1
|
Qin J, Zhu W, Zhou W. Navigating the Paradox of IL-22: Friend or Foe in Hepatic Health? J Gastroenterol Hepatol 2025. [PMID: 40358483 DOI: 10.1111/jgh.16991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/11/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025]
Abstract
Interleukin-22 (IL-22), a cytokine from the IL-10 family produced by T cells and innate lymphoid cells, plays a crucial role in immune responses and tissue regeneration. Its association with liver disease has garnered significant attention; however, its exact impact remains controversial. This review aims to enhance the current understanding of the dual role of IL-22 in liver disease by exploring its protective and pathogenic effects. First, we provide an overview of IL-22 biology, including its source, receptors, and signaling pathways. Subsequently, we offer a comprehensive overview of the dual function of IL-22 in non-neoplastic liver disease, emphasizing its antiapoptotic and regenerative properties. We also discuss the applicability of the conclusions drawn from studies on nonalcoholic fatty liver disease to metabolic dysfunction-associated steatotic liver disease. Furthermore, we elaborate on the intricate role of IL-22 in hepatocellular carcinoma, particularly its influence on the tumor microenvironment, proliferation, and immune evasion. In conclusion, IL-22 is paradoxical in liver disease, acting as a friend and foe. It is imperative to understand this paradox to develop targeted therapies that capitalize on the beneficial effects of IL-22 while mitigating its detrimental effects.
Collapse
Affiliation(s)
- Jianqi Qin
- The Second Hospital of Lanzhou University, Department of General Surgery, Lanzhou University Second Clinical Medical College; Key Laboratory of Environmental Oncology of Gansu Province, Lanzhou, Gansu, China
| | - Weixiong Zhu
- The Second Hospital of Lanzhou University, Department of General Surgery, Lanzhou University Second Clinical Medical College; Key Laboratory of Environmental Oncology of Gansu Province, Lanzhou, Gansu, China
| | - Wence Zhou
- The Second Hospital of Lanzhou University, Department of General Surgery, Lanzhou University Second Clinical Medical College; Key Laboratory of Environmental Oncology of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Liu S, Zhao R, Zang Y, Huang P, Zhang Q, Fan X, Bai J, Zheng X, Zhao S, Kuai D, Gao C, Wang Y, Xue F. Interleukin-22 promotes endometrial carcinoma cell proliferation and cycle progression via ERK1/2 and p38 activation. Mol Cell Biochem 2025; 480:3147-3160. [PMID: 39690293 PMCID: PMC12048457 DOI: 10.1007/s11010-024-05179-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024]
Abstract
Endometrial carcinoma (EC) is one of the most common gynecological malignant tumors, but its underlying pathogenic mechanisms are largely obscure. Interleukin-22 (IL-22), one cytokine in the tumor immune microenvironment, was reported to be associated with carcinoma progression. Here, we aimed to investigate the regulation of IL-22 in endometrial carcinoma. Enzyme-linked immunosorbent assay (ELISA) analysis of IL-22 was done in 27 controls and 51 patients with EC. We examined the proliferative potential, cycle progression, and signaling pathways modulated by IL-22 in EC cells. Western blot analysis was performed to investigate the expression of proliferative and cycle-related proteins in EC cells. The effect of IL-22 mediated by interleukin-22 receptor alpha 1 (IL-22RA1) was examined using cell transfection with small interfering RNA (siRNA). In addition, a xenograft tumor model was performed to assess the effect of IL-22 in vivo. We demonstrated significant up-regulation of serum IL-22 concentrations in EC patients (42.59 ± 23.72 pg/mL) compared to the control group (27.47 ± 8.29 pg/mL). High levels of IL-22 concentrations appear to correlate with malignant clinicopathological features of EC. Treatment with IL-22 promoted cell proliferation and G1/S phase progression in Ishikawa and HEC-1B cells. Western blot analysis revealed that c-Myc, cyclin E1, cyclin-dependent kinase (CDK)2, cyclin D1, CDK4, CDK6, p-extracellular signal-regulated kinase1/2 (p-ERK1/2), and p-p38 were highly expressed in EC cells exposed to IL-22. Moreover, in the EC mice model, we found that giving exogenous IL-22 increased tumor volume and weight. Immunohistochemistry showed that intra-tumor Ki-67 expression was up-regulated upon IL-22 treatment. The IL-22-mediated changes in cell proliferation, cycle progression, and protein expression can be effectively inhibited by the ERK1/2 inhibitor U0126 and the p38 inhibitor SB202190. In addition, the role of IL-22 in EC is receptor-dependent. Our findings suggest that IL-22 promotes endometrial carcinoma cell proliferation and G1/S phase progression by activating ERK1/2 and p38 signaling. Therefore, IL-22 may represent a potential therapeutic target for the treatment of endometrial carcinoma.
Collapse
Affiliation(s)
- Shiqi Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ruqian Zhao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Department of Gynecology, Huzhou Maternity & Child Health Care Hospital, Huzhou, 313002, Zhejiang, China
| | - Yuqin Zang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Department of Gynecology, Qingdao Municipal Hospital, Shandong, 266071, China
| | - Pengzhu Huang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qiaoling Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiangqin Fan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Junyi Bai
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xingyu Zheng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shuangshuang Zhao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Dan Kuai
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chao Gao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
3
|
Xu Y, Chen L, Hu X, Lai Z, Chen B, Wu M, Mai L, Su Z, Chen J, Lai Z, Ai W, Xie J, Liao H, Xie Y. Brusatol ameliorates intestinal mucosal injury in ulcerative colitis via activating IL-22/STAT3 pathway. Int Immunopharmacol 2025; 153:114482. [PMID: 40101416 DOI: 10.1016/j.intimp.2025.114482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/23/2025] [Accepted: 03/10/2025] [Indexed: 03/20/2025]
Abstract
Brusatol (BR) is an active compounds isolated from Brucea javanica, a Chinese herbal medicine that is famous for its anti-diarrheal effect. We have previously reported that BR mitigated inflammation in murine ulcerative colitis (UC) models. However, BR's role in intestinal mucosal healing, which is recently established as central strategy for the prevention and treatment of UC, remains unknown. In this study, the ameliorative effect of BR on intestinal mucosal damage was investigated in DSS-induced UC mice. BR significantly alleviated colitis symptoms, improved intestinal barrier function by preventing loss of goblet cells and downregulation of mucins and tight junction proteins, as well as maintained proliferative and apoptotic homeostasis in the colonic epithelium of UC mice. Mechanistically, BR enhanced the level and secretion of IL-22, but inhibited IL-22BP, an inhibitory protein of IL-22, in the blood serum and intestinal tissues of UC mice, as well as in MNK3 cells which is an effective cell model for studying ILC3s. Additionally, BR elevated the expressions of receptors for IL-22 (IL-10R2 and IL-22R1), and activated its downstream STAT3 signaling pathway. Furthermore, the involvement of IL-22 was further investigated by using recombinant IL-22 (rIL-22) and IL-22 antibody (anti-IL-22). BR demonstrated comparable effects with rIL-22 on alleviating intestinal inflammation and repairing intestinal mucosal injury. Treatment with anti-IL-22 abrogated the mucosal protective effects of BR. The present findings shed novel insights into the role of BR in intestinal mucosal healing via activating IL-22/STAT3 signaling pathway in UC.
Collapse
Affiliation(s)
- Ying Xu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Li Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China; Pharmacy Center, Shenzhen Nanshan Medical Group Headquarters, Shenzhen, PR China
| | - Xiaoxia Hu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Zixuan Lai
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Baoyi Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Minghui Wu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Liting Mai
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Ziren Su
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Jiannan Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Zhengquan Lai
- Department of Pharmacy, Shenzhen University General Hospital/Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, PR China
| | - Weipeng Ai
- Department of Pharmacy, Shenzhen University General Hospital/Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, PR China
| | - Jianhui Xie
- Guangdong Provincial Key Laboratory of Clinical Research on TCM Syndrome, Guangzhou, PR China
| | - Huijun Liao
- Pharmacy Center, Shenzhen Nanshan Medical Group Headquarters, Shenzhen, PR China; Department of Clinical Pharmacy and Pharmaceutical Services, Shenzhen Nanshan People's Hospital, Shenzhen, PR China.
| | - Youliang Xie
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Clinical Research on TCM Syndrome, Guangzhou, PR China.
| |
Collapse
|
4
|
Fratta Pasini AM, Stranieri C, Di Leo EG, Bertolone L, Aparo A, Busti F, Castagna A, Vianello A, Chesini F, Friso S, Girelli D, Cominacini L. Identification of Early Biomarkers of Mortality in COVID-19 Hospitalized Patients: A LASSO-Based Cox and Logistic Approach. Viruses 2025; 17:359. [PMID: 40143288 PMCID: PMC11946718 DOI: 10.3390/v17030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/06/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
This study aimed to identify possible early biomarkers of mortality among clinical and biochemical parameters, iron metabolism parameters, and cytokines detected within 24 h from admission in hospitalized COVID-19 patients. We enrolled 80 hospitalized patients (40 survivors and 40 non-survivors) with COVID-19 pneumonia and acute respiratory failure. The median time from the onset of COVID-19 symptoms to hospital admission was lower in non-survivors than survivors (p < 0.05). Respiratory failure, expressed as the ratio of arterial oxygen partial pressure to the fraction of inspired oxygen (P/F), was more severe in non-survivors than survivors (p < 0.0001). Comorbidities were similar in both groups. Among biochemical parameters and cytokines, eGFR and interleukin (IL)-1β were found to be significantly lower (p < 0.05), while LDH, IL-10, and IL-8 were significantly higher in non-survivors than in survivors (p < 0.0005, p < 0.05 and p < 0.005, respectively). Among other parameters, LDH values distribution showed the most significant difference between study groups (p < 0.0001). LASSO feature selection combined with Cox proportional hazards and logistic regression models was applied to identify features distinguishing between survivors and non-survivors. Both approaches highlighted LDH as the strongest predictor, with IL-22 and creatinine emerging in the Cox model, while IL-10, eGFR, and creatinine were influential in the logistic model (AUC = 0.744 for Cox, 0.723 for logistic regression). In a similar manner, we applied linear regression for predicting LDH levels, identifying the P/F ratio as the top predictor, followed by IL-10 and eGFR (NRMSE = 0.128). Collectively, these findings underscore LDH's critical role in mortality prediction, with P/F and IL-10 as key determinants of LDH increases in this Italian COVID-19 cohort.
Collapse
Affiliation(s)
- Anna Maria Fratta Pasini
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| | - Chiara Stranieri
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| | - Edoardo Giuseppe Di Leo
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| | - Lorenzo Bertolone
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| | - Antonino Aparo
- Interdepartmental Laboratory of Medical Research, Research Center LURM, University of Verona, 37134 Verona, Italy;
| | - Fabiana Busti
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| | - Annalisa Castagna
- Department of Medicine, Section of Internal Medicine B, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy (S.F.)
| | - Alice Vianello
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| | - Fabio Chesini
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| | - Simonetta Friso
- Department of Medicine, Section of Internal Medicine B, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy (S.F.)
| | - Domenico Girelli
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| | - Luciano Cominacini
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| |
Collapse
|
5
|
Aebisher D, Bartusik-Aebisher D, Przygórzewska A, Oleś P, Woźnicki P, Kawczyk-Krupka A. Key Interleukins in Inflammatory Bowel Disease-A Review of Recent Studies. Int J Mol Sci 2024; 26:121. [PMID: 39795980 PMCID: PMC11719876 DOI: 10.3390/ijms26010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Inflammatory bowel disease (IBD) is an immune disorder of the gastrointestinal tract with a complex aetiopathogenesis, whose development is influenced by many factors. The prevalence of IBD is increasing worldwide, in both industrialized and developing countries, making IBD a global health problem that seriously affects quality of life. In 2019, there were approximately 4.9 million cases of IBD worldwide. Such a large number of patients entails significant healthcare costs. In the treatment of patients with IBD, the current therapeutic target is mucosal healing, as intestinal inflammation often persists despite resolution of abdominal symptoms. Treatment strategies include amino salicylates, corticosteroids, immunosuppressants, and biologic therapies that focus on reducing intestinal mucosal inflammation, inducing and prolonging disease remission, and treating complications. The American College of Gastroenterology (ACG) guidelines also indicate that nutritional therapies may be considered in addition to other therapies. However, current therapeutic approaches are not fully effective and are associated with various limitations, such as drug resistance, variable efficacy, and side effects. As the chronic inflammation that accompanies IBD is characterized by infiltration of a variety of immune cells and increased expression of a number of pro-inflammatory cytokines, including IL-6, TNF-α, IL-12, IL-23 and IFN-γ, new therapeutic approaches are mainly targeting immune pathways. Interleukins are one of the molecular targets in IBD therapy. Interleukins and related cytokines serve as a means of communication for innate and adaptive immune cells, as well as nonimmune cells and tissues. These cytokines play an important role in the pathogenesis and course of IBD, making them promising targets for current and future therapies. In our work, we review scientific studies published between January 2022 and November 2024 describing the most important interleukins involved in the pathogenesis of IBD. Some of the papers present new data on the precise role that individual interleukins play in IBD. New clinical data have also been provided, particularly on blocking interleukin 23 and interleukin 1beta. In addition, several new approaches to the use of different interleukins in the treatment of IBD have been described in recent years.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland;
| | - Agnieszka Przygórzewska
- English Division Science Club, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland; (A.P.); (P.W.)
| | - Piotr Oleś
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Paweł Woźnicki
- English Division Science Club, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland; (A.P.); (P.W.)
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland;
| |
Collapse
|
6
|
Scapin G, Cagdas E, Grav LM, Lewis NE, Goletz S, Hafkenscheid L. Implications of glycosylation for the development of selected cytokines and their derivatives for medical use. Biotechnol Adv 2024; 77:108467. [PMID: 39447666 DOI: 10.1016/j.biotechadv.2024.108467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Cytokines are important regulators of immune responses, making them attractive targets for autoimmune diseases and cancer therapeutics. Yet, the significance of cytokine glycosylation remains underestimated. Many cytokines carry N- and O-glycans and some even undergo C-mannosylation. Recombinant cytokines produced in heterologous host cells may lack glycans or exhibit a different glycosylation pattern such as varying levels of galactosylation, sialylation, fucosylation or xylose addition compared to their human counterparts, potentially impacting critical immune interactions. We focused on cytokines that are currently utilized or designed in advanced therapeutic formats, including immunocytokines, fusokines, engager cytokines, and genetically engineered 'supercytokines.' Despite the innovative designs of these cytokine derivatives, their glycosylation patterns have not been extensively studied. By examining the glycosylation of the human native cytokines, G-CSF and GM-CSF, interferons β and γ, TNF-α and interleukins-2, -3 -4, -6, -7, -9, -12, -13, -15, -17A, -21, and - 22, we aim to assess its potential impact on their therapeutic derivatives. Understanding the glycosylation of the native cytokines could provide critical insights into the safety, efficacy, and functionality of these next-generation cytokine therapies, affecting factors such as stability, bioactivity, antigenicity, and half-life. This knowledge can guide the choice of optimal expression hosts for production and advance the development of effective cytokine-based therapeutics and synthetic immunology drugs.
Collapse
Affiliation(s)
- Giulia Scapin
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Ece Cagdas
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Lise Marie Grav
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark.
| | - Lise Hafkenscheid
- Department of Biotechnology and Biomedicine, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
7
|
Li J, Wu Z, Wu Y, Hu X, Yang J, Zhu D, Wu M, Li X, Bentum-Ennin L, Wanglai H. IL-22, a vital cytokine in autoimmune diseases. Clin Exp Immunol 2024; 218:242-263. [PMID: 38651179 PMCID: PMC11557150 DOI: 10.1093/cei/uxae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/05/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
Interleukin-22 (IL-22) is a vital cytokine that is dysregulated in various autoimmune conditions including rheumatoid arthritis (RA), multiple sclerosis (MS), and Alzheimer's disease (AD). As the starting point for the activation of numerous signaling pathways, IL-22 plays an important role in the initiation and development of autoimmune diseases. Specifically, imbalances in IL-22 signaling can interfere with other signaling pathways, causing cross-regulation of target genes which ultimately leads to the development of immune disorders. This review delineates the various connections between the IL-22 signaling pathway and autoimmune disease, focusing on the latest understanding of the cellular sources of IL-22 and its effects on various cell types. We further explore progress with pharmacological interventions related to targeting IL-22, describing how such therapeutic strategies promise to usher in a new era in the treatment of autoimmune disease.
Collapse
Affiliation(s)
- Jiajin Li
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Zhen Wu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Yuxin Wu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - XinYu Hu
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Jun Yang
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Dacheng Zhu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Mingyue Wu
- The School of pharmacy, Anhui Medical University, Hefei, China
| | - Xin Li
- The School of pharmacy, Anhui Medical University, Hefei, China
| | | | - Hu Wanglai
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
Wang Z, Riqing D, Ma L, Jiang M, Zhuoma C, Li X, Liu Y. In Situ Expression of Yak IL-22 in Mammary Glands as a Treatment for Bovine Staphylococcus aureus-Induced Mastitis in Mice. Vet Sci 2024; 11:515. [PMID: 39453107 PMCID: PMC11512370 DOI: 10.3390/vetsci11100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Since the development of dairy farming, bovine mastitis has been a problem plaguing the whole industry, which has led to a decrease in milk production, a reduction in dairy product quality, and an increase in costs. The use of antibiotics to treat mastitis can cause a series of problems, which can bring a series of harm to the animal itself, such as the development of bacterial resistance and dramatic changes in the gut flora. However, the in vivo and in vitro antibacterial activity of yak Interleukin-22 (IL-22) and its application in mastitis caused by Staphylococcus aureus have not been reported. In this study, the mammary gland-specific expression plasmid pLF-IL22 of the yak IL-22 gene was constructed and expressed in MAC-T cells and mammary tissue of postpartum female mice. The coding region of the IL-22 gene in yaks is 573 bp, which can encode 190 amino acids, and the homology difference in the IL-22 gene in yaks is less than 30%, which indicates certain conservation. IL-22 is a hydrophilic protein with a total positive charge of four, the presence of a signal peptide, and the absence of a transmembrane domain. Sufficient expression of IL-22 effectively inhibited the high expression of inflammatory factors caused by Staphylococcus aureus, reduced the symptoms of mammary gland histopathology, and alleviated mastitis. Under the action of IL-22, the intestinal flora of mastitis mice also changed, the abundance of intestinal Bacilli, Prevotellaceae, and Alloprevotella in mice increased after treatment, and the pathogenic bacteria decreased. These findings provide new insights into the potential application of the yak IL-22 gene in the treatment of bovine mastitis in the future.
Collapse
Affiliation(s)
- Zening Wang
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.W.); (D.R.); (M.J.)
| | - Daojie Riqing
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.W.); (D.R.); (M.J.)
| | - Liangliang Ma
- College of Grassland Resources, Southwest Minzu University, Chengdu 610041, China;
| | - Mingfeng Jiang
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.W.); (D.R.); (M.J.)
| | - Ciren Zhuoma
- Jiali County Agriculture and Animal Husbandry Science and Technology Service Station, Naqu 852413, China;
| | - Xiaowei Li
- Sichuan Longri Livestock Breeding Farm, Hongyuan 624400, China;
| | - Yili Liu
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China; (Z.W.); (D.R.); (M.J.)
| |
Collapse
|
9
|
Kuchař M, Sloupenská K, Rašková Kafková L, Groza Y, Škarda J, Kosztyu P, Hlavničková M, Mierzwicka JM, Osička R, Petroková H, Walimbwa SI, Bharadwaj S, Černý J, Raška M, Malý P. Human IL-22 receptor-targeted small protein antagonist suppress murine DSS-induced colitis. Cell Commun Signal 2024; 22:469. [PMID: 39354587 PMCID: PMC11446014 DOI: 10.1186/s12964-024-01846-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/22/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Human interleukin-22 (IL-22) is known as a "dual function" cytokine that acts as a master regulator to maintain homeostasis, structural integrity of the intestinal epithelial barrier, and shielding against bacterial pathogens. On the other hand, the overexpression of IL-22 is associated with hyper-proliferation and recruitment of pathologic effector cells, leading to tissue damage and chronic inflammation in specific diseases including inflammatory bowel disease (IBD). To study a role of IL-22-mediated signaling axis during intestinal inflammation, we generated a set of small protein blockers of IL-22R1 and verified their inhibitory potential on murine model of colitis. METHODS We used directed evolution of proteins to identify binders of human IL-22 receptor alpha (IL-22R1), designated as ABR ligands. This approach combines the assembly of a highly complex combinatorial protein library derived from small albumin-binding domain scaffold and selection of promising protein variants using ribosome display followed by large-scale ELISA screening. The binding affinity and specificity of ABR variants were analyzed on transfected HEK293T cells by flow cytometry and LigandTracer. Inhibitory function was further verified by competition ELISA, HEK-Blue IL-22 reporter cells, and murine dextran sulfate sodium (DSS)-induced colitis. RESULTS We demonstrate that ABR specifically recognizes transgenic IL-22R1 expressed on HEK293T cells and IL-22R1 on TNFα/IFNγ-activated HaCaT cells. Moreover, some ABR binders compete with the IL-22 cytokine and function as IL-22R1 antagonists in HEK-Blue IL22 reporter cells. In a murine model of DSS-induced acute intestinal inflammation, daily intraperitoneal administration of the best IL-22R1 antagonist, ABR167, suppressed the development of clinical and histological markers of colitis including prevention of mucosal inflammation and architecture deterioration. In addition, ABR167 reduces the DSS-induced increase in mRNA transcript levels of inflammatory cytokines such as IL-1β, IL-6, IL-10, and IL-17A. CONCLUSIONS We developed small anti-human IL-22R1 blockers with antagonistic properties that ascertain a substantial role of IL-22-mediated signaling in the development of intestinal inflammation. The developed ABR blockers can be useful as a molecular clue for further IBD drug development.
Collapse
Affiliation(s)
- Milan Kuchař
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Kristýna Sloupenská
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc, 779 00, Czech Republic
| | - Leona Rašková Kafková
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc, 779 00, Czech Republic.
| | - Yaroslava Groza
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Jozef Škarda
- Department of Pathology, University Hospital Ostrava and Faculty of Medicine, University of Ostrava, Syllabova 19, Ostrava, 708 00, Czech Republic
| | - Petr Kosztyu
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc, 779 00, Czech Republic
| | - Marie Hlavničková
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Joanna M Mierzwicka
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Radim Osička
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Hana Petroková
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Stephen I Walimbwa
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc, 779 00, Czech Republic
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Jiří Černý
- Laboratory of Structural Bioinformatics of Proteins, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Milan Raška
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc, 779 00, Czech Republic
| | - Petr Malý
- Laboratory of Ligand Engineering, BIOCEV Research Center, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, Vestec, 252 50, Czech Republic.
| |
Collapse
|
10
|
Hunzeker ZE, Zhao L, Kim AM, Parker JM, Zhu Z, Xiao H, Bai Q, Wakefield MR, Fang Y. The role of IL-22 in cancer. Med Oncol 2024; 41:240. [PMID: 39231878 DOI: 10.1007/s12032-024-02481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
Interleukin-22, discovered in the year of 2000, is a pleiotropic Th17 cytokine from the IL-10 family of cytokines. IL-22 signals through the type 2 cytokine receptor complex IL-22R and predominantly activates STAT3. This pathway leads to the transcription of several different types of genes, giving IL-22 context-specific functions ranging from inducing antimicrobial peptide expression to target cell proliferation. In recent years, it has been shown that IL-22 is involved in the pathogenesis of neoplasia in some cancers through its pro-proliferative and anti-apoptotic effects. This review highlights studies with recent discoveries and conclusions drawn on IL-22 and its involvement and function in various cancers. Such a study may be helpful to better understand the role of IL-22 in cancer so that new treatment could be developed targeting IL-22.
Collapse
Affiliation(s)
- Zachary E Hunzeker
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Department of Internal Medicine, University of Texas Houston Health Science Center, Houston, TX, USA
| | - Lei Zhao
- Department of Respiratory Medicine, the 2nd People's Hospital of Hefei and Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Austin M Kim
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Jacob M Parker
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Ziwen Zhu
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Huaping Xiao
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Qian Bai
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA.
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
| |
Collapse
|
11
|
Felix FA, Zhou J, Li D, Onodera S, Yu Q. Endogenous IL-22 contributes to the pathogenesis of salivary gland dysfunction in the non-obese diabetic model of Sjögren's syndrome. Mol Immunol 2024; 173:20-29. [PMID: 39018744 PMCID: PMC11343657 DOI: 10.1016/j.molimm.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 06/29/2024] [Indexed: 07/19/2024]
Abstract
Sjӧgren's syndrome is a systemic autoimmune disease primarily targeting the salivary and lacrimal glands. Our previous investigations have shown that administration of interleukin-22 (IL-22), an IL-10 family cytokine known for its complex and context-dependent effects on tissues, either protective- or detrimental, to salivary glands leads to hypofunction and pathological changes of salivary glands in C57BL/6 mice and in non-obese diabetic (NOD) mice, the latter being a commonly used model of Sjӧgren's syndrome. This study aims to delineate the pathophysiological roles of endogenously produced IL-22 in the development of salivary gland pathologies and dysfunction associated with Sjӧgren's disease in the NOD mouse model. Our results reveal that neutralizing IL-22 offered a protective effect on salivary gland function without significantly affecting the immune cell infiltration of salivary glands or the autoantibody production. Blockade of IL-22 reduced the levels of phosphorylated STAT3 in salivary gland tissues of NOD mice, while its administration to salivary glands had the opposite effect. Correspondingly, the detrimental impact of exogenously applied IL-22 on salivary glands was almost completely abrogated by a specific STAT3 inhibitor. Moreover, IL-22 blockade led to a downregulation of protein amounts of Ten-Eleven-Translocation 2, a methylcytosine dioxygenase critical for mediating interferon-induced responses, in salivary gland epithelial cells. IL-22 neutralization also exerted a protective effect on the salivary gland epithelial cells that express high levels of surface EpCAM and bear the stem cell potential, and IL-22 treatment in vitro hampered the survival/expansion of these salivary gland stem cells, indicating a direct negative impact of IL-22 on these cells. In summary, this study has uncovered a critical pathogenic role of the endogenous IL-22 in the pathogenesis of Sjögren's disease-characteristic salivary gland dysfunction and provided initial evidence that this effect is dependent on STAT3 activation and potentially achieved through fostering Tet2-mediated interferon responses in salivary gland epithelial cells and negatively affecting the EpCAMhigh salivary gland stem cells.
Collapse
Affiliation(s)
- Fernanda Aragão Felix
- The ADA Forsyth Institute, 245 First Street, Cambridge, MA 02142, United States; Department of Oral Surgery, Pathology, and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jing Zhou
- The ADA Forsyth Institute, 245 First Street, Cambridge, MA 02142, United States
| | - Dongfang Li
- The ADA Forsyth Institute, 245 First Street, Cambridge, MA 02142, United States
| | - Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kanda Misaki-chou, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Qing Yu
- The ADA Forsyth Institute, 245 First Street, Cambridge, MA 02142, United States.
| |
Collapse
|
12
|
Abdelnabi MN, Hassan GS, Shoukry NH. Role of the type 3 cytokines IL-17 and IL-22 in modulating metabolic dysfunction-associated steatotic liver disease. Front Immunol 2024; 15:1437046. [PMID: 39156888 PMCID: PMC11327067 DOI: 10.3389/fimmu.2024.1437046] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) comprises a spectrum of liver diseases that span simple steatosis, metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis and may progress to cirrhosis and cancer. The pathogenesis of MASLD is multifactorial and is driven by environmental, genetic, metabolic and immune factors. This review will focus on the role of the type 3 cytokines IL-17 and IL-22 in MASLD pathogenesis and progression. IL-17 and IL-22 are produced by similar adaptive and innate immune cells such as Th17 and innate lymphoid cells, respectively. IL-17-related signaling is upregulated during MASLD resulting in increased chemokines and proinflammatory cytokines in the liver microenvironment, enhanced recruitment of myeloid cells and T cells leading to exacerbation of inflammation and liver disease progression. IL-17 may also act directly by activating hepatic stellate cells resulting in increased fibrosis. In contrast, IL-22 is a pleiotropic cytokine with a dominantly protective signature in MASLD and is currently being tested as a therapeutic strategy. IL-22 also exhibits beneficial metabolic effects and abrogates MASH-related inflammation and fibrosis development via inducing the production of anti-oxidants and anti-apoptotic factors. A sex-dependent effect has been attributed to both cytokines, most importantly to IL-22 in MASLD or related conditions. Altogether, IL-17 and IL-22 are key effectors in MASLD pathogenesis and progression. We will review the role of these two cytokines and cells that produce them in the development of MASLD, their interaction with host factors driving MASLD including sexual dimorphism, and their potential therapeutic benefits.
Collapse
Affiliation(s)
- Mohamed N. Abdelnabi
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Ghada S. Hassan
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
13
|
Pravoverov K, Fatima I, Barman S, Jühling F, Primeaux M, Baumert TF, Singh AB, Dhawan P. IL-22 regulates MASTL expression in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2024; 327:G123-G139. [PMID: 38771154 PMCID: PMC11687961 DOI: 10.1152/ajpgi.00260.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Microtubule-associated serine-threonine kinase-like (MASTL) has recently been identified as an oncogenic kinase given its overexpression in numerous cancers. Our group has shown that MASTL expression is upregulated in mouse models of sporadic colorectal cancer and colitis-associated cancer (CAC). CAC is one of the most severe complications of chronic inflammatory bowel disease (IBD), but a limited understanding of the mechanisms governing the switch from normal healing to neoplasia in IBD underscores the need for increased research in this area. However, MASTL levels in patients with IBD and its molecular regulation in IBD and CAC have not been studied. This study reveals that MASTL is upregulated by the cytokine interleukin (IL)-22, which promotes proliferation and has important functions in colitis recovery; however, IL-22 can also promote tumorigenesis when chronically elevated. Upon reviewing the publicly available data, we found significantly elevated MASTL and IL-22 levels in the biopsies from patients with late-stage ulcerative colitis compared with controls, and that MASTL upregulation was associated with high IL-22 expression. Our subsequent in vitro studies found that IL-22 increases MASTL expression in intestinal epithelial cell lines, which facilitates IL-22-mediated cell proliferation and downstream survival signaling. Inhibition of AKT activation abrogated IL-22-induced MASTL upregulation. We further found an increased association of carbonic anhydrase IX (CAIX) with MASTL in IL-22-treated cells, which stabilized MASTL expression. Inhibition of CAIX prevented IL-22-induced MASTL expression and cell survival. Overall, we show that IL-22/AKT signaling increases MASTL expression to promote cell survival and proliferation. Furthermore, CAIX associates with and stabilizes MASTL in response to IL-22 stimulation.NEW & NOTEWORTHY MASTL is upregulated in colorectal cancer; however, its role in colitis and colitis-associated cancer is poorly understood. This study is the first to draw a link between MASTL and IL-22, a proinflammatory/intestinal epithelial recovery-promoting cytokine that is also implicated in colon tumorigenesis. We propose that IL-22 increases MASTL protein stability by promoting its association with CAIX potentially via AKT signaling to promote cell survival and proliferation.
Collapse
Affiliation(s)
- Kristina Pravoverov
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Iram Fatima
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Susmita Barman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Frank Jühling
- Inserm U1110, Université de Strasbourg, Institute for Translational Medicine and Liver Disease (ITM), Strasbourg, France
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, Strasbourg, France
| | - Mark Primeaux
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Thomas F Baumert
- Inserm U1110, Université de Strasbourg, Institute for Translational Medicine and Liver Disease (ITM), Strasbourg, France
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, Strasbourg, France
- IHU Strasbourg and Gastroenterology-Hepatology Service, Strasbourg University Hospitals, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| | - Amar B Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, United States
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, United States
| |
Collapse
|
14
|
Yang H, Cao R, Zhou F, Wang B, Xu Q, Li R, Zhang C, Xu H. The role of Interleukin-22 in severe acute pancreatitis. Mol Med 2024; 30:60. [PMID: 38750415 PMCID: PMC11097471 DOI: 10.1186/s10020-024-00826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
Severe acute pancreatitis (SAP) begins with premature activation of enzymes, promoted by the immune system, triggering a potential systemic inflammatory response that leads to organ failure with increased mortality and a bleak prognosis. Interleukin-22 (IL-22) is a cytokine that may have a significant role in SAP. IL-22, a member of the IL-10 cytokine family, has garnered growing interest owing to its potential tissue-protective properties. Recently, emerging research has revealed its specific effects on pancreatic diseases, particularly SAP. This paper provides a review of the latest knowledge on the role of IL-22 and its viability as a therapeutic target in SAP.
Collapse
Affiliation(s)
- Hongli Yang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, 250021, P.R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, P.R. China
| | - Ruofan Cao
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, 250021, P.R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, P.R. China
| | - Feifei Zhou
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, 250021, P.R. China
| | - Ben Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, 250021, P.R. China
| | - Qianqian Xu
- Department of Gastroenterology, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Ji'nan, Shandong, 250021, P.R. China
| | - Rui Li
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, 250021, P.R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, P.R. China
| | - ChunHua Zhang
- Shandong First Medical University, Ji'nan, Shandong, 250117, P.R. China
| | - Hongwei Xu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, 250021, P.R. China.
- Medical Science and Technology Innovation Center, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, P.R. China.
| |
Collapse
|
15
|
Klein F, Dinesh S, Fiedler D, Grün K, Schrepper A, Bogoviku J, Bäz L, Pfeil A, Kretzschmar D, Schulze PC, Möbius-Winkler S, Franz M. Identification of Serum Interleukin-22 as Novel Biomarker in Pulmonary Hypertension: A Translational Study. Int J Mol Sci 2024; 25:3985. [PMID: 38612795 PMCID: PMC11012889 DOI: 10.3390/ijms25073985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/30/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Growing evidence suggests the crucial involvement of inflammation in the pathogenesis of pulmonary hypertension (PH). The current study analyzed the expression of interleukin (IL)-17a and IL-22 as potential biomarkers for PH in a preclinical rat model of PH as well as the serum levels in a PH patient collective. PH was induced by monocrotalin (60 mg/kg body weight s.c.) in 10 Sprague Dawley rats (PH) and compared to 6 sham-treated controls (CON) as well as 10 monocrotalin-induced, macitentan-treated rats (PH_MAC). Lung and cardiac tissues were subjected to histological and immunohistochemical analysis for the ILs, and their serum levels were quantified using ELISA. Serum IL levels were also measured in a PH patient cohort. IL-22 expression was significantly increased in the lungs of the PH and PH_MAC groups (p = 0.002), whereas increased IL17a expression was demonstrated only in the lungs and RV of the PH (p < 0.05) but not the PH_MAC group (p = n.s.). The PH group showed elevated serum concentrations for IL-22 (p = 0.04) and IL-17a (p = 0.008). Compared to the PH group, the PH_MAC group demonstrated a decrease in IL-22 (p = 0.021) but not IL17a (p = n.s.). In the PH patient collective (n = 92), increased serum levels of IL-22 but not IL-17a could be shown (p < 0.0001). This elevation remained significant across the different etiological groups (p < 0.05). Correlation analysis revealed multiple significant relations between IL-22 and various clinical, laboratory, functional and hemodynamic parameters. IL-22 could serve as a promising inflammatory biomarker of PH with potential value for initial diagnosis, functional classification or even prognosis estimation. Its validation in larger patients' cohorts regarding outcome and survival data, as well as the probability of promising therapeutic target structures, remains the object of further studies.
Collapse
Affiliation(s)
- Friederike Klein
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (F.K.)
| | - Sandesh Dinesh
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (F.K.)
| | - Desiree Fiedler
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (F.K.)
| | - Katja Grün
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (F.K.)
| | - Andrea Schrepper
- Department of Cardiothoracic Surgery, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Jürgen Bogoviku
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (F.K.)
| | - Laura Bäz
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (F.K.)
| | - Alexander Pfeil
- Department of Internal Medicine III, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Daniel Kretzschmar
- Herz-und Gefäßmedizin Goslar (HUGG), Goslar, Fleischscharren 4, 38640 Goslar, Germany
| | - P. Christian Schulze
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (F.K.)
| | - Sven Möbius-Winkler
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (F.K.)
| | - Marcus Franz
- Department of Internal Medicine I, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (F.K.)
- Department of Cardiology, Angiology and Intensive Care Medicine, Cardiovascular Center Rotenburg Klinikum Hersfeld-Rotenburg, Heinz-Meise-Straße 100, 36199 Rotenburg an der Fulda, Germany
| |
Collapse
|
16
|
Yu Y, Rothenberg ME, Ding HT, Brekkan A, Sperinde G, Harder B, Zhang R, Owen R, Kassir N, Lekkerkerker AN. Population pharmacokinetics and pharmacodynamics of efmarodocokin alfa (IL-22Fc). J Pharmacokinet Pharmacodyn 2024; 51:141-153. [PMID: 37864000 DOI: 10.1007/s10928-023-09888-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/24/2023] [Indexed: 10/22/2023]
Abstract
Efmarodocokin alfa (IL-22Fc) is a fusion protein of human IL-22 linked to the crystallizable fragment (Fc) of human IgG4. It has been tested in multiple indications including inflammatory bowel disease (IBD). The purposes of the present analyses were to describe the population pharmacokinetics (PK) of efmarodocokin alfa and perform pharmacodynamic (PD) analysis on the longitudinal changes of the PD biomarker REG3A after efmarodocokin alfa treatment as well as identify covariates that affect efmarodocokin alfa PK and REG3A PD. The data used for this analysis included 182 subjects treated with efmarodocokin alfa in two clinical studies. The population PK and PD analyses were conducted sequentially. Efmarodocokin alfa concentration-time data were analyzed using a nonlinear mixed-effects modeling approach, and an indirect response model was adopted to describe the REG3A PD data with efmarodocokin alfa serum concentration linked to the increase in REG3A. The analysis software used were NONMEM and R. A 3-compartment model with linear elimination best described the PK of efmarodocokin alfa. The estimated population-typical value for clearance (CL) was 1.12 L/day, and volume of central compartment was 6.15 L. Efmarodocokin alfa CL increased with higher baseline body weight, C-reactive protein, and CL was 27.6% higher in IBD patients compared to healthy subjects. The indirect response PD model adequately described the longitudinal changes of REG3A after efmarodocokin alfa treatment. A popPK and PD model for efmarodocokin alfa and REG3A was developed and covariates affecting the PK and PD were identified.
Collapse
Affiliation(s)
- Yanke Yu
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| | | | - Han Ting Ding
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | | | - Brandon Harder
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Rong Zhang
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Ryan Owen
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Nastya Kassir
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | | |
Collapse
|
17
|
Zhang T, Seeger P, Simsek Y, Sabihi M, Lücke J, Zazara DE, Shiri AM, Kempski J, Blankenburg T, Zhao L, Belios I, Machicote A, Mercanoglu B, Fard-Aghaie M, Notz S, Lykoudis PM, Kemper M, Ghadban T, Mann O, Hackert T, Izbicki JR, Renné T, Huber S, Giannou AD, Li J. IL-22 promotes liver regeneration after portal vein ligation. Heliyon 2024; 10:e27578. [PMID: 38533053 PMCID: PMC10963228 DOI: 10.1016/j.heliyon.2024.e27578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/28/2024] Open
Abstract
Background Insufficient remnant liver volume (RLV) after the resection of hepatic malignancy could lead to liver failure and mortality. Portal vein ligation (PVL) prior to hepatectomy is subsequently introduced to increase the remnant liver volume and improve the outcome of hepatic malignancy. IL-22 has previously been reported to promote liver regeneration, while facilitating tumor development in the liver via Steap4 upregulation. Here we performed PVL in mouse models to study the role of IL-22 in liver regeneration post-PVL. Methods Liver weight and volume was measured via magnetic resonance imaging (MRI). Immunohistochemistry for Ki67 and hepatocyte growth factor (HGF) was performed. IL-22 was analyzed by flow cytometry and quantitative polymerase chain reaction (qPCR) was used for acquisition of Il-33, Steap4, Fga, Fgb and Cebpd. To analyze signaling pathways, mice with deletion of STAT3 and a neutralizing antibody for IL-22 were used. Results The remnant liver weight and volume increased over time after PVL. Additionally, we found that liver regenerative molecules, including Ki67 and HGF, were significantly increased in remnant liver at day 3 post-PVL, as well as IL-22. Administration of IL-22 neutralizing antibody could reduce Ki67 expression after PVL. The upregulation of IL-22 after PVL was mainly derived from innate cells. IL-22 blockade resulted in lower levels of IL-33 and Steap4 in the remnant liver, which was also the case in mice with deletion of STAT3, the main downstream signaling molecule of IL-22, in hepatocytes. Conclusion IL-22 promotes liver regeneration after PVL. Thus, a combination of IL-22 supplementation and Steap4 blockade could potentially be applied as a novel therapeutic approach to boost liver regeneration without facilitating tumor progression after PVL.
Collapse
Affiliation(s)
- Tao Zhang
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Philipp Seeger
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Yashin Simsek
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Morsal Sabihi
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jöran Lücke
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Dimitra E. Zazara
- Division for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Ahmad Mustafa Shiri
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jan Kempski
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tom Blankenburg
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lilan Zhao
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Ioannis Belios
- Division for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Andres Machicote
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Baris Mercanoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Mohammad Fard-Aghaie
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Sara Notz
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Panagis M. Lykoudis
- 3rd Department of Surgery, National & Kapodistrian University of Athens, Greece
- Division of Surgery & Interventional Science, University College London (UCL), UK
| | - Marius Kemper
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Tarik Ghadban
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Oliver Mann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Thilo Hackert
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jakob R. Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Samuel Huber
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anastasios D. Giannou
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jun Li
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
18
|
Yamamura Y, Nakashima C, Otsuka A. Interplay of cytokines in the pathophysiology of atopic dermatitis: insights from Murin models and human. Front Med (Lausanne) 2024; 11:1342176. [PMID: 38590314 PMCID: PMC10999685 DOI: 10.3389/fmed.2024.1342176] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/10/2024] Open
Abstract
The pathogenesis of atopic dermatitis (AD) is understood to be crucially influenced by three main factors: dysregulation of the immune response, barrier dysfunction, and pruritus. In the lesional skin of AD, various innate immune cells, including Th2 cells, type 2 innate lymphoid cells (ILC2s), and basophils, produce Th2 cytokines [interleukin (IL)-4, IL-5, IL-13, IL-31]. Alarmins such as TSLP, IL-25, and IL-33 are also produced by epidermal keratinocytes, amplifying type 2 inflammation. In the chronic phase, not only Th2 cells but also Th22 and Th17 cells increase in number, leading to suppression of filaggrin expression by IL-4, IL-13, and IL-22, which further deteriorates the epidermal barrier function. Dupilumab, which targets IL-4 and IL-13, has shown efficacy in treating moderate to severe AD. Nemolizumab, targeting IL-31RA, effectively reduces pruritus in AD patients. In addition, clinical trials with fezakinumab, targeting IL-22, have demonstrated promising results, particularly in severe AD cases. Conversely, in murine models of AD, several cytokines, initially regarded as promising therapeutic targets, have not demonstrated sufficient efficacy in clinical trials. IL-33 has been identified as a potent activator of immune cells, exacerbating AD in murine models and correlating with disease severity in human patients. However, treatments targeting IL-33 have not shown sufficient efficacy in clinical trials. Similarly, thymic stromal lymphopoietin (TSLP), integral to type 2 immune responses, induces dermatitis in animal models and is elevated in human AD, yet clinical treatments like tezepelumab exhibit limited efficacy. Therapies targeting IL-1α, IL-5, and IL-17 also failed to achieve sufficient efficacy in clinical trials. It has become clear that for treating AD, IL-4, IL-13, and IL-31 are relevant therapeutic targets during the acute phase, while IL-22 emerges as a target in more severe cases. This delineation underscores the necessity of considering distinct pathophysiological aspects and therapeutic targets in AD between mouse models and humans. Consequently, this review delineates the distinct roles of cytokines in the pathogenesis of AD, juxtaposing their significance in human AD from clinical trials against insights gleaned from AD mouse models. This approach will improve our understanding of interspecies variation and facilitate a deeper insight into the pathogenesis of AD in humans.
Collapse
Affiliation(s)
| | - Chisa Nakashima
- Department of Dermatology, Faculty of Medicine, Kindai University Hospital, Osaka, Japan
| | | |
Collapse
|
19
|
Yang R, Chen J, Qu X, Liu H, Wang X, Tan C, Chen H, Wang X. Interleukin-22 Contributes to Blood-Brain Barrier Disruption via STAT3/VEGFA Activation in Escherichia coli Meningitis. ACS Infect Dis 2024; 10:988-999. [PMID: 38317607 PMCID: PMC10928716 DOI: 10.1021/acsinfecdis.3c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
Escherichia coli continues to be the predominant Gram-negative pathogen causing neonatal meningitis worldwide. Inflammatory mediators have been implicated in the pathogenesis of meningitis and are key therapeutic targets. The role of interleukin-22 (IL-22) in various diseases is diverse, with both protective and pathogenic effects. However, little is understood about the mechanisms underlying the damaging effects of IL-22 on the blood-brain barrier (BBB) in E. coli meningitis. We observed that meningitic E. coli infection induced IL-22 expression in the serum and brain of mice. The tight junction proteins (TJPs) components ZO-1, Occludin, and Claudin-5 were degraded in the mouse brain and human brain microvascular endothelial cells (hBMEC) following IL-22 administration. Moreover, the meningitic E. coli-caused increase in BBB permeability in wild-type mice was restored by knocking out IL-22. Mechanistically, IL-22 activated the STAT3-VEGFA signaling cascade in E. coli meningitis, thus eliciting the degradation of TJPs to induce BBB disruption. Our data indicated that IL-22 is an essential host accomplice during E. coli-caused BBB disruption and could be targeted for the therapy of bacterial meningitis.
Collapse
Affiliation(s)
- Ruicheng Yang
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
| | - Jiaqi Chen
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
| | - Xinyi Qu
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
| | - Hulin Liu
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
| | - Xinyi Wang
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
| | - Chen Tan
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
- Frontiers
Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
- International
Research Center for Animal Disease, Ministry
of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Huanchun Chen
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
- Frontiers
Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
- International
Research Center for Animal Disease, Ministry
of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Xiangru Wang
- National
Key Laboratory of Agricultural Microbiology, College of Veterinary
Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key
Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan 430070, China
- Frontiers
Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
- International
Research Center for Animal Disease, Ministry
of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| |
Collapse
|
20
|
Zhang Y, Zhou X, Zhong Y, Chen X, Li Z, Li R, Qin P, Wang S, Yin J, Liu S, Jiang M, Yu Q, Hou Y, Liu S, Wu L. Pan-cancer scRNA-seq analysis reveals immunological and diagnostic significance of the peripheral blood mononuclear cells. Hum Mol Genet 2024; 33:342-354. [PMID: 37944069 DOI: 10.1093/hmg/ddad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/02/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
Peripheral blood mononuclear cells (PBMCs) reflect systemic immune response during cancer progression. However, a comprehensive understanding of the composition and function of PBMCs in cancer patients is lacking, and the potential of these features to assist cancer diagnosis is also unclear. Here, the compositional and status differences between cancer patients and healthy donors in PBMCs were investigated by single-cell RNA sequencing (scRNA-seq), involving 262,025 PBMCs from 68 cancer samples and 14 healthy samples. We observed an enhanced activation and differentiation of most immune subsets in cancer patients, along with reduction of naïve T cells, expansion of macrophages, impairment of NK cells and myeloid cells, as well as tumor promotion and immunosuppression. Based on characteristics including differential cell type abundances and/or hub genes identified from weight gene co-expression network analysis (WGCNA) modules of each major cell type, we applied logistic regression to construct cancer diagnosis models. Furthermore, we found that the above models can distinguish cancer patients and healthy donors with high sensitivity. Our study provided new insights into using the features of PBMCs in non-invasive cancer diagnosis.
Collapse
Affiliation(s)
- Yuanhang Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing 100049, China
- BGI Research, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Xiaorui Zhou
- College of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing 100049, China
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Yu Zhong
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Xi Chen
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Zeyu Li
- College of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing 100049, China
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Rui Li
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Pengfei Qin
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Shanshan Wang
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Jianhua Yin
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Shang Liu
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Miaomiao Jiang
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Qichao Yu
- College of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing 100049, China
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Yong Hou
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Shiping Liu
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Liang Wu
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- JFL-BGI STOmics Center, Jinfeng Laboratory , Gaoteng Avenue, Jiulongpo District, Chongqing 401329, China
| |
Collapse
|
21
|
Yamazaki F, Kobayashi K, Mochizuki J, Sashihara T. Interleukin-22 enhanced the mucosal barrier and inhibited the invasion of Salmonella enterica in human-induced pluripotent stem cell-derived small intestinal epithelial cells. FEMS Microbiol Lett 2024; 371:fnae006. [PMID: 38268488 DOI: 10.1093/femsle/fnae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 01/26/2024] Open
Abstract
Human-induced pluripotent stem cell-derived small intestinal epithelial cell (hiPSC-SIEC) monolayers are useful in vitro models for evaluating the gut mucosal barrier; however, their reactivity to cytokines, which are closely related to the regulation of mucosal barrier function, remains unclear. Interleukin (IL)-22 is a cytokine that contributes to regulate the mucosal barrier in the intestinal epithelia. Using microarray and gene set enrichment analysis, we found that hiPSC-SIEC monolayers activate the immune response and enhance the mucosal barrier in response to IL-22. Moreover, hiPSC-SIEC monolayers induced the gene expression of antimicrobials, including the regenerating islet-derived protein 3 family. Furthermore, IL-22 stimulation upregulated Mucin 2 secretion and gene expression of an enzyme that modifies sugar chains, suggesting alteration of the state of the mucus layer of hiPSC-SIEC monolayers. To evaluate its physiological significance, we measured the protective activity against Salmonella enterica subsp. enterica infection in hiPSC-SIEC monolayers and found that prestimulation with IL-22 reduced the number of viable intracellular bacteria. Collectively, these results suggest that hiPSC-SIEC monolayers enhance the mucosal barrier and inhibit infection by pathogenic bacteria in response to IL-22, as previously reported. These results can contribute to the further application of hiPSC-SIECs in evaluating mucosal barriers.
Collapse
Affiliation(s)
- Fuka Yamazaki
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, 1-29-1 Nanakuni, Hachioji, Tokyo 192-0919, Japan
| | - Kyosuke Kobayashi
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, 1-29-1 Nanakuni, Hachioji, Tokyo 192-0919, Japan
| | - Junko Mochizuki
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, 1-29-1 Nanakuni, Hachioji, Tokyo 192-0919, Japan
| | - Toshihiro Sashihara
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, 1-29-1 Nanakuni, Hachioji, Tokyo 192-0919, Japan
| |
Collapse
|
22
|
Watanabe M, Okamura Y, Kono T, Sakai M, Hikima JI. Interleukin-22 induces immune-related gene expression in the gills of Japanese medaka Oryzias latipes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 148:104916. [PMID: 37591365 DOI: 10.1016/j.dci.2023.104916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/03/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
The cytokine interleukin (IL)-22 has been identified in several fish species; however, its functional significance in the gills of these fish species remains unclear. In this study, we analyzed the expression of proinflammatory cytokines, antimicrobial peptides, and IL-22 binding protein in the gills of wild-type and IL-22-knockout (IL-22 KO) medaka under dextran sulfate sodium-induced inflammation. We also produced medaka recombinant IL-22 (rIL-22) and analyzed the expression of immune-related genes in rIL-22-stimulated primary cell cultures from gills. The il1b, il6, tnfa, and hamp genes were significantly upregulated in wild-type gills upon dextran sulfate sodium stimulation compared with the naïve state but not in IL-22 KO gills. il22bp transcripts were barely detectable in the IL-22 KO medaka gills. However, the expression of il1b, il6, hamp, and il22bp was upregulated in rIL-22-stimulated gill cell culture. These results suggest IL-22 could be involved in immune responses through inflammatory cytokine and antimicrobial peptide production in fish gills.
Collapse
Affiliation(s)
- Mika Watanabe
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Yo Okamura
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan.
| |
Collapse
|
23
|
Seth P, Dubey S. IL-22 as a target for therapeutic intervention: Current knowledge on its role in various diseases. Cytokine 2023; 169:156293. [PMID: 37441942 DOI: 10.1016/j.cyto.2023.156293] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/12/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
IL-22 has emerged as a crucial cytokine mediating protective response against pathogens and tissue regeneration. Dysregulated production of IL-22 has been shown to play a pivotal role in the pathogenesis of various diseases like malignant tumours, viral, cardiovascular, allergic and autoimmune disorders. Interleukin 22 belongs to IFN-IL-10 cytokine family. It is a major proinflammatory cytokine secreted by activated Th1 cells (Th22), though can also be secreted by many other immune cells like group 3 innate lymphocytes, γδ T cells, NK cells, NK T cells, and mucosal associated invariant T cells. Th22 cells exclusively release IL-22 but not IL-17 or IFN-γ (as Th1 cells releases IFN-γ along with IL-22 and Th17 cells releases IL-17 along with IL-22) and also express aryl hydrocarbon receptor as the key transcription factor. Th22 cells also exhibit expression of chemokine receptor CCR6 and skin-homing receptors CCR4 and CCR10 indicating the involvement of this subset in bolstering epithelial barrier immunity and promoting secretion of antimicrobial peptides (AMPs) from intestinal epithelial cells. The function of IL-22 is modulated by IL-22 binding protein (binds to IL-22 and inhibits it binding to its cell surface receptor); which serves as a competitor for IL-22R1 chain of IL-22 receptor. The pathogenic and protective nature of the Th22 cells is modulated both by the site of infected tissue and the type of disease pathology. This review aims to discuss key features of IL-22 biology, comparisons between IL and 22 and IFN-γ and its role as a potential immune therapy target in different maladies.
Collapse
Affiliation(s)
- Pranav Seth
- Amity Institute of Virology & Immunology, Amity University Uttar Pradesh, Sector 125, Noida, India
| | - Shweta Dubey
- Amity Institute of Virology & Immunology, Amity University Uttar Pradesh, Sector 125, Noida, India.
| |
Collapse
|
24
|
Wang X, Yu S, Liu W, Lv P, Zhao L, Wang Y, Fu C, Meng L, Yang Q, Wang X, Huang Y, Zuo Z, Liu X. Relationship between IL-22 and IL-22BP in diabetic cognitive dysfunction. Acta Diabetol 2023; 60:631-644. [PMID: 36717397 DOI: 10.1007/s00592-022-02024-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/21/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND CD4 + T helper (Th)22 cells play a regulatory role in autoimmune diseases such as type 1 diabetes mellitus. The Th22-related cytokine interleukin (IL)-22, the expression of which is increased in diabetes mellitus (DM), can act as a neurotrophic factor to protect neurons from apoptosis. Paradoxically, neuronal apoptosis and learning and memory decline occur in DM. In this study, we investigated the relationship between IL-22 and its receptors IL-22Rα1 and IL-22 binding protein (IL-22BP, a soluble inhibitor of IL-22) in diabetic encephalopathy (DE) and the effects of IL-22 on hippocampal neurons, learning and memory. METHODS A C57BL/6 mouse model of diabetes was constructed by intraperitoneal injection of streptozotocin. The mice were randomly divided into 4 groups: the control group, diabetes group, diabetes + recombinantIL-22 (rIL-22) group and diabetes + IL-22BP group. The Morris water maze test was used to evaluate learning and memory, the expression of IL-22 was measured by ELISA, and Evans Blue staining was used to evaluate blood-brain barrier permeability. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to measure the mRNA expression of IL-22 and IL-22Rα1 in the hippocampus. The morphology and number of hippocampal neurons were assessed by Nissl staining, and TUNEL staining was used to detect hippocampal neuronal apoptosis. Immunofluorescence was used to analyze IL-22Rα1 expression and localization in hippocampus, and Western blotting was used to evaluate the expression of IL-22, IL-22Rα1, IL-22BP, and the apoptosis related proteins Caspase-3 and C-caspase-3. RESULTS Compared with those in the control group, mice in the diabetes group showed cognitive decline; apoptosis of hippocampal neurons; increased expression of hippocampal Caspase-3, C-Caspase-3, IL-22, IL-22Rα1, and IL-22BP; and a decreased IL-22/IL-22BP ratio. Learning and memory were improved, neuronal apoptosis was attenuated, IL-22Rα1 expression and the IL-22/IL-22BP ratio were increased, and caspase-3 and C-caspase-3 expression was decreased in the rIL-22-treated group compared with the diabetes group. IL-22BP treatment aggravated diabetic cognitive dysfunction and pathological alterations in the hippocampus, decreased the IL-22/IL-22BP ratio, and increased the expression of caspase-3 and C-caspase-3 in mice with diabetes. CONCLUSION A decrease in the IL-22/IL-22BP ratio plays an important role in diabetic cognitive dysfunction, and rIL-22 can effectively alleviate DE. Herein, we shed light on the interaction between IL-22 and IL-22BP as therapeutic targets for DM.
Collapse
Affiliation(s)
- Xiaobai Wang
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Shengxue Yu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Wenqiang Liu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Pan Lv
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Lipan Zhao
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Yufei Wang
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Cong Fu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Lu Meng
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Qi Yang
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Xuehua Wang
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Ying Huang
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Zhongfu Zuo
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China.
- Department of Anatomy, Histology and Embryology, Postdoctoral Research Station, Guangxi Medical University, Nanning, China.
| | - Xuezheng Liu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
25
|
Breugelmans T, Arras W, Oosterlinck B, Jauregui-Amezaga A, Somers M, Cuypers B, Laukens K, De Man JG, De Schepper HU, De Winter BY, Smet A. IL-22-Activated MUC13 Impacts on Colonic Barrier Function through JAK1/STAT3, SNAI1/ZEB1 and ROCK2/MAPK Signaling. Cells 2023; 12:1224. [PMID: 37174625 PMCID: PMC10177587 DOI: 10.3390/cells12091224] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/09/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Overexpression of the transmembrane mucin MUC13, as seen in inflammatory bowel diseases (IBD), could potentially impact barrier function. This study aimed to explore how inflammation-induced MUC13 disrupts epithelial barrier integrity by affecting junctional protein expression in IBD, thereby also considering the involvement of MUC1. RNA sequencing and permeability assays were performed using LS513 cells transfected with MUC1 and MUC13 siRNA and subsequently stimulated with IL-22. In vivo intestinal permeability and MUC13-related signaling pathways affecting barrier function were investigated in acute and chronic DSS-induced colitis wildtype and Muc13-/- mice. Finally, the expression of MUC13, its regulators and other barrier mediators were studied in IBD and control patients. Mucin knockdown in intestinal epithelial cells affected gene expression of several barrier mediators in the presence/absence of inflammation. IL-22-induced MUC13 expression impacted barrier function by modulating the JAK1/STAT3, SNAI1/ZEB1 and ROCK2/MAPK signaling pathways, with a cooperating role for MUC1. In response to DSS, MUC13 was protective during the acute phase whereas it caused more harm upon chronic colitis. The pathways accounting for the MUC13-mediated barrier dysfunction were also altered upon inflammation in IBD patients. These novel findings indicate an active role for aberrant MUC13 signaling inducing intestinal barrier dysfunction upon inflammation with MUC1 as collaborating partner.
Collapse
Affiliation(s)
- Tom Breugelmans
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (T.B.)
- Infla-Med Research Consortium of Excellence, University of Antwerp, 2610 Antwerp, Belgium
| | - Wout Arras
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (T.B.)
- Infla-Med Research Consortium of Excellence, University of Antwerp, 2610 Antwerp, Belgium
| | - Baptiste Oosterlinck
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (T.B.)
- Infla-Med Research Consortium of Excellence, University of Antwerp, 2610 Antwerp, Belgium
| | - Aranzazu Jauregui-Amezaga
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (T.B.)
- Department of Gastroenterology and Hepatology, University Hospital of Antwerp, 2650 Antwerp, Belgium
| | - Michaël Somers
- Department of Gastroenterology and Hepatology, University Hospital of Antwerp, 2650 Antwerp, Belgium
| | - Bart Cuypers
- Department of Computer Science, Adrem Data Lab, University of Antwerp, 2610 Antwerp, Belgium
| | - Kris Laukens
- Department of Computer Science, Adrem Data Lab, University of Antwerp, 2610 Antwerp, Belgium
| | - Joris G. De Man
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (T.B.)
- Infla-Med Research Consortium of Excellence, University of Antwerp, 2610 Antwerp, Belgium
| | - Heiko U. De Schepper
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (T.B.)
- Infla-Med Research Consortium of Excellence, University of Antwerp, 2610 Antwerp, Belgium
- Department of Gastroenterology and Hepatology, University Hospital of Antwerp, 2650 Antwerp, Belgium
| | - Benedicte Y. De Winter
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (T.B.)
- Infla-Med Research Consortium of Excellence, University of Antwerp, 2610 Antwerp, Belgium
- Department of Gastroenterology and Hepatology, University Hospital of Antwerp, 2650 Antwerp, Belgium
| | - Annemieke Smet
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (T.B.)
- Infla-Med Research Consortium of Excellence, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
26
|
Korol CB, Belkaya S, Alsohime F, Lorenzo L, Boisson-Dupuis S, Brancale J, Neehus AL, Vilarinho S, Zobaida A, Halwani R, Al-Muhsen S, Casanova JL, Jouanguy E. Fulminant Viral Hepatitis in Two Siblings with Inherited IL-10RB Deficiency. J Clin Immunol 2023; 43:406-420. [PMID: 36308662 PMCID: PMC9892130 DOI: 10.1007/s10875-022-01376-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/28/2022] [Indexed: 02/05/2023]
Abstract
Fulminant viral hepatitis (FVH) caused by hepatitis A virus (HAV) is a life-threatening disease that typically strikes otherwise healthy individuals. The only known genetic etiology of FVH is inherited IL-18BP deficiency, which unleashes IL-18-dependent lymphocyte cytotoxicity and IFN-γ production. We studied two siblings who died from a combination of early-onset inflammatory bowel disease (EOIBD) and FVH due to HAV. The sibling tested was homozygous for the W100G variant of IL10RB previously described in an unrelated patient with EOIBD. We show here that the out-of-frame IL10RB variants seen in other EOIBD patients disrupt cellular responses to IL-10, IL-22, IL-26, and IFN-λs in overexpression conditions and in homozygous cells. By contrast, the impact of in-frame disease-causing variants varies between cases. When overexpressed, the W100G variant impairs cellular responses to IL-10, but not to IL-22, IL-26, or IFN-λ1, whereas cells homozygous for W100G do not respond to IL-10, IL-22, IL-26, or IFN-λ1. As IL-10 is a potent antagonist of IFN-γ in phagocytes, these findings suggest that the molecular basis of FVH in patients with IL-18BP or IL-10RB deficiency may involve excessive IFN-γ activity during HAV infections of the liver. Inherited IL-10RB deficiency, and possibly inherited IL-10 and IL-10RA deficiencies, confer a predisposition to FVH, and patients with these deficiencies should be vaccinated against HAV and other liver-tropic viruses.
Collapse
Affiliation(s)
- Cecilia B Korol
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Serkan Belkaya
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Department of Molecular Biology and Genetics, Ihan Dogramaci Bilkent University, Ankara, Turkey
| | - Fahad Alsohime
- Immunology Research Laboratory, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Joseph Brancale
- Department of Internal Medicine, Section of Digestive Diseases, and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Silvia Vilarinho
- Department of Internal Medicine, Section of Digestive Diseases, and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Alsum Zobaida
- Department of Pediatrics, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Rabih Halwani
- Department of Clinical Sciences, College of Medicine, Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| | - Saleh Al-Muhsen
- Immunology Research Laboratory, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Department of Pediatrics, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York City, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.
- Imagine Institute, Paris Cité University, Paris, France.
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
27
|
Krause C, Suwada K, Blomme EAG, Kowalkowski K, Liguori MJ, Mahalingaiah PK, Mittelstadt S, Peterson R, Rendino L, Vo A, Van Vleet TR. Preclinical species gene expression database: Development and meta-analysis. Front Genet 2023; 13:1078050. [PMID: 36733943 PMCID: PMC9887474 DOI: 10.3389/fgene.2022.1078050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/07/2022] [Indexed: 01/19/2023] Open
Abstract
The evaluation of toxicity in preclinical species is important for identifying potential safety liabilities of experimental medicines. Toxicology studies provide translational insight into potential adverse clinical findings, but data interpretation may be limited due to our understanding of cross-species biological differences. With the recent technological advances in sequencing and analyzing omics data, gene expression data can be used to predict cross species biological differences and improve experimental design and toxicology data interpretation. However, interpreting the translational significance of toxicogenomics analyses can pose a challenge due to the lack of comprehensive preclinical gene expression datasets. In this work, we performed RNA-sequencing across four preclinical species/strains widely used for safety assessment (CD1 mouse, Sprague Dawley rat, Beagle dog, and Cynomolgus monkey) in ∼50 relevant tissues/organs to establish a comprehensive preclinical gene expression body atlas for both males and females. In addition, we performed a meta-analysis across the large dataset to highlight species and tissue differences that may be relevant for drug safety analyses. Further, we made these databases available to the scientific community. This multi-species, tissue-, and sex-specific transcriptomic database should serve as a valuable resource to enable informed safety decision-making not only during drug development, but also in a variety of disciplines that use these preclinical species.
Collapse
Affiliation(s)
- Caitlin Krause
- R & D Data Solutions, AbbVie, North Chicago, IL, United States
| | - Kinga Suwada
- Development Biological Sciences, AbbVie, North Chicago, IL, United States
| | - Eric A. G. Blomme
- Development Biological Sciences, AbbVie, North Chicago, IL, United States
| | | | - Michael J. Liguori
- Development Biological Sciences, AbbVie, North Chicago, IL, United States
| | | | - Scott Mittelstadt
- Development Biological Sciences, AbbVie, North Chicago, IL, United States
| | - Richard Peterson
- Development Biological Sciences, AbbVie, North Chicago, IL, United States
| | - Lauren Rendino
- Development Biological Sciences, AbbVie, North Chicago, IL, United States
| | - Andy Vo
- Development Biological Sciences, AbbVie, North Chicago, IL, United States
| | - Terry R. Van Vleet
- Development Biological Sciences, AbbVie, North Chicago, IL, United States,*Correspondence: Terry R. Van Vleet,
| |
Collapse
|
28
|
Lu M, Lee Y, Lillehoj HS. Evolution of developmental and comparative immunology in poultry: The regulators and the regulated. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104525. [PMID: 36058383 DOI: 10.1016/j.dci.2022.104525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Avian has a unique immune system that evolved in response to environmental pressures in all aspects of innate and adaptive immune responses, including localized and circulating lymphocytes, diversity of immunoglobulin repertoire, and various cytokines and chemokines. All of these attributes make birds an indispensable vertebrate model for studying the fundamental immunological concepts and comparative immunology. However, research on the immune system in birds lags far behind that of humans, mice, and other agricultural animal species, and limited immune tools have hindered the adequate application of birds as disease models for mammalian systems. An in-depth understanding of the avian immune system relies on the detailed studies of various regulated and regulatory mediators, such as cell surface antigens, cytokines, and chemokines. Here, we review current knowledge centered on the roles of avian cell surface antigens, cytokines, chemokines, and beyond. Moreover, we provide an update on recent progress in this rapidly developing field of study with respect to the availability of immune reagents that will facilitate the study of regulatory and regulated components of poultry immunity. The new information on avian immunity and available immune tools will benefit avian researchers and evolutionary biologists in conducting fundamental and applied research.
Collapse
Affiliation(s)
- Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Youngsub Lee
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| |
Collapse
|
29
|
Giannou AD, Lücke J, Kleinschmidt D, Shiri AM, Steglich B, Nawrocki M, Zhang T, Zazara DE, Kempski J, Zhao L, Giannou O, Agalioti T, Brockmann L, Bertram F, Sabihi M, Böttcher M, Ewald F, Schulze K, von Felden J, Machicote A, Maroulis IC, Arck PC, Grass JK, Mercanoglu B, Reeh M, Wolter S, Tachezy M, Seese H, Theodorakopoulou M, Lykoudis PM, Heumann A, Uzunoglu FG, Ghadban T, Mann O, Izbicki JR, Li J, Duprée A, Melling N, Gagliani N, Huber S. A Critical Role of the IL-22-IL-22 Binding Protein Axis in Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14246019. [PMID: 36551508 PMCID: PMC9775560 DOI: 10.3390/cancers14246019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) ranks among the five most common cancer entities worldwide and leads to hundred-thousands of deaths every year. Despite some groundbreaking therapeutical revelations during the last years, the overall prognosis remains poor. Although the immune system fights malignant transformations with a robust anti-tumor response, certain immune mediators have also been shown to promote cancer development. For example, interleukin (IL)-22 has been associated with HCC progression and worsened prognosis in multiple studies. However, the underlying mechanisms of the pathological role of IL-22-signaling as well as the role of its natural antagonist IL-22 binding protein (IL-22BP) in HCC remain elusive. Here, we corroborate the pathogenic role of IL-22 in HCC by taking advantage of two mouse models. Moreover, we observed a protective role of IL-22BP during liver carcinogenesis. While IL-22 was mainly produced by CD4+ T cells in HCC, IL-22BP was abundantly expressed by neutrophils during liver carcinogenesis. Hepatocytes could be identified as a major target of this pathological IL-22-signaling. Moreover, abrogation of IL-22 signaling in hepatocytes in IL22ra1flox/flox × AlbCre+ mice reduced STEAP4 expression-a known oncogene-in HCC in vivo. Likewise, STEAP4 expression correlated with IL22 levels in human HCC samples, but not in healthy liver specimens. In conclusion, these data encourage the development of therapeutical approaches that target the IL-22-IL-22BP axis in HCC.
Collapse
Affiliation(s)
- Anastasios D. Giannou
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Correspondence: (A.D.G.); (S.H.); Tel.: +49-40-7410-20980 (A.D.G.); +49-40-7410-53910 (S.H.)
| | - Jöran Lücke
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dörte Kleinschmidt
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ahmad Mustafa Shiri
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Babett Steglich
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Mikolaj Nawrocki
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tao Zhang
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dimitra E. Zazara
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Laboratory for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jan Kempski
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- The Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lilan Zhao
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Olympia Giannou
- Department of Computer Engineering & Informatics, University of Patras, 26500 Patras, Greece
| | - Theodora Agalioti
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Leonie Brockmann
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Franziska Bertram
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Morsal Sabihi
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marius Böttcher
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Florian Ewald
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kornelius Schulze
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Johann von Felden
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Andres Machicote
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ioannis C. Maroulis
- Department of Surgery, University of Patras Medical School, 26500 Patras, Greece
| | - Petra C. Arck
- Laboratory for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Julia-Kristin Grass
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Baris Mercanoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Matthias Reeh
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stefan Wolter
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michael Tachezy
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hannes Seese
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Myrto Theodorakopoulou
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Panagis M. Lykoudis
- 3rd Department of Surgery, National & Kapodistrian University of Athens, 11527 Athens, Greece
- Division of Surgery & Interventional Science, University College London (UCL), London NW3 2QG, UK
| | - Asmus Heumann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Faik G. Uzunoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tarik Ghadban
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Oliver Mann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jakob R. Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jun Li
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anna Duprée
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nathaniel Melling
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nicola Gagliani
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Samuel Huber
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Correspondence: (A.D.G.); (S.H.); Tel.: +49-40-7410-20980 (A.D.G.); +49-40-7410-53910 (S.H.)
| |
Collapse
|
30
|
Madeshiya AK, Pillai A. Innate lymphoid cells in depression: Current status and perspectives. Biomark Neuropsychiatry 2022; 7. [PMID: 37123464 PMCID: PMC10136288 DOI: 10.1016/j.bionps.2022.100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The recent discovery of innate lymphoid cells (ILCs) has provided new insights into our understanding of the pathogenesis of many disease conditions with immune dysregulation. Type 1 innate lymphoid cells (ILC1s) induce type I immunity and are characterized by the expression of signature cytokine IFN-γ and the master transcription factor T-bet; ILC2s stimulate type II immune responses and are defined by the expression of signature cytokines IL-5 and IL-13, and transcription factors ROR-α and GATA3; ILC3s requires the transcription factor RORγt and produce IL-22 and IL-17. ILCs are largely tissue-resident and are enriched at barrier surfaces of the mammalian body. Increasing evidence shows that inflammation is involved in the pathogenesis of depression. Although few studies have directly investigated the role of ILCs in depression, several studies have examined the levels of cytokines produced by ILCs in depressed subjects. This review summarizes the potential roles of ILCs in depression. A better understanding of the biology of ILCs may lead to the development of new therapeutic strategies for the management of depression.
Collapse
|
31
|
Wang X, Li L, Yuan G, Zhu L, Pei C, Hou L, Li C, Jiang X, Kong X. Interleukin (IL)-22 in common carp (Cyprinus carpio L.): Immune modulation, antibacterial defense, and activation of the JAK-STAT signaling pathway. FISH & SHELLFISH IMMUNOLOGY 2022; 131:796-808. [PMID: 36349652 DOI: 10.1016/j.fsi.2022.10.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Interleukin (IL)-22 is an IL-10 family cytokine secreted by CD4+ T cells and plays an important role in regulating inflammation and infection elimination. IL-22 homologues have been reported in the teleost, but the functions of IL-22 are still unclear. In this study, we identified two duplicated IL-22 genes in common carp (Cyprinus carpio L.), termed Cc_IL-22A and Cc_IL-22B. Sequence analysis showed that Cc_IL-22A and Cc_IL-22B had four conserved cysteine residues, which could form two intra-chain disulfide bridges. The Cc_IL-22A and Cc_IL-22B were constitutively expressed in various tissues, with the highest expression in the gill. The mRNA expression levels of Cc_IL-22A and Cc_IL-22B were significantly up-regulated in the gill, intestine, head kidney, and spleen of common carp challenged with Aeromonas. hydrophila. In vivo study showed that the expression levels of pro-inflammatory cytokines were significantly up-regulated in the head kidney and spleen when Cc_IL-22A or Cc_IL-22B were over-expressed. Furthermore, the over-expression of Cc_IL-22A and Cc_IL-22B indicated a protective effect on tissues, with only lymphocytic infiltration observed in comparison to the control and pcN3 groups, without obvious change in tissue morphology. Similar stimulatory effects of rIL-22A and rIL-22B were observed in vitro. When HKLs were stimulated with rIL-22A or rIL-22B, the expression levels of critical signaling molecules in the Janus kinase (JAK) and signal transducer and activator of transcription (STAT) pathway were significantly induced, including JAK1, JAK3, STAT1, and STAT3, as well as pro-inflammatory cytokines (IL-1β and TNF-α). Together, these results suggest that Cc_IL-22A and Cc_IL-22B may regulate inflammatory responses through the JAK-STAT signaling pathway and have a significant impact on the immune defense of common carp against bacterial infection. Therefore, our study provides a new perspective on the functions of Cc_IL-22A and Cc_IL-22B in the immune defense mechanism of fish.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Lei Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Gaoliang Yuan
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Lei Zhu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Libo Hou
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Chen Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
32
|
Speake C, Habib T, Lambert K, Hundhausen C, Lord S, Dufort MJ, Skinner SO, Hu A, Kinsman M, Jones BE, Maerz MD, Tatum M, Hocking AM, Nepom GT, Greenbaum CJ, Buckner JH. IL-6-targeted therapies to block the cytokine or its receptor drive distinct alterations in T cell function. JCI Insight 2022; 7:e159436. [PMID: 36282595 PMCID: PMC9746808 DOI: 10.1172/jci.insight.159436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 10/12/2022] [Indexed: 12/15/2022] Open
Abstract
Therapeutics that inhibit IL-6 at different points in its signaling pathway are in clinical use, yet whether the immunological effects of these interventions differ based on their molecular target is unknown. We performed short-term interventions in individuals with type 1 diabetes using anti-IL-6 (siltuximab) or anti-IL-6 receptor (IL-6R; tocilizumab) therapies and investigated the impact of this in vivo blockade on T cell fate and function. Immune outcomes were influenced by the target of the therapeutic intervention (IL-6 versus IL-6R) and by peak drug concentration. Tocilizumab reduced ICOS expression on T follicular helper cell populations and T cell receptor-driven (TCR-driven) STAT3 phosphorylation. Siltuximab reversed resistance to Treg-mediated suppression and increased TCR-driven phosphorylated STAT3 and production of IL-10, IL-21, and IL-27 by T effectors. Together, these findings indicate that the context of IL-6 blockade in vivo drives distinct T cell-intrinsic changes that may influence therapeutic outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alex Hu
- Center for Systems Immunology, and
| | | | | | | | | | | | - Gerald T. Nepom
- Immune Tolerance Network, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | | | | |
Collapse
|
33
|
Maresca C, Di Maggio G, Stolfi C, Laudisi F, Colella M, Pacifico T, Di Grazia A, Di Fusco D, Congiu D, Guida AM, Sica G, Monteleone I, Monteleone G. Smad7 Sustains Stat3 Expression and Signaling in Colon Cancer Cells. Cancers (Basel) 2022; 14:4993. [PMID: 36291778 PMCID: PMC9599800 DOI: 10.3390/cancers14204993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) cells contain elevated levels of active signal transducer and the activator of transcription (Stat)-3, which exerts proliferative and anti-apoptotic effects. Various molecules produced in the CRC tissue can activate Stat3, but the mechanisms that amplify such an activation are yet to be determined. In this paper, we assessed whether Smad7, an inhibitor of Transforiming Growth Factor (TGF)-β1 activity, sustains Stat3 expression/activation in CRC cells. Both Smad7 and phosphorylated (p)/activated-Stat3 were more expressed in the tumoral areas of CRC patients, compared to the normal adjacent colonic mucosa of the same patients, and were co-localized in primary CRC cells and CRC cell lines. The knockdown of Smad7 with a Smad7 antisense oligonucleotide (AS) reduced p-Stat3 in both unstimulated and interleukin (IL)-6- and IL-22-stimulated DLD-1 and HCT116 cells. Consistently, reduced levels of BCL-xL and survivin, two downstream signaling targets of Stat3 activation, were seen in Smad7 AS-treated cells. An analysis of the mechanisms underlying Smad7 AS-induced Stat3 inactivation revealed that Smad7 AS reduced Stat3 RNA and protein expression. A chromatin immunoprecipitation assay showed the direct regulatory effect of Smad7 on the Stat3 promoter. RNA-sequencing data from the Tumor, Normal and Metastatic (TNM) plot database showed a positive correlation between Smad7 and Stat3 in 1450 CRC samples. To our knowledge, this is the first evidence supporting the theory that Smad7 positively regulates Stat3 function in CRC.
Collapse
Affiliation(s)
- Claudia Maresca
- Department of Systems Medicine, University of “Tor Vergata”, 00133 Rome, Italy
| | - Giulia Di Maggio
- Department of Systems Medicine, University of “Tor Vergata”, 00133 Rome, Italy
| | - Carmine Stolfi
- Department of Systems Medicine, University of “Tor Vergata”, 00133 Rome, Italy
| | - Federica Laudisi
- Department of Systems Medicine, University of “Tor Vergata”, 00133 Rome, Italy
| | - Marco Colella
- Department of Systems Medicine, University of “Tor Vergata”, 00133 Rome, Italy
| | - Teresa Pacifico
- Department of Systems Medicine, University of “Tor Vergata”, 00133 Rome, Italy
| | - Antonio Di Grazia
- Department of Systems Medicine, University of “Tor Vergata”, 00133 Rome, Italy
| | - Davide Di Fusco
- Department of Systems Medicine, University of “Tor Vergata”, 00133 Rome, Italy
| | - Daniele Congiu
- Department of Systems Medicine, University of “Tor Vergata”, 00133 Rome, Italy
| | | | - Giuseppe Sica
- Department of Surgery, University of “Tor Vergata”, 00133 Rome, Italy
| | - Ivan Monteleone
- Department of Systems Medicine, University of “Tor Vergata”, 00133 Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of “Tor Vergata”, 00133 Rome, Italy
- Gastroenterology Unit, Policlinico Universitario Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
34
|
Role of IL-22 in intestinal microenvironment and potential targeted therapy through diet. Immunol Res 2022; 71:121-129. [PMID: 36173554 DOI: 10.1007/s12026-022-09325-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Abstract
IL-22 is a type 2 receptor cytokine in IL-10 family. IL-22 is usually secreted by innate and adaptive immune cells and takes its effects on non-hematopoietic cells. Through activate STAT3 pathway, IL-22 plays an important role in infection clearance and tissue regeneration, which is critical for barrier integrate and homeostasis. Abnormal activation of IL-22 signal was observed in inflammation diseases, autoimmune diseases, and cancers. We review the recent discoveries about the mechanism and regulation of IL-22 signal pathway from the perspective of intestinal micro-environment. Diet-based IL-22 target therapeutic strategies and their potential clinical significance will also be discussed.
Collapse
|
35
|
Li W, Jiang H, Bai C, Yu S, Pan Y, Wang C, Li H, Li M, Sheng Y, Chu F, Wang J, Chen Y, Li J, Jiang J. Ac2-26 attenuates hepatic ischemia-reperfusion injury in mice via regulating IL-22/IL-22R1/STAT3 signaling. PeerJ 2022; 10:e14086. [PMID: 36193422 PMCID: PMC9526407 DOI: 10.7717/peerj.14086] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/29/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is one of the major sources of mortality and morbidity associated with hepatic surgery. Ac2-26, a short peptide of Annexin A1 protein, has been proved to have a protective effect against IRI. However, whether it exerts a protective effect on HIRI has not been reported. The HIRI mice model and the oxidative damage model of H2O2-induced AML12 cells were established to investigate whether Ac2-26 could alleviate HIRI by regulating the activation of IL-22/IL-22R1/STAT3 signaling. The protective effect of Ac2-26 was measured by various biochemical parameters related to liver function, apoptosis, inflammatory reaction, mitochondrial function and the expressions of IL-22, IL-22R1, p-STAT3Tyr705. We discovered that Ac2-26 reduced the Suzuki score and cell death rate, and increased the cell viability after HIRI. Moreover, we unraveled that Ac2-26 significantly decreased the number of apoptotic hepatocytes, and the expressions of cleaved-caspase-3 and Bax/Bcl-2 ratio. Furthermore, HIRI increased the contents of malondialdehyde (MDA), NADP+/NADPH ratio and reactive oxygen species (ROS), whereas Ac2-26 decreased them significantly. Additionally, Ac2-26 remarkably alleviated mitochondria dysfunction, which was represented by an increase in the adenosine triphosphate (ATP) content and mitochondrial membrane potential, a decrease in mitochondrial DNA (mtDNA) damage. Finally, we revealed that Ac2-26 pretreatment could significantly inhibit the activation of IL-22/IL22R1/STAT3 signaling. In conclusion, this work demonstrated that Ac2-26 ameliorated HIRI by reducing oxidative stress and inhibiting the mitochondrial apoptosis pathway, which might be closely related to the inhibition of the IL-22/IL22R1/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Wanzhen Li
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Hongxin Jiang
- Morphology Lab, Weifang Medical University, Weifang, Shandong, China
| | - Chen Bai
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Shuna Yu
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Yitong Pan
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Chenchen Wang
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Huiting Li
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Ming Li
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Yaxin Sheng
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Fangfang Chu
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Jie Wang
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Yuting Chen
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Jianguo Li
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Jiying Jiang
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
36
|
Xuan L, Zhang N, Wang X, Zhang L, Bachert C. IL-10 family cytokines in chronic rhinosinusitis with nasal polyps: From experiments to the clinic. Front Immunol 2022; 13:947983. [PMID: 36003393 PMCID: PMC9393419 DOI: 10.3389/fimmu.2022.947983] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is considered a nasal sinus inflammatory disease that can be dominated by immune cells and cytokines. IL-10 family cytokines exert essential functions in immune responses during infection and inflammation. Recently, the understanding of the roles of the IL-10 family in CRSwNP is being reconsidered. IL-10 family members are now considered complex cytokines that are capable of affecting epithelial function and involved in allergies and infections. Furthermore, the IL-10 family responds to glucocorticoid treatment, and there have been clinical trials of therapies manipulating these cytokines to remedy airway inflammatory diseases. Here, we summarize the recent progress in the understanding of IL-10 family cytokines in CRSwNP and suggest more specific strategies to exploit these cytokines for the effective treatment of CRSwNP.
Collapse
Affiliation(s)
- Lijia Xuan
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Nan Zhang
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- *Correspondence: Luo Zhang,
| | - Claus Bachert
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium
| |
Collapse
|
37
|
Fang S, Ju D, Lin Y, Chen W. The role of interleukin-22 in lung health and its therapeutic potential for COVID-19. Front Immunol 2022; 13:951107. [PMID: 35967401 PMCID: PMC9364265 DOI: 10.3389/fimmu.2022.951107] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Although numerous clinical trials have been implemented, an absolutely effective treatment against coronavirus disease 2019 (COVID-19) is still elusive. Interleukin-22 (IL-22) has attracted great interest over recent years, making it one of the best-studied cytokines of the interleukin-10 (IL-10) family. Unlike most interleukins, the major impact of IL-22 is exclusively on fibroblasts and epithelial cells due to the restricted expression of receptor. Numerous studies have suggested that IL-22 plays a crucial role in anti-viral infections through significantly ameliorating the immune cell-mediated inflammatory responses, and reducing tissue injury as well as further promoting epithelial repair and regeneration. Herein, we pay special attention to the role of IL-22 in the lungs. We summarize the latest progress in our understanding of IL-22 in lung health and disease and further discuss maneuvering this cytokine as potential immunotherapeutic strategy for the effective manage of COVID-19.
Collapse
Affiliation(s)
- Si Fang
- Multiscale Research Institute of Complex Systems & Jingan District Central Hospital of Shanghai, Fudan University, Shanghai, China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Yong Lin
- Multiscale Research Institute of Complex Systems & Jingan District Central Hospital of Shanghai, Fudan University, Shanghai, China
| | - Wei Chen
- Multiscale Research Institute of Complex Systems & Jingan District Central Hospital of Shanghai, Fudan University, Shanghai, China
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
38
|
Pan Y, Du D, Wang L, Wang X, He G, Jiang X. The Role of T Helper 22 Cells in Dermatological Disorders. Front Immunol 2022; 13:911546. [PMID: 35911703 PMCID: PMC9331286 DOI: 10.3389/fimmu.2022.911546] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
T helper 22 (Th22) cells are a newly identified subset of CD4+ T cells that secrete the effector cytokine interleukin 22 (IL-22) upon specific antigen stimulation, barely with IFN-γ or IL-17. Increasing studies have demonstrated that Th22 cells and IL-22 play essential roles in skin barrier defense and skin disease pathogenesis since the IL-22 receptor is widely expressed in the skin, especially in keratinocytes. Herein, we reviewed the characterization, differentiation, and biological activities of Th22 cells and elucidated their roles in skin health and disease. We mainly focused on the intricate crosstalk between Th22 cells and keratinocytes and provided potential therapeutic strategies targeting the Th22/IL-22 signaling pathway.
Collapse
Affiliation(s)
- Yu Pan
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Dermatology, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Dan Du
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyun Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, China Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, China Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Gu He, ; Xian Jiang,
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, China Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Gu He, ; Xian Jiang,
| |
Collapse
|
39
|
Cannon AS, Holloman BL, Wilson K, Miranda K, Dopkins N, Nagarkatti P, Nagarkatti M. AhR Activation Leads to Attenuation of Murine Autoimmune Hepatitis: Single-Cell RNA-Seq Analysis Reveals Unique Immune Cell Phenotypes and Gene Expression Changes in the Liver. Front Immunol 2022; 13:899609. [PMID: 35720411 PMCID: PMC9204231 DOI: 10.3389/fimmu.2022.899609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ubiquitously expressed ligand-activated transcription factor. While initially identified as an environmental sensor, this receptor has been shown more recently to regulate a variety of immune functions. AhR ligands vary in structure and source from environmental chemicals such as 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and indoles found in cruciferous vegetables to endogenous ligands derived from tryptophan metabolism. In the current study, we used TCDD, a high affinity AhR ligand to study the impact of AhR activation in the murine model of autoimmune hepatitis (AIH). Primarily, we used single-cell RNA-sequencing (scRNA-seq) technology to study the nature of changes occurring in the immune cells in the liver at the cellular and molecular level. We found that AhR activation attenuated concanavalin A (ConA)-induced AIH by limiting chemotaxis of pro-inflammatory immune cell subsets, promoting anti-inflammatory cytokine production, and suppressing pro-inflammatory cytokine production. scRNA-seq analysis showed some unusual events upon ConA injection such as increased presence of mature B cells, natural killer (NK) T cells, CD4+ or CD8+ T cells, Kupffer cells, memory CD8+ T cells, and activated T cells while TCDD treatment led to the reversal of most of these events. Additionally, the immune cells showed significant alterations in the gene expression profiles. Specifically, we observed downregulation of inflammation-associated genes including Ptma, Hspe1, and CD52 in TCDD-treated AIH mice as well as alterations in the expression of migratory markers such as CXCR2. Together, the current study characterizes the nature of inflammatory changes occurring in the liver during AIH, and sheds light on how AhR activation during AIH attenuates liver inflammation by inducing phenotypic and genotypic changes in immune cells found in the liver.
Collapse
Affiliation(s)
| | | | | | | | | | - Prakash Nagarkatti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
40
|
Lopez DV, Kongsbak‐Wismann M. Role of IL-22 in homeostasis and diseases of the skin. APMIS 2022; 130:314-322. [PMID: 35316548 PMCID: PMC9324963 DOI: 10.1111/apm.13221] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/21/2022] [Indexed: 11/28/2022]
Abstract
Interleukin-22 (IL-22) is a cytokine mainly produced by T cells and innate lymphoid cells (ILC). IL-22 primarily targets non-hematopoietic cells such as epithelial cells and fibroblasts. In the skin, IL-22 promotes the proliferation of keratinocytes and dermal fibroblasts. IL-22 furthermore regulates innate immune responses as it induces the production of antimicrobial proteins and neutrophil-attracting chemokines. IL-22 plays an important role in wound healing and in the protection against skin infections. However, IL-22 can also contribute to the pathogenesis of several inflammatory skin diseases such as psoriasis, atopic dermatitis and allergic contact dermatitis. In this review, current information regarding the structure, function and regulation of IL-22 is discussed with a special focus on the role of IL-22 in the skin and in skin diseases.
Collapse
Affiliation(s)
- Daniel Villalba Lopez
- The LEO Foundation Skin Immunology Research CenterDepartment of Immunology and MicrobiologyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Martin Kongsbak‐Wismann
- The LEO Foundation Skin Immunology Research CenterDepartment of Immunology and MicrobiologyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
41
|
Influence of Advanced Organ Support (ADVOS) on Cytokine Levels in Patients with Acute-on-Chronic Liver Failure (ACLF). J Clin Med 2022; 11:jcm11102782. [PMID: 35628913 PMCID: PMC9144177 DOI: 10.3390/jcm11102782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Background: ADVanced Organ Support (ADVOS) is a novel type of extracorporeal albumin dialysis that supports multiorgan function in patients with acute-on-chronic liver failure (ACLF). No data exist on whether ADVOS affects inflammatory cytokine levels, which play a relevant role in ACLF. Aim: Our aim was to quantify cytokine levels both before and after a single ADVOS treatment in patients with ACLF at a regular dialysis ward. Methods and results: In this prospective study, 15 patients (60% men) with ACLF and an indication for renal replacement therapy were included. Patient liver function was severely compromised, reflected by a median CLIF-consortium ACLF score of 38 (IQR 35; 40). Blood samples were directly taken before and after ADVOS dialysis. The concentration of cytokines for IL-1β, IFN-α2, IFN-γ, TNF-α, MCP-1, IL-6, IL-8, IL-10, IL-12p70, IL-17A, IL-18, IL-23, IL-33 were quantified via a cytometric bead array. We found no significant (p > 0.05) change in cytokine levels, even when patients were stratified for dialysis time (<480 min versus ≥480 min). The relevance of the assessed cytokines in contributing to systemic inflammation in ACLF was demonstrated by Ingenuity pathway analysis®. Conclusion: Concentrations of pathomechanistically relevant cytokines remained unchanged both before and after ADVOS treatment in patients with ACLF.
Collapse
|
42
|
Todorović V, McDonald HM, Hoover P, Wetter JB, Marinopoulos AE, Woody CL, Miller L, Finkielsztein A, Dunstan RW, Paller AS, Honore P, Getsios S, Scott VE. Cytokine Induced 3-D Organotypic Psoriasis Skin Model Demonstrates Distinct Roles for NF-κB and JAK Pathways in Disease Pathophysiology. Exp Dermatol 2022; 31:1036-1047. [PMID: 35213752 DOI: 10.1111/exd.14551] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/19/2022] [Accepted: 02/17/2022] [Indexed: 11/29/2022]
Abstract
Psoriasis vulgaris is an inflammatory skin disease that affects 2-3% of the population worldwide. One of the major challenges in discovering novel therapies is the poor translatability of animal models to human disease. Therefore, it is imperative to develop human preclinical models of psoriasis that are amenable to pharmacological intervention. Here we report a 3-D reconstituted human epidermis (RHE) culture system treated with cytokines commonly associated with psoriasis (TNFα, IL-17A and IL-22) that reproduced some key features of the human disease. The effects on epidermal morphology, gene transcription and cytokine production, which are dysregulated in psoriasis were assessed. Certain morphological features of psoriatic epidermis were evident in cytokine-stimulated RHEs, including hypogranulosis and parakeratosis. In addition, RHEs responded to a cytokine mix in a dose-dependent manner by expressing genes and proteins associated with impaired keratinocyte differentiation (keratin 10/K10, loricrin), innate immune responses (S100A7, DEFB4, elafin), and inflammation (IL-1α, IL-6, IL-8, IL-10, IL-12/23p40, IL-36γ, GM-CSF, and IFNγ) typical of psoriasis. These disease-relevant changes in morphology, gene transcription, and cytokine production were robustly attenuated by pharmacologically blocking TNFα/IL-17A-induced NF-κB activation with IKK-2 inhibitor IV. Conversely, inhibition of IL-22-induced JAK1 signaling with ABT-317 strongly attenuated morphological features of the disease but had no effect on NFκB-dependent cytokine production, suggesting distinct mechanisms of action by the cytokines driving psoriasis. These data support the use of cytokine-induced RHE models for identifying and targeting keratinocyte signaling pathways important for disease progression and may provide translational insights into novel keratinocyte mechanisms for novel psoriasis therapies.
Collapse
Affiliation(s)
| | | | - Paul Hoover
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | | | | | | | | | | | | | - Amy S Paller
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | | | - Spiro Getsios
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | | |
Collapse
|
43
|
Th17 cells in the liver: balancing autoimmunity and pathogen defense. Semin Immunopathol 2022; 44:509-526. [PMID: 35211777 DOI: 10.1007/s00281-022-00917-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 12/13/2022]
Abstract
In addition to carcinogenesis, T helper 17 (Th17) cells (a subtype of CD4 + T lymphocytes) are involved in the acute, chronic, and cirrhotic phases of liver diseases; however, their role in the development and progression of liver diseases remains unclear. It is difficult to elucidate the role of Th17 cells in liver diseases due to their dichotomous nature, i.e., plasticity in terms of pathogenic or host protective function depending on environmental and time phase factors. Moreover, insufficient depletion of Th17 cells by inhibiting the cytokines and transcription factors involved in their production causes difficulties in analyzing their specific role in vitro and in vivo murine models, partially due to complex interaction. This review summarizes the recent progress in understanding the plasticity and function of hepatic Th17 cells and type 3 cytokines.
Collapse
|
44
|
Margelidon-Cozzolino V, Tsicopoulos A, Chenivesse C, de Nadai P. Role of Th17 Cytokines in Airway Remodeling in Asthma and Therapy Perspectives. FRONTIERS IN ALLERGY 2022; 3:806391. [PMID: 35386663 PMCID: PMC8974749 DOI: 10.3389/falgy.2022.806391] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/10/2022] [Indexed: 12/07/2022] Open
Abstract
Airway remodeling is a frequent pathological feature of severe asthma leading to permanent airway obstruction in up to 50% of cases and to respiratory disability. Although structural changes related to airway remodeling are well-characterized, immunological processes triggering and maintaining this phenomenon are still poorly understood. As a consequence, no biotherapy targeting cytokines are currently efficient to treat airway remodeling and only bronchial thermoplasty may have an effect on bronchial nerves and smooth muscles with uncertain clinical relevance. Th17 cytokines, including interleukin (IL)-17 and IL-22, play a role in neutrophilic inflammation in severe asthma and may be involved in airway remodeling. Indeed, IL-17 is increased in sputum from severe asthmatic patients, induces the expression of "profibrotic" cytokines by epithelial, endothelial cells and fibroblasts, and provokes human airway smooth muscle cell migration in in vitro studies. IL-22 is also increased in asthmatic samples, promotes myofibroblast differentiation, epithelial-mesenchymal transition and proliferation and migration of smooth muscle cells in vitro. Accordingly, we also found high levels of IL-17 and IL-22 in a mouse model of dog-allergen induced asthma characterized by a strong airway remodeling. Clinical trials found no effect of therapy targeting IL-17 in an unselected population of asthmatic patients but showed a potential benefit in a sub-population of patients exhibiting a high level of airway reversibility, suggesting a potential role on airway remodeling. Anti-IL-22 therapies have not been evaluated in asthma yet but were demonstrated efficient in severe atopic dermatitis including an effect on skin remodeling. In this review, we will address the role of Th17 cytokines in airway remodeling through data from in vitro, in vivo and translational studies, and examine the potential place of Th17-targeting therapies in the treatment of asthma with airway remodeling.
Collapse
Affiliation(s)
- Victor Margelidon-Cozzolino
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Anne Tsicopoulos
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Cécile Chenivesse
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
- CRISALIS (Clinical Research Initiative in Severe Asthma: a Lever for Innovation & Science), F-CRIN Network, INSERM US015, Toulouse, France
| | - Patricia de Nadai
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| |
Collapse
|
45
|
Carroll DJ, Burns MWN, Mottram L, Propheter DC, Boucher A, Lessen GM, Kumar A, Malaker SA, Xing C, Hooper LV, Yrlid U, Kohler JJ. Interleukin-22 regulates B3GNT7 expression to induce fucosylation of glycoproteins in intestinal epithelial cells. J Biol Chem 2022; 298:101463. [PMID: 34864058 PMCID: PMC8808068 DOI: 10.1016/j.jbc.2021.101463] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022] Open
Abstract
Interleukin (IL)-22 is a cytokine that plays a critical role in intestinal epithelial homeostasis. Its downstream functions are mediated through interaction with the heterodimeric IL-22 receptor and subsequent activation of signal transducer and activator of transcription 3 (STAT3). IL-22 signaling can induce transcription of genes necessary for intestinal epithelial cell proliferation, tissue regeneration, tight junction fortification, and antimicrobial production. Recent studies have also implicated IL-22 signaling in the regulation of intestinal epithelial fucosylation in mice. However, whether IL-22 regulates intestinal fucosylation in human intestinal epithelial cells and the molecular mechanisms that govern this process are unknown. Here, in experiments performed in human cell lines and human-derived enteroids, we show that IL-22 signaling regulates expression of the B3GNT7 transcript, which encodes a β1-3-N-acetylglucosaminyltransferase that can participate in the synthesis of poly-N-acetyllactosamine (polyLacNAc) chains. Additionally, we find that IL-22 signaling regulates levels of the α1-3-fucosylated Lewis X (Lex) blood group antigen, and that this glycan epitope is primarily displayed on O-glycosylated intestinal epithelial glycoproteins. Moreover, we show that increased expression of B3GNT7 alone is sufficient to promote increased display of Lex-decorated carbohydrate glycan structures primarily on O-glycosylated intestinal epithelial glycoproteins. Together, these data identify B3GNT7 as an intermediary in IL-22-dependent induction of fucosylation of glycoproteins and uncover a novel role for B3GNT7 in intestinal glycosylation.
Collapse
Affiliation(s)
- Daniela J Carroll
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mary W N Burns
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lynda Mottram
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Daniel C Propheter
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Andrew Boucher
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Gabrielle M Lessen
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Stacy A Malaker
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lora V Hooper
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Howard Hughes Medical Institute, Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Jennifer J Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
46
|
Kim S, Hong EH, Lee CK, Ryu Y, Jeong H, Heo S, Lee JJ, Ko HJ. Amelioration of DSS-Induced Acute Colitis in Mice by Recombinant Monomeric Human Interleukin-22. Immune Netw 2022; 22:e26. [PMID: 35799707 PMCID: PMC9250870 DOI: 10.4110/in.2022.22.e26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
IL-22, a pleiotropic cytokine, is known to have a profound effect on the regeneration of damaged intestinal barriers. The tissue-protective properties of IL-22 are expected to be potentially exploited in the attenuation and treatment of colitis. However, because of the disease-promoting role of IL-22 in chronic inflammation, a comprehensive evaluation is required to translate IL-22 into the clinical domain. Here, we present the effective production of soluble human IL-22 in bacteria to prove whether recombinant IL-22 has the ability to ameliorate colitis and inflammation. IL-22 was expressed in the form of a biologically active monomer and non-functional oligomers. Monomeric IL-22 (mIL-22) was highly purified through a series of 3 separate chromatographic methods and an enzymatic reaction. We reveal that the resulting mIL-22 is correctly folded and is able to phosphorylate STAT3 in HT-29 cells. Subsequently, we demonstrate that mIL-22 enables the attenuation of dextran sodium sulfate-induced acute colitis in mice, as well as the suppression of pro-inflammatory cytokine production. Collectively, our results suggest that the recombinant mIL-22 is suitable to study the biological roles of endogenous IL-22 in immune responses and can be developed as a biological agent associated with inflammatory disorders.
Collapse
Affiliation(s)
- Suhyun Kim
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea
| | - Eun-Hye Hong
- Laboratory of Microbiology and Immunology, Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Cheol-Ki Lee
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea
| | - Yiseul Ryu
- Institute of Life Sciences (ILS), Kangwon National University, Chuncheon 24341, Korea
| | - Hyunjin Jeong
- Laboratory of Microbiology and Immunology, Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Seungnyeong Heo
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea
| | - Joong-Jae Lee
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea
- Institute of Life Sciences (ILS), Kangwon National University, Chuncheon 24341, Korea
- Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, Chuncheon 24341, Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, Department of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
- Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
47
|
Lücke J, Shiri AM, Zhang T, Kempski J, Giannou AD, Huber S. Rationalizing heptadecaphobia: T H 17 cells and associated cytokines in cancer and metastasis. FEBS J 2021; 288:6942-6971. [PMID: 33448148 DOI: 10.1111/febs.15711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/13/2020] [Accepted: 01/11/2021] [Indexed: 12/24/2022]
Abstract
Cancer is one of the leading causes of death worldwide. When cancer patients are diagnosed with metastasis, meaning that the primary tumor has spread to at least one different site, their life expectancy decreases dramatically. In the past decade, the immune system´s role in fighting cancer and metastasis has been studied extensively. Importantly, immune cells and inflammatory reactions generate potent antitumor responses but also contribute to tumor development. However, the molecular and cellular mechanisms underlying this dichotomic interaction between the immune system and cancer are still poorly understood. Recently, a spotlight has been cast on the distinct subsets of immune cells and their derived cytokines since evidence has implicated their crucial impact on cancer development. T helper 17 cell (TH 17) cells, which express the master transcriptional factor Retinoic acid-receptor-related orphan receptor gamma t, are among these critical cell subsets and are defined by their production of type 3 cytokines, such as IL-17A, IL-17F, and IL-22. Depending on the tumor microenvironment, these cytokines can also be produced by other immune cell sources, such as T cytotoxic 17 cell, innate lymphoid cells, NKT cells, or γδ T cells. To date, a lot of data have been collected describing the divergent functions of IL-17A, IL-17F, and IL-22 in malignancies. In this comprehensive review, we discuss the role of these TH 17- and non-TH 17-derived type 3 cytokines in different tumor entities. Furthermore, we will provide a structured insight into the strict regulation and subsequent downstream mechanisms of these cytokines in cancer and metastasis.
Collapse
Affiliation(s)
- Jöran Lücke
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Ahmad Mustafa Shiri
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Tao Zhang
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Jan Kempski
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
- The Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Anastasios D Giannou
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Germany
| | - Samuel Huber
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
48
|
Xiao Z, Liu L, Pei X, Sun W, Jin Y, Yang ST, Wang M. A Potential Probiotic for Diarrhea: Clostridium tyrobutyricum Protects Against LPS-Induced Epithelial Dysfunction via IL-22 Produced By Th17 Cells in the Ileum. Front Immunol 2021; 12:758227. [PMID: 34917080 PMCID: PMC8670534 DOI: 10.3389/fimmu.2021.758227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Probiotics are clinically used for diarrhea and inflammatory bowel diseases in both humans and animals. Previous studies have shown that Clostridium tyrobutyricum (Ct) protects against intestinal dysfunction, while its regulatory function in the gut needs further investigation and the related mechanisms are still not fully elucidated. This study aims to further verify the protective function of Ct and reveal its underlying mechanisms in alleviating diarrhea and intestinal inflammation. Ct inhibited LPS-induced diarrhea and intestinal inflammation in the ileum. IL-22 was identified and the protective role of Ct in the ileum presented an IL-22-dependent manner according to the transcriptomic analysis and in vivo interference mice experiments. The flow cytometric analysis of immune cells in the ileum showed that Ct enhanced the proportions of Th17 cells in response to LPS. The results of in situ hybridization further verified that Ct triggered Th17 cells to produce IL-22, which combined with IL-22RA1 expressed in the epithelial cells. Moreover, Ct was unable to enhance the levels of short-chain fatty acids (SCFAs) in the ileum, suggesting that the protective role of Ct in the ileum was independent of SCFAs. This study uncovered the role of Ct in alleviating diarrhea and inflammation with the mechanism of stimulating Th17 cells in the lamina propria to produce IL-22, highlighting its potential application as a probiotic for diarrhea and inflammation in the ileum.
Collapse
Affiliation(s)
- Zhiping Xiao
- The key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Lujie Liu
- The key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xun Pei
- The key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wanjing Sun
- The key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yuyue Jin
- The key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shang-Tian Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Minqi Wang
- The key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
49
|
Zenewicz LA. IL-22 Binding Protein (IL-22BP) in the Regulation of IL-22 Biology. Front Immunol 2021; 12:766586. [PMID: 34868019 PMCID: PMC8634938 DOI: 10.3389/fimmu.2021.766586] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/25/2021] [Indexed: 01/21/2023] Open
Abstract
Cytokines are powerful mediators of inflammation. Consequently, their potency is regulated in many ways to protect the host. Several cytokines, including IL-22, have coordinating binding proteins or soluble receptors that bind to the cytokine, block the interaction with the cellular receptor, and thus prevent cellular signaling. IL-22 is a critical cytokine in the modulation of tissue responses during inflammation and is highly upregulated in many chronic inflammatory disease patients, including those with psoriasis, rheumatoid arthritis, and inflammatory bowel disease (IBD). In healthy individuals, low levels of IL-22 are secreted by immune cells, mainly in the gastrointestinal (GI) tract. However, much of this IL-22 is likely not biologically active due to the high levels of IL-22 binding protein (IL-22BP) produced by intestinal dendritic cells (DCs). IL-22BP is a soluble receptor homolog that binds to IL-22 with greater affinity than the membrane spanning receptor. Much is known regarding the regulation and function of IL-22 in health and disease. However, less is known about IL-22BP. In this review, we will focus on IL-22BP, including its regulation, role in IL-22 biology and inflammation, and promise as a therapeutic. IL-22 can be protective or pathogenic, depending on the context of inflammation. IL-22BP also has divergent roles. Ongoing and forthcoming studies will expand our knowledge of IL-22BP and IL-22 biology, and suggest that IL-22BP holds promise as a way to regulate IL-22 biology in patients with chronic inflammatory disease.
Collapse
Affiliation(s)
- Lauren A. Zenewicz
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
50
|
Doulabi H, Masoumi E, Rastin M, Foolady Azarnaminy A, Esmaeili SA, Mahmoudi M. The role of Th22 cells, from tissue repair to cancer progression. Cytokine 2021; 149:155749. [PMID: 34739898 DOI: 10.1016/j.cyto.2021.155749] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023]
Abstract
CD4+ T helper (Th) cells play a significant role in modulating host defense. In the presence of lineage specific cytokine cocktail, Naive CD4+ T cells can differentiate into several categories with distinct cytokines profile and effector functions. Th22 cells are a recently identified subset of CD4+ T cell, which differentiate from Naive CD4+ T in the presence of IL-6 and TNF-α. Th22 characterized by the production of interleukin-22 (IL-22) and expression of aryl hydrocarbon receptor (AHR). The main function of Th22 cells is to participate in mucosal defense, tissue repair, and wound healing. However, controversial data have shown that overexpression of IL-22 can lead to pathological changes under inflammatory conditions and tumor progression. This review summarizes our knowledge about the role of Th22 and IL-22 cells in tumor progression through induction of inflammation.
Collapse
Affiliation(s)
- Hassan Doulabi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Masoumi
- Department of Immunology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Student Research Committee, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Maryam Rastin
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|