1
|
Querl L, Krebber H. Defenders of the Transcriptome: Guard Protein-Mediated mRNA Quality Control in Saccharomyces cerevisiae. Int J Mol Sci 2024; 25:10241. [PMID: 39408571 PMCID: PMC11476243 DOI: 10.3390/ijms251910241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Cell survival depends on precise gene expression, which is controlled sequentially. The guard proteins surveil mRNAs from their synthesis in the nucleus to their translation in the cytoplasm. Although the proteins within this group share many similarities, they play distinct roles in controlling nuclear mRNA maturation and cytoplasmic translation by supporting the degradation of faulty transcripts. Notably, this group is continuously expanding, currently including the RNA-binding proteins Npl3, Gbp2, Hrb1, Hrp1, and Nab2 in Saccharomyces cerevisiae. Some of the human serine-arginine (SR) splicing factors (SRSFs) show remarkable similarities to the yeast guard proteins and may be considered as functional homologues. Here, we provide a comprehensive summary of their crucial mRNA surveillance functions and their implications for cellular health.
Collapse
Affiliation(s)
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Georg-August Universität Göttingen, 37077 Göttingen, Germany;
| |
Collapse
|
2
|
Wanat JJ, McCann JJ, Tingey M, Atkins J, Merlino CO, Lee-Soety JY. Yeast Npl3 regulates replicative senescence outside of TERRA R-loop resolution and co-transcriptional processing. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-21. [PMID: 38976968 DOI: 10.1080/15257770.2024.2374023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
Eukaryotic cells without telomerase experience progressively shorter telomeres with each round of cell division until cell cycle arrest is initiated, leading to replicative senescence. When yeast TLC1, which encodes the RNA template of telomerase, is deleted, senescence is accompanied by increased expression of TERRA (non-coding telomere repeat-containing RNA). Deletion of Npl3, an RNA-processing protein with telomere maintenance functions, accelerates senescence in tlc1Δ cells and significantly increases TERRA levels. Using genetic approaches, we set out to determine how Npl3 is involved in regulating TERRA expression and maintaining telomere homeostasis. Even though Npl3 regulates hyperrecombination, we found that Npl3 does not help resolve RNA:DNA hybrids formed during TERRA synthesis in the same way as RNase H1 and H2. Furthermore, Rad52 is still required for cells to escape senescence by telomere recombination in the absence of Npl3. Npl3 also works separately from the THO/TREX pathway for processing nascent RNA for nuclear export. However, deleting Dot1, a histone methyltransferase involved in tethering telomeres to the nuclear periphery, rescued the accelerated senescence phenotype of npl3Δ cells. Thus, our study suggests that Npl3 plays an additional role in regulating cellular senescence outside of RNA:DNA hybrid resolution and co-transcriptional processing.
Collapse
Affiliation(s)
- Jennifer J Wanat
- Department of Biology, Washington College, Chestertown, Maryland, USA
| | - Jennifer J McCann
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Mark Tingey
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Jessica Atkins
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Corinne O Merlino
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Julia Y Lee-Soety
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Delan-Forino C, Spanos C, Rappsilber J, Tollervey D. Substrate specificity of the TRAMP nuclear surveillance complexes. Nat Commun 2020; 11:3122. [PMID: 32561742 PMCID: PMC7305330 DOI: 10.1038/s41467-020-16965-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 05/29/2020] [Indexed: 01/01/2023] Open
Abstract
During nuclear surveillance in yeast, the RNA exosome functions together with the TRAMP complexes. These include the DEAH-box RNA helicase Mtr4 together with an RNA-binding protein (Air1 or Air2) and a poly(A) polymerase (Trf4 or Trf5). To better determine how RNA substrates are targeted, we analyzed protein and RNA interactions for TRAMP components. Mass spectrometry identified three distinct TRAMP complexes formed in vivo. These complexes preferentially assemble on different classes of transcripts. Unexpectedly, on many substrates, including pre-rRNAs and pre-mRNAs, binding specificity is apparently conferred by Trf4 and Trf5. Clustering of mRNAs by TRAMP association shows co-enrichment for mRNAs with functionally related products, supporting the significance of surveillance in regulating gene expression. We compared binding sites of TRAMP components with multiple nuclear RNA binding proteins, revealing preferential colocalization of subsets of factors. TRF5 deletion reduces Mtr4 recruitment and increases RNA abundance for mRNAs specifically showing high Trf5 binding.
Collapse
Affiliation(s)
- Clémentine Delan-Forino
- Wellcome Center for Cell Biology, University of Edinburgh, Kings Buildings, Swann Building, Edinburgh, EH9 3BF, UK
| | - Christos Spanos
- Wellcome Center for Cell Biology, University of Edinburgh, Kings Buildings, Swann Building, Edinburgh, EH9 3BF, UK
| | - Juri Rappsilber
- Wellcome Center for Cell Biology, University of Edinburgh, Kings Buildings, Swann Building, Edinburgh, EH9 3BF, UK
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany
| | - David Tollervey
- Wellcome Center for Cell Biology, University of Edinburgh, Kings Buildings, Swann Building, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
4
|
Chai N, Gitler AD. Yeast screen for modifiers of C9orf72 poly(glycine-arginine) dipeptide repeat toxicity. FEMS Yeast Res 2019. [PMID: 29528392 DOI: 10.1093/femsyr/foy024] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A hexanucleotide repeat expansion in the C9orf72 gene has been identified as the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia. The expanded hexanucleotide repeat is translated by an unconventional mechanism to produce five species of dipeptide repeat (DPR) proteins, glycine-proline (GP), glycine-alanine (GA), glycine-arginine (GR), proline-alanine (PA) and proline-arginine (PR). Of these, the arginine-rich ones, PR and GR, are highly toxic in a variety of model systems, ranging from human cells, to Drosophila, to even the budding yeast, Saccharomyces cerevisiae. We recently performed a genetic screen in yeast for modifiers of PR toxicity and identified suppressors and enhancers, many of which function in nucleocytoplasmic transport. Whether or not GR toxicity involves similar mechanisms to PR is unresolved. Therefore, we performed a genetic screen in yeast to identify modifiers of GR toxicity and compared the results of the GR screen to results from our previous PR screen. Surprisingly, there was only a small degree of overlap between the two screens, suggesting potential for distinct toxicity mechanisms between PR and GR.
Collapse
Affiliation(s)
- Noori Chai
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, M322 Alway Building, Stanford, CA 94305, USA.,Neurosciences Graduate Program, Stanford University School of Medicine, 1215 Welch Road, Modular B, Stanford, CA 94305, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, M322 Alway Building, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Zander G, Hackmann A, Bender L, Becker D, Lingner T, Salinas G, Krebber H. mRNA quality control is bypassed for immediate export of stress-responsive transcripts. Nature 2016; 540:593-596. [PMID: 27951587 DOI: 10.1038/nature20572] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/24/2016] [Indexed: 12/24/2022]
Abstract
Cells grow well only in a narrow range of physiological conditions. Surviving extreme conditions requires the instantaneous expression of chaperones that help to overcome stressful situations. To ensure the preferential synthesis of these heat-shock proteins, cells inhibit transcription, pre-mRNA processing and nuclear export of non-heat-shock transcripts, while stress-specific mRNAs are exclusively exported and translated. How cells manage the selective retention of regular transcripts and the simultaneous rapid export of heat-shock mRNAs is largely unknown. In Saccharomyces cerevisiae, the shuttling RNA adaptor proteins Npl3, Gbp2, Hrb1 and Nab2 are loaded co-transcriptionally onto growing pre-mRNAs. For nuclear export, they recruit the export-receptor heterodimer Mex67-Mtr2 (TAP-p15 in humans). Here we show that cellular stress induces the dissociation of Mex67 and its adaptor proteins from regular mRNAs to prevent general mRNA export. At the same time, heat-shock mRNAs are rapidly exported in association with Mex67, without the need for adapters. The immediate co-transcriptional loading of Mex67 onto heat-shock mRNAs involves Hsf1, a heat-shock transcription factor that binds to heat-shock-promoter elements in stress-responsive genes. An important difference between the export modes is that adaptor-protein-bound mRNAs undergo quality control, whereas stress-specific transcripts do not. In fact, regular mRNAs are converted into uncontrolled stress-responsive transcripts if expressed under the control of a heat-shock promoter, suggesting that whether an mRNA undergoes quality control is encrypted therein. Under normal conditions, Mex67 adaptor proteins are recruited for RNA surveillance, with only quality-controlled mRNAs allowed to associate with Mex67 and leave the nucleus. Thus, at the cost of error-free mRNA formation, heat-shock mRNAs are exported and translated without delay, allowing cells to survive extreme situations.
Collapse
Affiliation(s)
- Gesa Zander
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August Universität Göttingen, Göttingen, Germany
| | - Alexandra Hackmann
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August Universität Göttingen, Göttingen, Germany
| | - Lysann Bender
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August Universität Göttingen, Göttingen, Germany
| | - Daniel Becker
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August Universität Göttingen, Göttingen, Germany
| | - Thomas Lingner
- Transkriptomanalyselabor, Institut für Entwicklungsbiochemie, Georg-August Universität Göttingen, Göttingen, Germany
| | - Gabriela Salinas
- Transkriptomanalyselabor, Institut für Entwicklungsbiochemie, Georg-August Universität Göttingen, Göttingen, Germany
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August Universität Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Poornima G, Shah S, Vignesh V, Parker R, Rajyaguru PI. Arginine methylation promotes translation repression activity of eIF4G-binding protein, Scd6. Nucleic Acids Res 2016; 44:9358-9368. [PMID: 27613419 PMCID: PMC5100564 DOI: 10.1093/nar/gkw762] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/20/2016] [Indexed: 12/14/2022] Open
Abstract
Regulation of translation plays a critical role in determining mRNA fate. A new role was recently reported for a subset of RGG-motif proteins in repressing translation initiation by binding eIF4G1. However the signaling mechanism(s) that leads to spatial and temporal regulation of repression activity of RGG-motif proteins remains unknown. Here we report the role of arginine methylation in regulation of repression activity of Scd6, a conserved RGG-motif protein. We demonstrate that Scd6 gets arginine methylated at its RGG-motif and Hmt1 plays an important role in its methylation. We identify specific methylated arginine residues in the Scd6 RGG-motif in vivo We provide evidence that methylation augments Scd6 repression activity. Arginine methylation defective (AMD) mutant of Scd6 rescues the growth defect caused by overexpression of Scd6, a feature of translation repressors in general. Live-cell imaging of the AMD mutant revealed that it is defective in inducing formation of stress granules. Live-cell imaging and pull-down results indicate that it fails to bind eIF4G1 efficiently. Consistent with these results, a strain lacking Hmt1 is also defective in Scd6-eIF4G1 interaction. Our results establish that arginine methylation augments Scd6 repression activity by promoting eIF4G1-binding. We propose that arginine methylation of translation repressors with RGG-motif could be a general modulator of their repression activity.
Collapse
Affiliation(s)
- Gopalakrishna Poornima
- Department of Biochemistry, Indian Institute of Science, C V Raman Road, Bangalore 560012, India
| | - Shanaya Shah
- Department of Biochemistry, Indian Institute of Science, C V Raman Road, Bangalore 560012, India
| | | | - Roy Parker
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, CO 80309, USA
| | - Purusharth I Rajyaguru
- Department of Biochemistry, Indian Institute of Science, C V Raman Road, Bangalore 560012, India
| |
Collapse
|
7
|
Li Y, Burclaff J, Anderson JT. Mutations in Mtr4 Structural Domains Reveal Their Important Role in Regulating tRNAiMet Turnover in Saccharomyces cerevisiae and Mtr4p Enzymatic Activities In Vitro. PLoS One 2016; 11:e0148090. [PMID: 26820724 PMCID: PMC4731217 DOI: 10.1371/journal.pone.0148090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/12/2016] [Indexed: 12/24/2022] Open
Abstract
RNA processing and turnover play important roles in the maturation, metabolism and quality control of a large variety of RNAs thereby contributing to gene expression and cellular health. The TRAMP complex, composed of Air2p, Trf4p and Mtr4p, stimulates nuclear exosome-dependent RNA processing and degradation in Saccharomyces cerevisiae. The Mtr4 protein structure is composed of a helicase core and a novel so-called arch domain, which protrudes from the core. The helicase core contains highly conserved helicase domains RecA-1 and 2, and two structural domains of unclear functions, winged helix domain (WH) and ratchet domain. How the structural domains (arch, WH and ratchet domain) coordinate with the helicase domains and what roles they are playing in regulating Mtr4p helicase activity are unknown. We created a library of Mtr4p structural domain mutants for the first time and screened for those defective in the turnover of TRAMP and exosome substrate, hypomodified tRNAiMet. We found these domains regulate Mtr4p enzymatic activities differently through characterizing the arch domain mutants K700N and P731S, WH mutant K904N, and ratchet domain mutant R1030G. Arch domain mutants greatly reduced Mtr4p RNA binding, which surprisingly did not lead to significant defects on either in vivo tRNAiMet turnover, or in vitro unwinding activities. WH mutant K904N and Ratchet domain mutant R1030G showed decreased tRNAiMet turnover in vivo, as well as reduced RNA binding, ATPase and unwinding activities of Mtr4p in vitro. Particularly, K904 was found to be very important for steady protein levels in vivo. Overall, we conclude that arch domain plays a role in RNA binding but is largely dispensable for Mtr4p enzymatic activities, however the structural domains in the helicase core significantly contribute to Mtr4p ATPase and unwinding activities.
Collapse
Affiliation(s)
- Yan Li
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding, Hebei, 071001, China
| | - Joseph Burclaff
- Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO, 63110, United States of America
| | - James T. Anderson
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53233, United States of America
- * E-mail:
| |
Collapse
|
8
|
Morales Y, Cáceres T, May K, Hevel JM. Biochemistry and regulation of the protein arginine methyltransferases (PRMTs). Arch Biochem Biophys 2015; 590:138-152. [PMID: 26612103 DOI: 10.1016/j.abb.2015.11.030] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/14/2015] [Accepted: 11/15/2015] [Indexed: 12/27/2022]
Abstract
Many key cellular processes can be regulated by the seemingly simple addition of one, or two, methyl groups to arginine residues by the nine known mammalian protein arginine methyltransferases (PRMTs). The impact that arginine methylation has on cellular well-being is highlighted by the ever growing evidence linking PRMT dysregulation to disease states, which has marked the PRMTs as prominent pharmacological targets. This review is meant to orient the reader with respect to the structural features of the PRMTs that account for catalytic activity, as well as provide a framework for understanding how these enzymes are regulated. An overview of what we understand about substrate recognition and binding is provided. Control of product specificity and enzyme processivity are introduced as necessary but flexible features of the PRMTs. Precise control of PRMT activity is a critical component to eukaryotic cell health, especially given that an arginine demethylase has not been identified. We therefore conclude the review with a comprehensive discussion of how protein arginine methylation is regulated.
Collapse
Affiliation(s)
- Yalemi Morales
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States
| | - Tamar Cáceres
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States
| | - Kyle May
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States
| | - Joan M Hevel
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States.
| |
Collapse
|
9
|
Losh JS, King AK, Bakelar J, Taylor L, Loomis J, Rosenzweig JA, Johnson SJ, van Hoof A. Interaction between the RNA-dependent ATPase and poly(A) polymerase subunits of the TRAMP complex is mediated by short peptides and important for snoRNA processing. Nucleic Acids Res 2015; 43:1848-58. [PMID: 25589546 PMCID: PMC4330371 DOI: 10.1093/nar/gkv005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The RNA exosome is one of the main 3′ to 5′ exoribonucleases in eukaryotic cells. Although it is responsible for degradation or processing of a wide variety of substrate RNAs, it is very specific and distinguishes between substrate and non-substrate RNAs as well as between substrates that need to be 3′ processed and those that need to be completely degraded. This specificity does not appear to be determined by the exosome itself but rather by about a dozen other proteins. Four of these exosome cofactors have enzymatic activity, namely, the nuclear RNA-dependent ATPase Mtr4, its cytoplasmic paralog Ski2 and the nuclear non-canonical poly(A) polymerases, Trf4 and Trf5. Mtr4 and either Trf4 or Trf5 assemble into a TRAMP complex. However, how these enzymes assemble into a TRAMP complex and the functional consequences of TRAMP complex assembly remain unknown. Here, we identify an important interaction site between Mtr4 and Trf5, and show that disrupting the Mtr4/Trf interaction disrupts specific TRAMP and exosome functions, including snoRNA processing.
Collapse
Affiliation(s)
- Jillian S. Losh
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center-Houston, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Alejandra Klauer King
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center-Houston, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Jeremy Bakelar
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322–0300, USA
| | - Lacy Taylor
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322–0300, USA
| | - John Loomis
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center-Houston, Houston, TX 77030, USA
| | - Jason A. Rosenzweig
- Department of Biology and Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Sean J. Johnson
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322–0300, USA
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center-Houston, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
- To whom correspondence should be addressed. Tel: +1 713 500 5234;
| |
Collapse
|
10
|
Nab3 facilitates the function of the TRAMP complex in RNA processing via recruitment of Rrp6 independent of Nrd1. PLoS Genet 2015; 11:e1005044. [PMID: 25775092 PMCID: PMC4361618 DOI: 10.1371/journal.pgen.1005044] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 01/30/2015] [Indexed: 11/26/2022] Open
Abstract
Non-coding RNAs (ncRNAs) play critical roles in gene regulation. In eukaryotic cells, ncRNAs are processed and/or degraded by the nuclear exosome, a ribonuclease complex containing catalytic subunits Dis3 and Rrp6. The TRAMP (Trf4/5-Air1/2-Mtr4 polyadenylation) complex is a critical exosome cofactor in budding yeast that stimulates the exosome to process/degrade ncRNAs and human TRAMP components have recently been identified. Importantly, mutations in exosome and exosome cofactor genes cause neurodegenerative disease. How the TRAMP complex interacts with other exosome cofactors to orchestrate regulation of the exosome is an open question. To identify novel interactions of the TRAMP exosome cofactor, we performed a high copy suppressor screen of a thermosensitive air1/2 TRAMP mutant. Here, we report that the Nab3 RNA-binding protein of the Nrd1-Nab3-Sen1 (NNS) complex is a potent suppressor of TRAMP mutants. Unlike Nab3, Nrd1 and Sen1 do not suppress TRAMP mutants and Nrd1 binding is not required for Nab3-mediated suppression of TRAMP suggesting an independent role for Nab3. Critically, Nab3 decreases ncRNA levels in TRAMP mutants, Nab3-mediated suppression of air1/2 cells requires the nuclear exosome component, Rrp6, and Nab3 directly binds Rrp6. We extend this analysis to identify a human RNA binding protein, RALY, which shares identity with Nab3 and can suppress TRAMP mutants. These results suggest that Nab3 facilitates TRAMP function by recruiting Rrp6 to ncRNAs for processing/degradation independent of Nrd1. The data raise the intriguing possibility that Nab3 and Nrd1 can function independently to recruit Rrp6 to ncRNA targets, providing combinatorial flexibility in RNA processing. Eukaryotic genomes from yeast to man express numerous non-coding RNAs (ncRNAs) that regulate the expression of messenger RNAs (mRNAs) encoding the proteins vital for cell and body function. As faulty ncRNAs impair mRNA expression and contribute to cancers and neurodegenerative disease, it is imperative to understand how ncRNAs are processed and/or degraded. In budding yeast, a conserved RNA shredding machine known as the exosome nibbles at or destroys ncRNAs. The exosome is assisted by a conserved TRAMP exosome cofactor that recruits the exosome to ncRNAs for processing/ degradation. To better understand TRAMP function, we performed a genetic screen to identify genes that improve the growth of TRAMP mutant yeast cells that grow poorly at high temperature. We find that overexpression of the Nab3 RNA binding protein, which belongs to another exosome cofactor, the Nrd1-Nab3-Sen1 (NNS) complex, improves the growth of TRAMP mutant cells. Importantly, Nab3 requires the exosome to improve the growth and ncRNA processing of TRAMP mutant cells. We therefore suggest that Nab3 facilitates TRAMP function by recruiting the exosome to ncRNAs for processing/degradation. We also show that the human RNA binding protein, RALY, like Nab3, can improve the growth of TRAMP mutant cells.
Collapse
|
11
|
Dorweiler JE, Ni T, Zhu J, Munroe SH, Anderson JT. Certain adenylated non-coding RNAs, including 5' leader sequences of primary microRNA transcripts, accumulate in mouse cells following depletion of the RNA helicase MTR4. PLoS One 2014; 9:e99430. [PMID: 24926684 PMCID: PMC4057207 DOI: 10.1371/journal.pone.0099430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/14/2014] [Indexed: 12/30/2022] Open
Abstract
RNA surveillance plays an important role in posttranscriptional regulation. Seminal work in this field has largely focused on yeast as a model system, whereas exploration of RNA surveillance in mammals is only recently begun. The increased transcriptional complexity of mammalian systems provides a wider array of targets for RNA surveillance, and, while many questions remain unanswered, emerging data suggest the nuclear RNA surveillance machinery exhibits increased complexity as well. We have used a small interfering RNA in mouse N2A cells to target the homolog of a yeast protein that functions in RNA surveillance (Mtr4p). We used high-throughput sequencing of polyadenylated RNAs (PA-seq) to quantify the effects of the mMtr4 knockdown (KD) on RNA surveillance. We demonstrate that overall abundance of polyadenylated protein coding mRNAs is not affected, but several targets of RNA surveillance predicted from work in yeast accumulate as adenylated RNAs in the mMtr4KD. microRNAs are an added layer of transcriptional complexity not found in yeast. After Drosha cleavage separates the pre-miRNA from the microRNA's primary transcript, the byproducts of that transcript are generally thought to be degraded. We have identified the 5′ leading segments of pri-miRNAs as novel targets of mMtr4 dependent RNA surveillance.
Collapse
Affiliation(s)
- Jane E. Dorweiler
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Ting Ni
- DNA Sequencing and Genomics Core, Genetics and Development Biology Center, National Institutes of Health, National Heart Lung and Blood Institute, Bethesda, Maryland, United States of America
| | - Jun Zhu
- DNA Sequencing and Genomics Core, Genetics and Development Biology Center, National Institutes of Health, National Heart Lung and Blood Institute, Bethesda, Maryland, United States of America
| | - Stephen H. Munroe
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
- * E-mail: (JTA); (SHM)
| | - James T. Anderson
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
- * E-mail: (JTA); (SHM)
| |
Collapse
|
12
|
Kong KYE, Tang HMV, Pan K, Huang Z, Lee THJ, Hinnebusch AG, Jin DY, Wong CM. Cotranscriptional recruitment of yeast TRAMP complex to intronic sequences promotes optimal pre-mRNA splicing. Nucleic Acids Res 2013; 42:643-60. [PMID: 24097436 PMCID: PMC3874199 DOI: 10.1093/nar/gkt888] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Most unwanted RNA transcripts in the nucleus of eukaryotic cells, such as splicing-defective pre-mRNAs and spliced-out introns, are rapidly degraded by the nuclear exosome. In budding yeast, a number of these unwanted RNA transcripts, including spliced-out introns, are first recognized by the nuclear exosome cofactor Trf4/5p-Air1/2p-Mtr4p polyadenylation (TRAMP) complex before subsequent nuclear-exosome-mediated degradation. However, it remains unclear when spliced-out introns are recognized by TRAMP, and whether TRAMP may have any potential roles in pre-mRNA splicing. Here, we demonstrated that TRAMP is cotranscriptionally recruited to nascent RNA transcripts, with particular enrichment at intronic sequences. Deletion of TRAMP components led to further accumulation of unspliced pre-mRNAs even in a yeast strain defective in nuclear exosome activity, suggesting a novel stimulatory role of TRAMP in splicing. We also uncovered new genetic and physical interactions between TRAMP and several splicing factors, and further showed that TRAMP is required for optimal recruitment of the splicing factor Msl5p. Our study provided the first evidence that TRAMP facilitates pre-mRNA splicing, and we interpreted this as a fail-safe mechanism to ensure the cotranscriptional recruitment of TRAMP before or during splicing to prepare for the subsequent targeting of spliced-out introns to rapid degradation by the nuclear exosome.
Collapse
Affiliation(s)
- Ka-Yiu Edwin Kong
- Department of Biochemistry, Department of Medicine, State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong and Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Erce MA, Abeygunawardena D, Low JKK, Hart-Smith G, Wilkins MR. Interactions affected by arginine methylation in the yeast protein-protein interaction network. Mol Cell Proteomics 2013; 12:3184-98. [PMID: 23918811 DOI: 10.1074/mcp.m113.031500] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Protein-protein interactions can be modulated by the methylation of arginine residues. As a means of testing this, we recently described a conditional two-hybrid system, based on the bacterial adenylate cyclase (BACTH) system. Here, we have used this conditional two-hybrid system to explore the effect of arginine methylation in modulating protein-protein interactions in a subset of the Saccharomyces cerevisiae arginine methylproteome network. Interactions between the yeast hub protein Npl3 and yeast proteins Air2, Ded1, Gbp2, Snp1, and Yra1 were first validated in the absence of methylation. The major yeast arginine methyltransferase Hmt1 was subsequently included in the conditional two-hybrid assay, initially to determine the degree of methylation that occurs. Proteins Snp1 and Yra1 were confirmed as Hmt1 substrates, with five and two novel arginine methylation sites mapped by ETD LC-MS/MS on these proteins, respectively. Proteins Ded1 and Gbp2, previously predicted but not confirmed as substrates of Hmt1, were also found to be methylated with five and seven sites mapped respectively. Air2 was found to be a novel substrate of Hmt1 with two sites mapped. Finally, we investigated the interactions of Npl3 with the five interaction partners in the presence of active Hmt1 and in the presence of Hmt1 with a G68R inactivation mutation. We found that the interaction between Npl3 and Air2, and Npl3 and Ded1, were significantly increased in the presence of active Hmt1; the interaction of Npl3 and Snp1 showed a similar degree of increase in interaction but this was not statistically significant. The interactions of Npl3 and Gbp2, along with Npl3 and Yra1, were not significantly increased or decreased by methylation. We conclude that methylarginine may be a widespread means by which the interactions of proteins are modulated.
Collapse
Affiliation(s)
- Melissa A Erce
- Systems Biology Laboratory, School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia
| | | | | | | | | |
Collapse
|
14
|
Identification of a novel lipin homologue from the parasitic protozoan Trypanosoma brucei. BMC Microbiol 2013; 13:101. [PMID: 23656927 PMCID: PMC3654991 DOI: 10.1186/1471-2180-13-101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 05/06/2013] [Indexed: 02/03/2023] Open
Abstract
Background Arginine methylation is a post-translational modification that expands the functional diversity of proteins. Kinetoplastid parasites contain a relatively large group of protein arginine methyltransferases (PRMTs) compared to other single celled eukaryotes. Several T. brucei proteins have been shown to serve as TbPRMT substrates in vitro, and a great number of proteins likely to undergo methylation are predicted by the T. brucei genome. This indicates that a large number of proteins whose functions are modulated by arginine methylation await discovery in trypanosomes. Here, we employed a yeast two-hybrid screen using as bait the major T. brucei type I PRMT, TbPRMT1, to identify potential substrates of this enzyme. Results We identified a protein containing N-LIP and C-LIP domains that we term TbLpn. These domains are usually present in a family of proteins known as lipins, and involved in phospholipid biosynthesis and gene regulation. Far western and co-immunoprecipitation assays confirmed the TbPRMT1-TbLpn interaction. We also demonstrated that TbLpn is localized mainly to the cytosol, and is methylated in vivo. In addition, we showed that, similar to mammalian and yeast proteins with N-LIP and C-LIP domains, recombinant TbLpn exhibits phosphatidic acid phosphatase activity, and that two conserved aspartic acid residues present in the C-LIP domain are critical for its enzymatic activity. Conclusions This study reports the characterization of a novel trypanosome protein and provides insight into its enzymatic activity and function in phospholipid biosynthesis. It also indicates that TbLpn functions may be modulated by arginine methylation.
Collapse
|
15
|
Schmidt K, Butler JS. Nuclear RNA surveillance: role of TRAMP in controlling exosome specificity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:217-31. [PMID: 23417976 DOI: 10.1002/wrna.1155] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The advent of high-throughput sequencing technologies has revealed that pervasive transcription generates RNAs from nearly all regions of eukaryotic genomes. Normally, these transcripts undergo rapid degradation by a nuclear RNA surveillance system primarily featuring the RNA exosome. This multimeric protein complex plays a critical role in the efficient turnover and processing of a vast array of RNAs in the nucleus. Despite its initial discovery over a decade ago, important questions remain concerning the mechanisms that recruit and activate the nuclear exosome. Specificity and modulation of exosome activity requires additional protein cofactors, including the conserved TRAMP polyadenylation complex. Recent studies suggest that helicase and RNA-binding subunits of TRAMP direct RNA substrates for polyadenylation, which enhances their degradation by Dis3/Rrp44 and Rrp6, the two exosome-associated ribonucleases. These findings indicate that the exosome and TRAMP have evolved highly flexible functions that allow recognition of a wide range of RNA substrates. This flexibility provides the nuclear RNA surveillance system with the ability to regulate the levels of a broad range of coding and noncoding RNAs, which results in profound effects on gene expression, cellular development, gene silencing, and heterochromatin formation. This review summarizes recent findings on the nuclear RNA surveillance complexes, and speculates upon possible mechanisms for TRAMP-mediated substrate recognition and exosome activation.
Collapse
Affiliation(s)
- Karyn Schmidt
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, USA
| | | |
Collapse
|
16
|
Gui S, Wooderchak-Donahue WL, Zang T, Chen D, Daly MP, Zhou ZS, Hevel JM. Substrate-Induced Control of Product Formation by Protein Arginine Methyltransferase 1. Biochemistry 2012; 52:199-209. [DOI: 10.1021/bi301283t] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shanying Gui
- Chemistry
and Biochemistry Department, Utah State University, 0300 Old Main Hill, Logan, Utah
84322, United States
| | | | - Tianzhu Zang
- The
Barnett Institute of Chemical
and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston,
Massachusetts 02115-5000, United States
| | - Dong Chen
- Synthetic Bio-manufacturing Institute, Utah State University, 620 East 1600 North, Suite 226,
Logan, Utah 84341, United States
| | - Michael P. Daly
- Waters Corporation, 100 Cummings Center,
Suite 407N, Beverly, Massachusetts 01915,
United States
| | - Zhaohui Sunny Zhou
- The
Barnett Institute of Chemical
and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston,
Massachusetts 02115-5000, United States
| | - Joan M. Hevel
- Chemistry
and Biochemistry Department, Utah State University, 0300 Old Main Hill, Logan, Utah
84322, United States
| |
Collapse
|
17
|
Low JKK, Wilkins MR. Protein arginine methylation in Saccharomyces cerevisiae. FEBS J 2012; 279:4423-43. [PMID: 23094907 DOI: 10.1111/febs.12039] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/10/2012] [Accepted: 10/19/2012] [Indexed: 11/27/2022]
Abstract
Recent research has implicated arginine methylation as a major regulator of cellular processes, including transcription, translation, nucleocytoplasmic transport, signalling, DNA repair, RNA processing and splicing. Arginine methylation is evolutionarily conserved, and it is now thought that it may rival other post-translational modifications such as phosphorylation in terms of its occurrence in the proteome. In addition, multiple recent examples demonstrate an exciting new theme: the interplay between methylation and other post-translational modifications such as phosphorylation. In this review, we summarize our current understanding of arginine methylation and the recent advances made, with a focus on the lower eukaryote Saccharomyces cerevisiae. We cover the types of methylated proteins, their responsible methyltransferases, where and how the effects of arginine methylation are seen in the cell, and, finally, discuss the conservation of the biological function of methylarginines between S. cerevisiae and mammals.
Collapse
Affiliation(s)
- Jason K K Low
- Systems Biology Laboratory, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | | |
Collapse
|
18
|
Schmidt K, Xu Z, Mathews DH, Butler JS. Air proteins control differential TRAMP substrate specificity for nuclear RNA surveillance. RNA (NEW YORK, N.Y.) 2012; 18:1934-45. [PMID: 22923767 PMCID: PMC3446715 DOI: 10.1261/rna.033431.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/24/2012] [Indexed: 05/23/2023]
Abstract
RNA surveillance systems function at critical steps during the formation and function of RNA molecules in all organisms. The RNA exosome plays a central role in RNA surveillance by processing and degrading RNA molecules in the nucleus and cytoplasm of eukaryotic cells. The exosome functions as a complex of proteins composed of a nine-member core and two ribonucleases. The identity of the molecular determinants of exosome RNA substrate specificity remains an important unsolved aspect of RNA surveillance. In the nucleus of Saccharomyces cerevisiae, TRAMP complexes recognize and polyadenylate RNAs, which enhances RNA degradation by the exosome and may contribute to its specificity. TRAMPs contain either of two putative RNA-binding factors called Air proteins. Previous studies suggested that these proteins function interchangeably in targeting the poly(A)-polymerase activity of TRAMPs to RNAs. Experiments reported here show that the Air proteins govern separable functions. Phenotypic analysis and RNA deep-sequencing results from air mutants reveal specific requirements for each Air protein in the regulation of the levels of noncoding and coding RNAs. Loss of these regulatory functions results in specific metabolic and plasmid inheritance defects. These findings reveal differential functions for Air proteins in RNA metabolism and indicate that they control the substrate specificity of the RNA exosome.
Collapse
Affiliation(s)
- Karyn Schmidt
- Department of Biochemistry and Biophysics
- Center for RNA Biology, and
| | - Zhenjiang Xu
- Department of Biochemistry and Biophysics
- Center for RNA Biology, and
| | - David H. Mathews
- Department of Biochemistry and Biophysics
- Center for RNA Biology, and
| | - J. Scott Butler
- Department of Biochemistry and Biophysics
- Center for RNA Biology, and
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA
| |
Collapse
|
19
|
Abstract
In order to control and/or enhance the specificity and activity of nuclear surveillance and degradation, exosomes cooperate with the polyadenylation complex called TRAMP. Two forms of TRAMP operate in budding yeast, TRAMP4 and TRAMP5. They oligoadenylate defective or precursor forms of RNAs and promote trimming or complete degradation by exosomes. TRAMPs target a wide variety of nuclear transcripts. The known substrates include the noncoding RNAs originating from pervasive transcription from diverse parts of the yeast genome. Although TRAMP and exosomes can be triggered to a subset of their targets via the RNA-binding complex Nrd1, it is still not completely understood how TRAMP recognizes other aberrant RNAs. The existence of TRAMP-like complexes in other organisms indicates the importance of nuclear surveillance for general cell biology. In this chapter, we review the current understanding of TRAMP function and substrate repertoire. We discuss the advances in TRAMP biochemistry with respect to its catalytic activities and RNA recognition. Finally, we speculate about the possible mechanisms by which TRAMP activates exosomes.
Collapse
Affiliation(s)
- Peter Holub
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
| | - Stepanka Vanacova
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
| |
Collapse
|
20
|
Johnson SJ, Jackson RN. Ski2-like RNA helicase structures: common themes and complex assemblies. RNA Biol 2012; 10:33-43. [PMID: 22995828 DOI: 10.4161/rna.22101] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Ski2-like RNA helicases are large multidomain proteins involved in a variety of RNA processing and degradation events. Recent structures of Mtr4, Ski2 and Brr2 provide our first view of these intricate helicases. Here we review these structures, which reveal a conserved ring-like architecture that extends beyond the canonical RecA domains to include a winged helix and ratchet domain. Comparison of apo- and RNA-bound Mtr4 structures suggests a role for the winged helix domain as a molecular hub that coordinates RNA interacting events throughout the helicase. Unique accessory domains provide expanded diversity and functionality to each Ski2-like family member. A common theme is the integration of Ski2-like RNA helicases into larger protein assemblies. We describe the central role of Mtr4 and Ski2 in formation of complexes that activate RNA decay by the eukaryotic exosome. The current structures provide clues into what promises to be a fascinating view of these dynamic assemblies.
Collapse
Affiliation(s)
- Sean J Johnson
- Department of Chemistry & Biochemistry, Utah State University, Logan, UT, USA.
| | | |
Collapse
|
21
|
Bernstein J, Toth EA. Yeast nuclear RNA processing. World J Biol Chem 2012; 3:7-26. [PMID: 22312453 PMCID: PMC3272586 DOI: 10.4331/wjbc.v3.i1.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 11/27/2011] [Accepted: 12/04/2011] [Indexed: 02/05/2023] Open
Abstract
Nuclear RNA processing requires dynamic and intricately regulated machinery composed of multiple enzymes and their cofactors. In this review, we summarize recent experiments using Saccharomyces cerevisiae as a model system that have yielded important insights regarding the conversion of pre-RNAs to functional RNAs, and the elimination of aberrant RNAs and unneeded intermediates from the nuclear RNA pool. Much progress has been made recently in describing the 3D structure of many elements of the nuclear degradation machinery and its cofactors. Similarly, the regulatory mechanisms that govern RNA processing are gradually coming into focus. Such advances invariably generate many new questions, which we highlight in this review.
Collapse
Affiliation(s)
- Jade Bernstein
- Jade Bernstein, Eric A Toth, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | | |
Collapse
|
22
|
Dickinson H, Tretbar S, Betat H, Mörl M. The TRAMP complex shows tRNA editing activity in S. cerevisiae. Mol Biol Evol 2011; 29:1451-9. [PMID: 22319136 DOI: 10.1093/molbev/msr312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transfer RNA (tRNA) editing is a widespread processing phenomenon that alters the sequence of primary transcripts by base substitutions as well as nucleotide deletions and insertions at internal or terminal transcript positions. In the corresponding tRNAs, these events are an important prerequisite for the generation of functional transcripts. Although many editing events are well characterized at the reaction level, it is unclear in most cases from which ancestral activities the modern editing enzymes evolved. Here, we show that in Saccharomyces cerevisiae, the noncanonical poly(A) polymerase Trf4p in the TRAMP complex can be recruited for such an editing reaction at an introduced tRNA transcript. As a distributive polymerase involved in RNA surveillance and quality control, it has a broad substrate spectrum and binds only transiently to the transcripts, limiting the number of added nucleotides at the editing position. These features exactly meet the criteria for an ancestral enzyme of a modern editing activity. Accordingly, our observations are a strong experimental support for the hypothesis that enzymatic promiscuity serves as an evolutionary starting point for the emergence of new functions and activities.
Collapse
Affiliation(s)
- Helena Dickinson
- Institute for Biochemistry, University of Leipzig, Leipzig, Germany
| | | | | | | |
Collapse
|
23
|
Fasken MB, Leung SW, Banerjee A, Kodani MO, Chavez R, Bowman EA, Purohit MK, Rubinson ME, Rubinson EH, Corbett AH. Air1 zinc knuckles 4 and 5 and a conserved IWRXY motif are critical for the function and integrity of the Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP) RNA quality control complex. J Biol Chem 2011; 286:37429-45. [PMID: 21878619 DOI: 10.1074/jbc.m111.271494] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In Saccharomyces cerevisiae, non-coding RNAs, including cryptic unstable transcripts (CUTs), are subject to degradation by the exosome. The Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP) complex in S. cerevisiae is a nuclear exosome cofactor that recruits the exosome to degrade RNAs. Trf4/5 are poly(A) polymerases, Mtr4 is an RNA helicase, and Air1/2 are putative RNA-binding proteins that contain five CCHC zinc knuckles (ZnKs). One central question is how the TRAMP complex, especially the Air1/2 protein, recognizes its RNA substrates. To characterize the function of the Air1/2 protein, we used random mutagenesis of the AIR1/2 gene to identify residues critical for Air protein function. We identified air1-C178R and air2-C167R alleles encoding air1/2 mutant proteins with a substitution in the second cysteine of ZnK5. Mutagenesis of the second cysteine in AIR1/2 ZnK1-5 reveals that Air1/2 ZnK4 and -5 are critical for Air protein function in vivo. In addition, we find that the level of CUT, NEL025c, in air1 ZnK1-5 mutants is stabilized, particularly in air1 ZnK4, suggesting a role for Air1 ZnK4 in the degradation of CUTs. We also find that Air1/2 ZnK4 and -5 are critical for Trf4 interaction and that the Air1-Trf4 interaction and Air1 level are critical for TRAMP complex integrity. We identify a conserved IWRXY motif in the Air1 ZnK4-5 linker that is important for Trf4 interaction. We also find that hZCCHC7, a putative human orthologue of Air1 that contains the IWRXY motif, localizes to the nucleolus in human cells and interacts with both mammalian Trf4 orthologues, PAPD5 and PAPD7 (PAP-associated domain containing 5 and 7), suggesting that hZCCHC7 is the Air component of a human TRAMP complex.
Collapse
Affiliation(s)
- Milo B Fasken
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kapelinskaya TV, Kagramanova AS, Korolev AL, Mukha DV. First open reading frame protein (ORF1p) of the Blattella germanica R1 retroposon and phylogenetically close GAG-like proteins of insects and fungi contain RRM domains. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795410121038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
McBride AE, Conboy AK, Brown SP, Ariyachet C, Rutledge KL. Specific sequences within arginine-glycine-rich domains affect mRNA-binding protein function. Nucleic Acids Res 2009; 37:4322-30. [PMID: 19454603 PMCID: PMC2715232 DOI: 10.1093/nar/gkp349] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The discovery of roles for arginine methylation in intracellular transport and mRNA splicing has focused attention on the methylated arginine–glycine (RG)-rich domains found in many eukaryotic RNA-binding proteins. Sequence similarity among these highly repetitive RG domains, combined with interactions between RG-rich proteins, raises the question of whether these regions are general interaction motifs or whether there is specificity within these domains. Using the essential Saccharomyces cerevisiae mRNA-binding protein Npl3 (ScNpl3) as a model system, we first tested the importance of the RG domain for protein function. While Npl3 lacking the RG domain could not support growth of cells lacking Npl3, surprisingly, expression of the RG domain alone supported partial growth of these cells. To address the specificity of this domain, we created chimeric forms of ScNpl3 with RG-rich domains of S. cerevisiae nucleolar proteins, Gar1 and Nop1 (ScGar1, ScNop1), or of the Candida albicans Npl3 ortholog (CaNpl3). Whereas the CaNpl3 RG chimeric protein retained nearly wild-type function in S. cerevisiae, the ScGar1 and ScNop1 RG domains significantly reduced Npl3 function and self-association, indicating RG domain specificity. Nuclear localization of Npl3 also requires specific RG sequences, yet heterologous RG domains allow similar modulation of Npl3 transport by arginine methylation.
Collapse
Affiliation(s)
- Anne E McBride
- Department of Biology, Bowdoin College, Brunswick, ME 04011, USA.
| | | | | | | | | |
Collapse
|
26
|
Anderson JT, Wang X. Nuclear RNA surveillance: no sign of substrates tailing off. Crit Rev Biochem Mol Biol 2009; 44:16-24. [PMID: 19280429 DOI: 10.1080/10409230802640218] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The production of cellular RNAs is tightly regulated to ensure gene expression is limited to appropriate times and locations. Elimination of RNA can be rapid and programmed to quickly terminate gene expression, or can be used to purge old, damaged or inappropriately formed RNAs. It is elimination of RNAs through the action of a polyadenylation complex (TRAMP), first described in the yeast Saccharomyces cerevisiae, which is the focus of this review. The discovery of TRAMP and presence of orthologs in most eukaryotes, along with an increasing number of potential TRAMP substrates in the form of new small non-coding RNAs, many of which emanate from areas of genomes once thought transcriptionally silent; promise to make this area of research of great interest for the foreseeable future.
Collapse
Affiliation(s)
- James T Anderson
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA.
| | | |
Collapse
|
27
|
Iglesias N, Stutz F. Regulation of mRNP dynamics along the export pathway. FEBS Lett 2008; 582:1987-96. [PMID: 18394429 DOI: 10.1016/j.febslet.2008.03.038] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 03/25/2008] [Accepted: 03/26/2008] [Indexed: 02/02/2023]
Abstract
The transcription of mRNA is tightly coupled to the concomitant recruitment of mRNA processing and export factors, resulting in the formation of mature and export competent mRNP complexes. This interconnection in gene expression implies extensive spatio-temporal control of mRNP dynamics to prevent mRNA export factors bound to pre-mRNA from functioning at the incorrect time and exporting nascent or incompletely processed pre-mRNAs. Recent discoveries provide molecular understanding of how a broad range of post-translational modifications together with RNA-dependent ATPases coordinate proteins acting at different steps and regulate mRNP assembly and export.
Collapse
Affiliation(s)
- Nahid Iglesias
- Department of Cell Biology, University of Geneva, 30 Quai E. Ansermet, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
28
|
Marques AC, Vinckenbosch N, Brawand D, Kaessmann H. Functional diversification of duplicate genes through subcellular adaptation of encoded proteins. Genome Biol 2008; 9:R54. [PMID: 18336717 PMCID: PMC2397506 DOI: 10.1186/gb-2008-9-3-r54] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 01/29/2008] [Accepted: 03/12/2008] [Indexed: 11/17/2022] Open
Abstract
Analysis of the subcellular localization patterns of duplicate genes revealed that protein subcellular adaptation represents a common mechanism for the functional diversification of duplicate genes. Background Gene duplication is the primary source of new genes with novel or altered functions. It is known that duplicates may obtain these new functional roles by evolving divergent expression patterns and/or protein functions after the duplication event. Here, using yeast (Saccharomyces cerevisiae) as a model organism, we investigate a previously little considered mode for the functional diversification of duplicate genes: subcellular adaptation of encoded proteins. Results We show that for 24-37% of duplicate gene pairs derived from the S. cerevisiae whole-genome duplication event, the two members of the pair encode proteins that localize to distinct subcellular compartments. The propensity of yeast duplicate genes to evolve new localization patterns depends to a large extent on the biological function of their progenitor genes. Proteins involved in processes with a wider subcellular distribution (for example, catabolism) frequently evolved new protein localization patterns after duplication, whereas duplicate proteins limited to a smaller number of organelles (for example, highly expressed biosynthesis/housekeeping proteins with a slow rate of evolution) rarely relocate within the cell. Paralogous proteins evolved divergent localization patterns by partitioning of ancestral localizations ('sublocalization'), but probably more frequently by relocalization to new compartments ('neolocalization'). We show that such subcellular reprogramming may occur through selectively driven substitutions in protein targeting sequences. Notably, our data also reveal that relocated proteins functionally adapted to their new subcellular environments and evolved new functional roles through changes of their physico-chemical properties, expression levels, and interaction partners. Conclusion We conclude that protein subcellular adaptation represents a common mechanism for the functional diversification of duplicate genes.
Collapse
Affiliation(s)
- Ana C Marques
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | | | |
Collapse
|
29
|
Abstract
Arginine methylation is a widespread posttranslational modification found on both nuclear and cytoplasmic proteins. The methylation of arginine residues is catalyzed by the protein arginine N-methyltransferase (PRMT) family of enzymes, of which there are at least nine members in mammals. PRMTs are evolutionarily conserved and are foundin organisms from yeast to man, but not in bacteria. Proteins that are arginine methylated are involved in a number of different cellular processes, including transcriptional regulation, RNA metabolism, and DNA damage repair. How arginine methylation impacts these cellular actions is unclear, although it is likely through the regulation of protein-protein and protein-DNA/RNA interactions. The different PRMTs display varying degrees of substrate specificity, and a certain amount of redundancy is likely to exist between different PRMT family members. Most PRMTs methylate glycine- and arginine-rich patches within their substrates. These regions have been termed GAR motifs. The complexity of the methylarginine mark is enhanced by the ability of this residue to be methylated in three different fashions on the guanidino group (with different functional consequences for each methylated state): monomethylated, symmetrically dimethylated, and asymmetrically dimethylated. This chapter outlines the biochemistry of arginine methylation, including a detailed description of the enzymes involved, the motifs methylated, and the prospects of inhibiting these enzymes with small molecules.
Collapse
Affiliation(s)
- Mark T Bedford
- The University of Texas M.D. Anderson Cancer Center Science Park, Research Division P.O. Box 389 Smithville, TX 78957, USA
| |
Collapse
|
30
|
Bachand F. Protein arginine methyltransferases: from unicellular eukaryotes to humans. EUKARYOTIC CELL 2007; 6:889-98. [PMID: 17468392 PMCID: PMC1951521 DOI: 10.1128/ec.00099-07] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- François Bachand
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
31
|
Krause CD, Yang ZH, Kim YS, Lee JH, Cook JR, Pestka S. Protein arginine methyltransferases: Evolution and assessment of their pharmacological and therapeutic potential. Pharmacol Ther 2007; 113:50-87. [PMID: 17005254 DOI: 10.1016/j.pharmthera.2006.06.007] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 06/21/2006] [Indexed: 01/27/2023]
Abstract
Protein arginine N-methylation is a post-translational modification whose influence on cell function is becoming widely appreciated. Protein arginine methyltransferases (PRMT) catalyze the methylation of terminal nitrogen atoms of guanidinium side chains within arginine residues of proteins. Recently, several new members of the PRMT family have been cloned and their catalytic function determined. In this report, we present a review and phylogenetic analysis of the PRMT found so far in genomes. PRMT are found in nearly all groups of eukaryotes. Many human PRMT originated early in eukaryote evolution. Homologs of PRMT1 and PRMT5 are found in nearly every eukaryote studied. The gene structure of PRMT vary: most introns appear to be inserted randomly into the open reading frame. The change in catalytic specificity of some PRMT occurred with changes in the arginine binding pocket within the active site. Because of the high degree of conservation of sequence among the family throughout evolution, creation of specific PRMT inhibitors in pathogenic organisms may be difficult, but could be very effective if developed. Furthermore, because of the intricate involvement of several PRMT in cellular physiology, their inhibition may be fraught with unwanted side effects. Nevertheless, development of pharmaceutical agents to control PRMT functions could lead to significant new targets.
Collapse
Affiliation(s)
- Christopher D Krause
- Department of Molecular Genetics, Microbiology, and Immunology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
32
|
Dez C, Houseley J, Tollervey D. Surveillance of nuclear-restricted pre-ribosomes within a subnucleolar region of Saccharomyces cerevisiae. EMBO J 2006; 25:1534-46. [PMID: 16541108 PMCID: PMC1440318 DOI: 10.1038/sj.emboj.7601035] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 02/14/2006] [Indexed: 11/09/2022] Open
Abstract
We previously hypothesized that HEAT-repeat (Huntington, elongation A subunit, TOR) ribosome synthesis factors function in ribosome export. We report that the HEAT-repeat protein Sda1p is a component of late 60S pre-ribosomes and is required for nuclear export of both ribosomal subunits. In strains carrying the ts-lethal sda1-2 mutation, pre-60S particles were rapidly degraded following transfer to 37 degrees C. Polyadenylated forms of the 27S pre-rRNA and the 25S rRNA were detected, suggesting the involvement of the Trf4p/Air/Mtr4p polyadenylation complex (TRAMP). The absence of Trf4p suppressed polyadenylation and stabilized the pre-rRNA and rRNA. The absence of the nuclear exosome component Rrp6p also conferred RNA stabilization, with some hyperadenylation. We conclude that the nuclear-restricted pre-ribosomes are polyadenylated by TRAMP and degraded by the exosome. In sda1-2 strains at 37 degrees C, pre-40S and pre-60S ribosomes initially accumulated in the nucleoplasm, but then strongly concentrated in a subnucleolar focus, together with exosome and TRAMP components. Localization of pre-ribosomes to this focus was lost in sda1-2 strains lacking Trf4p or Rrp6p. We designate this nucleolar focus the No-body and propose that it represents a site of pre-ribosome surveillance.
Collapse
Affiliation(s)
- Christophe Dez
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Jonathan Houseley
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
33
|
Abstract
In eukaryotic cells, the 3' poly(A) tails found on mRNA influence their stability and translation. The discovery of a second nuclear poly(A) polymerase complex has fueled a series of reports defining a new and unexpected role for 3' end poly(A) tails in the nuclear surveillance and turnover of noncoding RNAs and intergenic mRNAs of unknown function.
Collapse
Affiliation(s)
- James T Anderson
- Department of Biological Sciences, Marquette University, PO Box 1881, Milwaukee, Wisconsin 53201, USA
| |
Collapse
|
34
|
Wessels D, Srikantha T, Yi S, Kuhl S, Aravind L, Soll DR. The Shwachman-Bodian-Diamond syndrome gene encodes an RNA-binding protein that localizes to the pseudopod ofDictyosteliumamoebae during chemotaxis. J Cell Sci 2006; 119:370-9. [PMID: 16410554 DOI: 10.1242/jcs.02753] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Shwachman-Bodian-Diamond syndrome (SBDS) is an autosomal disorder with multisystem defects. The Shwachman-Bodian-Diamond syndrome gene (SBDS), which contains mutations in a majority of SBDS patients, encodes a protein of unknown function, although it has been strongly implicated in RNA metabolism. There is also some evidence that it interacts with molecules that regulate cytoskeletal organization. Recently, it has been demonstrated by computer-assisted methods that the single behavioral defect of polymorphonuclear leukocytes (PMNs) of SBDS patients is the incapacity to orient correctly in a spatial gradient of chemoattractant. We considered using the social amoeba Dictyostelium discoideum, a model for PMN chemotaxis, an excellent system for elucidating the function of the SBDS protein. We first identified the homolog of SBDS in D. discoideum and found that the amino acids that are altered in human disease were conserved. Given that several proteins involved in chemotactic orientation localize to the pseudopods of cells undergoing chemotaxis, we tested whether the SBDS gene product did the same. We produced an SBDS-GFP chimeric in-frame fusion gene, and generated transformants either with multiple ectopic insertions of the fusion gene or multiple copies of a non-integrated plasmid carrying the fusion gene. In both cases, the SBDS-GFP protein was dispersed equally through the cytoplasm and pseudopods of cells migrating in buffer. However, we observed differential enrichment of SBDS in the pseudopods of cells treated with the chemoattractant cAMP, suggesting that the SBDS protein may play a role in chemotaxis. In light of these results, we discuss how SBDS might function during chemotaxis.
Collapse
Affiliation(s)
- Deborah Wessels
- W.M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
35
|
3 Diverse roles of protein arginine methyltransferases. PROTEIN METHYLTRANSFERASES 2006; 24:51-103. [DOI: 10.1016/s1874-6047(06)80005-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
36
|
Wyers F, Rougemaille M, Badis G, Rousselle JC, Dufour ME, Boulay J, Régnault B, Devaux F, Namane A, Séraphin B, Libri D, Jacquier A. Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 2005; 121:725-37. [PMID: 15935759 DOI: 10.1016/j.cell.2005.04.030] [Citation(s) in RCA: 671] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 03/25/2005] [Accepted: 04/19/2005] [Indexed: 11/23/2022]
Abstract
Since detection of an RNA molecule is the major criterion to define transcriptional activity, the fraction of the genome that is expressed is generally considered to parallel the complexity of the transcriptome. We show here that several supposedly silent intergenic regions in the genome of S. cerevisiae are actually transcribed by RNA polymerase II, suggesting that the expressed fraction of the genome is higher than anticipated. Surprisingly, however, RNAs originating from these regions are rapidly degraded by the combined action of the exosome and a new poly(A) polymerase activity that is defined by the Trf4 protein and one of two RNA binding proteins, Air1p or Air2p. We show that such a polyadenylation-assisted degradation mechanism is also responsible for the degradation of several Pol I and Pol III transcripts. Our data strongly support the existence of a posttranscriptional quality control mechanism limiting inappropriate expression of genetic information.
Collapse
Affiliation(s)
- Françoise Wyers
- Equipe Labelisée La Ligue, Avenue de la Terrasse, 91190 Gif sur Yvette, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
LaCava J, Houseley J, Saveanu C, Petfalski E, Thompson E, Jacquier A, Tollervey D. RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 2005; 121:713-24. [PMID: 15935758 DOI: 10.1016/j.cell.2005.04.029] [Citation(s) in RCA: 704] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 03/23/2005] [Accepted: 04/19/2005] [Indexed: 10/25/2022]
Abstract
The exosome complex of 3'-5' exonucleases participates in RNA maturation and quality control and can rapidly degrade RNA-protein complexes in vivo. However, the purified exosome showed weak in vitro activity, indicating that rapid RNA degradation requires activating cofactors. This work identifies a nuclear polyadenylation complex containing a known exosome cofactor, the RNA helicase Mtr4p; a poly(A) polymerase, Trf4p; and a zinc knuckle protein, Air2p. In vitro, the Trf4p/Air2p/Mtr4p polyadenylation complex (TRAMP) showed distributive RNA polyadenylation activity. The presence of the exosome suppressed poly(A) tail addition, while TRAMP stimulated exosome degradation through structured RNA substrates. In vivo analyses showed that TRAMP is required for polyadenylation and degradation of rRNA and snoRNA precursors that are characterized exosome substrates. Poly(A) tails stimulate RNA degradation in bacteria, suggesting that this is their ancestral function. We speculate that this function was maintained in eukaryotic nuclei, while cytoplasmic mRNA poly(A) tails acquired different roles in translation.
Collapse
Affiliation(s)
- John LaCava
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | | | | | | | | | | | | |
Collapse
|
38
|
Savchenko A, Krogan N, Cort JR, Evdokimova E, Lew JM, Yee AA, Sánchez-Pulido L, Andrade MA, Bochkarev A, Watson JD, Kennedy MA, Greenblatt J, Hughes T, Arrowsmith CH, Rommens JM, Edwards AM. The Shwachman-Bodian-Diamond Syndrome Protein Family Is Involved in RNA Metabolism. J Biol Chem 2005; 280:19213-20. [PMID: 15701634 DOI: 10.1074/jbc.m414421200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A combination of structural, biochemical, and genetic studies in model organisms was used to infer a cellular role for the human protein (SBDS) responsible for Shwachman-Bodian-Diamond syndrome. The crystal structure of the SBDS homologue in Archaeoglobus fulgidus, AF0491, revealed a three domain protein. The N-terminal domain, which harbors the majority of disease-linked mutations, has a novel three-dimensional fold. The central domain has the common winged helix-turn-helix motif, and the C-terminal domain shares structural homology with known RNA-binding domains. Proteomic analysis of the SBDS sequence homologue in Saccharomyces cerevisiae, YLR022C, revealed an association with over 20 proteins involved in ribosome biosynthesis. NMR structural genomics revealed another yeast protein, YHR087W, to be a structural homologue of the AF0491 N-terminal domain. Sequence analysis confirmed them as distant sequence homologues, therefore related by divergent evolution. Synthetic genetic array analysis of YHR087W revealed genetic interactions with proteins involved in RNA and rRNA processing including Mdm20/Nat3, Nsr1, and Npl3. Our observations, taken together with previous reports, support the conclusion that SBDS and its homologues play a role in RNA metabolism.
Collapse
Affiliation(s)
- Alexei Savchenko
- Ontario Center for Structural Proteomics, University of Toronto, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Vanˇácˇová S, Wolf J, Martin G, Blank D, Dettwiler S, Friedlein A, Langen H, Keith G, Keller W. A new yeast poly(A) polymerase complex involved in RNA quality control. PLoS Biol 2005; 3:e189. [PMID: 15828860 PMCID: PMC1079787 DOI: 10.1371/journal.pbio.0030189] [Citation(s) in RCA: 473] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Accepted: 03/28/2005] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic cells contain several unconventional poly(A) polymerases in addition to the canonical enzymes responsible for the synthesis of poly(A) tails of nuclear messenger RNA precursors. The yeast protein Trf4p has been implicated in a quality control pathway that leads to the polyadenylation and subsequent exosome-mediated degradation of hypomethylated initiator tRNAMet (tRNAiMet). Here we show that Trf4p is the catalytic subunit of a new poly(A) polymerase complex that contains Air1p or Air2p as potential RNA-binding subunits, as well as the putative RNA helicase Mtr4p. Comparison of native tRNAiMet with its in vitro transcribed unmodified counterpart revealed that the unmodified RNA was preferentially polyadenylated by affinity-purified Trf4 complex from yeast, as well as by complexes reconstituted from recombinant components. These results and additional experiments with other tRNA substrates suggested that the Trf4 complex can discriminate between native tRNAs and molecules that are incorrectly folded. Moreover, the polyadenylation activity of the Trf4 complex stimulated the degradation of unmodified tRNAiMet by nuclear exosome fractions in vitro. Degradation was most efficient when coupled to the polyadenylation activity of the Trf4 complex, indicating that the poly(A) tails serve as signals for the recruitment of the exosome. This polyadenylation-mediated RNA surveillance resembles the role of polyadenylation in bacterial RNA turnover. A new molecular surveillance mechanism is uncovered in eukaryotes, in which incorrectly folded tRNAs are polyadenylated and then targeted for degradation
Collapse
Affiliation(s)
| | - Jeannette Wolf
- 1Department of Cell Biology, BiozentrumUniversity of Basel, BaselSwitzerland
| | - Georges Martin
- 1Department of Cell Biology, BiozentrumUniversity of Basel, BaselSwitzerland
| | - Diana Blank
- 1Department of Cell Biology, BiozentrumUniversity of Basel, BaselSwitzerland
| | - Sabine Dettwiler
- 1Department of Cell Biology, BiozentrumUniversity of Basel, BaselSwitzerland
| | - Arno Friedlein
- 2Roche Genetics, F. Hoffmann-La Roche AGBaselSwitzerland
| | - Hanno Langen
- 2Roche Genetics, F. Hoffmann-La Roche AGBaselSwitzerland
| | - Gérard Keith
- 3Institut de Biologie Moléculaire et Cellulaire du CNRS, Université Louis PasteurStrasbourgFrance
| | - Walter Keller
- 1Department of Cell Biology, BiozentrumUniversity of Basel, BaselSwitzerland
| |
Collapse
|
40
|
Inoue K, Ueno S, Fukuda A. Interaction of neuron-specific K+-Cl- cotransporter, KCC2, with brain-type creatine kinase. FEBS Lett 2004; 564:131-5. [PMID: 15094054 DOI: 10.1016/s0014-5793(04)00328-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 03/04/2004] [Accepted: 03/05/2004] [Indexed: 11/16/2022]
Abstract
gamma-Aminobutyric acid, a major inhibitory neurotransmitter within the adult central nervous system, is also known to be excitatory at early developmental stages due to the elevated intracellular Cl(-) concentration. This functional change is primarily attributable to a K(+)-Cl(-) cotransporter, KCC2, the expression of which is developmentally regulated in neurons. However, little detail information is available concerning the intracellular regulation of KCC2 function. Here, we identify an interaction between KCC2 and brain-type creatine kinase by means of yeast two-hybrid screening. This interaction, which was also detected in cultured cells and brain extracts, might contribute to KCC2-mediated modulation of Cl(-) homeostasis.
Collapse
Affiliation(s)
- Koichi Inoue
- Department of Physiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka 431-3192, Japan.
| | | | | |
Collapse
|
41
|
Boisvert FM, Côté J, Boulanger MC, Richard S. A Proteomic Analysis of Arginine-methylated Protein Complexes. Mol Cell Proteomics 2003; 2:1319-30. [PMID: 14534352 DOI: 10.1074/mcp.m300088-mcp200] [Citation(s) in RCA: 296] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arginine methylation is a post-translational modification that results in the formation of asymmetrical and symmetrical dimethylated arginines (a- and sDMA). This modification is catalyzed by type I and II protein-arginine methyltransferases (PRMT), respectively. The two major enzymes PRMT1 (type I) and PRMT5 (type II) preferentially methylate arginines located in RG-rich clusters. Arginine methylation is a common modification, but the reagents for detecting this modification have been lacking. Thus, fewer than 20 proteins have been identified in the last 40 years as containing dimethylated arginines. We have generated previously four arginine methyl-specific antibodies; ASYM24 and ASYM25 are specific for aDMA, whereas SYM10 and SYM11 recognize sDMA. All of these antibodies were generated by using peptides with aDMA or sDMA in the context of different RG-rich sequences. HeLa cell extracts were used to purify the protein complexes recognized by each of the four antibodies, and the proteins were identified by microcapillary reverse-phase liquid chromatography coupled on line with electrospray ionization tandem mass spectrometry. The analysis of two tandem mass spectra for each methyl-specific antibody resulted in the identification of over 200 new proteins that are putatively arginine-methylated. The major protein complexes that were purified include components required for pre-mRNA splicing, polyadenylation, transcription, signal transduction, and cytoskeleton and DNA repair. These findings provide a basis for the identification of the role of arginine methylation in many cellular processes.
Collapse
Affiliation(s)
- François-Michel Boisvert
- Terry Fox Molecular Oncology Group and Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research and Department of Oncology, McGill University, Montréal, Québec H3T 1E2, Canada
| | | | | | | |
Collapse
|
42
|
Wada K, Inoue K, Hagiwara M. Identification of methylated proteins by protein arginine N-methyltransferase 1, PRMT1, with a new expression cloning strategy. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1591:1-10. [PMID: 12183049 DOI: 10.1016/s0167-4889(02)00202-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Methylation at arginines has recently come to attention as a posttranslational modification of proteins, which is implicated in processes from signaling, transcriptional activation, to mRNA processing. Here we report that several proteins extracted from HeLa cells were methylated by PRMT1 (protein arginine N-methyltransferease 1) even on a nitrocellulose membrane, while proteins from Escherichia coli are not methylated with this protein. Screening PRMT1 substrates from a lambdagt11-HeLa cDNA library, we found that more than half of the 48 cDNA clones obtained encode putative RNA-binding proteins that have RGG (arginine-glycine-glycine) motifs, such as hnRNP R (heterogeneous nuclear ribonucleoprotein R) and hnRNP K. We cloned two novel arginine methylation substrates, ZF5 (zinc finger 5) and p137GPI (GPI-anchor protein p137), which do not possess typical RGG motifs. We also cloned a novel protein that has RGG motifs, but does not have any other RNA-binding motifs. We tentatively termed this clone SAMT1 (substrate of arginine methyl transferase 1). A(63-)VLD(-65) to AAA mutation of PRMT1 suppressed the methylation of recombinant SAMT1 and other RGG proteins in the HeLa extracts. This systematic screening of substrate proteins with the solid phase methylation reaction will contribute to identify new roles of PRMT family.
Collapse
Affiliation(s)
- Kazuhiro Wada
- Department of Functional Genomics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8510, Japan
| | | | | |
Collapse
|
43
|
West RW, Milgrom E. DEAD-box RNA helicase Sub2 is required for expression of lacZ fusions in Saccharomyces cerevisiae and is a dosage-dependent suppressor of RLR1 (THO2). Gene 2002; 288:19-27. [PMID: 12034490 DOI: 10.1016/s0378-1119(02)00482-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RLR1 (THO2) encodes a novel, phylogenetically-conserved KEKE motif protein involved in transcription and transcription-associated recombination in Saccharomyces cerevisiae. One characteristic aspect of RLR1 function is its requirement for expression of the Escherichia coli lacZ reporter gene regardless of the yeast promoter to which it is fused. rlr1-1 was originally isolated (employing lacZ as a transcriptional reporter) as a suppressor of a mutation in the gene encoding Sin4, a subunit of the Mediator subcomplex of the RNA polymerase II (PolII) transcriptional machinery. To clarify the function of Rlr1, we performed a genetic screen for dosage-dependent suppressors of the cold-sensitive phenotype of rlr1-1. From this screen we isolated SUB2, encoding a conserved DEAD-box RNA helicase family member having roles in both pre-mRNA splicing and mRNA export in yeast, flies, and humans. We demonstrate that Sub2, like Rlr1, is required for lacZ to be expressed in yeast, and that sub2 mutants manifest rlr1-like growth defects. Our results are consistent with a hypothesis where expression of lacZ fusions in yeast preferentially requires a Sub2-mediated mRNP assembly/export pathway linked to transcription via Rlr1.
Collapse
Affiliation(s)
- Robert W West
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Syracuse 13210, USA.
| | | |
Collapse
|
44
|
Cimato TR, Tang J, Xu Y, Guarnaccia C, Herschman HR, Pongor S, Aletta JM. Nerve growth factor-mediated increases in protein methylation occur predominantly at type I arginine methylation sites and involve protein arginine methyltransferase 1. J Neurosci Res 2002; 67:435-42. [PMID: 11835310 DOI: 10.1002/jnr.10123] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Nerve growth factor (NGF)-specific signal transduction leads to changes in protein methylation during neuronal differentiation of PC12 cells (Cimato et al. [1997] J. Cell Biol. 138:1089-1103). In the present work, we demonstrate that, among NGF-regulated proteins, arginine methylation is more prevalent than carboxylmethylation. Type I protein arginine methyltransferase (PRMT) activity produces asymmetric dimethylation of the terminal guanidinonitrogen of arginines in substrate proteins, particularly glycine and arginine-rich (GAR) segments of proteins. Several GAR peptides were used to assay for methyltransferase activity and to compete with endogenous cellular proteins for the PRMT activity in PC12 cell extracts. Peptides derived from fibrillarin and nucleolin, as well as a synthetic GAR peptide containing a repetitive GRG motif, are each extremely effective at blocking in vitro methylation of the NGF-regulated PC12 cell methylated proteins. Myelin basic protein, a substrate for type II PRMT, selectively inhibits a 45 kDa protein but is a much less effective inhibitor of total methylation at an equimolar concentration. In addition, the fibrillarin- and nucleolin-derived peptides were used to detect elevated PRMT activity in homogenates of NGF-treated PC12 cells. Finally, immunoprecipitation of PRMT1 from PC12 cells provides the first demonstration of an NGF-activated methyltransferase and implicates PRMT1 in NGF signal transduction.
Collapse
Affiliation(s)
- Thomas R Cimato
- Department of Pharmacology and Toxicology, University at Buffalo School of Medicine and Biomedical Sciences, State University of New York, 3435 Main Street, Buffalo, NY 14214-3000, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Nuclear mRNA metabolism relies on the interplay between transcription, processing, and nuclear export. RNA polymerase II transcripts experience major rearrangements within the nucleus, which include alterations in the structure of the mRNA precursors as well as the addition and perhaps even removal of proteins prior to transport across the nuclear membrane. Such mRNP-remodeling steps are thought to require the activity of RNA helicases/ATPases. One such protein, the DECD box RNA-dependent ATPase Sub2p/UAP56, is involved in both early and late steps of spliceosome assembly. Here, we report a more general function of Saccharomyces cerevisiae Sub2p in mRNA nuclear export. We observe a rapid and dramatic nuclear accumulation of poly(A)(+) RNA in strains carrying mutant alleles of sub2. Strikingly, an intronless transcript, HSP104, also accumulates in nuclei, suggesting that Sub2p function is not restricted to splicing events. The HSP104 transcripts are localized in a single nuclear focus that is suggested to be at or near their site of transcription. Intriguingly, Sub2p shows strong genetic and functional interactions with the RNA polymerase II-associated DNA/DNA:RNA helicase Rad3p as well as the nuclear RNA exosome component Rrp6p, which was independently implicated in the retention of mRNAs at transcription sites. Taken together, our data suggest that Sub2p functions at an early step in the mRNA export process.
Collapse
Affiliation(s)
- T H Jensen
- Howard Hughes Medical Institute, Department of Biology, Brandeis University, Waltham, MA 02454, USA.
| | | | | | | |
Collapse
|
46
|
Drees BL, Sundin B, Brazeau E, Caviston JP, Chen GC, Guo W, Kozminski KG, Lau MW, Moskow JJ, Tong A, Schenkman LR, McKenzie A, Brennwald P, Longtine M, Bi E, Chan C, Novick P, Boone C, Pringle JR, Davis TN, Fields S, Drubin DG. A protein interaction map for cell polarity development. J Cell Biol 2001; 154:549-71. [PMID: 11489916 PMCID: PMC2196425 DOI: 10.1083/jcb.200104057] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many genes required for cell polarity development in budding yeast have been identified and arranged into a functional hierarchy. Core elements of the hierarchy are widely conserved, underlying cell polarity development in diverse eukaryotes. To enumerate more fully the protein-protein interactions that mediate cell polarity development, and to uncover novel mechanisms that coordinate the numerous events involved, we carried out a large-scale two-hybrid experiment. 68 Gal4 DNA binding domain fusions of yeast proteins associated with the actin cytoskeleton, septins, the secretory apparatus, and Rho-type GTPases were used to screen an array of yeast transformants that express approximately 90% of the predicted Saccharomyces cerevisiae open reading frames as Gal4 activation domain fusions. 191 protein-protein interactions were detected, of which 128 had not been described previously. 44 interactions implicated 20 previously uncharacterized proteins in cell polarity development. Further insights into possible roles of 13 of these proteins were revealed by their multiple two-hybrid interactions and by subcellular localization. Included in the interaction network were associations of Cdc42 and Rho1 pathways with proteins involved in exocytosis, septin organization, actin assembly, microtubule organization, autophagy, cytokinesis, and cell wall synthesis. Other interactions suggested direct connections between Rho1- and Cdc42-regulated pathways; the secretory apparatus and regulators of polarity establishment; actin assembly and the morphogenesis checkpoint; and the exocytic and endocytic machinery. In total, a network of interactions that provide an integrated response of signaling proteins, the cytoskeleton, and organelles to the spatial cues that direct polarity development was revealed.
Collapse
Affiliation(s)
- B L Drees
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|