiras, Portugal
| | - Iván López-Montero
- Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain. .,Instituto de Investigación i+12 hospital 12 de Octubre, Avda. Córdoba s/n, 28041, Madrid, Spain.
| | - Antonio L De Lacey
- Instituto de Catálisis y Petroleoquímica, CSIC, c/ Marie Curie 2, 28049, Madrid, Spain.
| | - Marisela Vélez
- Instituto de Catálisis y Petroleoquímica, CSIC, c/ Marie Curie 2, 28049, Madrid, Spain.
| |
Collapse
|
23
|
Gutiérrez-Sanz Ó, Natale P, Márquez I, Marques MC, Zacarias S, Pita M, Pereira IAC, López-Montero I, De Lacey AL, Vélez M. H2-Fueled ATP Synthesis on an Electrode: Mimicking Cellular Respiration. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Óscar Gutiérrez-Sanz
- Instituto de Catálisis y Petroleoquímica; CSIC; c/ Marie Curie 2 28049 Madrid Spain
| | - Paolo Natale
- Universidad Complutense de Madrid; Avda. Complutense s/n 28040 Madrid Spain
- Instituto de Investigación i+12 hospital 12 de Octubre; Avda. Córdoba s/n 28041 Madrid Spain
| | - Ileana Márquez
- Instituto de Catálisis y Petroleoquímica; CSIC; c/ Marie Curie 2 28049 Madrid Spain
| | - Marta C. Marques
- Instituto de Tecnologia Quimica e Biologica; Universidade Nova de Lisboa; Apartado 127 2781-901 Oeiras Portugal
| | - Sonia Zacarias
- Instituto de Tecnologia Quimica e Biologica; Universidade Nova de Lisboa; Apartado 127 2781-901 Oeiras Portugal
| | - Marcos Pita
- Instituto de Catálisis y Petroleoquímica; CSIC; c/ Marie Curie 2 28049 Madrid Spain
| | - Inês A. C. Pereira
- Instituto de Tecnologia Quimica e Biologica; Universidade Nova de Lisboa; Apartado 127 2781-901 Oeiras Portugal
| | - Iván López-Montero
- Universidad Complutense de Madrid; Avda. Complutense s/n 28040 Madrid Spain
- Instituto de Investigación i+12 hospital 12 de Octubre; Avda. Córdoba s/n 28041 Madrid Spain
| | - Antonio L. De Lacey
- Instituto de Catálisis y Petroleoquímica; CSIC; c/ Marie Curie 2 28049 Madrid Spain
| | - Marisela Vélez
- Instituto de Catálisis y Petroleoquímica; CSIC; c/ Marie Curie 2 28049 Madrid Spain
| |
Collapse
|
24
|
Bernardi P, Rasola A, Forte M, Lippe G. The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology. Physiol Rev 2015; 95:1111-55. [PMID: 26269524 DOI: 10.1152/physrev.00001.2015] [Citation(s) in RCA: 420] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mitochondrial permeability transition (PT) is a permeability increase of the inner mitochondrial membrane mediated by a channel, the permeability transition pore (PTP). After a brief historical introduction, we cover the key regulatory features of the PTP and provide a critical assessment of putative protein components that have been tested by genetic analysis. The discovery that under conditions of oxidative stress the F-ATP synthases of mammals, yeast, and Drosophila can be turned into Ca(2+)-dependent channels, whose electrophysiological properties match those of the corresponding PTPs, opens new perspectives to the field. We discuss structural and functional features of F-ATP synthases that may provide clues to its transition from an energy-conserving into an energy-dissipating device as well as recent advances on signal transduction to the PTP and on its role in cellular pathophysiology.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Michael Forte
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Giovanna Lippe
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| |
Collapse
|
25
|
Abstract
The F1F0-ATP synthase (EC 3.6.1.34) is a remarkable enzyme that functions as a rotary motor. It is found in the inner membranes of Escherichia coli and is responsible for the synthesis of ATP in response to an electrochemical proton gradient. Under some conditions, the enzyme functions reversibly and uses the energy of ATP hydrolysis to generate the gradient. The ATP synthase is composed of eight different polypeptide subunits in a stoichiometry of α3β3γδεab2c10. Traditionally they were divided into two physically separable units: an F1 that catalyzes ATP hydrolysis (α3β3γδε) and a membrane-bound F0 sector that transports protons (ab2c10). In terms of rotary function, the subunits can be divided into rotor subunits (γεc10) and stator subunits (α3β3δab2). The stator subunits include six nucleotide binding sites, three catalytic and three noncatalytic, formed primarily by the β and α subunits, respectively. The stator also includes a peripheral stalk composed of δ and b subunits, and part of the proton channel in subunit a. Among the rotor subunits, the c subunits form a ring in the membrane, and interact with subunit a to form the proton channel. Subunits γ and ε bind to the c-ring subunits, and also communicate with the catalytic sites through interactions with α and β subunits. The eight subunits are expressed from a single operon, and posttranscriptional processing and translational regulation ensure that the polypeptides are made at the proper stoichiometry. Recent studies, including those of other species, have elucidated many structural and rotary properties of this enzyme.
Collapse
|
26
|
Shah NB, Duncan TM. Aerobic Growth of Escherichia coli Is Reduced, and ATP Synthesis Is Selectively Inhibited when Five C-terminal Residues Are Deleted from the ϵ Subunit of ATP Synthase. J Biol Chem 2015; 290:21032-21041. [PMID: 26160173 PMCID: PMC4543661 DOI: 10.1074/jbc.m115.665059] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/19/2015] [Indexed: 11/06/2022] Open
Abstract
F-type ATP synthases are rotary nanomotor enzymes involved in cellular energy metabolism in eukaryotes and eubacteria. The ATP synthase from Gram-positive and -negative model bacteria can be autoinhibited by the C-terminal domain of its ϵ subunit (ϵCTD), but the importance of ϵ inhibition in vivo is unclear. Functional rotation is thought to be blocked by insertion of the latter half of the ϵCTD into the central cavity of the catalytic complex (F1). In the inhibited state of the Escherichia coli enzyme, the final segment of ϵCTD is deeply buried but has few specific interactions with other subunits. This region of the ϵCTD is variable or absent in other bacteria that exhibit strong ϵ-inhibition in vitro. Here, genetically deleting the last five residues of the ϵCTD (ϵΔ5) caused a greater defect in respiratory growth than did the complete absence of the ϵCTD. Isolated membranes with ϵΔ5 generated proton-motive force by respiration as effectively as with wild-type ϵ but showed a nearly 3-fold decrease in ATP synthesis rate. In contrast, the ϵΔ5 truncation did not change the intrinsic rate of ATP hydrolysis with membranes. Further, the ϵΔ5 subunit retained high affinity for isolated F1 but reduced the maximal inhibition of F1-ATPase by ϵ from >90% to ∼20%. The results suggest that the ϵCTD has distinct regulatory interactions with F1 when rotary catalysis operates in opposite directions for the hydrolysis or synthesis of ATP.
Collapse
Affiliation(s)
- Naman B Shah
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Syracuse, New York 13210
| | - Thomas M Duncan
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Syracuse, New York 13210.
| |
Collapse
|
27
|
Zharova TV, Vinogradov AD. Oxidative phosphorylation and respiratory control phenomenon in Paracoccus denitrificans plasma membrane. BIOCHEMISTRY (MOSCOW) 2014; 77:1000-7. [PMID: 23157259 DOI: 10.1134/s0006297912090064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Changes in respiratory activity, transmembrane electric potential, and ATP synthesis as induced by additions of limited amounts of ADP and P(i) to tightly coupled inverted (inside-out) Paracoccus denitrificans plasma membrane vesicles were traced. The pattern of the changes was qualitatively the same as those observed for coupled mitochondria during the classical State 4-State 3-State 4 transition. Bacterial vesicles devoid of energy-dependent permeability barriers for the substrates of oxidation and phosphorylation were used as a simple experimental model to investigate two possible mechanisms of respiratory control: (i) in State 4 phosphoryl transfer potential (ATP/ADP × P(i)) is equilibrated with proton-motive force by reversibly operating F(1)·F(o)-ATPase (thermodynamic control); (ii) in State 4 apparent "equilibrium" is reached by unidirectional operation of proton motive force-activated F(1)·F(o)-ATP synthase. The data support the kinetic mechanism of the respiratory control phenomenon.
Collapse
Affiliation(s)
- T V Zharova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | | |
Collapse
|
28
|
ATPase/synthase activity of Paracoccus denitrificans Fo·F1 as related to the respiratory control phenomenon. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1322-9. [PMID: 24732246 DOI: 10.1016/j.bbabio.2014.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/21/2014] [Accepted: 04/01/2014] [Indexed: 02/04/2023]
Abstract
The time course of ATP synthesis, oxygen consumption, and change in the membrane potential in Paracoccus denitrificans inside-out plasma membrane vesicles was traced. ATP synthesis initiated by the addition of a limited amount of either ADP or inorganic phosphate proceeded up to very low residual concentrations of the limiting substrate. Accumulated ATP did not decrease the rate of its synthesis initiated by the addition of ADP. The amount of residual ADP determined at State 4 respiration was independent of ten-fold variation of Pi or the presence of ATP. The pH-dependence of Km for Pi could not be fitted to a simple phosphoric acid dissociation curve. Partial inhibition of respiration resulted in a decrease in the rate of ATP synthesis without affecting the ATP/ADP reached at State 4. At pH8.0, hydrolysis of ATP accumulated at State 4 was induced by a low concentration of an uncoupler, whereas complete uncoupling results in rapid inactivation of ATPase. At pH7.0, no reversal of the ATP synthase reaction by the uncoupler was seen. The data show that ATP/ADP×Pi ratio maintained at State 4 is not in equilibrium with respiratory-generated driving force. Possible mechanisms of kinetic control and unidirectional operation of the Fo·F1-ATP synthase are discussed.
Collapse
|
29
|
Abstract
Subunit rotation is the mechanochemical intermediate for the catalytic activity of the membrane enzyme FoF1-ATP synthase. smFRET (single-molecule FRET) studies have provided insights into the step sizes of the F1 and Fo motors, internal transient elastic energy storage and controls of the motors. To develop and interpret smFRET experiments, atomic structural information is required. The recent F1 structure of the Escherichia coli enzyme with the ϵ-subunit in an inhibitory conformation initiated a study for real-time monitoring of the conformational changes of ϵ. The present mini-review summarizes smFRET rotation experiments and previews new smFRET data on the conformational changes of the CTD (C-terminal domain) of ϵ in the E. coli enzyme.
Collapse
|
30
|
Lu P, Lill H, Bald D. ATP synthase in mycobacteria: special features and implications for a function as drug target. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1208-18. [PMID: 24513197 DOI: 10.1016/j.bbabio.2014.01.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 01/28/2014] [Accepted: 01/29/2014] [Indexed: 10/25/2022]
Abstract
ATP synthase is a ubiquitous enzyme that is largely conserved across the kingdoms of life. This conservation is in accordance with its central role in chemiosmotic energy conversion, a pathway utilized by far by most living cells. On the other hand, in particular pathogenic bacteria whilst employing ATP synthase have to deal with energetically unfavorable conditions such as low oxygen tensions in the human host, e.g. Mycobacterium tuberculosis can survive in human macrophages for an extended time. It is well conceivable that such ATP synthases may carry idiosyncratic features that contribute to efficient ATP production. In this review genetic and biochemical data on mycobacterial ATP synthase are discussed in terms of rotary catalysis, stator composition, and regulation of activity. ATP synthase in mycobacteria is of particular interest as this enzyme has been validated as a target for promising new antibacterial drugs. A deeper understanding of the working of mycobacterial ATP synthase and its atypical features can provide insight in adaptations of bacterial energy metabolism. Moreover, pinpointing and understanding critical differences as compared with human ATP synthase may provide input for the design and development of selective ATP synthase inhibitors as antibacterials. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Ping Lu
- Department of Molecular Cell Biology, AIMMS, Faculty of Earth- and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Holger Lill
- Department of Molecular Cell Biology, AIMMS, Faculty of Earth- and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Dirk Bald
- Department of Molecular Cell Biology, AIMMS, Faculty of Earth- and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
31
|
Shah NB, Hutcheon ML, Haarer BK, Duncan TM. F1-ATPase of Escherichia coli: the ε- inhibited state forms after ATP hydrolysis, is distinct from the ADP-inhibited state, and responds dynamically to catalytic site ligands. J Biol Chem 2013; 288:9383-95. [PMID: 23400782 DOI: 10.1074/jbc.m113.451583] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
F1-ATPase is the catalytic complex of rotary nanomotor ATP synthases. Bacterial ATP synthases can be autoinhibited by the C-terminal domain of subunit ε, which partially inserts into the enzyme's central rotor cavity to block functional subunit rotation. Using a kinetic, optical assay of F1·ε binding and dissociation, we show that formation of the extended, inhibitory conformation of ε (εX) initiates after ATP hydrolysis at the catalytic dwell step. Prehydrolysis conditions prevent formation of the εX state, and post-hydrolysis conditions stabilize it. We also show that ε inhibition and ADP inhibition are distinct, competing processes that can follow the catalytic dwell. We show that the N-terminal domain of ε is responsible for initial binding to F1 and provides most of the binding energy. Without the C-terminal domain, partial inhibition by the ε N-terminal domain is due to enhanced ADP inhibition. The rapid effects of catalytic site ligands on conformational changes of F1-bound ε suggest dynamic conformational and rotational mobility in F1 that is paused near the catalytic dwell position.
Collapse
Affiliation(s)
- Naman B Shah
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|
32
|
Börsch M. Microscopy of single F(o) F(1) -ATP synthases--the unraveling of motors, gears, and controls. IUBMB Life 2013; 65:227-37. [PMID: 23378185 DOI: 10.1002/iub.1149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/12/2013] [Indexed: 11/09/2022]
Abstract
Optical microscopy of single F(1) -ATPase and F(o) F(1) -ATP synthases started 15 years ago. Direct demonstration of ATP-driven subunit rotation by videomicroscopy became the new exciting tool to analyze the conformational changes of this enzyme during catalysis. Stimulated by these experiments, technical improvements for higher time resolution, better angular resolution, and reduced viscous drag were developed rapidly. Optics and single-molecule enzymology were entangled to benefit both biochemists and microscopists. Today, several single-molecule microscopy methods are established including controls for the precise nanomanipulation of individual enzymes in vitro. Förster resonance energy transfer, which has been used for simultaneous monitoring of conformational changes of different parts of this rotary motor, is one of them and may become the tool for the analysis of single F(o) F(1) -ATP synthases in membranes of living cells. Here, breakthrough experiments are critically reviewed and challenges are discussed for the future microscopy of single ATP synthesizing enzymes at work.
Collapse
Affiliation(s)
- Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
33
|
Comparison of the H+/ATP ratios of the H+-ATP synthases from yeast and from chloroplast. Proc Natl Acad Sci U S A 2012; 109:11150-5. [PMID: 22733773 DOI: 10.1073/pnas.1202799109] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
F(0)F(1)-ATP synthases use the free energy derived from a transmembrane proton transport to synthesize ATP from ADP and inorganic phosphate. The number of protons translocated per ATP (H(+)/ATP ratio) is an important parameter for the mechanism of the enzyme and for energy transduction in cells. Current models of rotational catalysis predict that the H(+)/ATP ratio is identical to the stoichiometric ratio of c-subunits to β-subunits. We measured in parallel the H(+)/ATP ratios at equilibrium of purified F(0)F(1)s from yeast mitochondria (c/β = 3.3) and from spinach chloroplasts (c/β = 4.7). The isolated enzymes were reconstituted into liposomes and, after energization of the proteoliposomes with acid-base transitions, the initial rates of ATP synthesis and hydrolysis were measured as a function of ΔpH. The equilibrium ΔpH was obtained by interpolation, and from its dependency on the stoichiometric ratio, [ATP]/([ADP]·[P(i)]), finally the thermodynamic H(+)/ATP ratios were obtained: 2.9 ± 0.2 for the mitochondrial enzyme and 3.9 ± 0.3 for the chloroplast enzyme. The data show that the thermodynamic H(+)/ATP ratio depends on the stoichiometry of the c-subunit, although it is not identical to the c/β ratio.
Collapse
|
34
|
Structure of the ATP synthase catalytic complex (F(1)) from Escherichia coli in an autoinhibited conformation. Nat Struct Mol Biol 2011; 18:701-7. [PMID: 21602818 PMCID: PMC3109198 DOI: 10.1038/nsmb.2058] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 03/15/2011] [Indexed: 02/03/2023]
Abstract
ATP synthase is a membrane-bound rotary motor enzyme that is critical for cellular energy metabolism in all kingdoms of life. Despite conservation of its basic structure and function, autoinhibition by one of its rotary stalk subunits occurs in bacteria and chloroplasts but not in mitochondria. The crystal structure of the ATP synthase catalytic complex (F(1)) from Escherichia coli described here reveals the structural basis for this inhibition. The C-terminal domain of subunit ɛ adopts a heretofore unknown, highly extended conformation that inserts deeply into the central cavity of the enzyme and engages both rotor and stator subunits in extensive contacts that are incompatible with functional rotation. As a result, the three catalytic subunits are stabilized in a set of conformations and rotational positions distinct from previous F(1) structures.
Collapse
|
35
|
Börsch M, Wrachtrup J. Improving FRET‐Based Monitoring of Single Chemomechanical Rotary Motors at Work. Chemphyschem 2011; 12:542-53. [DOI: 10.1002/cphc.201000702] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/12/2010] [Indexed: 11/07/2022]
Affiliation(s)
- Michael Börsch
- 3rd Institute of Physics and Stuttgart Research Center SCOPE, University of Stuttgart, Pfaffenwaldring 57, Fax: (+49) 711‐685‐65281
| | - Jörg Wrachtrup
- 3rd Institute of Physics and Stuttgart Research Center SCOPE, University of Stuttgart, Pfaffenwaldring 57, Fax: (+49) 711‐685‐65281
| |
Collapse
|
36
|
Yamori W, Takahashi S, Makino A, Price GD, Badger MR, von Caemmerer S. The roles of ATP synthase and the cytochrome b6/f complexes in limiting chloroplast electron transport and determining photosynthetic capacity. PLANT PHYSIOLOGY 2011; 155:956-62. [PMID: 21177473 PMCID: PMC3032479 DOI: 10.1104/pp.110.168435] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 12/16/2010] [Indexed: 05/18/2023]
Abstract
In C(3) plants, CO(2) assimilation is limited by ribulose 1,5-bisphosphate (RuBP) regeneration rate at high CO(2). RuBP regeneration rate in turn is determined by either the chloroplast electron transport capacity to generate NADPH and ATP or the activity of Calvin cycle enzymes involved in regeneration of RuBP. Here, transgenic tobacco (Nicotiana tabacum 'W38') expressing an antisense gene directed at the transcript of either the Rieske iron-sulfur protein of the cytochrome (Cyt) b(6)/f complex or the δ-subunit of chloroplast ATP synthase have been used to investigate the effect of a reduction of these complexes on chloroplast electron transport rate (ETR). Reductions in δ-subunit of ATP synthase content did not alter chlorophyll, Cyt b(6)/f complex, or Rubisco content, but reduced ETR estimated either from measurements of chlorophyll fluorescence or CO(2) assimilation rates at high CO(2). Plants with low ATP synthase content exhibited higher nonphotochemical quenching and achieved higher ETR per ATP synthase than the wild type. The proportional increase in ETR per ATP synthase complex was greatest at 35°C, showing that the ATP synthase activity can vary in vivo. In comparison, there was no difference in the ETR per Cyt b(6)/f complex in plants with reduced Cyt b(6)/f content and the wild type. The ETR decreased more drastically with reductions in Cyt b(6)/f complex than ATP synthase content. This suggests that chloroplast ETR is more limited by Cyt b(6)/f than ATP synthase content and is a potential target for enhancing photosynthetic capacity in crops.
Collapse
Affiliation(s)
- Wataru Yamori
- Molecular Plant Physiology Cluster, Plant Science Division, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia.
| | | | | | | | | | | |
Collapse
|
37
|
Single-molecule fluorescence resonance energy transfer techniques on rotary ATP synthases. Biol Chem 2011; 392:135-42. [DOI: 10.1515/bc.2011.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Conformational changes of proteins can be monitored in real time by fluorescence resonance energy transfer (FRET). Two different fluorophores have to be attached to those protein domains which move during function. Distance fluctuations between the fluorophores are measured by relative fluorescence intensity changes or fluorescence lifetime changes. The rotary mechanics of the two motors of FoF1-ATP synthase have been studied in vitro by single-molecule FRET. The results are summarized and perspectives for other transport ATPases are discussed.
Collapse
|
38
|
D'Alessandro M, Turina P, Melandri BA. Quantitative evaluation of the intrinsic uncoupling modulated by ADP and P(i) in the reconstituted ATP synthase of Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:130-43. [PMID: 20800570 DOI: 10.1016/j.bbabio.2010.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 08/17/2010] [Accepted: 08/18/2010] [Indexed: 11/18/2022]
Abstract
The ATP synthase from Escherichia coli was isolated and reconstituted into liposomes. The ATP hydrolysis by these proteoliposomes was coupled to proton pumping, and the ensuing inner volume acidification was measured by the fluorescent probe 9-amino-6-chloro-2-methoxyacridine (ACMA). The ACMA response was calibrated by acid-base transitions, and converted into internal pH values. The rates of internal acidification and of ATP hydrolysis were measured in parallel, as a function of P(i) or ADP concentration. Increasing P(i) monotonically inhibited the hydrolysis rate with a half-maximal effect at 510μM, whereas it stimulated the acidification rate up to 100-200μM, inhibiting it only at higher concentrations. The ADP concentration in the assay, due both to contaminant ADP in ATP and to the hydrolysis reaction, was progressively decreased by means of increasing pyruvate kinase activities. Decreasing ADP stimulated the hydrolysis rate, whereas it inhibited the internal acidification rate. The quantitative analysis showed that the relative number of translocated protons per hydrolyzed ATP, i.e. the relative coupling ratio, depended on the concentrations of P(i) and ADP with apparent K(d) values of 220μM and 27nM respectively. At the smallest ADP concentrations reached, and in the absence of P(i), the coupling ratio dropped down to 15% relative to the value observed at the highest ADP and P(i) concentrations tested. In addition, the data indicate the presence of two ADP and P(i) binding sites, of which only the highest affinity one is related to changes in the coupling ratio.
Collapse
Affiliation(s)
- Manuela D'Alessandro
- Department of Biology, Laboratory of Biochemistry and Biophysics, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | | | | |
Collapse
|
39
|
Proton transport coupled ATP synthesis by the purified yeast H+ -ATP synthase in proteoliposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1828-37. [PMID: 20691145 DOI: 10.1016/j.bbabio.2010.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 07/27/2010] [Accepted: 07/29/2010] [Indexed: 11/20/2022]
Abstract
The H(+)/ATP synthase from yeast mitochondria, MF₀F₁, was purified and reconstituted into liposomes prepared from phosphatidylcholine and phosphatidic acid. Analysis by mass spectrometry revealed the presence of all subunits of the yeast enzyme with the exception of the K-subunit. The MF₀F₁ liposomes were energized by acid-base transitions (DeltapH) and a K(+)/valinomycin diffusion potential (Deltaphi). ATP synthesis was completely abolished by the addition of uncouplers as well as by the inhibitor oligomycin. The rate of ATP synthesis was optimized as a function of various parameters and reached a maximum value (turnover number) of 120s⁻¹ at a transmembrane pH difference of 3.2 units (at pH(in)=4.8 and pH(out)=8.0) and a Deltaphi of 133mV (Nernst potential). Functional studies showed that the monomeric MF₀F₁, was fully active in ATP synthesis. The turnover increased in a sigmoidal way with increasing internal and decreasing external proton concentration. The dependence of the turnover on the phosphate concentration and the dependence of K(M) on pH(out) indicated that the substrate for ATP synthesis is the monoanionic phosphate species H₂PO⁻₄.
Collapse
|
40
|
Milgrom YM. ATP binding and hydrolysis steps of the uni-site catalysis by the mitochondrial F(1)-ATPase are affected by inorganic phosphate. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1768-74. [PMID: 20646992 DOI: 10.1016/j.bbabio.2010.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/09/2010] [Accepted: 07/13/2010] [Indexed: 10/19/2022]
Abstract
The effect of inorganic phosphate (P(i)) on uni-site ATP binding and hydrolysis by the nucleotide-depleted F(1)-ATPase from beef heart mitochondria (ndMF(1)) has been investigated. It is shown for the first time that P(i) decreases the apparent rate constant of uni-site ATP binding by ndMF(1) 3-fold with the K(d) of 0.38+/-0.14mM. During uni-site ATP hydrolysis, P(i) also shifts equilibrium between bound ATP and ADP+P(i) in the direction of ATP synthesis with the K(d) of 0.17+/-0.03mM. However, 10mM P(i) does not significantly affect ATP binding during multi-site catalysis.
Collapse
Affiliation(s)
- Yakov M Milgrom
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
41
|
ATP hydrolysis in ATP synthases can be differently coupled to proton transport and modulated by ADP and phosphate: a structure based model of the mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:755-62. [PMID: 20230778 DOI: 10.1016/j.bbabio.2010.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Revised: 03/02/2010] [Accepted: 03/02/2010] [Indexed: 11/20/2022]
Abstract
In the ATP synthases of Escherichia coli ADP and phosphate exert an apparent regulatory role on the efficiency of proton transport coupled to the hydrolysis of ATP. Both molecules induce clearly biphasic effects on hydrolysis and proton transfer. At intermediate concentrations (approximately 0.5-1 microM and higher) ADP inhibits hydrolysis and proton transfer; a quantitative analysis of the fluxes however proves that the coupling efficiency remains constant in this concentration range. On the other hand at nanomolar concentrations of ADP (a level obtainable only using an enzymatic ATP regenerating system) the efficiency of proton transport drops progressively, while the rate of hydrolysis remains high. Phosphate, at concentrations>or=0.1 mM, inhibits hydrolysis only if ADP is present at sufficiently high concentrations, keeping the coupling efficiency constant. At lower ADP levels phosphate is, however, necessary for an efficiently coupled catalytic cycle. We present a model for a catalytic cycle of ATP hydrolysis uncoupled from the transport of protons. The model is based on the available structures of bovine and yeast F1 and on the known binding affinities for ADP and Pi of the catalytic sites in their different functional states. The binding site related to the inhibitory effects of Pi (in association with ADP) is identified as the alphaHCbetaHC site, the pre-release site for the hydrolysis products. We suggest, moreover, that the high affinity site, associated with the operation of an efficient proton transport, could coincide with a conformational state intermediate between the alphaTPbetaTP and the alphaDPbetaDP (similar to the transition state of the hydrolysis/synthesis reaction) that does not strongly bind the ligands and can exchange them rather freely with the external medium. The emptying of this site can lead to an unproductive hydrolysis cycle that occurs without a net rotation of the central stalk and, consequently, does not translocate protons.
Collapse
|
42
|
Saita EI, Iino R, Suzuki T, Feniouk BA, Kinosita K, Yoshida M. Activation and stiffness of the inhibited states of F1-ATPase probed by single-molecule manipulation. J Biol Chem 2010; 285:11411-7. [PMID: 20154086 DOI: 10.1074/jbc.m109.099143] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
F(1)-ATPase (F(1)), a soluble portion of F(o)F(1)-ATP synthase (F(o)F(1)), is an ATP-driven motor in which gammaepsilon subunits rotate in the alpha(3)beta(3) cylinder. Activity of F(1) and F(o)F(1) from Bacillus PS3 is attenuated by the epsilon subunit in an inhibitory extended form. In this study we observed ATP-dependent transition of epsilon in single F(1) molecules from extended form to hairpin form by fluorescence resonance energy transfer. The results justify the previous bulk experiments and ensure that fraction of F(1) with hairpin epsilon directly determines the fraction of active F(1) at any ATP concentration. Next, mechanical activation and stiffness of epsilon-inhibited F(1) were examined by the forced rotation of magnetic beads attached to gamma. Compared with ADP inhibition, which is another manner of inhibition, rotation by a larger angle was required for the activation from epsilon inhibition when the beads were forced to rotate to ATP hydrolysis direction, and more torque was required to reach the same rotation angle when beads were forced to rotate to ATP synthesis direction. The results imply that if F(o)F(1) is resting in the epsilon-inhibited state, F(o) motor must transmit to gamma a torque larger than expected from thermodynamic equilibrium to initiate ATP synthesis.
Collapse
Affiliation(s)
- Ei-ichiro Saita
- ICORP ATP Synthesis Regulation Project, Japan Science and Technology Corporation, Aomi 2-3-6, Tokyo 135-0064, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Bienert R, Rombach-Riegraf V, Diez M, Gräber P. Subunit movements in single membrane-bound H+-ATP synthases from chloroplasts during ATP synthesis. J Biol Chem 2009; 284:36240-36247. [PMID: 19864418 PMCID: PMC2794740 DOI: 10.1074/jbc.m109.060376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Revised: 10/26/2009] [Indexed: 11/06/2022] Open
Abstract
Subunit movements within the H(+)-ATP synthase from chloroplasts (CF(0)F(1)) are investigated during ATP synthesis. The gamma-subunit (gammaCys-322) is covalently labeled with a fluorescence donor (ATTO532). A fluorescence acceptor (adenosine 5'-(beta,gamma-imino)triphosphate (AMPPNP)-ATTO665) is noncovalently bound to a noncatalytic site at one alpha-subunit. The labeled CF(0)F(1) is integrated into liposomes, and a transmembrane pH difference is generated by an acid base transition. Single-pair fluorescence resonance energy transfer is measured in freely diffusing proteoliposomes with a confocal two-channel microscope. The fluorescence time traces reveal a repetitive three-step rotation of the gamma-subunit relative to the alpha-subunit during ATP synthesis. Some traces show splitting into sublevels with fluctuations between the sublevels. During catalysis the central stalk interacts, with equal probability, with each alphabeta-pair. Without catalysis the central stalk interacts with only one specific alphabeta-pair, and no stepping between FRET levels is observed. Two inactive states of the enzyme are identified: one in the presence of AMPPNP and one in the presence of ADP.
Collapse
Affiliation(s)
- Roland Bienert
- Department of Physical Chemistry, Albert-Ludwigs-University of Freiburg, D-79104 Freiburg, Germany
| | - Verena Rombach-Riegraf
- Department of Physical Chemistry, Albert-Ludwigs-University of Freiburg, D-79104 Freiburg, Germany
| | - Manuel Diez
- Department of Physical Chemistry, Albert-Ludwigs-University of Freiburg, D-79104 Freiburg, Germany
| | - Peter Gräber
- Department of Physical Chemistry, Albert-Ludwigs-University of Freiburg, D-79104 Freiburg, Germany.
| |
Collapse
|
44
|
Johnson KM, Swenson L, Opipari AW, Reuter R, Zarrabi N, Fierke CA, Börsch M, Glick GD. Mechanistic basis for differential inhibition of the F1Fo-ATPase by aurovertin. Biopolymers 2009; 91:830-40. [PMID: 19462418 DOI: 10.1002/bip.21262] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mitochondrial F(1)F(o)-ATPase performs the terminal step of oxidative phosphorylation. Small molecules that modulate this enzyme have been invaluable in helping decipher F(1)F(o)-ATPase structure, function, and mechanism. Aurovertin is an antibiotic that binds to the beta subunits in the F(1) domain and inhibits F(1)F(o)-ATPase-catalyzed ATP synthesis in preference to ATP hydrolysis. Despite extensive study and the existence of crystallographic data, the molecular basis of the differential inhibition and kinetic mechanism of inhibition of ATP synthesis by aurovertin has not been resolved. To address these questions, we conducted a series of experiments in both bovine heart mitochondria and E. coli membrane F(1)F(o)-ATPase. Aurovertin is a mixed, noncompetitive inhibitor of both ATP hydrolysis and synthesis with lower K(i) values for synthesis. At low substrate concentrations, inhibition is cooperative suggesting a stoichiometry of two aurovertin per F(1)F(o)-ATPase. Furthermore, aurovertin does not completely inhibit the ATP hydrolytic activity at saturating concentrations. Single-molecule experiments provide evidence that the residual rate of ATP hydrolysis seen in the presence of saturating concentrations of aurovertin results from a decrease in the binding change mechanism by hindering catalytic site interactions. The results from these studies should further the understanding of how the F(1)F(o)-ATPase catalyzes ATP synthesis and hydrolysis.
Collapse
Affiliation(s)
- Kathryn M Johnson
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Proton Translocation and ATP Synthesis by the FoF1-ATPase of Purple Bacteria. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
D'Alessandro M, Turina P, Melandri BA. Intrinsic uncoupling in the ATP synthase of Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1518-27. [PMID: 18952048 DOI: 10.1016/j.bbabio.2008.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/23/2008] [Accepted: 09/23/2008] [Indexed: 11/25/2022]
Abstract
The ATP hydrolysis activity and proton pumping of the ATP synthase of Escherichia coli in isolated native membranes have been measured and compared as a function of ADP and Pi concentration. The ATP hydrolysis activity was inhibited by Pi with an half-maximal effect at 140 microM, which increased progressively up in the millimolar range when the ADP concentration was progressively decreased by increasing amounts of an ADP trap. In addition, the relative extent of this inhibition decreased with decreasing ADP. The half-maximal inhibition by ADP was found in the submicromolar range, and the extent of inhibition was enhanced by the presence of Pi. The parallel measurement of ATP hydrolysis activity and proton pumping indicated that, while the rate of ATP hydrolysis was decreased as a function of either ligand, the rate of proton pumping increased. The latter showed a biphasic response to the concentration of Pi, in which an inhibition followed the initial stimulation. Similarly as previously found for the ATP synthase from Rhodobacter caspulatus [P. Turina, D. Giovannini, F. Gubellini, B.A. Melandri, Physiological ligands ADP and Pi modulate the degree of intrinsic coupling in the ATP synthase of the photosynthetic bacterium Rhodobacter capsulatus, Biochemistry 43 (2004) 11126-11134], these data indicate that the E. coli ATP synthase can operate at different degrees of energetic coupling between hydrolysis and proton transport, which are modulated by ADP and Pi.
Collapse
Affiliation(s)
- Manuela D'Alessandro
- Department of Biology, Laboratory of Biochemistry and Biophysics, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | | | | |
Collapse
|
47
|
Abstract
F1F0 ATP synthases convert energy stored in an electrochemical gradient of H+ or Na+ across the membrane into mechanical rotation, which is subsequently converted into the chemical bond energy of ATP. The majority of cellular ATP is produced by the ATP synthase in organisms throughout the biological kingdom and therefore under diverse environmental conditions. The ATP synthase of each particular cell is confronted with specific challenges, imposed by the specific environment, and thus by necessity must adapt to these conditions for optimal operation. Examples of these adaptations include diverse mechanisms for regulating the ATP hydrolysis activity of the enzyme, the utilization of different coupling ions with distinct ion binding characteristics, different ion-to-ATP ratios reflected by variations in the size of the rotor c ring, the mode of ion delivery to the binding sites, and the different contributions of the electrical and chemical gradients to the driving force.
Collapse
Affiliation(s)
- Christoph von Ballmoos
- Institut für Mikrobiologie, ETH Zürich, Wolfgang-Pauli Strasse 10, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
48
|
The thermodynamic H+/ATP ratios of the H+-ATPsynthases from chloroplasts and Escherichia coli. Proc Natl Acad Sci U S A 2008; 105:3745-50. [PMID: 18316723 DOI: 10.1073/pnas.0708356105] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The H(+)/ATP ratio is an important parameter for the energy balance of all cells and for the coupling mechanism between proton transport and ATP synthesis. A straightforward interpretation of rotational catalysis predicts that the H(+)/ATP coincides with the ratio of the c-subunits to beta-subunits, implying that, for the chloroplast and Escherichia coli ATPsynthases, numbers of 4.7 and 3.3 are expected. Here, the energetics described by the chemiosmotic theory was used to determine the H(+)/ATP ratio for the two enzymes. The isolated complexes were reconstituted into liposomes, and parallel measurements were performed under identical conditions. The internal phase of the liposomes was equilibrated with the acidic medium during reconstitution, allowing to measure the internal pH with a glass electrode. An acid-base transition was carried out and the initial rates of ATP synthesis or ATP hydrolysis were measured with luciferin/luciferase as a function of DeltapH at constant Q = [ATP]/([ADP][P(i)]). From the shift of the equilibrium DeltapH as a function of Q the standard Gibbs free energy for phosphorylation, DeltaG(p)(0)'; and the H(+)/ATP ratio were determined. It resulted DeltaG(p)(0)' = 38 +/- 3 kJ.mol(-1) and H(+)/ATP = 4.0 +/- 0.2 for the chloroplast and H(+)/ATP = 4.0 +/- 0.3 for the E. coli enzyme, indicating that the thermodynamic H(+)/ATP ratio is the same for both enzymes and that it is different from the subunit stoichiometric ratio.
Collapse
|
49
|
Regulatory mechanisms of proton-translocating F(O)F (1)-ATP synthase. Results Probl Cell Differ 2007; 45:279-308. [PMID: 18026702 DOI: 10.1007/400_2007_043] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
H(+)-F(O)F(1)-ATP synthase catalyzes synthesis of ATP from ADP and inorganic phosphate using the energy of transmembrane electrochemical potential difference of proton (deltamu(H)(+). The enzyme can also generate this potential difference by working as an ATP-driven proton pump. Several regulatory mechanisms are known to suppress the ATPase activity of F(O)F(1): 1. Non-competitive inhibition by MgADP, a feature shared by F(O)F(1) from bacteria, chloroplasts and mitochondria 2. Inhibition by subunit epsilon in chloroplast and bacterial enzyme 3. Inhibition upon oxidation of two cysteines in subunit gamma in chloroplast F(O)F(1) 4. Inhibition by an additional regulatory protein (IF(1)) in mitochondrial enzyme In this review we summarize the information available on these regulatory mechanisms and discuss possible interplay between them.
Collapse
|
50
|
Feniouk BA, Rebecchi A, Giovannini D, Anefors S, Mulkidjanian AY, Junge W, Turina P, Melandri BA. Met23Lys mutation in subunit gamma of F(O)F(1)-ATP synthase from Rhodobacter capsulatus impairs the activation of ATP hydrolysis by protonmotive force. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1319-30. [PMID: 17904517 DOI: 10.1016/j.bbabio.2007.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 07/18/2007] [Accepted: 07/19/2007] [Indexed: 11/26/2022]
Abstract
H(+)-F(O)F(1)-ATP synthase couples proton flow through its membrane portion, F(O), to the synthesis of ATP in its headpiece, F(1). Upon reversal of the reaction the enzyme functions as a proton pumping ATPase. Even in the simplest bacterial enzyme the ATPase activity is regulated by several mechanisms, involving inhibition by MgADP, conformational transitions of the epsilon subunit, and activation by protonmotive force. Here we report that the Met23Lys mutation in the gamma subunit of the Rhodobacter capsulatus ATP synthase significantly impaired the activation of ATP hydrolysis by protonmotive force. The impairment in the mutant was due to faster enzyme deactivation that was particularly evident at low ATP/ADP ratio. We suggest that the electrostatic interaction of the introduced gammaLys23 with the DELSEED region of subunit beta stabilized the ADP-inhibited state of the enzyme by hindering the rotation of subunit gamma rotation which is necessary for the activation.
Collapse
Affiliation(s)
- Boris A Feniouk
- Division of Biophysics, School of Biology/Chemistry, University of Osnabrück, D-49069, Osnabrück, Germany.
| | | | | | | | | | | | | | | |
Collapse
|