1
|
Ivanov PA, Gasanova TV, Repina MN, Zamyatnin AA. Signaling and Resistosome Formation in Plant Innate Immunity to Viruses: Is There a Common Mechanism of Antiviral Resistance Conserved across Kingdoms? Int J Mol Sci 2023; 24:13625. [PMID: 37686431 PMCID: PMC10487714 DOI: 10.3390/ijms241713625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Virus-specific proteins, including coat proteins, movement proteins, replication proteins, and suppressors of RNA interference are capable of triggering the hypersensitive response (HR), which is a type of cell death in plants. The main cell death signaling pathway involves direct interaction of HR-inducing proteins with nucleotide-binding leucine-rich repeats (NLR) proteins encoded by plant resistance genes. Singleton NLR proteins act as both sensor and helper. In other cases, NLR proteins form an activation network leading to their oligomerization and formation of membrane-associated resistosomes, similar to metazoan inflammasomes and apoptosomes. In resistosomes, coiled-coil domains of NLR proteins form Ca2+ channels, while toll-like/interleukin-1 receptor-type (TIR) domains form oligomers that display NAD+ glycohydrolase (NADase) activity. This review is intended to highlight the current knowledge on plant innate antiviral defense signaling pathways in an attempt to define common features of antiviral resistance across the kingdoms of life.
Collapse
Affiliation(s)
- Peter A. Ivanov
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (P.A.I.); (T.V.G.); (M.N.R.)
| | - Tatiana V. Gasanova
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (P.A.I.); (T.V.G.); (M.N.R.)
| | - Maria N. Repina
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (P.A.I.); (T.V.G.); (M.N.R.)
| | - Andrey A. Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sirius 354340, Krasnodar Region, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| |
Collapse
|
2
|
Li Y, Lei W, Zhou Z, Li Y, Zhang D, Lin H. Transcription factor GLK1 promotes anthocyanin biosynthesis via an MBW complex-dependent pathway in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36856341 DOI: 10.1111/jipb.13471] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Anthocyanins are important natural plant pigments and play diverse roles in plant growth and adaptation. Anthocyanins function as screens to protect photosynthetic tissues from photoinhibition. However, the regulatory mechanisms underlying the biosynthesis and spatial accumulation pattern of anthocyanins remain some unresolved issues. Here, we demonstrate that the GARP-type transcription factor GOLDEN2-LIKE 1 (GLK1) functions as a positive factor in anthocyanin accumulation. GLK1 enhances the transcriptional activation activities of MYB75, MYB90, and MYB113 via direct protein-protein interactions to increase the expression of anthocyanin-specific biosynthetic genes. Anthocyanins accumulate in an acropetal manner in Arabidopsis. We also found that the expression pattern of GLK1 overall mimicked the accumulation pattern of anthocyanin from the base of the main stem to the shoot apex. Based on these findings, we established a working model for the role of GLK1 in anthocyanin accumulation and propose that GLK1 mediates the spatial distribution pattern of anthocyanins by affecting the transcriptional activation activities of MYB75, MYB90, and MYB113.
Collapse
Affiliation(s)
- Yan Li
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Wei Lei
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Zuxu Zhou
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Yanlin Li
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
3
|
Alazem M, Tseng KC, Chang WC, Seo JK, Kim KH. Elements Involved in the Rsv3-Mediated Extreme Resistance against an Avirulent Strain of Soybean Mosaic Virus. Viruses 2018; 10:E581. [PMID: 30355968 PMCID: PMC6267276 DOI: 10.3390/v10110581] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 01/06/2023] Open
Abstract
Extreme resistance (ER) is a type of R-gene-mediated resistance that rapidly induces a symptomless resistance phenotype, which is different from the phenotypical R-resistance manifested by the programmed cell death, accumulation of reactive oxygen species, and hypersensitive response. The Rsv3 gene in soybean cultivar L29 is responsible for ER against the avirulent strain G5H of soybean mosaic virus (SMV), but is ineffective against the virulent strain G7H. Rsv3-mediated ER is achieved through the rapid accumulation of callose, which arrests SMV-G5H at the point of infection. Callose accumulation, however, may not be the lone mechanism of this ER. Analyses of RNA-seq data obtained from infected soybean plants revealed a rapid induction of the abscisic acid pathway at 8 h post infection (hpi) in response to G5H but not to G7H, which resulted in the down-regulation of transcripts encoding β-1,3 glucanases that degrade callose in G5H-infected but not G7H-infected plants. In addition, parts of the autophagy and the small interfering (si) RNA pathways were temporally up-regulated at 24 hpi in response to G5H but not in response to G7H. The jasmonic acid (JA) pathway and many WRKY factors were clearly up-regulated only in G7H-infected plants. These results suggest that ER against SMV-G5H is achieved through the quick and temporary induction of ABA, autophagy, and the siRNA pathways, which rapidly eliminate G5H. The results also suggest that suppression of the JA pathway in the case of G5H is important for the Rsv3-mediated ER.
Collapse
Affiliation(s)
- Mazen Alazem
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
- Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Kuan-Chieh Tseng
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan.
| | - Wen-Chi Chang
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan.
- College of Biosciences and Biotechnology, Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan 701, Taiwan.
| | - Jang-Kyun Seo
- Department of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea.
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
- Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|