1
|
Joaquin D, Mansfield SA, Chanthakhoun JC, LeSueur AK, Blackburn TA, Castle SL. Synthesis and Studies of Bulky Cycloalkyl α,β-Dehydroamino Acids that Enhance Proteolytic Stability. Org Lett 2022; 24:5329-5333. [PMID: 35839437 PMCID: PMC10243721 DOI: 10.1021/acs.orglett.2c01962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three new bulky cycloalkyl α,β-dehydroamino acids (ΔAAs) have been designed and synthesized. Each residue enhances the rigidity of model peptides and their stability to proteolysis, with larger ring sizes exhibiting greater effects. Peptides containing bulky cycloalkyl ΔAAs are inert to conjugate addition by a nucleophilic thiol. The results suggest that these residues will be effective tools for improving the proteolytic stability of bioactive peptides.
Collapse
Affiliation(s)
- Daniel Joaquin
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Samuel A Mansfield
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Joseph C Chanthakhoun
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Austin K LeSueur
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Tiffani A Blackburn
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Steven L Castle
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
2
|
Nassiri M, Gopalan V, Vakili-Azghandi M. Modifications of Ribonucleases in Order to Enhance Cytotoxicity in Anticancer Therapy. Curr Cancer Drug Targets 2022; 22:373-387. [PMID: 35240973 DOI: 10.2174/1568009622666220303101005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 11/22/2022]
Abstract
Ribonucleases (RNases) are a superfamily of enzymes that have been extensively studied since the 1960s. For a long time, this group of secretory enzymes was studied as an important model for protein chemistry such as folding, stability and enzymatic catalysis. Since it was discovered that RNases displayed cytotoxic activity against several types of malignant cells, recent investigation has focused mainly on the biological functions and medical applications of engineered RNases. In this review, we describe structures, functions and mechanisms of antitumor activity of RNases. They operate at the crossroads of transcription and translation, preferentially degrading tRNA. As a result, this inhibits protein synthesis, induces apoptosis and causes death of cancer cells. This effect can be enhanced thousands of times when RNases are conjugated with monoclonal antibodies. Such combinations, called immunoRNases, have demonstrated selective antitumor activity against cancer cells both in vitro and in animal models. This review summarizes the current status of engineered RNases and immunoRNases as promising novel therapeutic agents for different types of cancer. Also, we describe our experimental results from published or previously unpublished research and compare with other scientific information.
Collapse
Affiliation(s)
- Mohammadreza Nassiri
- Recombinant Proteins Research Group, The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
- School of Life and Environmental Sciences, The University of Sydney, Sydney 2006, NSW, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia
| | | |
Collapse
|
3
|
Oulmidi A, Radi S, Idir A, Zyad A, Kabach I, Nhiri M, Robeyns K, Rotaru A, Garcia Y. Synthesis and cytotoxicity against tumor cells of pincer N-heterocyclic ligands and their transition metal complexes. RSC Adv 2021; 11:34742-34753. [PMID: 35494785 PMCID: PMC9042687 DOI: 10.1039/d1ra05918a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
The complexes: [CoL2](ClO4)2 (1), [FeL2](ClO4)2 (2), [NiL2](ClO4)2 (3) and [MnLCl2] (4), with L = diethyl-1,1′-(pyridine-2,6-diyl)bis(5-methyl-1H-pyrazole-3-carboxylate), were synthesized and fully characterized. Structural analysis revealed two distinct patterns influenced by the counter ions where L acts as a tridentate chelating ligand. The in vitro antitumor activity of L and L′ (diethyl 2,2′-(pyridine-2,6-diylbis(5-methyl-1H-pyrazole-3,1-diyl)) diacetate) as well as their metal complexes, was tested by the measurement of their cytostatic and cytotoxic properties towards the blood cancer mastocytoma cell line P815. We have also investigated their interactions with the antioxidant enzyme system. As a result, [MnL′Cl2] (1′) exhibited the strongest activity compared to reference cis-platin with no cytotoxicity towards normal cells PBMCs (Peripheral Blood Mononuclear Cells). On the other hand, the antioxidant enzyme activity showed that the efficiency of metal complex 1′ against P815 tumor cells was via the rise in the SOD activity and inhibition of CAT enzyme activity. This proof of concept study allows disclosure of a new class of molecules in cancer therapeutics. The complexes: [CoL2](ClO4)2 (1), [FeL2](ClO4)2 (2), [NiL2](ClO4)2 (3) and [MnLCl2] (4), with L = diethyl-1,1′-(pyridine-2,6-diyl)bis(5-methyl-1H-pyrazole-3-carboxylate), were synthesized and fully characterized.![]()
Collapse
Affiliation(s)
- Afaf Oulmidi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I BP 524 60 000 Oujda Morocco +212-10472330.,Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain Belgium
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I BP 524 60 000 Oujda Morocco +212-10472330
| | - Abderrazak Idir
- Team of Experimental Oncology and Natural Substances, Cellular and Molecular Immunopharmacology, Faculty of Sciences and Techniques, Sultan Moulay Slimane University Mailbox 523 23000 Beni Mellal Morocco
| | - Abdelmajid Zyad
- Team of Experimental Oncology and Natural Substances, Cellular and Molecular Immunopharmacology, Faculty of Sciences and Techniques, Sultan Moulay Slimane University Mailbox 523 23000 Beni Mellal Morocco
| | - Imad Kabach
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology Tangier Morocco
| | - Mohamed Nhiri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology Tangier Morocco
| | - Koen Robeyns
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain Belgium
| | - Aurelian Rotaru
- Department of Electrical Engineering and Computer Science, MANSiD Research Center, "Stefan cel Mare" University University Street, 13 Suceava 720229 Romania
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain Belgium
| |
Collapse
|
4
|
Moyá DA, Lee MA, Chanthakhoun JC, LeSueur AK, Joaquin D, Barfuss JD, Castle SL. Towards a streamlined synthesis of peptides containing α,β-dehydroamino acids. Tetrahedron Lett 2021; 74:153175. [PMID: 34176981 PMCID: PMC8224935 DOI: 10.1016/j.tetlet.2021.153175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Investigation of a strategy to streamline the synthesis of peptides containing α,β-dehydroamino acids (ΔAAs) is reported. The key step involves generating the alkene moiety via elimination of a suitable precursor after it has been inserted into a peptide chain. This process obviates the need to prepare ΔAA-containing azlactone dipeptides to facilitate coupling of these residues. Z-dehydroaminobutyric acid (Z-ΔAbu) could be constructed most efficiently via EDC/CuCl-mediated dehydration of Thr. Formation of Z-ΔPhe by this or other dehydration methods was unsuccessful. Production of the bulky ΔVal residue could be accomplished by DAST-promoted dehydrations of β-OHVal or by DBU-triggered eliminations of sulfonium ions derived from penicillamine derivatives. However, competitive formation of an oxazoline byproduct remains problematic.
Collapse
Affiliation(s)
- Diego A Moyá
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Michael A Lee
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Joseph C Chanthakhoun
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Austin K LeSueur
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Daniel Joaquin
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Jaden D Barfuss
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Steven L Castle
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
5
|
Sayers J, Wralstad EC, Raines RT. Semisynthesis of Human Ribonuclease-S. Bioconjug Chem 2020; 32:82-87. [PMID: 33296182 DOI: 10.1021/acs.bioconjchem.0c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since its conception, the ribonuclease S complex (RNase S) has led to historic discoveries in protein chemistry, enzymology, and related fields. Derived by the proteolytic cleavage of a single peptide bond in bovine pancreatic ribonuclease (RNase A), RNase S serves as a convenient and reliable model system for incorporating unlimited functionality into an enzyme. Applications of the RNase S system in biomedicine and biotechnology have, however, been hindered by two shortcomings: (1) the bovine-derived enzyme could elicit an immune response in humans, and (2) the complex is susceptible to dissociation. Here, we have addressed both limitations in the first semisynthesis of an RNase S conjugate derived from human pancreatic ribonuclease and stabilized by a covalent interfragment cross-link. We anticipate that this strategy will enable unprecedented applications of the "RNase-S" system.
Collapse
Affiliation(s)
- Jessica Sayers
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Evans C Wralstad
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ronald T Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Joaquin D, Lee MA, Kastner DW, Singh J, Morrill ST, Damstedt G, Castle SL. Impact of Dehydroamino Acids on the Structure and Stability of Incipient 3 10-Helical Peptides. J Org Chem 2019; 85:1601-1613. [PMID: 31730750 DOI: 10.1021/acs.joc.9b02747] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A comparative study of the impact of small, medium-sized, and bulky α,β-dehydroamino acids (ΔAAs) on the structure and stability of Balaram's incipient 310-helical peptide (1) is reported. Replacement of the N-terminal Aib residue of 1 with a ΔAA afforded peptides 2a-c that maintained the 310-helical shape of 1. In contrast, installation of a ΔAA in place of Aib-3 yielded peptides 3a-c that preferred a β-sheet-like conformation. The impact of the ΔAA on peptide structure was independent of size, with small (ΔAla), medium-sized (Z-ΔAbu), and bulky (ΔVal) ΔAAs exerting similar effects. The proteolytic stabilities of 1 and its analogs were determined by incubation with Pronase. Z-ΔAbu and ΔVal increased the resistance of peptides to proteolysis when incorporated at the 3-position and had negligible impact on stability when placed at the 1-position, whereas ΔAla-containing peptides degraded rapidly regardless of position. Exposure of peptides 2a-c and 3a-c to the reactive thiol cysteamine revealed that ΔAla-containing peptides underwent conjugate addition at room temperature, while Z-ΔAbu- and ΔVal-containing peptides were inert even at elevated temperatures. These results suggest that both bulky and more accessible medium-sized ΔAAs should be valuable tools for bestowing rigidity and proteolytic stability on bioactive peptides.
Collapse
Affiliation(s)
- Daniel Joaquin
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - Michael A Lee
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - David W Kastner
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - Jatinder Singh
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - Shardon T Morrill
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - Gracie Damstedt
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - Steven L Castle
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| |
Collapse
|
7
|
Construction of Highly Stable Cytotoxic Nuclear-Directed Ribonucleases. Molecules 2018; 23:molecules23123273. [PMID: 30544927 PMCID: PMC6321540 DOI: 10.3390/molecules23123273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/05/2018] [Accepted: 12/08/2018] [Indexed: 02/01/2023] Open
Abstract
Ribonucleases are proteins whose use is promising in anticancer therapy. We have previously constructed different human pancreatic ribonuclease variants that are selectively cytotoxic for tumor cells by introducing a nuclear localization signal into their sequence. However, these modifications produced an important decrease in their stability compromising their behavior in vivo. Here, we show that we can significantly increase the thermal stability of these cytotoxic proteins by introducing additional disulfide bonds by site-directed mutagenesis. One of these variants increases its thermal stability by around 17 °C, without affecting its catalytic activity while maintaining the cytotoxic activity against tumor cells. We also show that the most stable variant is significantly more resistant to proteolysis when incubated with proteinase K or with human sera, suggesting that its half-live could be increased in vivo once administered.
Collapse
|
8
|
Jalan A, Kastner DW, Webber KGI, Smith MS, Price JL, Castle SL. Bulky Dehydroamino Acids Enhance Proteolytic Stability and Folding in β-Hairpin Peptides. Org Lett 2017; 19:5190-5193. [PMID: 28910115 PMCID: PMC6085080 DOI: 10.1021/acs.orglett.7b02455] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The bulky dehydroamino acids dehydrovaline (ΔVal) and dehydroethylnorvaline (ΔEnv) can be inserted into the turn regions of β-hairpin peptides without altering their secondary structures. These residues increase proteolytic stability, with ΔVal at the (i + 1) position having the most substantial impact. Additionally, a bulky dehydroamino acid can be paired with a d-amino acid (i.e., d-Pro) to synergistically enhance resistance to proteolysis. A link between proteolytic stability and peptide structure is established by the finding that a stabilized ΔVal-containing β-hairpin is more highly folded than its Asn-containing congener.
Collapse
Affiliation(s)
- Ankur Jalan
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, United States
| | - David W. Kastner
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, United States
| | - Kei G. I. Webber
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, United States
| | - Mason S. Smith
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, United States
| | - Joshua L. Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, United States
| | - Steven L. Castle
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, United States
| |
Collapse
|
9
|
Futami J, Miyamoto A, Hagimoto A, Suzuki S, Futami M, Tada H. Evaluation of irreversible protein thermal inactivation caused by breakage of disulphide bonds using methanethiosulphonate. Sci Rep 2017; 7:12471. [PMID: 28963503 PMCID: PMC5622167 DOI: 10.1038/s41598-017-12748-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 09/15/2017] [Indexed: 01/09/2023] Open
Abstract
Many extracellular globular proteins have evolved to possess disulphide bonds in their native conformations, which aids in thermodynamic stabilisation. However, disulphide bond breakage by heating leads to irreversible protein denaturation through disulphide-thiol exchange reactions. In this study, we demonstrate that methanethiosulphonate (MTS) specifically suppresses the heat-induced disulphide-thiol exchange reaction, thus improving the heat-resistance of proteins. In the presence of MTS, small globular proteins that contain disulphides can spontaneously refold from heat-denatured states, maintaining wild-type disulphide pairing. Because the disulphide-thiol exchange reaction is triggered by the generation of catalytic amounts of perthiol or thiol, rapid and specific perthiol/thiol protection by MTS reagents prevents irreversible denaturation. Combining MTS reagents with another additive that suppresses chemical modifications, glycinamide, further enhanced protein stabilisation. In the presence of these additives, reliable remnant activities were observed even after autoclaving. However, immunoglobulin G and biotin-binding protein, which are both composed of tetrameric quaternary structures, failed to refold from heat-denatured states, presumably due to chaperon requirements. Elucidation of the chemical modifications involved in irreversible thermoinactivation is useful for the development of preservation buffers with optimum constitutions for specific proteins. In addition, the impact of disulphide bond breakage on the thermoinactivation of proteins can be evaluated using MTS reagents.
Collapse
Affiliation(s)
- Junichiro Futami
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| | - Ai Miyamoto
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Atsushi Hagimoto
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Shigeyuki Suzuki
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Midori Futami
- Department of Biomedical Engineering, Faculty of Engineering, Okayama University of Science, Okayama, 700-0005, Japan
| | - Hiroko Tada
- Division of Instrumental Analysis, Department of Instrumental Analysis and Cryogenics, Advanced Science Research Center, Okayama University, Okayama, 700-8530, Japan
| |
Collapse
|
10
|
Nguyen TV, Osipov AV. A study of ribonuclease activity in venom of vietnam cobra. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2017; 59:20. [PMID: 29021904 PMCID: PMC5611641 DOI: 10.1186/s40781-017-0145-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/22/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Ribonuclease (RNase) is one of the few toxic proteins that are present constantly in snake venoms of all types. However, to date this RNase is still poorly studied in comparison not only with other toxic proteins of snake venom, but also with the enzymes of RNase group. The objective of this paper was to investigate some properties of RNase from venom of Vietnam cobra Naja atra. METHODS Kinetic methods and gel filtration chromatography were used to investigate RNase from venom of Vietnam cobra. RESULTS RNase from venom of Vietnam cobra Naja atra has some characteristic properties. This RNase is a thermostable enzyme and has high conformational stability. This is the only acidic enzyme of the RNase A superfamily exhibiting a high catalytic activity in the pH range of 1-4, with pHopt = 2.58 ± 0.35. Its activity is considerably reduced with increasing ionic strength of reaction mixture. Venom proteins are separated by gel filtration into four peaks with ribonucleolytic activity, which is abnormally distributed among the isoforms: only a small part of the RNase activity is present in fractions of proteins with molecular weights of 12-15 kDa and more than 30 kDa, but most of the enzyme activity is detected in fractions of polypeptides, having molecular weights of less than 9 kDa, that is unexpected. CONCLUSIONS RNase from the venom of Vietnam cobra is a unique member of RNase A superfamily according to its acidic optimum pH (pHopt = 2.58 ± 0.35) and extremely low molecular weights of its major isoforms (approximately 8.95 kDa for RNase III and 5.93 kDa for RNase IV).
Collapse
Affiliation(s)
- Thiet Van Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - A. V. Osipov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (RAS), Moscow, Russia
| |
Collapse
|
11
|
Wei Y, Thyparambil AA, Wu Y, Latour RA. Adsorption-induced changes in ribonuclease A structure and enzymatic activity on solid surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:14849-14858. [PMID: 25420087 PMCID: PMC4270395 DOI: 10.1021/la503854a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/22/2014] [Indexed: 05/30/2023]
Abstract
Ribonuclease A (RNase A) is a small globular enzyme that lyses RNA. The remarkable solution stability of its structure and enzymatic activity has led to its investigation to develop a new class of drugs for cancer chemotherapeutics. However, the successful clinical application of RNase A has been reported to be limited by insufficient stability and loss of enzymatic activity when it was coupled with a biomaterial carrier for drug delivery. The objective of this study was to characterize the structural stability and enzymatic activity of RNase A when it was adsorbed on different surface chemistries (represented by fused silica glass, high-density polyethylene, and poly(methyl-methacrylate)). Changes in protein structure were measured by circular dichroism, amino acid labeling with mass spectrometry, and in vitro assays of its enzymatic activity. Our results indicated that the process of adsorption caused RNase A to undergo a substantial degree of unfolding with significant differences in its adsorbed structure on each material surface. Adsorption caused RNase A to lose about 60% of its native-state enzymatic activity independent of the material on which it was adsorbed. These results indicate that the native-state structure of RNase A is greatly altered when it is adsorbed on a wide range of surface chemistries, especially at the catalytic site. Therefore, drug delivery systems must focus on retaining the native structure of RNase A in order to maintain a high level of enzymatic activity for applications such as antitumor chemotherapy.
Collapse
Affiliation(s)
- Yang Wei
- Department
of Bioengineering, Clemson University, 501 Rhodes Engineering Research
Center, Clemson, South Carolina 29634, United States
| | - Aby A. Thyparambil
- Department
of Bioengineering, Clemson University, 501 Rhodes Engineering Research
Center, Clemson, South Carolina 29634, United States
| | - Yonnie Wu
- Department
of Chemistry and Biochemistry, Auburn University, 172 Chemistry Building, Auburn, Alabama 36849, United States
| | - Robert A. Latour
- Department
of Bioengineering, Clemson University, 501 Rhodes Engineering Research
Center, Clemson, South Carolina 29634, United States
| |
Collapse
|
12
|
Lawrence PB, Gavrilov Y, Matthews SS, Langlois MI, Shental-Bechor D, Greenblatt HM, Pandey BK, Smith MS, Paxman R, Torgerson CD, Merrell JP, Ritz CC, Prigozhin MB, Levy Y, Price JL. Criteria for Selecting PEGylation Sites on Proteins for Higher Thermodynamic and Proteolytic Stability. J Am Chem Soc 2014; 136:17547-60. [DOI: 10.1021/ja5095183] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Paul B. Lawrence
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Yulian Gavrilov
- Department
of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sam S. Matthews
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Minnie I. Langlois
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Dalit Shental-Bechor
- Department
of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Harry M. Greenblatt
- Department
of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Brijesh K. Pandey
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Mason S. Smith
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Ryan Paxman
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Chad D. Torgerson
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Jacob P. Merrell
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Cameron C. Ritz
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Maxim B. Prigozhin
- Department
of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Yaakov Levy
- Department
of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Joshua L. Price
- Department
of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
13
|
Bagautdinov B, Matsuura Y, Yamamoto H, Sawano M, Ogasahara K, Takehira M, Kunishima N, Katoh E, Yutani K. Thermodynamic analysis of unusually thermostable CutA1 protein from human brain and its protease susceptibility. J Biochem 2014; 157:169-76. [PMID: 25344844 DOI: 10.1093/jb/mvu062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Unusually stable proteins are a disadvantage for the metabolic turnover of proteins in cells. The CutA1 proteins from Pyrococcus horikoshii and from Oryza sativa (OsCutA1) have unusually high denaturation temperatures (Td) of nearly 150 and 100 °C, respectively, at pH 7.0. It seemed that the CutA1 protein from the human brain (HsCutA1) also has a remarkably high stability. Therefore, the thermodynamic stabilities of HsCutA1 and its protease susceptibility were examined. The Td was remarkably high, being over 95 °C at pH 7.0. The unfolding Gibbs energy (ΔG(0)H2O) was 174 kJ/mol at 37 °C from the denaturant denaturation. The thermodynamic analysis showed that the unfolding enthalpy and entropy values of HsCutA1 were considerably lower than those of OsCutA1 with a similar stability to HsCutA1, which should be related to flexibility of the unstructured properties in both N- and C-terminals of HsCutA1. HsCutA1 was almost completely digested after 1-day incubation at 37 °C by subtilisin, although OsCutA1 was hardly digested at the same conditions. These results indicate that easily available fragmentation of HsCutA1 with remarkably high thermodynamic stability at the body temperature should be important for its protein catabolism in the human cells.
Collapse
Affiliation(s)
- Bagautdin Bagautdinov
- RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan; and National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Yoshinori Matsuura
- RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan; and National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Hitoshi Yamamoto
- RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan; and National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Masahide Sawano
- RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan; and National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Kyoko Ogasahara
- RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan; and National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Michiyo Takehira
- RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan; and National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Naoki Kunishima
- RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan; and National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Etsuko Katoh
- RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan; and National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Katsuhide Yutani
- RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan; and National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| |
Collapse
|
14
|
Arnold U. Stability and folding of amphibian ribonuclease A superfamily members in comparison with mammalian homologues. FEBS J 2014; 281:3559-75. [PMID: 24966023 DOI: 10.1111/febs.12891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/18/2014] [Indexed: 01/05/2023]
Abstract
Comparative studies on homologous proteins can provide knowledge on how limited changes in the primary structure find their expression in large effects on catalytic activity, stability or the folding behavior. For more than half a century, members of the ribonuclease A superfamily have been the subject of a myriad of studies on protein folding and stability. Both the unfolding and refolding kinetics as well as the structure of several folding intermediates of ribonuclease A have been characterized in detail. Moreover, the RNA-degrading activity of these enzymes provides a basis for their cytotoxicity, which renders them potential tumor therapeutics. Because amphibian ribonuclease A homologues evade the human ribonuclease inhibitor, they emerged as particularly promising candidates. Interestingly, the amphibian ribonuclease A homologues investigated to date are more stable than the mammalian homologues. Nevertheless, despite the generation of numerous genetically engineered variants, knowledge of the folding of amphibian ribonuclease A homologues remains rather limited. An exception is onconase, a ribonuclease A homologue from Rana pipiens, which has been characterized in detail. This review summarizes the data on the unfolding and refolding kinetics and pathways, as well on the stability of amphibian ribonuclease A homologues compared with those of ribonuclease A, the best known member of this superfamily.
Collapse
Affiliation(s)
- Ulrich Arnold
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Germany
| |
Collapse
|
15
|
Mitkevich VA, Schulga AA, Trofimov AA, Dorovatovskii PV, Goncharuk DA, Tkach EN, Makarov AA, Polyakov KM. Structure and functional studies of the ribonuclease binase Glu43Ala/Phe81Ala mutant. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:991-6. [PMID: 23695243 DOI: 10.1107/s0907444913004046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/09/2013] [Indexed: 11/11/2022]
Abstract
Ribonuclease from Bacillus intermedius (binase) is a small basic protein with antitumour activity. The three-dimensional structure of the binase mutant form Glu43Ala/Phe81Ala was determined at 1.98 Å resolution and its functional properties, such as the kinetic parameters characterizing the hydrolysis of polyinosinic acid and cytotoxicity towards Kasumi-1 cells, were investigated. In all crystal structures of binase studied previously the characteristic dimer is present, with the active site of one subunit being blocked owing to interactions within the dimer. In contrast to this, the new mutant form is not dimeric in the crystal. The catalytic efficiency of the mutant form is increased 1.7-fold and its cytotoxic properties are enhanced compared with the wild-type enzyme.
Collapse
Affiliation(s)
- V A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova 32, Moscow 119991, Russian Federation
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Vert A, Castro J, Ruiz-Martínez S, Tubert P, Escribano D, Ribó M, Vilanova M, Benito A. Generation of new cytotoxic human ribonuclease variants directed to the nucleus. Mol Pharm 2012; 9:2894-902. [PMID: 22957849 DOI: 10.1021/mp300217b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribonucleases are promising agents for use in anticancer therapy. Engineering a nuclear localization signal into the sequence of the human pancreatic ribonuclease has been revealed as a new strategy to endow this enzyme with cytotoxic activity against tumor cells. We previously described a cytotoxic human pancreatic ribonuclease variant, named PE5, which is able to cleave nuclear RNA, inducing the apoptosis of cancer cells and reducing the amount of P-glycoprotein in different multidrug-resistant cell lines. These results open the opportunity to use this ribonuclease in combination with other chemotherapeutics. In this work, we have investigated how to improve the properties of PE5 as an antitumor drug candidate. When attempting to develop a recombinant protein as a drug, two of the main desirable attributes are minimum immunogenicity and maximum potency. The improvements of PE5 have been designed in both senses. First, in order to reduce the potential immunogenicity of the protein, we have studied which residues mutated on PE5 can be reverted to those of the wild-type human pancreatic ribonuclease sequence without affecting its cytotoxicity. Second, we have investigated the effect of introducing an additional nuclear localization signal at different sites of PE5 in an effort to obtain a more cytotoxic enzyme. We show that the nuclear localization signal location is critical for the cytotoxicity. One of these variants, named NLSPE5, presents about a 10-fold increase in cytotoxicity respective to PE5. This variant induces apoptosis and kills the cells using the same mechanism as PE5.
Collapse
Affiliation(s)
- Anna Vert
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, M. Aurélia Campmany 69, Girona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Cytotoxicity of superoxide dismutase 1 in cultured cells is linked to Zn2+ chelation. PLoS One 2012; 7:e36104. [PMID: 22558346 PMCID: PMC3338499 DOI: 10.1371/journal.pone.0036104] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 03/29/2012] [Indexed: 12/20/2022] Open
Abstract
Neurodegeneration in protein-misfolding disease is generally assigned to toxic function of small, soluble protein aggregates. Largely, these assignments are based on observations of cultured neural cells where the suspect protein material is titrated directly into the growth medium. In the present study, we use this approach to shed light on the cytotoxic action of the metalloenzyme Cu/Zn superoxide dismutase 1 (SOD1), associated with misfolding and aggregation in amyotrophic lateral sclerosis (ALS). The results show, somewhat unexpectedly, that the toxic species of SOD1 in this type of experimental setting is not an aggregate, as typically observed for proteins implicated in other neuro-degenerative diseases, but the folded and fully soluble apo protein. Moreover, we demonstrate that the toxic action of apoSOD1 relies on the protein's ability to chelate Zn2+ ions from the growth medium. The decreased cell viability that accompanies this extraction is presumably based on disturbed Zn2+ homeostasis. Consistently, mutations that cause global unfolding of the apoSOD1 molecule or otherwise reduce its Zn2+ affinity abolish completely the cytotoxic response. So does the addition of surplus Zn2+. Taken together, these observations point at a case where the toxic response of cultured cells might not be related to human pathology but stems from the intrinsic limitations of a simplified cell model. There are several ways proteins can kill cultured neural cells but all of these need not to be relevant for neurodegenerative disease.
Collapse
|
19
|
Abstract
Mammalian pancreatic-type ribonucleases (ptRNases) comprise an enzyme family that is remarkably well suited for therapeutic exploitation. ptRNases are robust and prodigious catalysts of RNA cleavage that can naturally access the cytosol. Instilling cytotoxic activity requires endowing them with the ability to evade a cytosolic inhibitor protein while retaining other key attributes. These efforts have informed our understanding of ptRNase-based cytotoxins, as well as the action of protein-based drugs with cytosolic targets. Here, we address the most pressing problems encountered in the design of cytotoxic ptRNases, along with potential solutions. In addition, we describe assays that can be used to evaluate a successful design in vitro, in cellulo, and in vivo. The emerging information validates the continuing development of ptRNases as chemotherapeutic agents.
Collapse
Affiliation(s)
- Jo E Lomax
- Graduate Program in Cellular & Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | |
Collapse
|
20
|
Chao TY, Raines RT. Mechanism of ribonuclease A endocytosis: analogies to cell-penetrating peptides. Biochemistry 2011; 50:8374-82. [PMID: 21827164 PMCID: PMC3242730 DOI: 10.1021/bi2009079] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pancreatic-type ribonucleases can exert toxic activity by catalyzing the degradation of cellular RNA. Their ability to enter cells is essential for their cytotoxicity. Here, we determine the mechanism by which bovine pancreatic ribonuclease (RNase A) enters human cells. Inhibiting clathrin-dependent endocytosis with dynasore or chlorpromazine decreases RNase A-uptake by ~70%. Limited colocalization between RNase A and transferrin indicates that RNase A is not routed through recycling endosomes. Instead, vesicular staining of RNase A overlaps substantially with that of nona-arginine and the cationic peptide corresponding to residues 47-57 of the HIV-1 TAT protein. At low concentrations (<5 μM), internalization of RNase A and these cell-penetrating peptides (CPPs) is inhibited by chlorpromazine as well as the macropinocytosis inhibitors cytochalasin D and 5-(N-ethyl-N-isopropyl)amiloride to a similar extent, indicative of common endocytic mechanism. At high concentrations, CPPs adopt a nonendocytic mechanism of cellular entry that is not shared by RNase A. Collectively, these data suggest that RNase A is internalized via a multipathway mechanism that involves both clathrin-coated vesicles and macropinosomes. The parallel between the uptake of RNase A and CPPs validates reference to RNase A as a "cell-penetrating protein".
Collapse
Affiliation(s)
- Tzu-Yuan Chao
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| | - Ronald T. Raines
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
21
|
Nguyen DH, Joung YK, Choi JH, Moon HT, Park KD. Targeting ligand-functionalized and redox-sensitive heparin-Pluronic nanogels for intracellular protein delivery. Biomed Mater 2011; 6:055004. [PMID: 21849723 DOI: 10.1088/1748-6041/6/5/055004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The heparin-Pluronic (HP) conjugate was coupled via redox-sensitive disulfide bond and contains a vinyl sulfone (VS) group with high reactivity to some functional groups such as thiol group. Heparin was conjugated with cystamine and the terminal hydroxyl groups of Pluronic were activated with the VS group, followed by coupling of VS groups of Pluronic with cystamine of heparin. The chemical structure, heparin content and VS group content of the resulting product were determined by (1)H NMR, FT-IR, toluidine blue assay and Ellman's method. The HP conjugate formed a type of nanogel in an aqueous medium, showing a critical micelle concentration of approximately 129.35 mg L(-1), a spherical shape and the mean diameter of 115.7 nm, which were measured by AFM and DLS. The release test demonstrated that HP nanogel was rapidly degraded when treated with glutathione. Cytotoxicity results showed a higher viability of drug-free HP nanogel than that of drug-loaded one. Cyclo(Arg-Gly-Asp-D-Phe-Cys) (cRGDfC) peptide was efficiently conjugated to VS groups of HP nanogel and exhibited higher cellular uptake than unmodified nanogels. All results suggest a novel multi-functional nanocarrier delivery and effective release of proteins to the intracellular region in a redox-sensitive manner.
Collapse
Affiliation(s)
- Dai Hai Nguyen
- Department of Molecular Science and Technology, Ajou University, Yeoungtong, Suwon, Korea
| | | | | | | | | |
Collapse
|
22
|
Rutkoski TJ, Kink JA, Strong LE, Raines RT. Site-specific PEGylation endows a mammalian ribonuclease with antitumor activity. Cancer Biol Ther 2011; 12:208-14. [PMID: 21633186 PMCID: PMC3166498 DOI: 10.4161/cbt.12.3.15959] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 05/03/2011] [Indexed: 01/24/2023] Open
Abstract
Mammalian ribonucleases are emerging as cancer chemotherapeutic agents. Their cationicity engenders cell permeability, and their enzymatic activity destroys the biochemical information encoded by RNA. The pharmacologic potential of ribonucleases is, however, obviated by their high sensitivity to a cytosolic inhibitor protein (RI) and their small size, which limits their residence in serum. We reasoned that site specific conjugation of a poly(ethylene glycol) (PEG) chain could both reduce sensitivity to RI and increase serum half-life. We found that appending a PEG moiety can enable bovine pancreatic ribonuclease (RNase A) to evade RI, depending on the site of conjugation and the length and branching of the chain. Although a pendant PEG moiety decreases antiproliferative activity in vitro, PEGylation discourages renal clearance in vivo and leads to nearly complete tumor growth inhibition in a mouse xenograft model. These data demonstrate that a pendant PEG moiety can be beneficial to the action of proteins that act within the cytosol, and that strategic site-specific PEGylation can endow a mammalian ribonuclease with potent antitumor activity.
Collapse
Affiliation(s)
- Thomas J Rutkoski
- Department of Biochemistry, University of Wisconsin-Madison, WI, USA
| | | | | | | |
Collapse
|
23
|
|
24
|
Rutkoski TJ, Kink JA, Strong LE, Schilling CI, Raines RT. Antitumor activity of ribonuclease multimers created by site-specific covalent tethering. Bioconjug Chem 2010; 21:1691-702. [PMID: 20704261 DOI: 10.1021/bc100292x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Site-specific cross-linking can generate homogeneous multimeric proteins of defined valency. Pancreatic-type ribonucleases are an especially attractive target, as their natural dimers can enter mammalian cells, evade the cytosolic ribonuclease inhibitor (RI), and exert their toxic ribonucleolytic activity. Here, we report on the use of eight distinct thiol-reactive cross-linking reagents to produce dimeric and trimeric conjugates of four pancreatic-type ribonucleases. Both the site of conjugation and, to a lesser extent, the propinquity of the monomers within the conjugate modulate affinity for RI, and hence cytotoxicity. Still, the cytotoxicity of the multimers is confounded in vitro by their increased hydrodynamic radius, which attenuates cytosolic entry. A monomeric RI-evasive variant of bovine pancreatic ribonuclease (RNase A) inhibits the growth of human prostate and lung tumors in mice. An RI-evasive trimeric conjugate inhibits tumor growth at a lower dose and with less frequent administration than does the monomer. This effect is attributable to an enhanced persistence of the trimers in circulation. On a molecular basis, the trimer is ∼300-fold more efficacious and as well tolerated as erlotinib, which is in clinical use for the treatment of lung cancer. These data encourage the development of mammalian ribonucleases for the treatment of human cancers.
Collapse
Affiliation(s)
- Thomas J Rutkoski
- Departments of Biochemistry and Chemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
25
|
Giancola C, Ercole C, Fotticchia I, Spadaccini R, Pizzo E, D’Alessio G, Picone D. Structure-cytotoxicity relationships in bovine seminal ribonuclease: new insights from heat and chemical denaturation studies on variants. FEBS J 2010; 278:111-22. [DOI: 10.1111/j.1742-4658.2010.07937.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Abstract
The S-peptide and S-protein components of bovine pancreatic ribonuclease form a noncovalent complex with restored ribonucleolytic activity. Although this archetypal protein-fragment complementation system has been the object of historic work in protein chemistry, intrinsic limitations compromise its utility. Modern methods are shown to overcome those limitations and enable new applications.
Collapse
Affiliation(s)
- Rex W Watkins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1544, USA
| | | | | |
Collapse
|
27
|
NMR structural determinants of eosinophil cationic protein binding to membrane and heparin mimetics. Biophys J 2010; 98:2702-11. [PMID: 20513415 DOI: 10.1016/j.bpj.2010.02.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/04/2010] [Accepted: 02/26/2010] [Indexed: 01/05/2023] Open
Abstract
Eosinophil cationic protein (ECP) is a highly stable, cytotoxic ribonuclease with the ability to enter and disrupt membranes that participates in innate immune defense against parasites but also kills human cells. We have used NMR spectroscopy to characterize the binding of ECP to membrane and heparin mimetics at a residue level. We believe we have identified three Arg-rich surface loops and Trp(35) as crucial for membrane binding. Importantly, we have provided evidence that the interaction surface of ECP with heparin mimetics is extended with respect to that previously described (fragment 34-38). We believe we have identified new sites involved in the interaction for the first time, and shown that the N-terminal alpha-helix, the third loop, and the first and last beta-strands are key for heparin binding. We have also shown that a biologically active ECP N-terminal fragment comprising the first 45 residues (ECP1-45) retains the capacity to bind membrane and heparin mimetics, thus neither the ECP tertiary structure nor its high conformational stability are required for cytotoxicity.
Collapse
|
28
|
Schulenburg C, Weininger U, Neumann P, Meiselbach H, Stubbs MT, Sticht H, Balbach J, Ulbrich-Hofmann R, Arnold U. Impact of the C-terminal Disulfide Bond on the Folding and Stability of Onconase. Chembiochem 2010; 11:978-86. [DOI: 10.1002/cbic.200900773] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Laurents DV, Bruix M, Jiménez MA, Santoro J, Boix E, Moussaoui M, Nogués MV, Rico M. The (1)H, (13)C, (15)N resonance assignment, solution structure, and residue level stability of eosinophil cationic protein/RNase 3 determined by NMR spectroscopy. Biopolymers 2010; 91:1018-28. [PMID: 19189375 DOI: 10.1002/bip.21152] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Eosinophil cationic protein (ECP)/human RNase 3, a member of the RNase A family, is a remarkably cytotoxic protein implicated in asthma and allergies. These activities are probably due to ECP's ability to interact with and disrupt membranes and depend on two Trp, 19 Arg, and possibly an extremely high conformational stability. Here, we have used NMR spectroscopy to assign essentially all (1)H, (15)N, and backbone (13)C resonances, to solve the 3D structure in aqueous solution and to quantify its residue-level stability. The NMR solution structure was determined on the basis of 2316 distance constraints and is well-defined (backbone RMSD = 0.81 A). The N-terminus and the loop composed of residues 114-123 are relatively well-ordered; in contrast, conformational diversity is observed for the loop segments 17-22, 65-68, and 92-95 and most exposed sidechains. The side chain NH groups of the two Trp and 19 Arg showed no significant protection against hydrogen/deuterium exchange. The most protected NH groups belong to the first and last two beta-strands, and curiously, the first alpha-helix. Analysis of their exchange rates reveals a strikingly high global stability of 11.8 kcal/mol. This value and other stability measurements are used to better quantify ECP's unfolding thermodynamics.
Collapse
|
30
|
Abstract
Onconase (ONC) is a member of the ribonuclease A superfamily that is toxic to cancer cells in vitro and in vivo. ONC is now in Phase IIIb clinical trials for the treatment of malignant mesothelioma. Internalization of ONC to the cytosol of cancer cells is essential for its cytotoxic activity, despite the apparent absence of a cell-surface receptor protein. Endocytosis and cytotoxicity do, however, appear to correlate with the net positive charge of ribonucleases. To dissect the contribution made by the endogenous arginine and lysine residues of ONC to its cytotoxicity, 22 variants were created in which cationic residues were replaced with alanine. Variants with the same net charge (+2 to +5) as well as equivalent catalytic activity and conformational stability were found to exhibit large (> 10-fold) differences in toxicity for the cells of a human leukemia line. In addition, a more cationic ONC variant could be either much more or much less cytotoxic than a less cationic variant, again depending on the distribution of its cationic residues. The endocytosis of variants with widely divergent cytotoxic activity was quantified by flow cytometry using a small-molecule fluorogenic label, and was found to vary by twofold or less. This small difference in endocytosis did not account for the large difference in cytotoxicity, implicating the distribution of cationic residues as being critical for lipid-bilayer translocation subsequent to endocytosis. This finding has fundamental implications for understanding the interaction of ribonucleases and other proteins with mammalian cells.
Collapse
Affiliation(s)
- Rebecca F Turcotte
- Medical Scientist Training Program and Biophysics Graduate Program, University of Wisconsin-Madison, WI, USA
| | | | | |
Collapse
|
31
|
Pecher P, Arnold U. The effect of additional disulfide bonds on the stability and folding of ribonuclease A. Biophys Chem 2009; 141:21-8. [DOI: 10.1016/j.bpc.2008.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 12/11/2008] [Accepted: 12/13/2008] [Indexed: 11/25/2022]
|
32
|
Torrent G, Ribó M, Benito A, Vilanova M. Bactericidal Activity Engineered on Human Pancreatic Ribonuclease and Onconase. Mol Pharm 2009; 6:531-42. [DOI: 10.1021/mp8001914] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gerard Torrent
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi s/n 17071 Girona, Spain, and Institut d’Investigació Biomèdica de Girona Josep Trueta, Girona, Spain
| | - Marc Ribó
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi s/n 17071 Girona, Spain, and Institut d’Investigació Biomèdica de Girona Josep Trueta, Girona, Spain
| | - Antoni Benito
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi s/n 17071 Girona, Spain, and Institut d’Investigació Biomèdica de Girona Josep Trueta, Girona, Spain
| | - Maria Vilanova
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi s/n 17071 Girona, Spain, and Institut d’Investigació Biomèdica de Girona Josep Trueta, Girona, Spain
| |
Collapse
|
33
|
Schirrmann T, Krauss J, Arndt MAE, Rybak SM, Dübel S. Targeted therapeutic RNases (ImmunoRNases). Expert Opin Biol Ther 2008; 9:79-95. [DOI: 10.1517/14712590802631862] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Turcotte RF, Raines RT. Design and characterization of an HIV-specific ribonuclease zymogen. AIDS Res Hum Retroviruses 2008; 24:1357-63. [PMID: 19025416 DOI: 10.1089/aid.2008.0146] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ribonucleases are evoking medical interest because of their intrinsic cytotoxic activity. Most notably, ranpirnase, which is an amphibian ribonuclease, is in advanced clinical trials as a chemotherapeutic agent for the treatment of cancer. Here, we describe a strategy to create a novel antiviral agent based on bovine pancreatic ribonuclease (RNase A), a mammalian homologue of ranpirnase. Specifically, we have linked the N- and C-termini of RNase A with an amino acid sequence that is recognized and cleaved by human immunodeficiency virus (HIV) protease. This linkage obstructs the active site, forming an HIV-specific RNase A zymogen. Cleavage by HIV-1 protease increases ribonucleolytic activity by 50-fold. By relying on the proper function of HIV-1 protease, rather than its inhibition, our approach will not engender known mechanisms of resistance. Thus, we report an initial step toward a new class of agents for the treatment of HIV/AIDS.
Collapse
Affiliation(s)
- Rebecca F. Turcotte
- Medical Scientist Training Program and Biophysics Graduate Program, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Ronald T. Raines
- Departments of Biochemistry and Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706
| |
Collapse
|
35
|
Shklyaeva OA, Mironova NL, Malkova EM, Taranov OS, Ryabchikova EI, Zenkova MA, Vlasov VV. Cancer-suppressive effect of RNase A and DNase I. DOKL BIOCHEM BIOPHYS 2008; 420:108-11. [PMID: 18680903 DOI: 10.1134/s1607672908030034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- O A Shklyaeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent'eva 8, Novosibirsk, 630090 Russia
| | | | | | | | | | | | | |
Collapse
|
36
|
Torrent G, Benito A, Castro J, Ribó M, Vilanova M. Contribution of the C30/C75 disulfide bond to the biological properties of onconase. Biol Chem 2008. [DOI: 10.1515/bc.2008.114_bchm.just-accepted] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Torrent G, Benito A, Castro J, Ribó M, Vilanova M. Contribution of the C30/C75 disulfide bond to the biological properties of onconase. Biol Chem 2008; 389:1127-36. [DOI: 10.1515/bc.2008.114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractOnconase, a member of the pancreatic type ribonuclease family, is currently used as a chemotherapeutic agent for the treatment of different types of cancer. It is widely accepted that one of the properties that renders this enzyme cytotoxic is its ability to evade the cytosolic ribonuclease inhibitor (RI). In the present work, we produced and characterized an onconase variant that lacks the disulfide bond C30/C75. This variant mimics the stable unfolding intermediate des(30–75) produced in the reductive unfolding pathway of onconase. We found that the reduction of the C30/C75 disulfide bond does not significantly alter the cytotoxic properties of onconase, although the variant possesses a notably reduced conformational stability. Interestingly, both its catalytic activity and its ability to evade RI are comparable to wild-type onconase under mild reductive conditions in which the three disulfide containing intermediate des(30–75) is present. These results suggest that the C30/C75 disulfide bond could easily be reduced under physiological redox conditions.
Collapse
|
38
|
Pradeep L, Kurinov I, Ealick SE, Scheraga HA. Implementation of a k/k(0) method to identify long-range structure in transition states during conformational folding/unfolding of proteins. Structure 2007; 15:1178-89. [PMID: 17937908 DOI: 10.1016/j.str.2007.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 08/02/2007] [Accepted: 08/06/2007] [Indexed: 10/22/2022]
Abstract
A previously introduced kinetic-rate constant (k/k(0)) method, where k and k(0) are the folding (unfolding) rate constants in the mutant and the wild-type forms, respectively, of a protein, has been applied to obtain qualitative information about structure in the transition state ensemble (TSE) of bovine pancreatic ribonuclease A (RNase A), which contains four native disulfide bonds. The method compares the folding (unfolding) kinetics of RNase A, with and without a covalent crosslink and tests whether the crosslinked residues are associated in the folding (unfolding) transition state (TS) of the noncrosslinked version. To confirm that the fifth disulfide bond has not introduced a significant structural perturbation, we solved the crystal structure of the V43C-R85C mutant to 1.6 A resolution. Our findings suggest that residues Val43 and Arg85 are not associated, and that residues Ala4 and Val118 may form nonnative contacts, in the folding (unfolding) TSE of RNase A.
Collapse
Affiliation(s)
- Lovy Pradeep
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
39
|
Johnson RJ, Chao TY, Lavis LD, Raines RT. Cytotoxic ribonucleases: the dichotomy of Coulombic forces. Biochemistry 2007; 46:10308-16. [PMID: 17705507 PMCID: PMC2864629 DOI: 10.1021/bi700857u] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cells tightly regulate their contents. Still, nonspecific Coulombic interactions between cationic molecules and anionic membrane components can lead to adventitious endocytosis. Here, we characterize this process in a natural system. To do so, we create variants of human pancreatic ribonuclease (RNase 1) that differ in net molecular charge. By conjugating a small-molecule latent fluorophore to these variants and using flow cytometry, we are able to determine the kinetic mechanism for RNase 1 internalization into live human cells. We find that internalization increases with solution concentration and is not saturable. Internalization also increases with time to a steady-state level, which varies linearly with molecular charge. In contrast, the rate constant for internalization (t1/2 = 2 h) is independent of charge. We conclude that internalization involves an extracellular equilibrium complex between the cationic proteins and abundant anionic cell-surface molecules, followed by rate-limiting internalization. The enhanced internalization of more cationic variants of RNase 1 is, however, countered by their increased affinity for the cytosolic ribonuclease inhibitor protein, which is anionic. Thus, Coulombic forces mediate extracellular and intracellular equilibria in a dichotomous manner that both endangers cells and defends them from the potentially lethal enzymatic activity of ribonucleases.
Collapse
Affiliation(s)
- R. Jeremy Johnson
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Tzu-Yuan Chao
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Luke D. Lavis
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Ronald T. Raines
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706
- To whom correspondence should be addressed: Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, WI 53706-1544. Telephone: 608-262-8588. Fax: 608-262-3453.
| |
Collapse
|
40
|
Wang NR, Hergenrother PJ. A continuous fluorometric assay for the assessment of MazF ribonuclease activity. Anal Biochem 2007; 371:173-83. [PMID: 17706586 PMCID: PMC2443740 DOI: 10.1016/j.ab.2007.07.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 07/06/2007] [Accepted: 07/09/2007] [Indexed: 10/23/2022]
Abstract
Plasmids maintain themselves in their bacterial host through several different mechanisms, one of which involves the synthesis of plasmid-encoded toxin and antitoxin proteins. When the plasmid is present, the antitoxin binds to and neutralizes the toxin. If a plasmid-free daughter cell arises, however, the labile antitoxin is degraded (and not replenished) and the toxin kills the cell from within. These toxin-antitoxin (TA) systems thereby function as postsegregational killing systems, and the disruption of the TA interaction represents an intriguing antibacterial strategy. It was recently discovered that the genes for one particular TA system, MazEF, are ubiquitous on plasmids isolated from clinical vancomycin-resistant enterococci (VRE) strains. Thus, it appears that small molecule disruptors of the MazEF interaction have potential as antibacterial agents. The MazF toxin protein is known to be a ribonuclease. Unfortunately, traditional methods for the assessment of MazF activity rely on the use of radiolabeled substrates followed by analysis with polyacrylamide gel electrophoresis. This article describes a simple and convenient continuous assay for the assessment of MazF activity. The assay uses an oligonucleotide with a fluorophore on the 5' end and a quencher on the 3' end, and processing of this substrate by MazF results in a large increase in the fluorescence signal. Through this assay, we have for the first time determined K(M) and V(max) values for this enzyme and have also found that MazF is not inhibited by standard ribonuclease inhibitors. This assay will be useful to those interested in the biochemistry of the MazF family of toxins and the disruption of MazE/MazF.
Collapse
|
41
|
Simons BL, Kaplan H, Fournier SM, Cyr T, Hefford MA. A novel cross-linked RNase A dimer with enhanced enzymatic properties. Proteins 2007; 66:183-95. [PMID: 17044066 DOI: 10.1002/prot.21144] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A new cross-linked ribonuclease A (RNase A) dimer composed of monomeric units covalently linked by a single amide bond between the side-chains of Lys(66) and Glu(9) is described. The dimer was prepared in the absence of water by incubating a lyophilized preparation of RNase, sealed under vacuum, in an oven at 85 degrees C. It was determined that the in vacuo procedure does not induce any significant conformational changes to the overall structure of RNase A, yet the amide cross-link has an increased acid lability, indicating that it is exposed and conformationally strained. Examination of X-ray crystallographic structures indicates that Lys(66) and Glu(9) are not close enough for the in vacuo dimer to adopt any of the known domain-swapped conformations. Therefore, the in vacuo RNase A dimer appears to be a novel dimeric structure. The in vacuo RNase A dimer also exhibits a twofold increase in activity over monomeric RNase A on a per monomer basis. This doubling of enzymatic activity was shown using dsRNA and ssRNA as substrates. In addition to this enhanced ability to degrade RNA, the dimer is not inhibited by the cellular ribonuclease inhibitor protein (cRI).
Collapse
Affiliation(s)
- Brigitte L Simons
- Centre for Biologics Research, Biologics and Genetics Therapies Directorate, Health Canada, Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
42
|
Johnson RJ, McCoy JG, Bingman CA, Phillips GN, Raines RT. Inhibition of human pancreatic ribonuclease by the human ribonuclease inhibitor protein. J Mol Biol 2007; 368:434-49. [PMID: 17350650 PMCID: PMC1993901 DOI: 10.1016/j.jmb.2007.02.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 01/27/2007] [Accepted: 02/02/2007] [Indexed: 11/26/2022]
Abstract
The ribonuclease inhibitor protein (RI) binds to members of the bovine pancreatic ribonuclease (RNase A) superfamily with an affinity in the femtomolar range. Here, we report on structural and energetic aspects of the interaction between human RI (hRI) and human pancreatic ribonuclease (RNase 1). The structure of the crystalline hRI x RNase 1 complex was determined at a resolution of 1.95 A, revealing the formation of 19 intermolecular hydrogen bonds involving 13 residues of RNase 1. In contrast, only nine such hydrogen bonds are apparent in the structure of the complex between porcine RI and RNase A. hRI, which is anionic, also appears to use its horseshoe-shaped structure to engender long-range Coulombic interactions with RNase 1, which is cationic. In accordance with the structural data, the hRI.RNase 1 complex was found to be extremely stable (t(1/2)=81 days; K(d)=2.9 x 10(-16) M). Site-directed mutagenesis experiments enabled the identification of two cationic residues in RNase 1, Arg39 and Arg91, that are especially important for both the formation and stability of the complex, and are thus termed "electrostatic targeting residues". Disturbing the electrostatic attraction between hRI and RNase 1 yielded a variant of RNase 1 that maintained ribonucleolytic activity and conformational stability but had a 2.8 x 10(3)-fold lower association rate for complex formation and 5.9 x 10(9)-fold lower affinity for hRI. This variant of RNase 1, which exhibits the largest decrease in RI affinity of any engineered ribonuclease, is also toxic to human erythroleukemia cells. Together, these results provide new insight into an unusual and important protein-protein interaction, and could expedite the development of human ribonucleases as chemotherapeutic agents.
Collapse
Affiliation(s)
- R Jeremy Johnson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA
| | | | | | | | | |
Collapse
|
43
|
Johnson RJ, Lin SR, Raines RT. A ribonuclease zymogen activated by the NS3 protease of the hepatitis C virus. FEBS J 2007; 273:5457-65. [PMID: 17116245 DOI: 10.1111/j.1742-4658.2006.05536.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Translating proteases as inactive precursors, or zymogens, protects cells from the potentially lethal action of unregulated proteolytic activity. Here, we impose this strategy on bovine pancreatic ribonuclease (RNase A) by creating a zymogen in which quiescent ribonucleolytic activity is activated by the NS3 protease of the hepatitis C virus. Connecting the N-terminus and C-terminus of RNase A with a 14-residue linker was found to diminish its ribonucleolytic activity by both occluding an RNA substrate and dislocating active-site residues, which are devices used by natural zymogens. After cleavage of the linker by the NS3 protease, the ribonucleolytic activity of the RNase A zymogen increased 105-fold. Both before and after activation, the RNase A zymogen displayed high conformational stability and evasion of the endogenous ribonuclease inhibitor protein of the mammalian cytosol. Thus, the creation of ribonuclease zymogens provides a means to control ribonucleolytic activity and has the potential to provide a new class of antiviral chemotherapeutic agents.
Collapse
Affiliation(s)
- R J Johnson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
44
|
Smith BD, Raines RT. Genetic selection for critical residues in ribonucleases. J Mol Biol 2006; 362:459-78. [PMID: 16920150 DOI: 10.1016/j.jmb.2006.07.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 07/03/2006] [Accepted: 07/11/2006] [Indexed: 11/24/2022]
Abstract
Homologous mammalian proteins were subjected to an exhaustive search for residues that are critical to their structure/function. Error-prone polymerase chain reactions were used to generate random mutations in the genes of bovine pancreatic ribonuclease (RNase A) and human angiogenin, and a genetic selection based on the intrinsic cytotoxicity of ribonucleolytic activity was used to isolate inactive variants. Twenty-three of the 124 residues in RNase A were found to be intolerant to substitution with at least one particular amino acid. Twenty-nine of the 123 residues in angiogenin were likewise intolerant. In both RNase A and angiogenin, only six residues appeared to be wholly intolerant to substitution: two histidine residues involved in general acid/base catalysis and four cysteine residues that form two disulfide bonds. With few exceptions, the remaining critical residues were buried in the hydrophobic core of the proteins. Most of these residues were found to tolerate only conservative substitutions. The importance of a particular residue as revealed by this genetic selection correlated with its sequence conservation, though several non-conserved residues were found to be critical for protein structure/function. Despite voluminous research on RNase A, the importance of many residues identified herein was unknown, and those can now serve as targets for future work. Moreover, a comparison of the critical residues in RNase A and human angiogenin, which share only 35% amino acid sequence identity, provides a unique perspective on the molecular evolution of the RNase A superfamily, as well as an impetus for applying this methodology to other ribonucleases.
Collapse
Affiliation(s)
- Bryan D Smith
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
45
|
Arnold U, Ulbrich-Hofmann R. Natural and engineered ribonucleases as potential cancer therapeutics. Biotechnol Lett 2006; 28:1615-22. [PMID: 16902846 DOI: 10.1007/s10529-006-9145-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 06/13/2006] [Indexed: 01/05/2023]
Abstract
By reason of their cytotoxicity, ribonucleases (RNases) are potential anti-tumor drugs. Particularly members from the RNase A and RNase T1 superfamilies have shown promising results. Among these enzymes, Onconase, an RNase from the Northern Leopard frog, is furthest along in clinical trials. A general model for the mechanism of the cytotoxic action of RNases includes the interaction of the enzyme with the cellular membrane, internalization, translocation to the cytosol, and degradation of ribonucleic acid. The interplay of these processes as well as the role of the thermodynamic and proteolytic stability, the catalytic activity, and the capability of the RNase to evade the intracellular RNase inhibitor has not yet been fully elucidated. This paper discusses the various approaches to exploit RNases as cytotoxic agents.
Collapse
Affiliation(s)
- Ulrich Arnold
- Department of Biochemistry/Biotechnology, Martin-Luther University, Kurt-Mothes-Strasse 3, 06120, Halle, Germany.
| | | |
Collapse
|
46
|
Leich F, Köditz J, Ulbrich-Hofman R, Arnold U. Tandemization Endows Bovine Pancreatic Ribonuclease with Cytotoxic Activity. J Mol Biol 2006; 358:1305-13. [PMID: 16580680 DOI: 10.1016/j.jmb.2006.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 02/17/2006] [Accepted: 03/03/2006] [Indexed: 11/23/2022]
Abstract
Due to their ability to degrade RNA, selected members of the bovine pancreatic ribonuclease A (RNase A) superfamily are potent cytotoxins. These cytotoxic ribonucleases enter the cytosol of target cells, where they degrade cellular RNA and cause cell death. The cytotoxic activity of most RNases, however, is abolished by the cytosolic ribonuclease inhibitor (RI). Consequently, the development of RNase derivatives with the ability to evade RI binding is a desirable goal. In this study, tandem enzymes consisting of two RNase A units that are bound covalently via a peptide linker were generated by gene duplication. As deduced from the crystal structure of the RNase A.RI complex, one RNase A unit of the tandem enzyme can still be bound by RI. The other unit, however, should remain unbound because of steric hindrance. This free RNase A unit is expected to maintain its activity and to act as a cytotoxic agent. The study of the influence of the linker sequence on the conformation and stability of these constructs revealed that tandemization has only minor effects on the activity and stability of the constructs in comparison to monomeric RNase A. Relative activity was decreased by 10-50% and the melting temperature was decreased by less than 2.5 K. Furthermore, the cytotoxic potency of the RNase A tandem enzymes was investigated. Despite an in vitro inhibition by RI, tandemization was found to endow RNase A with remarkable cytotoxic activity. While monomeric RNase A is not cytotoxic, IC(50) values of the RNase A tandem variants decreased to 70.3-12.9 microM. These findings might establish the development of a new class of chemotherapeutic agents based on pancreatic ribonucleases.
Collapse
Affiliation(s)
- Franziska Leich
- Department of Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Str. 3, 06120 Halle, Germany.
| | | | | | | |
Collapse
|
47
|
Arnold U, Schulenburg C, Schmidt D, Ulbrich-Hofmann R. Contribution of Structural Peculiarities of Onconase to Its High Stability and Folding Kinetics. Biochemistry 2006; 45:3580-7. [PMID: 16533040 DOI: 10.1021/bi0525223] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Onconase (ONC) from Rana pipiens is the smallest member of the ribonuclease A (RNase A) superfamily. Despite a tertiary structure similar to RNase A, ONC is distinguished by an extremely high thermodynamic stability. In the present paper we have probed the significance of three structural regions, which exhibit structural peculiarities in comparison to RNase A, for the stability of ONC to temperature and guanidine hydrochloride induced denaturation: (i) the N-terminal pyroglutamate residue, (ii) the hydrophobic cluster between helix I and the first beta-sheet, and (iii) the C-terminal disulfide bond. For this purpose, the enzyme variants <E1E-, <E1P-, F28T-, F28A-, F36Y-, and C87A/C104A-ONC were produced and studied in equilibrium and kinetic measurements. The destabilizing influence of the mutations strongly depended on the modified structural region. The exchanges of the N-terminal pyroglutamate (<E1E- and <E1P-ONC) had the smallest impact (DeltaDeltaG([D])50% = 4.2 and 7.0 kJ mol(-)(1)), while interferences in the hydrophobic cluster (F28T-, F28A-, and F36Y-ONC) had larger effects (DeltaDeltaG([D])50% = 22.2, 20.9, and 19.5 kJ mol(-)(1)). The removal of the C-terminal disulfide bond (C87A/C104A-ONC) showed the largest influence on stability (DeltaDeltaG([D])50% = 32.0 kJ mol(-)(1)). As concluded from the comparison of DeltaDeltaG([D])50% and DeltaDeltaG++(U)[D]50%, all destabilization effects were exclusively caused by increased unfolding rate constants except for C87A/C104A-ONC, where unfolding as well as folding was impacted. Of all amino acid residues investigated, Phe28, which is unique for ONC among the ribonucleases, had the greatest importance for rate of unfolding. Our data on the folding and unfolding kinetics indicate that the strong stabilization of ONC in comparison to RNase A is caused by a dramatic deceleration of the unfolding reaction.
Collapse
Affiliation(s)
- Ulrich Arnold
- Department of Biochemistry/Biotechnology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Strasse 3, 06120 Halle, Germany.
| | | | | | | |
Collapse
|
48
|
Benito A, Ribó M, Vilanova M. On the track of antitumour ribonucleases. MOLECULAR BIOSYSTEMS 2005; 1:294-302. [PMID: 16880994 DOI: 10.1039/b502847g] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ribonucleases (RNases) are potential alternatives to non-mutagenic antitumour drugs. Among these enzymes, onconase, bovine-seminal ribonuclease and the Rana catesbeiana and Rana japonica lectins exert a cytotoxic activity that is selective for tumour cells. A model for the mechanism of cytotoxicity of these RNases which involves different steps is generally accepted. The model predicts that cytotoxicity requires interaction of the RNases with the cell membrane and internalisation to occur by endocytosis. Then, at a precise point, the RNases are translocated to the cytosol where they cleave cellular RNA if they have been able to preserve their ribonucleolytic activity. The cleavage of cellular RNA induces apoptosis but there is evidence suggesting that RNase-triggered apoptosis does not entirely result from the inhibition of protein synthesis. How efficiently a particular RNase carries out each of the steps determines its potency as a cytotoxin.
Collapse
Affiliation(s)
- Antoni Benito
- Laboratori d'Enginyeria de Proteïnes, Facultat de Ciències, Universitat de Girona, Girona, Spain
| | | | | |
Collapse
|
49
|
Rutkoski TJ, Kurten EL, Mitchell JC, Raines RT. Disruption of shape-complementarity markers to create cytotoxic variants of ribonuclease A. J Mol Biol 2005; 354:41-54. [PMID: 16188273 DOI: 10.1016/j.jmb.2005.08.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 08/06/2005] [Accepted: 08/08/2005] [Indexed: 10/25/2022]
Abstract
Onconase (ONC), an amphibian member of the bovine pancreatic ribonuclease A (RNase A) superfamily, is in phase III clinical trials as a treatment for malignant mesothelioma. RNase A is a far more efficient catalyst of RNA cleavage than ONC but is not cytotoxic. The innate ability of ONC to evade the cytosolic ribonuclease inhibitor protein (RI) is likely to be a primary reason for its cytotoxicity. In contrast, the non-covalent interaction between RNase A and RI is one of the strongest known, with the RI.RNase A complex having a K(d) value in the femtomolar range. Here, we report on the use of the fast atomic density evaluation (FADE) algorithm to identify regions in the molecular interface of the RI.RNase A complex that exhibit a high degree of geometric complementarity. Guided by these "knobs" and "holes", we designed variants of RNase A that evade RI. The D38R/R39D/N67R/G88R substitution increased the K(d) value of the pRI.RNase A complex by 20 x 10(6)-fold (to 1.4 microM) with little change to catalytic activity or conformational stability. This and two related variants of RNase A were more toxic to human cancer cells than was ONC. Notably, these cytotoxic variants exerted their toxic activity on cancer cells selectively, and more selectively than did ONC. Substitutions that further diminish affinity for RI (which has a cytosolic concentration of 4 microM) are unlikely to produce a substantial increase in cytotoxic activity. These results demonstrate the utility of the FADE algorithm in the examination of protein-protein interfaces and represent a landmark towards the goal of developing chemotherapeutics based on mammalian ribonucleases.
Collapse
Affiliation(s)
- Thomas J Rutkoski
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
50
|
|