1
|
Siraliev-Perez E, Stariha JTB, Hoffmann RM, Temple BRS, Zhang Q, Hajicek N, Jenkins ML, Burke JE, Sondek J. Dynamics of allosteric regulation of the phospholipase C-γ isozymes upon recruitment to membranes. eLife 2022; 11:77809. [PMID: 35708309 PMCID: PMC9203054 DOI: 10.7554/elife.77809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/22/2022] [Indexed: 11/13/2022] Open
Abstract
Numerous receptor tyrosine kinases and immune receptors activate phospholipase C-γ (PLC-γ) isozymes at membranes to control diverse cellular processes including phagocytosis, migration, proliferation, and differentiation. The molecular details of this process are not well understood. Using hydrogen-deuterium exchange mass spectrometry, we show that PLC-γ1 is relatively inert to lipid vesicles that contain its substrate, phosphatidylinositol 4,5-bisphosphate (PIP2), unless first bound to the kinase domain of the fibroblast growth factor receptor (FGFR1). Exchange occurs throughout PLC-γ1 and is exaggerated in PLC-γ1 containing an oncogenic substitution (D1165H) that allosterically activates the lipase. These data support a model whereby initial complex formation shifts the conformational equilibrium of PLC-γ1 to favor activation. This receptor-induced priming of PLC-γ1 also explains the capacity of a kinase-inactive fragment of FGFR1 to modestly enhance the lipase activity of PLC-γ1 operating on lipid vesicles but not a soluble analog of PIP2 and highlights potential cooperativity between receptor engagement and membrane proximity. Priming is expected to be greatly enhanced for receptors embedded in membranes and nearly universal for the myriad of receptors and co-receptors that bind the PLC-γ isozymes.
Collapse
Affiliation(s)
- Edhriz Siraliev-Perez
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Jordan T B Stariha
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Reece M Hoffmann
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Brenda R S Temple
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Qisheng Zhang
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Division of Chemical Biology and Medicinal Chemistry, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Lineberger Comprehensive Cancer Center, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Nicole Hajicek
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, Canada
| | - John Sondek
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Lineberger Comprehensive Cancer Center, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
| |
Collapse
|
2
|
Abstract
Phospholipase C γ1 (PLCγ1) is a member of the PLC family that functions as signal transducer by hydrolyzing membrane lipid to generate second messengers. The unique protein structure of PLCγ1 confers a critical role as a direct effector of VEGFR2 and signaling mediated by other receptor tyrosine kinases. The distinct vascular phenotypes in PLCγ1-deficient animal models and the gain-of-function mutations of PLCγ1 found in human endothelial cancers point to a major physiological role of PLCγ1 in the endothelial system. In this review, we discuss aspects of physiological and molecular function centering around PLCγ1 in the context of endothelial cells and provide a perspective for future investigation.
Collapse
Affiliation(s)
- Dongying Chen
- Yale Cardiovascular Research Center, Departments of Internal Medicine and Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Michael Simons
- Yale Cardiovascular Research Center, Departments of Internal Medicine and Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
3
|
Hajicek N, Keith NC, Siraliev-Perez E, Temple BRS, Huang W, Zhang Q, Harden TK, Sondek J. Structural basis for the activation of PLC-γ isozymes by phosphorylation and cancer-associated mutations. eLife 2019; 8:e51700. [PMID: 31889510 PMCID: PMC7004563 DOI: 10.7554/elife.51700] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022] Open
Abstract
Direct activation of the human phospholipase C-γ isozymes (PLC-γ1, -γ2) by tyrosine phosphorylation is fundamental to the control of diverse biological processes, including chemotaxis, platelet aggregation, and adaptive immunity. In turn, aberrant activation of PLC-γ1 and PLC-γ2 is implicated in inflammation, autoimmunity, and cancer. Although structures of isolated domains from PLC-γ isozymes are available, these structures are insufficient to define how release of basal autoinhibition is coupled to phosphorylation-dependent enzyme activation. Here, we describe the first high-resolution structure of a full-length PLC-γ isozyme and use it to underpin a detailed model of their membrane-dependent regulation. Notably, an interlinked set of regulatory domains integrates basal autoinhibition, tyrosine kinase engagement, and additional scaffolding functions with the phosphorylation-dependent, allosteric control of phospholipase activation. The model also explains why mutant forms of the PLC-γ isozymes found in several cancers have a wide spectrum of activities, and highlights how these activities are tuned during disease.
Collapse
Affiliation(s)
- Nicole Hajicek
- Department of PharmacologyThe University of North Carolina at Chapel HillChapel HillUnited States
| | - Nicholas C Keith
- Department of PharmacologyThe University of North Carolina at Chapel HillChapel HillUnited States
| | - Edhriz Siraliev-Perez
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillUnited States
| | - Brenda RS Temple
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillUnited States
- R L Juliano Structural Bioinformatics Core FacilityThe University of North Carolina at Chapel HillChapel HillUnited States
| | - Weigang Huang
- Division of Chemical Biology and Medicinal ChemistryThe University of North Carolina at Chapel HillChapel HillUnited States
| | - Qisheng Zhang
- Department of PharmacologyThe University of North Carolina at Chapel HillChapel HillUnited States
- Division of Chemical Biology and Medicinal ChemistryThe University of North Carolina at Chapel HillChapel HillUnited States
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillUnited States
| | - T Kendall Harden
- Department of PharmacologyThe University of North Carolina at Chapel HillChapel HillUnited States
| | - John Sondek
- Department of PharmacologyThe University of North Carolina at Chapel HillChapel HillUnited States
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillUnited States
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillUnited States
| |
Collapse
|
4
|
Huang Z, Marsiglia WM, Basu Roy U, Rahimi N, Ilghari D, Wang H, Chen H, Gai W, Blais S, Neubert TA, Mansukhani A, Traaseth NJ, Li X, Mohammadi M. Two FGF Receptor Kinase Molecules Act in Concert to Recruit and Transphosphorylate Phospholipase Cγ. Mol Cell 2015; 61:98-110. [PMID: 26687682 DOI: 10.1016/j.molcel.2015.11.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/28/2015] [Accepted: 11/05/2015] [Indexed: 11/28/2022]
Abstract
The molecular basis by which receptor tyrosine kinases (RTKs) recruit and phosphorylate Src Homology 2 (SH2) domain-containing substrates has remained elusive. We used X-ray crystallography, NMR spectroscopy, and cell-based assays to demonstrate that recruitment and phosphorylation of Phospholipase Cγ (PLCγ), a prototypical SH2 containing substrate, by FGF receptors (FGFR) entails formation of an allosteric 2:1 FGFR-PLCγ complex. We show that the engagement of pTyr-binding pocket of the cSH2 domain of PLCγ by the phosphorylated tail of an FGFR kinase induces a conformational change at the region past the cSH2 core domain encompassing Tyr-771 and Tyr-783 to facilitate the binding/phosphorylation of these tyrosines by another FGFR kinase in trans. Our data overturn the current paradigm that recruitment and phosphorylation of substrates are carried out by the same RTK monomer in cis and disclose an obligatory role for receptor dimerization in substrate phosphorylation in addition to its canonical role in kinase activation.
Collapse
Affiliation(s)
- Zhifeng Huang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | | | - Upal Basu Roy
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Nader Rahimi
- Department of Pathology and Laboratory of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Dariush Ilghari
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Huiyan Wang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Huaibin Chen
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Weiming Gai
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Steven Blais
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Thomas A Neubert
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Alka Mansukhani
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | | | - Xiaokun Li
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Moosa Mohammadi
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
5
|
Raimondi C, Falasca M. Phosphoinositides signalling in cancer: focus on PI3K and PLC. Adv Biol Regul 2013; 52:166-82. [PMID: 22019900 DOI: 10.1016/j.advenzreg.2011.09.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 09/13/2011] [Indexed: 12/19/2022]
Affiliation(s)
- Claudio Raimondi
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Diabetes, Inositide Signalling Group, London E1 2AT, UK
| | | |
Collapse
|
6
|
Kinsey WH. Intersecting roles of protein tyrosine kinase and calcium signaling during fertilization. Cell Calcium 2012. [PMID: 23201334 DOI: 10.1016/j.ceca.2012.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The oocyte is a highly specialized cell that must respond to fertilization with a preprogrammed series of signal transduction events that establish a block to polyspermy, trigger resumption of the cell cycle and execution of a developmental program. The fertilization-induced calcium transient is a key signal that initiates the process of oocyte activation and studies over the last several years have examined the signaling pathways that act upstream and downstream of this calcium transient. Protein tyrosine kinase signaling was found to be an important component of the upstream pathways that stimulated calcium release at fertilization in oocytes from animals that fertilize externally, but a similar pathway has not been found in mammals which fertilize internally. The following review will examine the diversity of signaling in oocytes from marine invertebrates, amphibians, fish and mammals in an attempt to understand the basis for the observed differences. In addition to the pathways upstream of the fertilization-induced calcium transient, recent studies are beginning to unravel the role of protein tyrosine kinase signaling downstream of the calcium transient. The PYK2 kinase was found to respond to fertilization in the zebrafish system and seems to represent a novel component of the response of the oocyte to fertilization. The potential impact of impaired PTK signaling in oocyte quality will also be discussed.
Collapse
Affiliation(s)
- William H Kinsey
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, United States.
| |
Collapse
|
7
|
Lindholm EM, Kristian A, Nalwoga H, Krüger K, Nygård S, Akslen LA, Mælandsmo GM, Engebraaten O. Effect of antiangiogenic therapy on tumor growth, vasculature and kinase activity in basal- and luminal-like breast cancer xenografts. Mol Oncol 2012; 6:418-27. [PMID: 22521242 DOI: 10.1016/j.molonc.2012.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 02/23/2012] [Accepted: 03/22/2012] [Indexed: 01/24/2023] Open
Abstract
Several clinical trials have investigated the efficacy of bevacizumab in breast cancer, and even if growth inhibiting effects have been registered when antiangiogenic treatment is given in combination with chemotherapy no gain in overall survival has been observed. One reason for the lack of overall survival benefit might be that appropriate criteria for selection of patients likely to respond to antiangiogenic therapy in combination with chemotherapy, are not available. To determine factors of importance for antiangiogenic treatment response and/or resistance, two representative human basal- and luminal-like breast cancer xenografts were treated with bevacizumab and doxorubicin alone or in combination. In vivo growth inhibition, microvessel density (MVD) and proliferating tumor vessels (pMVD = proliferative microvessel density) were analysed, while kinase activity was determined using the PamChip Tyrosine kinase microarray system. Results showed that both doxorubicin and bevacizumab inhibited basal-like tumor growth significantly, but with a superior effect when given in combination. In contrast, doxorubicin inhibited luminal-like tumor growth most effectively, and with no additional benefit of adding antiangiogenic therapy. In agreement with the growth inhibition data, vascular characterization verified a more pronounced effect of the antiangiogenic treatment in the basal-like compared to the luminal-like tumors, demonstrating total inhibition of pMVD and a significant reduction in MVD at early time points (three days after treatment) and sustained inhibitory effects until the end of the experiment (day 18). In contrast, luminal-like tumors only showed significant effect on the vasculature at day 10 in the tumors having received both doxorubicin and bevacizumab. Kinase activity profiling in both tumor models demonstrated that the most effective treatment in vivo was accompanied with increased phosphorylation of kinase substrates of growth control and angiogenesis, like EGFR, VEGFR2 and PLCγ1. This may be a result of regulatory feedback mechanisms contributing to treatment resistance, and may suggest response markers of value for the prediction of antiangiogenic treatment efficacy.
Collapse
Affiliation(s)
- Evita M Lindholm
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Pb 4953 Nydalen, 0424 Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
The physiological effects of many extracellular neurotransmitters, hormones, growth factors, and other stimuli are mediated by receptor-promoted activation of phospholipase C (PLC) and consequential activation of inositol lipid signaling pathways. These signaling responses include the classically described conversion of phosphatidylinositol(4,5)P(2) to the Ca(2+)-mobilizing second messenger inositol(1,4,5)P(3) and the protein kinase C-activating second messenger diacylglycerol as well as alterations in membrane association or activity of many proteins that harbor phosphoinositide binding domains. The 13 mammalian PLCs elaborate a minimal catalytic core typified by PLC-d to confer multiple modes of regulation of lipase activity. PLC-b isozymes are activated by Gaq- and Gbg-subunits of heterotrimeric G proteins, and activation of PLC-g isozymes occurs through phosphorylation promoted by receptor and non-receptor tyrosine kinases. PLC-e and certain members of the PLC-b and PLC-g subclasses of isozymes are activated by direct binding of small G proteins of the Ras, Rho, and Rac subfamilies of GTPases. Recent high resolution three dimensional structures together with biochemical studies have illustrated that the X/Y linker region of the catalytic core mediates autoinhibition of most if not all PLC isozymes. Activation occurs as a consequence of removal of this autoinhibition.
Collapse
|
9
|
Jung SH, Jeong JH, Seul HJ, Lee JR. Competition between SLP76 and LAT for PLCγ1 binding in resting T cells. Eur J Immunol 2010; 40:2330-9. [DOI: 10.1002/eji.200939411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Phospholipase C-gamma1 is involved in signaling the activation by high NaCl of the osmoprotective transcription factor TonEBP/OREBP. Proc Natl Acad Sci U S A 2009; 107:906-11. [PMID: 20080774 DOI: 10.1073/pnas.0913415107] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
High NaCl elevates activity of the osmoprotective transcription factor TonEBP/OREBP by increasing its phosphorylation, transactivating activity, and localization to the nucleus. We investigated the possible role in this activation of phospholipase C-gamma1 (PLC-gamma1), which has a predicted binding site at TonEBP/OREBP-phospho-Y143. We find the following. (i) Activation of TonEBP/OREBP transcriptional activity by high NaCl is reduced in PLC-gamma1 null cells and in HEK293 cells in which PLC-gamma1 is knocked down by a specific siRNA. (ii) High NaCl increases phosphorylation of TonEBP/OREBP at Y143. (iii) Wild-type PLC-gamma1 coimmunoprecipitates with wild-type TonEBP/OREBP but not TonEBP/OREBP-Y143A, and the coimmunoprecipitation is increased by high NaCl. (iv) PLC-gamma1 is part of the protein complex that associates with TonEBP/OREBP at its DNA binding site. (v) Knockdown of PLC-gamma1 or overexpression of a PLC-gamma1-SH3 deletion mutant reduces high NaCl-dependent TonEBP/OREBP transactivating activity. (vi) Nuclear localization of PLC-gamma1 is increased by high NaCl. (vii) High NaCl-induced nuclear localization of TonEBP/OREBP is reduced if cells lack PLC-gamma1, if PLC-gamma1 mutated in its SH2C domain is overexpressed, or if Y143 in TonEBP/OREBP is mutated to alanine. (viii) Expression of recombinant PLC-gamma1 restores nuclear localization of wild-type TonEBP/OREBP in PLC-gamma1 null cells but not of TonEBP/OREBP-Y143A. (ix) The PLC-gamma1 phospholipase inhibitor U72133 inhibits nuclear localization of TonEBP/OREBP but not the increase of its transactivating activity. We conclude that, when NaCl is elevated, TonEBP/OREBP becomes phosphorylated at Y143, resulting in binding of PLC-gamma1 to that site, which contributes to TonEBP/OREBP transcriptional activity, transactivating activity, and nuclear localization.
Collapse
|
11
|
Semaphorin 4D signaling requires the recruitment of phospholipase C gamma into the plexin-B1 receptor complex. Mol Cell Biol 2009; 29:6321-34. [PMID: 19805522 DOI: 10.1128/mcb.00103-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The semaphorin 4D (Sema4D) receptor plexin-B1 constitutively interacts with particular Rho guanine nucleotide exchange factors (RhoGEFs) and thereby mediates Sema4D-induced RhoA activation, a process which involves the tyrosine phosphorylation of plexin-B1 by ErbB-2. It is, however, unknown how plexin-B1 phosphorylation regulates RhoGEF activity. We show here that activation of plexin-B1 by Sema4D and its subsequent tyrosine phosphorylation creates docking sites for the SH2 domains of phospholipase Cgamma (PLCgamma). PLCgamma is thereby recruited into the plexin-B1 receptor complex and via its SH3 domain activates the Rho guanine nucleotide exchange factor PDZ-RhoGEF. PLCgamma-dependent RhoGEF activation is independent of its lipase activity. The recruitment of PLCgamma has no effect on the R-Ras GTPase-activating protein activity of plexin-B1 but is required for Sema4D-induced axonal growth cone collapse as well as for the promigratory effects of Sema4D on cancer cells. These data demonstrate a novel nonenzymatic function of PLCgamma as an important mechanism of plexin-mediated signaling which links tyrosine phosphorylation of plexin-B1 to the regulation of a RhoGEF protein and downstream cellular processes.
Collapse
|
12
|
Bae JH, Lew ED, Yuzawa S, Tomé F, Lax I, Schlessinger J. The selectivity of receptor tyrosine kinase signaling is controlled by a secondary SH2 domain binding site. Cell 2009; 138:514-24. [PMID: 19665973 DOI: 10.1016/j.cell.2009.05.028] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 03/26/2009] [Accepted: 05/07/2009] [Indexed: 01/04/2023]
Abstract
SH2 domain-mediated interactions represent a crucial step in transmembrane signaling by receptor tyrosine kinases. SH2 domains recognize phosphotyrosine (pY) in the context of particular sequence motifs in receptor phosphorylation sites. However, the modest binding affinity of SH2 domains to pY containing peptides may not account for and likely represents an oversimplified mechanism for regulation of selectivity of signaling pathways in living cells. Here we describe the crystal structure of the activated tyrosine kinase domain of FGFR1 in complex with a phospholipase Cgamma fragment. The structural and biochemical data and experiments with cultured cells show that the selectivity of phospholipase Cgamma binding and signaling via activated FGFR1 are determined by interactions between a secondary binding site on an SH2 domain and a region in FGFR1 kinase domain in a phosphorylation independent manner. These experiments reveal a mechanism for how SH2 domain selectivity is regulated in vivo to mediate a specific cellular process.
Collapse
Affiliation(s)
- Jae Hyun Bae
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
13
|
Choi JH, Ryu SH, Suh PG. On/off-regulation of phospholipase C-gamma 1-mediated signal transduction. ACTA ACUST UNITED AC 2007; 47:104-16. [PMID: 17336371 DOI: 10.1016/j.advenzreg.2006.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Jang Hyun Choi
- National Research Laboratory of Signaling Network, Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | | | | |
Collapse
|
14
|
DeBell K, Graham L, Reischl I, Serrano C, Bonvini E, Rellahan B. Intramolecular regulation of phospholipase C-gamma1 by its C-terminal Src homology 2 domain. Mol Cell Biol 2006; 27:854-63. [PMID: 17116690 PMCID: PMC1800685 DOI: 10.1128/mcb.01400-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphoinositide-specific phospholipase C-gamma1 (PLC-gamma1) is a key enzyme that governs cellular functions such as gene transcription, secretion, proliferation, motility, and development. Here, we show that PLC-gamma1 is regulated via a novel autoinhibitory mechanism involving its carboxy-terminal Src homology (SH2C) domain. Mutation of the SH2C domain tyrosine binding site led to constitutive PLC-gamma1 activation. The amino-terminal split pleckstrin homology (sPHN) domain was found to regulate the accessibility of the SH2C domain. PLC-gamma1 constructs with mutations in tyrosine 509 and phenylalanine 510 in the sPHN domain no longer required an intact amino-terminal Src homology (SH2N) domain or phosphorylation of tyrosine 775 or 783 for activation. These data are consistent with a model in which the SH2C domain is blocked by an intramolecular interaction(s) that is released upon cellular activation by occupancy of the SH2N domain.
Collapse
Affiliation(s)
- Karen DeBell
- Laboratory of Immunobiology, Division of Monoclonal Antibodies, Centrer for Drug Evaluation and Research, Food and Drug Administration/DHHS, 29 Lincoln Drive, Bethesda, MD 20892-4555, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Frecker H, Munk S, Wang H, Whiteside C. Mesangial cell-reduced Ca2+signaling in high glucose is due to inactivation of phospholipase C-β3by protein kinase C. Am J Physiol Renal Physiol 2005; 289:F1078-87. [PMID: 15998840 DOI: 10.1152/ajprenal.00434.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In high glucose, glomerular mesangial cells (MCs) demonstrate impaired Ca2+signaling in response to seven-transmembrane receptor stimulation. To identify the mechanism, we first postulated decreased release from intracellular stores. Intracellular Ca2+was measured in fluo-3-loaded primary cultured rat MCs using confocal fluorescence microscopy. In high glucose (HG) 30 mM for 48 h, the 25 nM ionomycin-stimulated intracellular Ca2+response was reduced to 82% of that observed in normal glucose (NG). In NG 5.6 mM, Ca2+responses to endothelin (ET)-1 and platelet-derived growth factor (PDGF) were unchanged in cells cultured in 50 nM Ca2+vs. 1.8 mM Ca2+. Depletion of intracellular Ca2+stores with thapsigargin eliminated ET-1-stimulated Ca2+responses. Incubation in 30 mM glucose (HG) for 48 h or stimulation with phorbol myristate acetate (PMA) for 10 min eliminated the Ca2+response to ET-1 but had no effect on the PDGF response. Downregulation of protein kinase C (PKC) with 24-h PMA or inhibition with Gö6976 in HG normalized the Ca2+response to ET-1. Because ET-1 and PDGF stimulate Ca2+signaling through different phospholipase C pathways, we hypothesized that, in HG, PKC selectively phosphorylates and inhibits PLC-β3. Using confocal immunofluorescence imaging, in NG, a 1.6- to 1.7-fold increase in PLC-β3Ser1105phosphorylation was observed following PMA or ET-1 stimulation for 10 min. In HG, immunofluorescent imaging and immunoblotting showed increased PLC-β3phosphorylation, without change in total PLC-β3, which was reversed with 24-h PMA or Gö6976. We conclude that reduced Ca2+signaling in HG cannot be explained by reduced Ca2+stores but is due to conventional PKC-dependent phosphorylation and inactivation of PLC-β3.
Collapse
Affiliation(s)
- Helena Frecker
- Institute of Medical Science, University Health Network, University of Toronto, ON, Canada M5S 1A8
| | | | | | | |
Collapse
|
16
|
Poulin B, Sekiya F, Rhee SG. Intramolecular interaction between phosphorylated tyrosine-783 and the C-terminal Src homology 2 domain activates phospholipase C-gamma1. Proc Natl Acad Sci U S A 2005; 102:4276-81. [PMID: 15764700 PMCID: PMC555506 DOI: 10.1073/pnas.0409590102] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phospholipase C-gamma1 (PLC-gamma1) contains two tandem Src homology 2 (SH2) domains. The NH(2)-terminal SH2 domain has been known to mediate the binding of PLC-gamma1 to receptor protein tyrosine kinases, which then activate PLC-gamma1 via phosphorylation at Y783. We now show that the phosphorylated Y783 residue (pY783) associates with the COOH-terminal SH2 domain [SH2(C)] within the same molecule of PLC-gamma1. The specificity of this intramolecular interaction is demonstrated in several ways. The mutation of SH2(C), but not of the NH(2)-terminal SH2 domain, exposes pY783 and makes it available for binding by anti-pY783 antibodies, for intermolecular association with a GST fusion protein containing the tandem SH2 domains of PLC-gamma1 and for dephosphorylation by phosphatases. The intramolecular interaction between pY783 and SH2(C) induces a rearrangement of surface charge such that PLC-gamma1 molecules phosphorylated at Y783 are retained more strongly by heparin resins than are unphosphorylated molecules. Finally, the intramolecular interaction of pY783 with SH2(C) results in activation of phospholipase activity. Our results thus clarify the molecular mechanism of PLC-gamma1 activation, revealing the specific function of pY783 and the distinct roles of the two SH2 domains in this process.
Collapse
Affiliation(s)
- Benoit Poulin
- Laboratory of Cell Signaling, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-8015, USA
| | | | | |
Collapse
|
17
|
Sekiya F, Poulin B, Kim YJ, Rhee SG. Mechanism of Tyrosine Phosphorylation and Activation of Phospholipase C-γ1. J Biol Chem 2004; 279:32181-90. [PMID: 15161916 DOI: 10.1074/jbc.m405116200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Phospholipase C-gamma 1 (PLC-gamma 1) is phosphorylated on three tyrosine residues: Tyr-771, Tyr-783, and Tyr-1253. With the use of antibodies specific for each of these phosphorylation sites, we have now determined the kinetics and magnitude of phosphorylation at each site. Phosphorylation of Tyr-783, which is essential for lipase activation, was observed in all stimulated cell types examined. The extent of phosphorylation of Tyr-1253 was approximately 50 to 70% of that of Tyr-783 in cells stimulated with platelet-derived growth factor (PDGF) or epidermal growth factor (EGF), but Tyr-1253 phosphorylation was not detected in B or T cell lines stimulated through B- and T-cell antigen receptors, respectively. Tyr-771 was phosphorylated only at a low level in all cells studied. In cells stimulated with PDGF, phosphorylation and dephosphorylation of Tyr-783 and of Tyr-1253 occurred with similar kinetics; the receptor kinase appeared to phosphorylate both sites, albeit with Tyr-783 favored over Tyr-1253, before the bound PLC-gamma 1 was released, and phosphorylation at the two sites occurred independently. PDGF and EGF induced similar levels of phosphorylation of Tyr-783 and of Tyr-1253 in a cell line that expressed receptors for both growth factors. However, only PDGF, not EGF, elicited substantial PLC activity, suggesting that Tyr-783 phosphorylation was not sufficient for enzyme activation. Finally, concurrent production of phosphatidylinositol 3,4,5-trisphosphate was found to contribute to the activation of phosphorylated PLC-gamma 1.
Collapse
Affiliation(s)
- Fujio Sekiya
- Laboratory of Cell Signaling, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
18
|
Bonvini E, DeBell KE, Verí MC, Graham L, Stoica B, Laborda J, Aman MJ, DiBaldassarre A, Miscia S, Rellahan BL. On the mechanism coupling phospholipase Cgamma1 to the B- and T-cell antigen receptors. ADVANCES IN ENZYME REGULATION 2004; 43:245-69. [PMID: 12791395 DOI: 10.1016/s0065-2571(02)00033-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ezio Bonvini
- Division of Monoclonal Antibodies, Center for Biologics Evaluation & Research, US-FDA, HFM-564, NIH Campus, Bldg.29B/Rm.3NN10, 8800 Rockville Pike, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Neurotrophins are a family of growth factors critical for the development and functioning of the nervous system. Although originally identified as neuronal survival factors, neurotrophins elicit many biological effects, ranging from proliferation to synaptic modulation to axonal pathfinding. Recent data indicate that the nature of the signaling cascades activated by neurotrophins, and the biological responses that ensue, are specified not only by the ligand itself but also by the temporal pattern and spatial location of stimulation. Studies on neurotrophin signaling have revealed variations in the Ras/MAP kinase, PI3 kinase, and phospholipase C pathways, which transmit spatial and temporal information. The anatomy of neurons makes them particularly appropriate for studying how the location and tempo of stimulation determine the signal cascades that are activated by receptor tyrosine kinases such as the Trk receptors. These signaling variations may represent a general mechanism eliciting specificity in growth factor responses.
Collapse
Affiliation(s)
- Rosalind A Segal
- Departments of Neurobiology and Pediatric Oncology, Harvard Medical School and Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Meyer RD, Latz C, Rahimi N. Recruitment and activation of phospholipase Cgamma1 by vascular endothelial growth factor receptor-2 are required for tubulogenesis and differentiation of endothelial cells. J Biol Chem 2003; 278:16347-55. [PMID: 12598525 PMCID: PMC1459536 DOI: 10.1074/jbc.m300259200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Vascular endothelial growth factor-mediated angiogenic signal transduction relay is achieved by coordinated induction of endothelial cell proliferation, migration, and differentiation. These complex cellular processes are most likely controlled by activation of both cooperative and antagonistic signals by vascular endothelial growth factor receptors (VEGFRs). Here, we investigated the contribution of tyrosine-phosphorylated residues of VEGFR-2/fetal liver kinase-1 to endothelial cell proliferation and differentiation and activation of signaling proteins. Mutation of tyrosine 1006 of VEGFR-2 to phenylalanine severely impaired the ability of this receptor to stimulate endothelial cell differentiation and tubulogenesis. Paradoxically, the mutant receptor stimulated endothelial cell proliferation far better than the wild-type receptor. Further analysis showed that tyrosine 1006 is responsible for phospholipase Cgamma1 (PLCgamma1) activation and intracellular calcium release in endothelial cells. Activation of PLCgamma1 was selectively mediated by tyrosine 1006. Mutation of tyrosines 799, 820, 949, 994, 1080, 1173, and 1221 had no measurable effect on the ability of VEGFR-2 to stimulate PLCgamma1 activation. Association of VEGFR-2 with PLCgamma1 was mainly established between tyrosine 1006 and the C-terminal SH2 domain of PLCgamma1 in vitro and in vivo. Taken together, the results indicate that phosphorylation of tyrosine 1006 is essential for VEGFR-2-mediated PLCgamma1 activation, calcium flux, and cell differentiation. More importantly, VEGFR-2-mediated endothelial cell proliferation is inversely correlated with the ability of VEGFR-2 to associate with and activate PLCgamma1.
Collapse
Affiliation(s)
- Rosana D Meyer
- Departments of Ophthalmology and Biochemistry, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | | | |
Collapse
|
21
|
Boudot C, Kadri Z, Petitfrère E, Lambert E, Chrétien S, Mayeux P, Haye B, Billat C. Phosphatidylinositol 3-kinase regulates glycosylphosphatidylinositol hydrolysis through PLC-gamma(2) activation in erythropoietin-stimulated cells. Cell Signal 2002; 14:869-78. [PMID: 12135708 DOI: 10.1016/s0898-6568(02)00036-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Erythropoietin (Epo)-induced glycosylphosphatidylinositol (GPI) hydrolysis was previously described to be correlated with phospholipase C-gamma 2 (PLC-gamma2) activation. Here, we analyzed the involvement of phosphatidylinositol (PtdIns) 3-kinase in GPI hydrolysis through PLC-gamma2 tyrosine phosphorylation in response to Epo in FDC-P1 cells transfected with a wild type (WT) erythropoietin-receptor (Epo-R). We showed that phosphatidylinositol 3-kinase (PtdIns 3-kinase) inhibitor LY294002 inhibits Epo-induced hydrolysis of endogenous GPI and Epo-induced PLC-gamma2 tyrosine phosphorylation in a dose-dependent manner. Wortmannin, another PtdIns 3-kinase inhibitor, also suppressed Epo-induced PLC-gamma2 tyrosine phosphorylation. We also present evidence that PLC-gamma2 translocation to the membrane fraction on Epo stimulation is completely inhibited by LY294002. Upon Epo stimulation, the tyrosine-phosphorylated PLC-gamma2 was found to be associated with the tyrosine-phosphorylated Grb2-associated binder (GAB)2, SHC and SHP2 proteins. LY294002 cell preincubation did not affect GAB2, SHC and SHP2 tyrosine phosphorylation but inhibited the binding of PLC-gamma2 to GAB2 and SHP2. Taken together, these results show that PtdIns 3-kinase controls Epo-induced GPI hydrolysis through PLC-gamma2.
Collapse
Affiliation(s)
- Cédric Boudot
- Laboratoire de Biochimie, CNRS, FRE 2534, IFR 53 Biomolécules, UFR Sciences Exactes et Naturelles, BP 1039, Université de Reims Champagne-Ardenne, 51687 Reims Cedex 2, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Eichhorn J, Kayali AG, Resor L, Austin DA, Rose DW, Webster NJG. PLC-gamma1 enzyme activity is required for insulin-induced DNA synthesis. Endocrinology 2002; 143:655-64. [PMID: 11796522 DOI: 10.1210/endo.143.2.8621] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previously, we had shown that inhibition of PLC activity impaired the ability of insulin to activate ERK in 3T3-L1 adipocytes. In this study, we confirmed that the insulin receptor and PLC-gamma1 are physically associated in hIRcB fibroblasts, insulin stimulates PLC-gamma1 enzyme activity, and inhibition of PLC activity impairs activation of ERK. We subsequently investigated whether PLC-gamma1 is required for insulin-stimulated mitogenesis. First, inhibition of PLC activity using U73122 impairs the ability of insulin to stimulate DNA synthesis. Second, disruption of the interaction of the insulin receptor with PLC-gamma1 by microinjection of SH2 domains derived from PLC-gamma1 or Grb2 but not Shc similarly blocks insulin-induced DNA synthesis. Third, microinjection of neutralizing antibodies to PLC-gamma1 blocks DNA synthesis, but nonneutralizing antibodies do not. The blockade in all three cases is rescued by synthetic diacylglycerols but not by inositol-1,4,5-trisphosphate, indicating a requirement for PLC enzyme activity. These experimental data point to a requirement for PLC-gamma1 in insulin-stimulated mitogenesis in hIRcB cells.
Collapse
Affiliation(s)
- Jens Eichhorn
- Medical Research Service, San Diego Veterans Affairs Healthcare System, San Diego, California 92161, USA
| | | | | | | | | | | |
Collapse
|
23
|
Wilde JI, Watson SP. Regulation of phospholipase C gamma isoforms in haematopoietic cells: why one, not the other? Cell Signal 2001; 13:691-701. [PMID: 11602179 DOI: 10.1016/s0898-6568(01)00191-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phospholipase C gamma (PLCgamma) isoforms are critical for the generation of calcium signals in haematopoietic systems in response to the stimulation of immune receptors. PLCgamma is unique amongst phospholipases in that it is tightly regulated by the action of a number of tyrosine kinases. It is itself directly phosphorylated on a number of tyrosines and contains several domains through which it can interact with other signalling proteins and lipid products such as phosphatidylinositol 3,4,5-trisphosphate. Through this network of interactions, PLCgamma is activated and recruited to its substrate, phosphatidylinositol 4,5-bisphosphate, at the membrane. Both isoforms of PLCgamma, PLCgamma1 and PLCgamma2, are present in haematopoietic cells. The signalling cascade involved in the regulation of these two isoforms varies between cells, though the systems are similar for both PLCgamma1 and PLCgamma2. We will compare these cascades for both PLCgamma1 and PLCgamma2 and discuss possible reasons as to why one form of PLCgamma and not the other is required for signalling in specific haematopoietic cells, including T lymphocytes, B lymphocytes, platelets, and mast cells.
Collapse
Affiliation(s)
- J I Wilde
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | | |
Collapse
|
24
|
Wang XJ, Liao HJ, Chattopadhyay A, Carpenter G. EGF-dependent translocation of green fluorescent protein-tagged PLC-gamma1 to the plasma membrane and endosomes. Exp Cell Res 2001; 267:28-36. [PMID: 11412035 DOI: 10.1006/excr.2001.5241] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Growth factor-dependent translocation of phospholipase C-gamma1 (PLC-gamma1) was investigated using a green fluorescent protein-tagged PLC-gamma1 (PLC-gamma1-GFP) expressed in human epidermoid carcinoma A-431 cells. In the absence of growth factors, PLC-gamma1-GFP was present throughout the cytoplasm of A-431 cells. Treatment of the cells with epidermal growth factor (EGF) produced a very rapid redistribution of PLC-gamma1-GFP to the plasma membrane in a nonuniform manner. This translocation to the plasma membrane was insensitive to an inhibitor of phosphatidylinositol 3-kinase and was independent of cell adhesion. However, the translocation was disrupted by an agent which depolymerizes the actin cytoskeleton. At later times following the addition of EGF, PLC-gamma1-GFP appeared associated with intracellular vesicles. Stimulation of A-431 cells by Texas red-conjugated EGF for more than 10 min resulted in punctate intracellular PLC-gamma1-GFP distribution that colocalized with Texas red-conjugated EGF. This suggests that PLC-gamma1 is translocated to endosomes after EGF treatment, probably by associating with the internalized and autophosphorylated EGF receptor. Fractionation studies demonstrated that the EGF-induced plasma membrane-localized PLC-gamma1 is concentrated in caveolae microdomains. Disruption of caveolae with methyl-beta-cyclodextrin resulted in the ablation of EGF-induced, but not bradykinin-induced, mobilization of intracellular Ca(2+). This treatment, however, only partially decreased PLC-gamma1 membrane translocation.
Collapse
Affiliation(s)
- X J Wang
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232-0146, USA
| | | | | | | |
Collapse
|
25
|
Matsuda M, Paterson HF, Rodriguez R, Fensome AC, Ellis MV, Swann K, Katan M. Real time fluorescence imaging of PLC gamma translocation and its interaction with the epidermal growth factor receptor. J Cell Biol 2001; 153:599-612. [PMID: 11331309 PMCID: PMC2190569 DOI: 10.1083/jcb.153.3.599] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The translocation of fluorescently tagged PLC gamma and requirements for this process in cells stimulated with EGF were analyzed using real time fluorescence microscopy applied for the first time to monitor growth factor receptor--effector interactions. The translocation of PLC gamma to the plasma membrane required the functional Src homology 2 domains and was not affected by mutations in the pleckstrin homology domain or inhibition of phosphatidylinositol (PI) 3-kinase. An array of domains specific for PLC gamma isoforms was sufficient for this translocation. The dynamics of translocation to the plasma membrane and redistribution of PLC gamma, relative to localization of the EGF receptor and PI 4,5-biphosphate (PI 4,5-P(2)), were shown. Colocalization with the receptor was observed in the plasma membrane and in membrane ruffles where PI 4,5-P(2) substrate could also be visualized. At later times, internalization of PLC gamma, which could lead to separation from the substrate, was observed. The data support a direct binding of PLC gamma to the receptor as the main site of the plasma membrane recruitment. The presence of PLC gamma in membrane structures and its access to the substrate appear to be transient and are followed by a rapid incorporation into intracellular vesicles, leading to downregulation of the PLC activity.
Collapse
Affiliation(s)
- Miho Matsuda
- Cancer Research Campaign Centre for Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Hugh F. Paterson
- Cancer Research Campaign Centre for Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Rosie Rodriguez
- Cancer Research Campaign Centre for Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Amanda C. Fensome
- Cancer Research Campaign Centre for Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Moira V. Ellis
- Cancer Research Campaign Centre for Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Karl Swann
- Department of Anatomy and Developmental Biology, University College, London WC1 6BT, United Kingdom
| | - Matilda Katan
- Cancer Research Campaign Centre for Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| |
Collapse
|
26
|
Abstract
Eleven distinct isoforms of phosphoinositide-specific phospholipase C (PLC), which are grouped into four subfamilies (beta, gamma, delta, and epsilon), have been identified in mammals. These isozymes catalyze the hydrolysis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] to inositol 1,4,5-trisphosphate and diacylglycerol in response to the activation of more than 100 different cell surface receptors. All PLC isoforms contain X and Y domains, which form the catalytic core, as well as various combinations of regulatory domains that are common to many other signaling proteins. These regulatory domains serve to target PLC isozymes to the vicinity of their substrate or activators through protein-protein or protein-lipid interactions. These domains (with their binding partners in parentheses or brackets) include the pleckstrin homology (PH) domain [PtdIns(3)P, beta gamma subunits of G proteins] and the COOH-terminal region including the C2 domain (GTP-bound alpha subunit of Gq) of PLC-beta; the PH domain [PtdIns(3,4,5)P3] and Src homology 2 domain [tyrosine-phosphorylated proteins, PtdIns(3,4,5)P3] of PLC-gamma; the PH domain [PtdIns(4,5)P2] and C2 domain (Ca2+) of PLC-delta; and the Ras binding domain (GTP-bound Ras) of PLC-epsilon. The presence of distinct regulatory domains in PLC isoforms renders them susceptible to different modes of activation. Given that the partners that interact with these regulatory domains of PLC isozymes are generated or eliminated in specific regions of the cell in response to changes in receptor status, the activation and deactivation of each PLC isoform are likely highly regulated processes.
Collapse
Affiliation(s)
- S G Rhee
- Laboratory of Cell Signaling, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-0320, USA.
| |
Collapse
|
27
|
Irvin BJ, Williams BL, Nilson AE, Maynor HO, Abraham RT. Pleiotropic contributions of phospholipase C-gamma1 (PLC-gamma1) to T-cell antigen receptor-mediated signaling: reconstitution studies of a PLC-gamma1-deficient Jurkat T-cell line. Mol Cell Biol 2000; 20:9149-61. [PMID: 11094067 PMCID: PMC102173 DOI: 10.1128/mcb.20.24.9149-9161.2000] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipase C-gamma1 (PLC-gamma1) plays a crucial role in the coupling of T-cell antigen receptor (TCR) ligation to interleukin-2 (IL-2) gene expression in activated T lymphocytes. In this study, we have isolated and characterized two novel, PLC-gamma1-deficient sublines derived from the Jurkat T-leukemic cell line. The P98 subline displays a >90% reduction in PLC-gamma1 expression, while the J.gamma1 subline contains no detectable PLC-gamma1 protein. The lack of PLC-gamma1 expression in J.gamma1 cells caused profound defects in TCR-dependent Ca(2+) mobilization and NFAT activation. In contrast, both of these responses occurred at normal levels in PLC-gamma1-deficient P98 cells. Unexpectedly, the P98 cells displayed significant and selective defects in the activation of both the composite CD28 response element (RE/AP) and the full-length IL-2 promoter following costimulation with anti-TCR antibodies and phorbol ester. These transcriptional defects were reversed by transfection of P98 cells with a wild-type PLC-gamma1 expression vector but not by expression of mutated PLC-gamma1 constructs that lacked a functional, carboxyl-terminal SH2 [SH2(C)] domain or the major Tyr(783) phosphorylation site. On the other hand, the amino-terminal SH2 [SH2(N)] domain was not essential for reconstitution of RE/AP- or IL-2 promoter-dependent transcription but was required for the association of PLC-gamma1 with LAT, as well as the tyrosine phosphorylation of PLC-gamma1 itself, in activated P98 cells. These studies demonstrate that the PLC-gamma1 SH2(N) and SH2(C) domains play functionally distinct roles during TCR-mediated signaling and identify a non-Ca(2+)-related signaling function linked to the SH2(C) domain, which couples TCR plus phorbol ester-CD28 costimulation to the activation of the IL-2 promoter in T lymphocytes.
Collapse
Affiliation(s)
- B J Irvin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
28
|
Boerth NJ, Sadler JJ, Bauer DE, Clements JL, Gheith SM, Koretzky GA. Recruitment of SLP-76 to the membrane and glycolipid-enriched membrane microdomains replaces the requirement for linker for activation of T cells in T cell receptor signaling. J Exp Med 2000; 192:1047-58. [PMID: 11015445 PMCID: PMC2193307 DOI: 10.1084/jem.192.7.1047] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2000] [Accepted: 08/16/2000] [Indexed: 11/04/2022] Open
Abstract
Two hematopoietic-specific adapters, src homology 2 domain-containing leukocyte phosphoprotein of 76 kD (SLP-76) and linker for activation of T cells (LAT), are critical for T cell development and T cell receptor (TCR) signaling. Several studies have suggested that SLP-76 and LAT function coordinately to promote downstream signaling. In support of this hypothesis, we find that a fraction of SLP-76 localizes to glycolipid-enriched membrane microdomains (GEMs) after TCR stimulation. This recruitment of SLP-76 requires amino acids 224-244. The functional consequences of targeting SLP-76 to GEMs for TCR signaling are demonstrated using a LAT/SLP-76 chimeric protein. Expression of this construct reconstitutes TCR-inducted phospholipase Cgamma1 phosphorylation, extracellular signal-regulated kinase activation, and nuclear factor of activated T cells (NFAT) promoter activity in LAT-deficient Jurkat T cells (J.CaM2). Mutation of the chimeric construct precluding its recruitment to GEMs diminishes but does not eliminate its ability to support TCR signaling. Expression of a chimera that lacks SLP-76 amino acids 224-244 restores NFAT promoter activity, suggesting that if localized, SLP-76 does not require an association with Gads to promote T cell activation. In contrast, mutation of the protein tyrosine kinase phosphorylation sites of SLP-76 in the context of the LAT/SLP-76 chimera abolishes reconstitution of TCR function. Collectively, these experiments show that optimal TCR signaling relies on the compartmentalization of SLP-76 and that one critical function of LAT is to bring SLP-76 and its associated proteins to the membrane.
Collapse
Affiliation(s)
- N J Boerth
- Signal Transduction Program, The Leonard and Madlyn Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, 19104-6160, USA
| | | | | | | | | | | |
Collapse
|