1
|
Maciunas LJ, Rotsides P, D'Lauro EJ, Brady S, Beld J, Loll PJ. The VanS sensor histidine kinase from type-B VRE recognizes vancomycin directly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.09.548278. [PMID: 37503228 PMCID: PMC10369886 DOI: 10.1101/2023.07.09.548278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
V ancomycin- r esistant e nterococci (VRE) are among the most common causes of nosocomial infections and have been prioritized as targets for new therapeutic development. Many genetically distinct types of VRE have been identified; however, they all share a common suite of resistance genes that function together to confer resistance to vancomycin. Expression of the resistance phenotype is controlled by the VanRS two-component system. This system senses the presence of the antibiotic, and responds by initiating transcription of resistance genes. VanS is a transmembrane sensor histidine kinase, and plays a fundamental role in antibiotic resistance by detecting vancomycin or its effects; it then transduces this signal to the VanR transcription factor, thereby alerting the organism to the presence of the antibiotic. Despite the critical role played by VanS, fundamental questions remain about its function, and in particular about how it senses vancomycin. Here, we focus on a purified VanRS system from one of the most clinically prevalent forms of VRE, type B. We show that in a native-like membrane environment, the autokinase activity of type-B VanS is strongly stimulated by vancomycin. We additionally demonstrate that this effect is mediated by a direct physical interaction between the antibiotic and the type-B VanS protein, and localize the interacting region to the protein's periplasmic domain. This represents the first time that a direct sensing mechanism has been confirmed for any VanS protein. Significance Statement When v ancomycin- r esistant e nterococci (VRE) sense the presence of vancomycin, they remodel their cell walls to block antibiotic binding. This resistance phenotype is controlled by the VanS protein, a histidine kinase that senses the antibiotic or its effects and signals for transcription of resistance genes. However, the mechanism by which VanS detects the antibiotic has remained unclear, with no consensus emerging as to whether the protein interacts directly with vancomycin, or instead detects some downstream consequence of vancomycin's action. Here, we show that for one of the most clinically relevant types of VRE, type B, VanS is activated by direct binding of the antibiotic. Such mechanistic insights will likely prove useful in circumventing vancomycin resistance.
Collapse
|
2
|
Bizet M, Byrne D, Biaso F, Gerbaud G, Etienne E, Briola G, Guigliarelli B, Urban P, Dorlet P, Kalai T, Truan G, Martinho M. Structural insights into the semiquinone form of human Cytochrome P450 reductase by DEER distance measurements between a native flavin and a spin labelled non-canonical amino acid. Chemistry 2024; 30:e202304307. [PMID: 38277424 DOI: 10.1002/chem.202304307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
The flavoprotein Cytochrome P450 reductase (CPR) is the unique electron pathway from NADPH to Cytochrome P450 (CYPs). The conformational dynamics of human CPR in solution, which involves transitions from a "locked/closed" to an "unlocked/open" state, is crucial for electron transfer. To date, however, the factors guiding these changes remain unknown. By Site-Directed Spin Labelling coupled to Electron Paramagnetic Resonance spectroscopy, we have incorporated a non-canonical amino acid onto the flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) domains of soluble human CPR, and labelled it with a specific nitroxide spin probe. Taking advantage of the endogenous FMN cofactor, we successfully measured for the first time, the distance distribution by DEER between the semiquinone state FMNH• and the nitroxide. The DEER data revealed a salt concentration-dependent distance distribution, evidence of an "open" CPR conformation at high salt concentrations exceeding previous reports. We also conducted molecular dynamics simulations which unveiled a diverse ensemble of conformations for the "open" semiquinone state of the CPR at high salt concentration. This study unravels the conformational landscape of the one electron reduced state of CPR, which had never been studied before.
Collapse
Affiliation(s)
- Maxime Bizet
- Aix Marseille Univ, CNRS, Bioénergétique et Ingénierie des Protéines, IMM, 13402, Marseille, France
| | - Deborah Byrne
- Protein Expression Facility, Aix Marseille Univ, CNRS, IMM, 13402, Marseille, France
| | - Frédéric Biaso
- Aix Marseille Univ, CNRS, Bioénergétique et Ingénierie des Protéines, IMM, 13402, Marseille, France
| | - Guillaume Gerbaud
- Aix Marseille Univ, CNRS, Bioénergétique et Ingénierie des Protéines, IMM, 13402, Marseille, France
| | - Emilien Etienne
- Aix Marseille Univ, CNRS, Bioénergétique et Ingénierie des Protéines, IMM, 13402, Marseille, France
| | - Giuseppina Briola
- Aix Marseille Univ, CNRS, Bioénergétique et Ingénierie des Protéines, IMM, 13402, Marseille, France
| | - Bruno Guigliarelli
- Aix Marseille Univ, CNRS, Bioénergétique et Ingénierie des Protéines, IMM, 13402, Marseille, France
| | - Philippe Urban
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077, Toulouse, France
| | - Pierre Dorlet
- Aix Marseille Univ, CNRS, Bioénergétique et Ingénierie des Protéines, IMM, 13402, Marseille, France
| | - Tamas Kalai
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Pécs, PO Box 99 Szigeti st. 12, H-7602 7624, Pécs, Hungary
| | - Gilles Truan
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077, Toulouse, France
| | - Marlène Martinho
- Aix Marseille Univ, CNRS, Bioénergétique et Ingénierie des Protéines, IMM, 13402, Marseille, France
| |
Collapse
|
3
|
Scribani Rossi C, Eckartt K, Scarchilli E, Angeli S, Price-Whelan A, Di Matteo A, Chevreuil M, Raynal B, Arcovito A, Giacon N, Fiorentino F, Rotili D, Mai A, Espinosa-Urgel M, Cutruzzolà F, Dietrich LEP, Paone A, Paiardini A, Rinaldo S. Molecular insights into RmcA-mediated c-di-GMP consumption: Linking redox potential to biofilm morphogenesis in Pseudomonas aeruginosa. Microbiol Res 2023; 277:127498. [PMID: 37776579 DOI: 10.1016/j.micres.2023.127498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
The ability of many bacteria to form biofilms contributes to their resilience and makes infections more difficult to treat. Biofilm growth leads to the formation of internal oxygen gradients, creating hypoxic subzones where cellular reducing power accumulates, and metabolic activities can be limited. The pathogen Pseudomonas aeruginosa counteracts the redox imbalance in the hypoxic biofilm subzones by producing redox-active electron shuttles (phenazines) and by secreting extracellular matrix, leading to an increased surface area-to-volume ratio, which favors gas exchange. Matrix production is regulated by the second messenger bis-(3',5')-cyclic-dimeric-guanosine monophosphate (c-di-GMP) in response to different environmental cues. RmcA (Redox modulator of c-di-GMP) from P. aeruginosa is a multidomain phosphodiesterase (PDE) that modulates c-di-GMP levels in response to phenazine availability. RmcA can also sense the fermentable carbon source arginine via a periplasmic domain, which is linked via a transmembrane domain to four cytoplasmic Per-Arnt-Sim (PAS) domains followed by a diguanylate cyclase (DGC) and a PDE domain. The biochemical characterization of the cytoplasmic portion of RmcA reported in this work shows that the PAS domain adjacent to the catalytic domain tunes RmcA PDE activity in a redox-dependent manner, by differentially controlling protein conformation in response to FAD or FADH2. This redox-dependent mechanism likely links the redox state of phenazines (via FAD/FADH2 ratio) to matrix production as indicated by a hyperwrinkling phenotype in a macrocolony biofilm assay. This study provides insights into the role of RmcA in transducing cellular redox information into a structural response of the biofilm at the population level. Conditions of resource (i.e. oxygen and nutrient) limitation arise during chronic infection, affecting the cellular redox state and promoting antibiotic tolerance. An understanding of the molecular linkages between condition sensing and biofilm structure is therefore of crucial importance from both biological and engineering standpoints.
Collapse
Affiliation(s)
- Chiara Scribani Rossi
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Kelly Eckartt
- Department of Biological Sciences, Columbia University, New York, USA
| | - Elisabetta Scarchilli
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Simone Angeli
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | | | - Adele Di Matteo
- CNR Institute of Molecular Biology and Pathology, I-00185 Rome, Italy
| | - Maelenn Chevreuil
- Plate-forme de Biophysique Moléculaire, Institut Pasteur, UMR 3528 CNRS, Paris, France
| | - Bertrand Raynal
- Plate-forme de Biophysique Moléculaire, Institut Pasteur, UMR 3528 CNRS, Paris, France
| | - Alessandro Arcovito
- Dipartimento di Scienze Biotecnologiche Di Base, Cliniche Intensivologiche e Perioperatorie Università Cattolica Del Sacro Cuore, Roma, Italy; Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Noah Giacon
- Dipartimento di Scienze Biotecnologiche Di Base, Cliniche Intensivologiche e Perioperatorie Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Manuel Espinosa-Urgel
- Department of Biotechnology and Environmental Protection. Estación Experimental del Zaidin, CSIC, Granada, Spain
| | - Francesca Cutruzzolà
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Lars E P Dietrich
- Department of Biological Sciences, Columbia University, New York, USA
| | - Alessio Paone
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Alessandro Paiardini
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Serena Rinaldo
- Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
4
|
Zhou B, Szymanski CM, Baylink A. Bacterial chemotaxis in human diseases. Trends Microbiol 2023; 31:453-467. [PMID: 36411201 PMCID: PMC11238666 DOI: 10.1016/j.tim.2022.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022]
Abstract
To infect and cause disease, bacterial pathogens must localize to specific regions of the host where they possess the metabolic and defensive acumen for survival. Motile flagellated pathogens exercise control over their localization through chemotaxis to direct motility based on the landscape of exogenous nutrients, toxins, and molecular cues sensed within the host. Here, we review advances in understanding the roles chemotaxis plays in human diseases. Chemotaxis drives pathogen colonization to sites of inflammation and injury and mediates fitness advantages through accessing host-derived nutrients from damaged tissue. Injury tropism may worsen clinical outcomes through instigating chronic inflammation and subsequent cancer development. Inhibiting bacterial chemotactic systems could act synergistically with antibacterial medicines for more effective and specific eradication.
Collapse
Affiliation(s)
- Bibi Zhou
- University of Georgia, Department of Microbiology and Complex Carbohydrate Research Center, Athens, GA 30602, USA
| | - Christine M Szymanski
- University of Georgia, Department of Microbiology and Complex Carbohydrate Research Center, Athens, GA 30602, USA
| | - Arden Baylink
- Washington State University, Department of Veterinary Microbiology and Pathology, Pullman, WA 99164, USA.
| |
Collapse
|
5
|
Chaudhary P, Agri U, Chaudhary A, Kumar A, Kumar G. Endophytes and their potential in biotic stress management and crop production. Front Microbiol 2022; 13:933017. [PMID: 36325026 PMCID: PMC9618965 DOI: 10.3389/fmicb.2022.933017] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022] Open
Abstract
Biotic stress is caused by harmful microbes that prevent plants from growing normally and also having numerous negative effects on agriculture crops globally. Many biotic factors such as bacteria, fungi, virus, weeds, insects, and nematodes are the major constrains of stress that tends to increase the reactive oxygen species that affect the physiological and molecular functioning of plants and also led to the decrease in crop productivity. Bacterial and fungal endophytes are the solution to overcome the tasks faced with conventional farming, and these are environment friendly microbial commodities that colonize in plant tissues without causing any damage. Endophytes play an important role in host fitness, uptake of nutrients, synthesis of phytohormone and diminish the injury triggered by pathogens via antibiosis, production of lytic enzymes, secondary metabolites, and hormone activation. They are also reported to help plants in coping with biotic stress, improving crops and soil health, respectively. Therefore, usage of endophytes as biofertilizers and biocontrol agent have developed an eco-friendly substitute to destructive chemicals for plant development and also in mitigation of biotic stress. Thus, this review highlighted the potential role of endophytes as biofertilizers, biocontrol agent, and in mitigation of biotic stress for maintenance of plant development and soil health for sustainable agriculture.
Collapse
Affiliation(s)
- Parul Chaudhary
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Upasana Agri
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | | | - Ashish Kumar
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Govind Kumar
- Indian Council of Agricultural Research (ICAR)-Central Institute for Subtropical Horticulture, Lucknow, India
| |
Collapse
|
6
|
Maschmann ZA, Chua TK, Chandrasekaran S, Ibáñez H, Crane BR. Redox properties and PAS domain structure of the Escherichia coli energy sensor Aer indicate a multistate sensing mechanism. J Biol Chem 2022; 298:102598. [PMID: 36252616 PMCID: PMC9668731 DOI: 10.1016/j.jbc.2022.102598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
The Per-Arnt-Sim (PAS; named for the representative proteins: Period, Aryl hydrocarbon receptor nuclear translocator protein and Single-minded) domain of the dimeric Escherichia coli aerotaxis receptor Aer monitors cellular respiration through a redox-sensitive flavin adenine dinucleotide (FAD) cofactor. Conformational shifts in the PAS domain instigated by the oxidized FAD (FADOX)/FAD anionic semiquinone (FADASQ) redox couple traverse the HAMP (histidine kinases, adenylate cyclases, methyl-accepting chemotaxis proteins, and phosphatases) and kinase control domains of the Aer dimer to regulate CheA kinase activity. The PAS domain of Aer is unstable and has not been previously purified. Here, residue substitutions that rescue FAD binding in an FAD binding-deficient full-length Aer variant were used in combination to stabilize the Aer PAS domain. We solved the 2.4 Å resolution crystal structure of this variant, Aer-PAS-GVV, and revealed a PAS fold that contains distinct features associated with FAD-based redox sensing, such as a close contact between the Arg115 side chain and N5 of the isoalloxazine ring and interactions of the flavin with the side chains of His53 and Asn85 that are poised to convey conformational signals from the cofactor to the protein surface. In addition, we determined the FADox/FADASQ formal potentials of Aer-PAS-GVV and full-length Aer reconstituted into nanodiscs. The Aer redox couple is remarkably low at -289.6 ± 0.4 mV. In conclusion, we propose a model for Aer energy sensing based on the low potential of Aer-PAS-FADox/FADASQ couple and the inability of Aer-PAS to bind to the fully reduced FAD hydroquinone.
Collapse
Affiliation(s)
- Zachary A Maschmann
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Teck Khiang Chua
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | | | - Héctor Ibáñez
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
7
|
Hantke K, Friz S. The TonB dependent uptake of pyrroloquinoline‐quinone (PQQ) and secretion of gluconate by
Escherichia coli
K‐12. Mol Microbiol 2022; 118:417-425. [DOI: 10.1111/mmi.14975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Klaus Hantke
- University of Tübingen, IMIT Institute Tübingen Germany
| | - Simon Friz
- University of Tübingen, IMIT Institute Tübingen Germany
| |
Collapse
|
8
|
Rani S, Kumar P, Dahiya P, Maheshwari R, Dang AS, Suneja P. Endophytism: A Multidimensional Approach to Plant-Prokaryotic Microbe Interaction. Front Microbiol 2022; 13:861235. [PMID: 35633681 PMCID: PMC9135327 DOI: 10.3389/fmicb.2022.861235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/11/2022] [Indexed: 11/20/2022] Open
Abstract
Plant growth and development are positively regulated by the endophytic microbiome via both direct and indirect perspectives. Endophytes use phytohormone production to promote plant health along with other added benefits such as nutrient acquisition, nitrogen fixation, and survival under abiotic and biotic stress conditions. The ability of endophytes to penetrate the plant tissues, reside and interact with the host in multiple ways makes them unique. The common assumption that these endophytes interact with plants in a similar manner as the rhizospheric bacteria is a deterring factor to go deeper into their study, and more focus was on symbiotic associations and plant–pathogen reactions. The current focus has shifted on the complexity of relationships between host plants and their endophytic counterparts. It would be gripping to inspect how endophytes influence host gene expression and can be utilized to climb the ladder of “Sustainable agriculture.” Advancements in various molecular techniques have provided an impetus to elucidate the complexity of endophytic microbiome. The present review is focused on canvassing different aspects concerned with the multidimensional interaction of endophytes with plants along with their application.
Collapse
Affiliation(s)
- Simran Rani
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Pradeep Kumar
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Priyanka Dahiya
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Rajat Maheshwari
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Amita Suneja Dang
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Pooja Suneja
- Plant Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
9
|
Majeed S, Ahmad AB, Sehar U, Georgieva ER. Lipid Membrane Mimetics in Functional and Structural Studies of Integral Membrane Proteins. MEMBRANES 2021; 11:685. [PMID: 34564502 PMCID: PMC8470526 DOI: 10.3390/membranes11090685] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/18/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Integral membrane proteins (IMPs) fulfill important physiological functions by providing cell-environment, cell-cell and virus-host communication; nutrients intake; export of toxic compounds out of cells; and more. However, some IMPs have obliterated functions due to polypeptide mutations, modifications in membrane properties and/or other environmental factors-resulting in damaged binding to ligands and the adoption of non-physiological conformations that prevent the protein from returning to its physiological state. Thus, elucidating IMPs' mechanisms of function and malfunction at the molecular level is important for enhancing our understanding of cell and organism physiology. This understanding also helps pharmaceutical developments for restoring or inhibiting protein activity. To this end, in vitro studies provide invaluable information about IMPs' structure and the relation between structural dynamics and function. Typically, these studies are conducted on transferred from native membranes to membrane-mimicking nano-platforms (membrane mimetics) purified IMPs. Here, we review the most widely used membrane mimetics in structural and functional studies of IMPs. These membrane mimetics are detergents, liposomes, bicelles, nanodiscs/Lipodisqs, amphipols, and lipidic cubic phases. We also discuss the protocols for IMPs reconstitution in membrane mimetics as well as the applicability of these membrane mimetic-IMP complexes in studies via a variety of biochemical, biophysical, and structural biology techniques.
Collapse
Affiliation(s)
- Saman Majeed
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Akram Bani Ahmad
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Ujala Sehar
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Elka R Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Science Center, Lubbock, TX 79409, USA
| |
Collapse
|
10
|
Abstract
Redox titration of flavoproteins allows to detect and analyze (1) the determinants of the stabilization of individual redox forms of the flavin by the protein; (2) the binding of the redox-active cofactor to the protein; (3) the effects of other components of the systems (such as micro- or macromolecular interactors) on parameters 1 and 2; (4) the pattern of electron flow to and from the flavin cofactor to other redox-active chemical species, including those present in the protein itself or in its physiological partners. This overview presents and discusses the fundamentals of the methodological approaches most commonly used for these purposes, and illustrates how data may be obtained in a reliable way, and how they can be read and interpreted.
Collapse
Affiliation(s)
- Francesco Bonomi
- Section of Chemical and Biomolecular Sciences, DeFENS, University of Milan, Milan, Italy.
| | - Stefania Iametti
- Section of Chemical and Biomolecular Sciences, DeFENS, University of Milan, Milan, Italy
| |
Collapse
|
11
|
Starwalt-Lee R, El-Naggar MY, Bond DR, Gralnick JA. Electrolocation? The evidence for redox-mediated taxis in Shewanella oneidensis. Mol Microbiol 2020; 115:1069-1079. [PMID: 33200455 DOI: 10.1111/mmi.14647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/11/2020] [Indexed: 11/27/2022]
Abstract
Shewanella oneidensis is a dissimilatory metal reducing bacterium and model for extracellular electron transfer (EET), a respiratory mechanism in which electrons are transferred out of the cell. In the last 10 years, migration to insoluble electron acceptors for EET has been shown to be nonrandom and tactic, seemingly in the absence of molecular or energy gradients that typically allow for taxis. As the ability to sense, locate, and respire electrodes has applications in bioelectrochemical technology, a better understanding of taxis in S. oneidensis is needed. While the EET conduits of S. oneidensis have been studied extensively, its taxis pathways and their interplay with EET are not yet understood, making investigation into taxis phenomena nontrivial. Since S. oneidensis is a member of an EET-encoding clade, the genetic circuitry of taxis to insoluble acceptors may be conserved. We performed a bioinformatic analysis of Shewanella genomes to identify S. oneidensis chemotaxis orthologs conserved in the genus. In addition to the previously reported core chemotaxis gene cluster, we identify several other conserved proteins in the taxis signaling pathway. We present the current evidence for the two proposed models of EET taxis, "electrokinesis" and flavin-mediated taxis, and highlight key areas in need of further investigation.
Collapse
Affiliation(s)
- Ruth Starwalt-Lee
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota - Twin Cities, St. Paul, MN, USA
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA.,Department of Chemistry, University of Southern California, Los Angeles, CA, USA.,Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Daniel R Bond
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota - Twin Cities, St. Paul, MN, USA
| | - Jeffrey A Gralnick
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota - Twin Cities, St. Paul, MN, USA
| |
Collapse
|
12
|
Booth SC, Turner RJ. Phylogenetic characterization of the energy taxis receptor Aer in Pseudomonas and phenotypic characterization in Pseudomonas pseudoalcaligenes KF707. MICROBIOLOGY-SGM 2020; 165:1331-1344. [PMID: 31639075 DOI: 10.1099/mic.0.000864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemotaxis allows bacteria to sense gradients in their environment and respond by directing their swimming. Aer is a receptor that, instead of responding to a specific chemoattractant, allows bacteria to sense cellular energy levels and move towards favourable environments. In Pseudomonas, the number of apparent Aer homologues differs between the only two species it has been characterized in, Pseudomonas aeruginosa and Pseudomonas putida. Here we combined bioinformatic approaches with deletional mutagenesis in Pseudomonas pseudoalcaligenes KF707 to further characterize Aer. It was determined that the number of Aer homologues varies between zero and four throughout the genus Pseudomonas, and they were phylogenetically classified into five subgroups. We also used sequence analysis to show that these homologous receptors differ in their HAMP signal transduction domains. Genetic analysis also indicated that some Aer homologues have likely been subject to horizontal transfer. P. pseudoalcaligenes KF707 was unique among strains for having three Aer homologues as well as the receptors CttP and McpB. Phenotypic characterization in this strain showed that the most prevalent homologue of Aer was key, but not essential, for energy taxis. This study demonstrates that energy taxis in Pseudomonas varies between species and provides a new naming convention and associated phylogenetic details for Aer chemoreceptors.
Collapse
Affiliation(s)
- Sean C Booth
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.,Present address: Department of Zoology, University of Oxford, Oxford, UK
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
13
|
Alvarado A, Behrens W, Josenhans C. Protein Activity Sensing in Bacteria in Regulating Metabolism and Motility. Front Microbiol 2020; 10:3055. [PMID: 32010106 PMCID: PMC6978683 DOI: 10.3389/fmicb.2019.03055] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/18/2019] [Indexed: 01/24/2023] Open
Abstract
Bacteria have evolved complex sensing and signaling systems to react to their changing environments, most of which are present in all domains of life. Canonical bacterial sensing and signaling modules, such as membrane-bound ligand-binding receptors and kinases, are very well described. However, there are distinct sensing mechanisms in bacteria that are less studied. For instance, the sensing of internal or external cues can also be mediated by changes in protein conformation, which can either be implicated in enzymatic reactions, transport channel formation or other important cellular functions. These activities can then feed into pathways of characterized kinases, which translocate the information to the DNA or other response units. This type of bacterial sensory activity has previously been termed protein activity sensing. In this review, we highlight the recent findings about this non-canonical sensory mechanism, as well as its involvement in metabolic functions and bacterial motility. Additionally, we explore some of the specific proteins and protein-protein interactions that mediate protein activity sensing and their downstream effects. The complex sensory activities covered in this review are important for bacterial navigation and gene regulation in their dynamic environment, be it host-associated, in microbial communities or free-living.
Collapse
Affiliation(s)
- Alejandra Alvarado
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Infection Research (DZIF) Partner Site Munich, Munich, Germany
| | - Wiebke Behrens
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hanover, Germany
| | - Christine Josenhans
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Infection Research (DZIF) Partner Site Munich, Munich, Germany.,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
14
|
Zhou A, Cao Y, Zhou D, Hu S, Tan W, Xiao X, Yu Y, Li X. Global transcriptomic analysis of Cronobacter sakazakii CICC 21544 by RNA-seq under inorganic acid and organic acid stresses. Food Res Int 2019; 130:108963. [PMID: 32156398 DOI: 10.1016/j.foodres.2019.108963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 01/07/2023]
Abstract
Cronobacter sakazakii is a common foodborne pathogen that can tolerate various stress conditions. Acidic environment is a common stress condition encountered by bacteria in food processing and gastrointestinal digestion, including both inorganic and organic acids. In order to elucidate the Acid Tolerance Response (ATR) of C. sakazakii, we performed high-throughput RNA-seq to compare gene expression under hydrochloric acid and citric acid stresses. In this study, 107 differentially expressed genes (DEGs) were identified in both acids, of which 85 DEGs were functionally related to the regulation of acid tolerance. Multiple layers of mechanisms may be applied by C. sakazakii in response to acid stress: Firstly, in order to reduce excessive intracellular protons, C. sakazakii pumps them out through trans-membrane proteins or consumes them through metabolic reactions. Secondly, under acidic conditions, a large amount of reactive oxygen species and hydroxyl radicals accumulate in the cells, resulting in oxidative damage. C. sakazakii protects cells by up-regulating the antioxidant stress genes such as soxS and madB. Thirdly, C. sakazakii chooses energy efficient metabolic pathways to reduce energy consumption and maintain necessary processes. Finally, genes involved in chemotaxis and motility were differentially expressed to respond to different acidic conditions. This study systematically analyzed the acid-resistant mechanism of C. sakazakii under the stress of organic and inorganic acids, and provided a theoretical basis for better control of its contamination in food.
Collapse
Affiliation(s)
- Ailian Zhou
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Yifang Cao
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Donggen Zhou
- Ningbo International Travel Healthcare Center. No. 336 Liuting Street, Haishu District, Ningbo City, Zhejiang Province 315012, China
| | - Shuangfang Hu
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen City, Guangdong Province 518055, China
| | - Wanjing Tan
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Xinglong Xiao
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China.
| | - Yigang Yu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou City, Guangdong Province 510640, China
| | - Xiaofeng Li
- State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Sciences, South China University of Technology, 381 Wusan Road, Tianhe District, Guangzhou City 510640, Guangdong Province, China.
| |
Collapse
|
15
|
Muok AR, Briegel A, Crane BR. Regulation of the chemotaxis histidine kinase CheA: A structural perspective. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183030. [PMID: 31374212 DOI: 10.1016/j.bbamem.2019.183030] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023]
Abstract
Bacteria sense and respond to their environment through a highly conserved assembly of transmembrane chemoreceptors (MCPs), the histidine kinase CheA, and the coupling protein CheW, hereafter termed "the chemosensory array". In recent years, great strides have been made in understanding the architecture of the chemosensory array and how this assembly engenders sensitive and cooperative responses. Nonetheless, a central outstanding question surrounds how receptors modulate the activity of the CheA kinase, the enzymatic output of the sensory system. With a focus on recent advances, we summarize the current understanding of array structure and function to comment on the molecular mechanism by which CheA, receptors and CheW generate the high sensitivity, gain and dynamic range emblematic of bacterial chemotaxis. The complexity of the chemosensory arrays has motivated investigation with many different approaches. In particular, structural methods, genetics, cellular activity assays, nanodisc technology and cryo-electron tomography have provided advances that bridge length scales and connect molecular mechanism to cellular function. Given the high degree of component integration in the chemosensory arrays, we ultimately aim to understand how such networked molecular interactions generate a whole that is truly greater than the sum of its parts. This article is part of a Special Issue entitled: Molecular biophysics of membranes and membrane proteins.
Collapse
Affiliation(s)
- Alise R Muok
- Institute for Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Ariane Briegel
- Institute for Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States of America.
| |
Collapse
|
16
|
Abstract
Molecular mechanisms of dark-to-light state transitions in flavoprotein photoreceptors have been the subject of intense investigation. Blue-light sensing flavoproteins fall into three general classes that share aspects of their activation processes: LOV domains, BLUF proteins, and cryptochromes. In all cases, light-induced changes in flavin redox, protonation, and bonding states result in hydrogen-bond and conformational rearrangements important for regulation of downstream targets. Physical characterization of these flavoprotein states can provide valuable insights into biological function, but clear conclusions are often challenging to draw owing to complexities of data collection and interpretation. In this chapter, we briefly review the three classes of flavoprotein photoreceptors and provide methods for their recombinant production, reconstitution with flavin cofactor, and characterization. We then relate best practices and special considerations for the application of several types of spectroscopies, redox potential measurements, and X-ray scattering experiments to photosensitive flavoproteins. The methods presented are generally accessible to most laboratories.
Collapse
Affiliation(s)
- Estella F Yee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | | | - Changfan Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
17
|
Sekiguchi M, Kameda S, Kurosawa S, Yoshida M, Yoshimura K. Thermotaxis in Chlamydomonas is brought about by membrane excitation and controlled by redox conditions. Sci Rep 2018; 8:16114. [PMID: 30382191 PMCID: PMC6208428 DOI: 10.1038/s41598-018-34487-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/18/2018] [Indexed: 11/09/2022] Open
Abstract
Temperature is physiologically critical for all living organisms, which cope with temperature stress using metabolic and behavioral responses. In unicellular and some multicellular organisms, thermotaxis is a behavioral response to avoid stressful thermal environments and promote accumulation in an optimal thermal environment. In this study, we examined whether Chlamydomonas reinhardtii, a unicellular green alga, demonstrated thermotaxis. We found that between 10 °C and 30 °C, Chlamydomonas cells migrated toward lower temperatures independent of cultivation temperature. Interestingly, when we applied reagents to change intracellular reduction-oxidation (redox) conditions, we saw that thermotaxis was enhanced, suppressed, or reversed, depending on the redox conditions and cultivation temperature. Thermotaxis was almost absent in ppr2 and ppr3 mutants, which cannot swim backward because of a defect in generating calcium current in flagella. The frequency of spontaneous backward swimming was lower at more favorable temperature, suggesting a pivotal role of spontaneous backward swimming generated by flagellar membrane excitation.
Collapse
Affiliation(s)
- Masaya Sekiguchi
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, 337-8570, Japan
| | - Shigetoshi Kameda
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, 337-8570, Japan
| | - Satoshi Kurosawa
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, 337-8570, Japan
| | - Megumi Yoshida
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, 337-8570, Japan
| | - Kenjiro Yoshimura
- Department of Machinery and Control Systems, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, 337-8570, Japan.
| |
Collapse
|
18
|
Huang L, Wang L, Lin X, Su Y, Qin Y, Kong W, Zhao L, Xu X, Yan Q. mcp, aer, cheB, and cheV contribute to the regulation of Vibrio alginolyticus (ND-01) adhesion under gradients of environmental factors. Microbiologyopen 2017; 6:e00517. [PMID: 28744982 PMCID: PMC5727358 DOI: 10.1002/mbo3.517] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/02/2017] [Accepted: 06/13/2017] [Indexed: 12/25/2022] Open
Abstract
Adhesion is a key virulence factor of pathogens and can be affected by the environment. Our previously research with RNA-seq indicated that mcp, aer, cheB, and cheV might play roles in the regulation of adhesion in Vibrio alginolyticus (ND-01). In order to determine whether and how environmental factors affect adhesion through these genes, gene silencing was performed followed by quantitative real-time PCR (qRT-PCR), RNAi, transmission electron microscopy, and adhesion, capillary, and motility assays to verify how these genes influence adhesion. Silencing these genes led to deficiencies in adhesion, chemotaxis, flagellar assembly, and motility. The expression levels of cheA, cheW, and cheY, which are important genes closely related to the functions of mcp, aer, cheV, and cheB, were significantly downregulated in all of the RNAi groups. The expression of mcp, aer, cheV, and cheB under different gradients of temperature, pH, and salinity and after starvation for various durations was also detected, which showed that these genes were sensitive to certain environmental stresses, particularly pH and starvation. Our results indicated that mcp, aer, cheB, and cheV: (1) are necessary for ND-01 adhesion; (2) play key roles in the bacterial chemotaxis pathway by controlling the expression of downstream genes; (3) might affect adhesion by impacting motility, though motility is not the only route through which adhesion is affected; and (4) contribute to the regulation of ND-01 adhesion in natural environments with different temperatures, pH levels, and salinities as well as after various starvation periods.
Collapse
Affiliation(s)
- Lixing Huang
- Fisheries CollegeKey Laboratory of Healthy Mariculture for the East China SeaMinistry of AgricultureJimei UniversityXiamenFujianChina
| | - Lu Wang
- Fisheries CollegeKey Laboratory of Healthy Mariculture for the East China SeaMinistry of AgricultureJimei UniversityXiamenFujianChina
| | - Xiangzhi Lin
- Third Institute of OceanographyState Oceanic AdministrationXiamenFujianChina
| | - Yongquan Su
- College of Ocean & Earth SciencesXiamen UniversityXiamenFujianChina
| | - Yingxue Qin
- Fisheries CollegeKey Laboratory of Healthy Mariculture for the East China SeaMinistry of AgricultureJimei UniversityXiamenFujianChina
| | - Wendi Kong
- Third Institute of OceanographyState Oceanic AdministrationXiamenFujianChina
| | - Lingmin Zhao
- Fisheries CollegeKey Laboratory of Healthy Mariculture for the East China SeaMinistry of AgricultureJimei UniversityXiamenFujianChina
| | - Xiaojin Xu
- Fisheries CollegeKey Laboratory of Healthy Mariculture for the East China SeaMinistry of AgricultureJimei UniversityXiamenFujianChina
| | - Qingpi Yan
- Fisheries CollegeKey Laboratory of Healthy Mariculture for the East China SeaMinistry of AgricultureJimei UniversityXiamenFujianChina
| |
Collapse
|
19
|
Abstract
Chemoreceptors in bacteria detect a variety of signals and feed this information into chemosensory pathways that represent a major mode of signal transduction. The five chemoreceptors from Escherichia coli have served as traditional models in the study of this protein family. Genome analyses revealed that many bacteria contain much larger numbers of chemoreceptors with broader sensory capabilities. Chemoreceptors differ in topology, sensing mode, cellular location, and, above all, the type of ligand binding domain (LBD). Here, we highlight LBD diversity using well-established and emerging model organisms as well as genomic surveys. Nearly a hundred different types of protein domains that are found in chemoreceptor sequences are known or predicted LBDs, but only a few of them are ubiquitous. LBDs of the same class recognize different ligands, and conversely, the same ligand can be recognized by structurally different LBDs; however, recent studies began to reveal common characteristics in signal-LBD relationships. Although signals can stimulate chemoreceptors in a variety of different ways, diverse LBDs appear to employ a universal transmembrane signaling mechanism. Current and future studies aim to establish relationships between LBD types, the nature of signals that they recognize, and the mechanisms of signal recognition and transduction.
Collapse
|