1
|
Kim S, Kang SW, Kim SE, Kim HJ, Kim SA, Lee YW, Kim EY, Shin C, Lee HW. Genome-wide identification and functional validation of the WW domain containing oxidoreductase gene associated with sleep duration. Sci Rep 2025; 15:5552. [PMID: 39952983 PMCID: PMC11828923 DOI: 10.1038/s41598-024-81158-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 11/25/2024] [Indexed: 02/17/2025] Open
Abstract
Individual differences in sleep duration have been reported, and genetic components of sleep duration have been identified showing various heritability. To identify genetic variants that contribute to sleep duration, we conducted a human genome-wide identification on sleep duration and performed confirmatory experiments using a Drosophila model. Genome-wide association study in human was analyzed to determine the association of the genetic variants with self-aware sleep duration from two community-based cohort, Ansan (cohort 1, n = 4635) and Ansung (cohort 2, n = 4205), recruited from the Korean Genome and Epidemiology Study. Individual single nucleotide variants (rs16948804 and rs4887991) in the WW domain containing oxidoreductase (WWOX) gene were associated with self-aware sleep duration in human (p-values, 1.11 × 10- 7 and 2.05 × 10- 7, retrospectively). To examine the functional relevance of the WWOX gene identified in the genome-wide association study, we analyzed the sleep duration of Drosophila loss-of-function mutants. The deletion of Wwox in flies reduced sleep duration and quality with average bout length during daytime and increased night-time sleep duration (all of p-values < 0.01). Our findings suggested that WWOX expression is associated with sleep duration in both humans and Drosophila and genetic factors play a role in inter-individual variability in sleep characteristics.
Collapse
Affiliation(s)
- Soriul Kim
- Department of Paramedicine, Seowon University, Cheongju, South Korea
- Institute for Human Genomic Study, College of Medicine, Korea University, Seoul, South Korea
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - So Who Kang
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
- Department of Brain Science, Ajou University School of Medicine, Suwon, South Korea
| | - Song E Kim
- Departments of Neurology and Medical Science, Computational Medicine, System Health Science and Engineering and Artificial Intelligence Graduate Programs, Ewha Womans University School of Medicine and Ewha Medical Research Institute, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, South Korea
| | - Hyeon Jin Kim
- Institute for Human Genomic Study, College of Medicine, Korea University, Seoul, South Korea
- Department of Neurology, Asan Medical Center, Seoul, South Korea
| | - Sol Ah Kim
- Departments of Neurology and Medical Science, Computational Medicine, System Health Science and Engineering and Artificial Intelligence Graduate Programs, Ewha Womans University School of Medicine and Ewha Medical Research Institute, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, South Korea
| | - Yae Won Lee
- Departments of Neurology and Medical Science, Computational Medicine, System Health Science and Engineering and Artificial Intelligence Graduate Programs, Ewha Womans University School of Medicine and Ewha Medical Research Institute, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, South Korea
| | - Eun Young Kim
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
- Department of Brain Science, Ajou University School of Medicine, Suwon, South Korea
| | - Chol Shin
- Institute for Human Genomic Study, College of Medicine, Korea University, Seoul, South Korea.
- Institute of Human Genomic Study, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Hyang Woon Lee
- Departments of Neurology and Medical Science, Computational Medicine, System Health Science and Engineering and Artificial Intelligence Graduate Programs, Ewha Womans University School of Medicine and Ewha Medical Research Institute, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, South Korea.
- Computational Medicine, System Health Science and Engineering, Ewha Womans University, Seoul, South Korea.
- Artificial Intelligence Convergence Graduate Programs, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
2
|
Chen SJ, Tsai CC, Lin SR, Lee MH, Huang SS, Zeng HY, Wang LH, Chiang MF, Sheu HM, Chang NS. Dissociation of the nuclear WWOX/TRAF2 switch renders UV/cold shock-mediated nuclear bubbling cell death at low temperatures. Cell Commun Signal 2024; 22:505. [PMID: 39420317 PMCID: PMC11487720 DOI: 10.1186/s12964-024-01866-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Normal cells express functional tumor suppressor WW domain-containing oxidoreductase (WWOX), designated WWOXf. UV irradiation induces WWOXf cells to undergo bubbling cell death (BCD) - an event due to the accumulation of nuclear nitric oxide (NO) gas that forcefully pushes the nuclear and cell membranes to form one or two bubbles at room temperature (22 °C) and below. In contrast, when WWOX-deficient or -dysfunctional (WWOXd) cells are exposed to UV and/or cold shock, the cells undergo nuclear pop-out explosion death (POD). We aimed to determine the morphological and biochemical changes in WWOXf cells during BCD versus apoptosis. METHODS WWOXf and WWOXd cells were exposed to UV followed by measuring BCD or POD by time-lapse microscopy and/or time-lapse holographic microscopy at 4, 22, or 37 °C to visualize morphological changes. Live cell stains were used to measure the kinetics of nitric oxide (NO) production and Ca2+ influx. Extent of cell death was measured by uptake of propidium iodide and by internucleosomal DNA fragmentation using agarose gel electrophoresis. RESULTS WWOXf cells were exposed to UV and then cold shock, or cold shock and then UV, and cultured at 4, 10, and 22 °C, respectively. Initially, UV induced calcium influx and NO production, which led to nuclear bubbling and final death. Cold shock pretreatment completely suppressed UV-mediated bubbling at 37 °C, so the UV/cold shock-treated cells underwent apoptosis. Without cold shock, UV only induced bubbling at all temperatures, whereas the efficiency of bubbling at 37 °C was reduced by greater than 50%. Morphologically, the WWOXf cell height or thickness was significantly increased during cell division or apoptosis, but the event did not occur in BCD. In comparison, when WWOXd cancer cells received UV or UV/cold shock, these cells underwent NO-independent POD. UV/cold shock effectively downregulated the expression of many proteins such as the housekeeping α-tubulin (> 70%) and β-actin (< 50%), and cortactin (> 70%) in WWOXf COS7 cells. UV/cold shock induced relocation of α-tubulin to the nucleus and nuclear bubbles in damaged cells. UV induced co-translocation of the WWOX/TRAF2 complex to the nuclei, in which the prosurvival TRAF2 blocked the proapoptotic WWOX via its zinc finger domain. Without WWOX, TRAF2 did not relocate to the nuclei. Cold shock caused the dissociation of the WWOX/TRAF2 complex in the nucleus needed for BCD. In contrast, the formation of the WWOX/TRAF2 complex, plus p53, was strengthened at 37 °C required for apoptosis. CONCLUSIONS The temperature-sensitive nuclear WWOX/TRAF2 complex acts as a molecular switch, whose dissociation favors BCD at low temperatures, and the association supports apoptosis at 37 °C in UV-treated WWOXf cells.
Collapse
Affiliation(s)
- Szu-Jung Chen
- Institute of Molecular Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Cheng-Chang Tsai
- Institute of Molecular Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Sing-Ru Lin
- Institute of Molecular Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ming-Hui Lee
- Institute of Molecular Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Shenq-Shyang Huang
- Institute of Molecular Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Han-Yan Zeng
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Lu-Hai Wang
- Chinese Medicine Research Center, Institute of Integrated Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Ming-Fu Chiang
- Department of Neurosurgery, Fu Jen Catholic University Hospital, Taipei, 24352, Taiwan.
| | - Hamm-Ming Sheu
- Department of Dermatology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Nan-Shan Chang
- Institute of Molecular Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
3
|
Shin MJ, Kim HS, Lee P, Yang NG, Kim JY, Eun YS, Lee W, Kim D, Lee Y, Jung KE, Hong D, Shin JM, Lee SH, Lee SY, Kim CD, Kim JE. Mechanistic Investigation of WWOX Function in NF-kB-Induced Skin Inflammation in Psoriasis. Int J Mol Sci 2023; 25:167. [PMID: 38203337 PMCID: PMC10779412 DOI: 10.3390/ijms25010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by epidermal hyperproliferation, aberrant differentiation of keratinocytes, and dysregulated immune responses. WW domain-containing oxidoreductase (WWOX) is a non-classical tumor suppressor gene that regulates multiple cellular processes, including proliferation, apoptosis, and migration. This study aimed to explore the possible role of WWOX in the pathogenesis of psoriasis. Immunohistochemical analysis showed that the expression of WWOX was increased in epidermal keratinocytes of both human psoriatic lesions and imiquimod-induced mice psoriatic model. Immortalized human epidermal keratinocytes were transduced with a recombinant adenovirus expressing microRNA specific for WWOX to downregulate its expression. Inflammatory responses were detected using Western blotting, real-time quantitative reverse transcription polymerase chain reaction (PCR), and enzyme-linked immunosorbent assay. In human epidermal keratinocytes, WWOX knockdown reduced nuclear factor-kappa B signaling and levels of proinflammatory cytokines induced by polyinosinic: polycytidylic acid [(poly(I:C)] in vitro. Furthermore, calcium chelator and protein kinase C (PKC) inhibitors significantly reduced poly(I:C)-induced inflammatory reactions. WWOX plays a role in the inflammatory reaction of epidermal keratinocytes by regulating calcium and PKC signaling. Targeting WWOX could be a novel therapeutic approach for psoriasis in the future.
Collapse
Affiliation(s)
- Min-Jeong Shin
- Department of Dermatology, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea (N.-G.Y.)
| | - Hyun-Sun Kim
- Department of Dermatology, Soonchunhyang University Graduate School of Medicine, Asan 31538, Republic of Korea (P.L.)
| | - Pyeongan Lee
- Department of Dermatology, Soonchunhyang University Graduate School of Medicine, Asan 31538, Republic of Korea (P.L.)
| | - Na-Gyeong Yang
- Department of Dermatology, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea (N.-G.Y.)
| | - Jae-Yun Kim
- Department of Dermatology, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea (N.-G.Y.)
| | - Yun-Su Eun
- Department of Dermatology, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea (N.-G.Y.)
| | - Whiin Lee
- Department of Dermatology, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea (N.-G.Y.)
| | - Doyeon Kim
- Department of Dermatology, School of Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea (Y.L.)
| | - Young Lee
- Department of Dermatology, School of Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea (Y.L.)
| | - Kyung-Eun Jung
- Department of Dermatology, School of Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea (Y.L.)
| | - Dongkyun Hong
- Department of Dermatology, School of Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea (Y.L.)
| | - Jung-Min Shin
- Department of Dermatology, School of Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea (Y.L.)
| | - Sul-Hee Lee
- Department of Dermatology, College of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea
| | - Sung-Yul Lee
- Department of Dermatology, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea (N.-G.Y.)
| | - Chang-Deok Kim
- Department of Dermatology, School of Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea (Y.L.)
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jung-Eun Kim
- Department of Dermatology, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea (N.-G.Y.)
| |
Collapse
|
4
|
Cheng HC, Huang PH, Lai FJ, Jan MS, Chen YL, Chen SY, Chen WL, Hsu CK, Huang W, Hsu LJ. Loss of fragile WWOX gene leads to senescence escape and genome instability. Cell Mol Life Sci 2023; 80:338. [PMID: 37897534 PMCID: PMC10613160 DOI: 10.1007/s00018-023-04950-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/12/2023] [Accepted: 09/04/2023] [Indexed: 10/30/2023]
Abstract
Induction of DNA damage response (DDR) to ensure accurate duplication of genetic information is crucial for maintaining genome integrity during DNA replication. Cellular senescence is a DDR mechanism that prevents the proliferation of cells with damaged DNA to avoid mitotic anomalies and inheritance of the damage over cell generations. Human WWOX gene resides within a common fragile site FRA16D that is preferentially prone to form breaks on metaphase chromosome upon replication stress. We report here that primary Wwox knockout (Wwox-/-) mouse embryonic fibroblasts (MEFs) and WWOX-knockdown human dermal fibroblasts failed to undergo replication-induced cellular senescence after multiple passages in vitro. Strikingly, by greater than 20 passages, accelerated cell cycle progression and increased apoptosis occurred in these late-passage Wwox-/- MEFs. These cells exhibited γH2AX upregulation and microsatellite instability, indicating massive accumulation of nuclear DNA lesions. Ultraviolet radiation-induced premature senescence was also blocked by WWOX knockdown in human HEK293T cells. Mechanistically, overproduction of cytosolic reactive oxygen species caused p16Ink4a promoter hypermethylation, aberrant p53/p21Cip1/Waf1 signaling axis and accelerated p27Kip1 protein degradation, thereby leading to the failure of senescence induction in Wwox-deficient cells after serial passage in culture. We determined that significantly reduced protein stability or loss-of-function A135P/V213G mutations in the DNA-binding domain of p53 caused defective induction of p21Cip1/Waf1 in late-passage Wwox-/- MEFs. Treatment of N-acetyl-L-cysteine prevented downregulation of cyclin-dependent kinase inhibitors and induced senescence in Wwox-/- MEFs. Our findings support an important role for fragile WWOX gene in inducing cellular senescence for maintaining genome integrity during DDR through alleviating oxidative stress.
Collapse
Affiliation(s)
- Hui-Ching Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Po-Hsien Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Feng-Jie Lai
- Department of Dermatology, Chi Mei Medical Center, Tainan, 71004, Taiwan.
- Center for General Education, Southern Taiwan University of Science and Technology, Tainan, 71005, Taiwan.
| | - Ming-Shiou Jan
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Yi-Lin Chen
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan, 704302, Taiwan
| | - Szu-Ying Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Wan-Li Chen
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan, 704302, Taiwan
| | - Chao-Kai Hsu
- Department of Dermatology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Wenya Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Li-Jin Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Research Center for Medical Laboratory Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
5
|
Lin YH, Shih YH, Yap YV, Chen YW, Kuo HL, Liu TY, Hsu LJ, Kuo YM, Chang NS. Zfra Inhibits the TRAPPC6AΔ-Initiated Pathway of Neurodegeneration. Int J Mol Sci 2022; 23:ijms232314510. [PMID: 36498839 PMCID: PMC9739312 DOI: 10.3390/ijms232314510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
Abstract
When WWOX is downregulated in middle age, aggregation of a protein cascade, including TRAPPC6AΔ (TPC6AΔ), TIAF1, and SH3GLB2, may start to occur, and the event lasts more than 30 years, which results in amyloid precursor protein (APP) degradation, amyloid beta (Aβ) generation, and neurodegeneration, as shown in Alzheimer's disease (AD). Here, by treating neuroblastoma SK-N-SH cells with neurotoxin MPP+, upregulation and aggregation of TPC6AΔ, along with aggregation of TIAF1, SH3GLB2, Aβ, and tau, occurred. MPP+ is an inducer of Parkinson's disease (PD), suggesting that TPC6AΔ is a common initiator for AD and PD pathogenesis. Zfra, a 31-amino-acid zinc finger-like WWOX-binding protein, is known to restore memory deficits in 9-month-old triple-transgenic (3xTg) mice by blocking the aggregation of TPC6AΔ, SH3GLB2, tau, and amyloid β, as well as inflammatory NF-κB activation. The Zfra4-10 peptide exerted a strong potency in preventing memory loss during the aging of 3-month-old 3xTg mice up to 9 months, as determined by a novel object recognition task (ORT) and Morris water maize analysis. Compared to age-matched wild type mice, 11-month-old Wwox heterozygous mice exhibited memory loss, and this correlates with pT12-WWOX aggregation in the cortex. Together, aggregation of pT12-WWOX may link to TPC6AΔ aggregation for AD progression, with TPC6AΔ aggregation being a common initiator for AD and PD progression.
Collapse
Affiliation(s)
- Yu-Hao Lin
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yao-Hsiang Shih
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan
| | - Ye Vone Yap
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yen-Wei Chen
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hsiang-Lin Kuo
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tsung-Yun Liu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Li-Jin Hsu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Min Kuo
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Nan-Shan Chang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 404333, Taiwan
- Correspondence: ; Tel.: +886-6-2353535 (ext. 5268)
| |
Collapse
|
6
|
WWOX Controls Cell Survival, Immune Response and Disease Progression by pY33 to pS14 Transition to Alternate Signaling Partners. Cells 2022; 11:cells11142137. [PMID: 35883580 PMCID: PMC9323965 DOI: 10.3390/cells11142137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023] Open
Abstract
Tumor suppressor WWOX inhibits cancer growth and retards Alzheimer’s disease (AD) progression. Supporting evidence shows that the more strongly WWOX binds intracellular protein partners, the weaker is cancer cell growth in vivo. Whether this correlates with retardation of AD progression is unknown. Two functional forms of WWOX exhibit opposite functions. pY33-WWOX is proapoptotic and anticancer, and is essential for maintaining normal physiology. In contrast, pS14-WWOX is accumulated in the lesions of cancers and AD brains, and suppression of WWOX phosphorylation at S14 by a short peptide Zfra abolishes cancer growth and retardation of AD progression. In parallel, synthetic Zfra4-10 or WWOX7-21 peptide strengthens the binding of endogenous WWOX with intracellular protein partners leading to cancer suppression. Indeed, Zfra4-10 is potent in restoring memory loss in triple transgenic mice for AD (3xTg) by blocking the aggregation of amyloid beta 42 (Aβ42), enhancing degradation of aggregated proteins, and inhibiting activation of inflammatory NF-κB. In light of the findings, Zfra4-10-mediated suppression of cancer and AD is due, in part, to an enhanced binding of endogenous WWOX and its binding partners. In this perspective review article, we detail the molecular action of WWOX in the HYAL-2/WWOX/SMAD4 signaling for biological effects, and discuss WWOX phosphorylation forms in interacting with binding partners, leading to suppression of cancer growth and retardation of AD progression.
Collapse
|
7
|
Pospiech K, Orzechowska M, Nowakowska M, Anusewicz D, Płuciennik E, Kośla K, Bednarek AK. TGFα-EGFR pathway in breast carcinogenesis, association with WWOX expression and estrogen activation. J Appl Genet 2022; 63:339-359. [PMID: 35290621 PMCID: PMC8979909 DOI: 10.1007/s13353-022-00690-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 11/29/2022]
Abstract
WWOX is a tumor-suppressive steroid dehydrogenase, which relationship with hormone receptors was shown both in animal models and breast cancer patients. Herein, through nAnT-iCAGE high-throughput gene expression profiling, we studied the interplay of estrogen receptors and the WWOX in breast cancer cell lines (MCF7, T47D, MDA-MB-231, BT20) under estrogen stimulation and either introduction of the WWOX gene by retroviral transfection (MDA-MB-231, T47D) or silenced with shRNA (MCF7, BT20). Additionally, we evaluated the consequent biological characteristics by proliferation, apoptosis, invasion, and adhesion assays. TGFα-EGFR signaling was found to be significantly affected in all examined breast cancer cell lines in response to estrogen and strongly associated with the level of WWOX expression, especially in ER-positive MCF7 cells. Under the influence of 17β-estradiol presence, biological characteristics of the cell lines were also delineated. The study revealed modulation of adhesion, invasion, and apoptosis. The obtained results point at a complex role of the WWOX gene in the carcinogenesis of the breast tissue, which seems to be closely related to the presence of estrogen α and/or β receptors.
Collapse
Affiliation(s)
- Karolina Pospiech
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | | | - Magdalena Nowakowska
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Dorota Anusewicz
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Elżbieta Płuciennik
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
8
|
Steinberg DJ, Aqeilan RI. WWOX-Related Neurodevelopmental Disorders: Models and Future Perspectives. Cells 2021; 10:cells10113082. [PMID: 34831305 PMCID: PMC8623516 DOI: 10.3390/cells10113082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
The WW domain-containing oxidoreductase (WWOX) gene was originally discovered as a putative tumor suppressor spanning the common fragile site FRA16D, but as time has progressed the extent of its pleiotropic function has become apparent. At present, WWOX is a major source of interest in the context of neurological disorders, and more specifically developmental and epileptic encephalopathies (DEEs). This review article aims to introduce the many model systems used through the years to study its function and roles in neuropathies. Similarities and fundamental differences between rodent and human models are discussed. Finally, future perspectives and promising research avenues are suggested.
Collapse
|
9
|
WWOX and Its Binding Proteins in Neurodegeneration. Cells 2021; 10:cells10071781. [PMID: 34359949 PMCID: PMC8304785 DOI: 10.3390/cells10071781] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
WW domain-containing oxidoreductase (WWOX) is known as one of the risk factors for Alzheimer's disease (AD), a neurodegenerative disease. WWOX binds Tau via its C-terminal SDR domain and interacts with Tau phosphorylating enzymes ERK, JNK, and GSK-3β, and thereby limits AD progression. Loss of WWOX in newborns leads to severe neural diseases and early death. Gradual loss of WWOX protein in the hippocampus and cortex starting from middle age may slowly induce aggregation of a protein cascade that ultimately causes accumulation of extracellular amyloid beta plaques and intracellular tau tangles, along with reduction in inhibitory GABAergic interneurons, in AD patients over 70 years old. Age-related increases in pS14-WWOX accumulation in the brain promotes neuronal degeneration. Suppression of Ser14 phosphorylation by a small peptide Zfra leads to enhanced protein degradation, reduction in NF-κB-mediated inflammation, and restoration of memory loss in triple transgenic mice for AD. Intriguingly, tumor suppressors p53 and WWOX may counteract each other in vivo, which leads to upregulation of AD-related protein aggregation in the brain and lung. WWOX has numerous binding proteins. We reported that the stronger the binding between WWOX and its partners, the better the suppression of cancer growth and reduction in inflammation. In this regard, the stronger complex formation between WWOX and partners may provide a better blockade of AD progression. In this review, we describe whether and how WWOX and partner proteins control inflammatory response and protein aggregation and thereby limit AD progression.
Collapse
|
10
|
Molecular Biology of the WWOX Gene That Spans Chromosomal Fragile Site FRA16D. Cells 2021; 10:cells10071637. [PMID: 34210081 PMCID: PMC8305172 DOI: 10.3390/cells10071637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/17/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022] Open
Abstract
It is now more than 20 years since the FRA16D common chromosomal fragile site was characterised and the WWOX gene spanning this site was identified. In this time, much information has been discovered about its contribution to disease; however, the normal biological role of WWOX is not yet clear. Experiments leading to the identification of the WWOX gene are recounted, revealing enigmatic relationships between the fragile site, its gene and the encoded protein. We also highlight research mainly using the genetically tractable model organism Drosophila melanogaster that has shed light on the integral role of WWOX in metabolism. In addition to this role, there are some particularly outstanding questions that remain regarding WWOX, its gene and its chromosomal location. This review, therefore, also aims to highlight two unanswered questions. Firstly, what is the biological relationship between the WWOX gene and the FRA16D common chromosomal fragile site that is located within one of its very large introns? Secondly, what is the actual substrate and product of the WWOX enzyme activity? It is likely that understanding the normal role of WWOX and its relationship to chromosomal fragility are necessary in order to understand how the perturbation of these normal roles results in disease.
Collapse
|
11
|
Normal cells repel WWOX-negative or -dysfunctional cancer cells via WWOX cell surface epitope 286-299. Commun Biol 2021; 4:753. [PMID: 34140629 PMCID: PMC8211909 DOI: 10.1038/s42003-021-02271-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/27/2021] [Indexed: 02/05/2023] Open
Abstract
Metastatic cancer cells are frequently deficient in WWOX protein or express dysfunctional WWOX (designated WWOXd). Here, we determined that functional WWOX-expressing (WWOXf) cells migrate collectively and expel the individually migrating WWOXd cells. For return, WWOXd cells induces apoptosis of WWOXf cells from a remote distance. Survival of WWOXd from the cell-to-cell encounter is due to activation of the survival IκBα/ERK/WWOX signaling. Mechanistically, cell surface epitope WWOX286-299 (repl) in WWOXf repels the invading WWOXd to undergo retrograde migration. However, when epitope WWOX7-21 (gre) is exposed, WWOXf greets WWOXd to migrate forward for merge. WWOX binds membrane type II TGFβ receptor (TβRII), and TβRII IgG-pretreated WWOXf greet WWOXd to migrate forward and merge with each other. In contrast, TβRII IgG-pretreated WWOXd loses recognition by WWOXf, and WWOXf mediates apoptosis of WWOXd. The observatons suggest that normal cells can be activated to attack metastatic cancer cells. WWOXd cells are less efficient in generating Ca2+ influx and undergo non-apoptotic explosion in response to UV irradiation in room temperature. WWOXf cells exhibit bubbling cell death and Ca2+ influx effectively caused by UV or apoptotic stress. Together, membrane WWOX/TβRII complex is needed for cell-to-cell recognition, maintaining the efficacy of Ca2+ influx, and control of cell invasiveness.
Collapse
|
12
|
Yamulla RJ, Nalubola S, Flesken-Nikitin A, Nikitin AY, Schimenti JC. Most Commonly Mutated Genes in High-Grade Serous Ovarian Carcinoma Are Nonessential for Ovarian Surface Epithelial Stem Cell Transformation. Cell Rep 2021; 32:108086. [PMID: 32877668 DOI: 10.1016/j.celrep.2020.108086] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/07/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the fifth leading cause of cancer-related deaths of women in the United States. Disease-associated mutations have been identified by the Cancer Genome Atlas Research Network. However, aside from mutations in TP53 or the RB1 pathway that are common in HGSOC, the contributions of mutation combinations are unclear. Here, we report CRISPR mutagenesis of 20 putative HGSOC driver genes to identify combinatorial disruptions of genes that transform either ovarian surface epithelium stem cells (OSE-SCs) or non-stem cells (OSE-NSs). Our results support the OSE-SC theory of HGSOC initiation and suggest that most commonly mutated genes in HGSOC have no effect on OSE-SC transformation initiation. Our results indicate that disruption of TP53 and PTEN, combined with RB1 disruption, constitutes a core set of mutations driving efficient transformation in vitro. The combined data may contribute to more accurate modeling of HGSOC development.
Collapse
Affiliation(s)
- Robert Joseph Yamulla
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Shreya Nalubola
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA; New York Medical College, Valhalla, NY 10595, USA
| | - Andrea Flesken-Nikitin
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Alexander Yu Nikitin
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - John C Schimenti
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA.
| |
Collapse
|
13
|
Taouis K, Driouch K, Lidereau R, Lallemand F. Molecular Functions of WWOX Potentially Involved in Cancer Development. Cells 2021; 10:cells10051051. [PMID: 33946771 PMCID: PMC8145924 DOI: 10.3390/cells10051051] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/16/2022] Open
Abstract
The WW domain-containing oxidoreductase gene (WWOX) was cloned 21 years ago as a putative tumor suppressor gene mapping to chromosomal fragile site FRA16D. The localization of WWOX in a chromosomal region frequently altered in human cancers has initiated multiple current studies to establish its role in this disease. All of this work suggests that WWOX, due to its ability to interact with a large number of partners, exerts its tumor suppressive activity through a wide variety of molecular actions that are mostly cell specific.
Collapse
|
14
|
Kang H, Yang J, Zhang W, Lu J, Ma X, Sun A, Deng X. Effect of endothelial glycocalyx on water and LDL transport through the rat abdominal aorta. Am J Physiol Heart Circ Physiol 2021; 320:H1724-H1737. [PMID: 33710913 DOI: 10.1152/ajpheart.00861.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
The surface of vascular endothelial cells (ECs) is covered by a protective negatively charged layer known as the endothelial glycocalyx. Herein, we hypothesized its transport barrier and mechanosensory role in transmural water flux and low-density lipoprotein (LDL) transport in an isolated rat abdominal aorta perfused under 85 mmHg and 20 dyn/cm2 ex vivo. The endothelial glycocalyx was digested by hyaluronidase (HAase) from bovine tests. Water infiltration velocity (Vw) was measured by a graduated pipette. LDL coverage and mean maximum infiltration distance (MMID) in the vessel wall were quantified by confocal laser scanning microscopy. EC apoptosis was determined by the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) technique, and leaky junction rates were evaluated by electron microscopy. The results showed that a 42% degradation of the endothelial glycocalyx by HAase treatment increased Vw, LDL coverage, and MMID. Shear stress increased Vw, which cannot be inhibited by HAase treatment. Four hour-shear application increased about fourfolds of LDL coverage, whereas exerted no significant effects on its MMID, EC apoptosis, and the leaky junctions. On the contrary, 24-h shear exposure has no significant effects on LDL coverage, whereas increased 2.74-folds of MMID and about 53% of EC apoptotic rates that could be inhibited by HAase treatment. These results suggest endothelial glycocalyx acts as a transport barrier by decreasing water and LDL transport, as well as a mechanosensor of shear to regulate EC apoptosis, thus affecting leaky junctions and regulating LDL transport into the vessel wall.NEW & NOTEWORTHY A 42% degradation of the endothelial glycocalyx by hyaluronidase of the isolated rat abdominal aorta facilitated water and LDL transport across the vessel wall, suggesting endothelial glycocalyx as a transport barrier. A 24-h shear exposure increased LDL mean maximum infiltration distance, and enhanced EC apoptosis, which could be both inhibited by hyaluronidase treatment, suggesting endothelial glycocalyx may also act as a mechanosensor of shear to regulate EC apoptosis, thus affecting leaky junctions and regulating LDL transport.
Collapse
Affiliation(s)
- Hongyan Kang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jiali Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Weichen Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jinyan Lu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xuejiao Ma
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Anqiang Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaoyan Deng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
15
|
Mei J, Tian H, Huang HS, Hsu CF, Liou Y, Wu N, Zhang W, Chu TY. Cellular models of development of ovarian high-grade serous carcinoma: A review of cell of origin and mechanisms of carcinogenesis. Cell Prolif 2021; 54:e13029. [PMID: 33768671 PMCID: PMC8088460 DOI: 10.1111/cpr.13029] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/19/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
High-grade serous carcinoma (HGSC) is the most common and malignant histological type of epithelial ovarian cancer, the origin of which remains controversial. Currently, the secretory epithelial cells of the fallopian tube are regarded as the main origin and the ovarian surface epithelial cells as a minor origin. In tubal epithelium, these cells acquire TP53 mutations and expand to a morphologically normal 'p53 signature' lesion, transform to serous tubal intraepithelial carcinoma and metastasize to the ovaries and peritoneum where they develop into HGSC. This shifting paradigm of the main cell of origin has revolutionarily changed the focus of HGSC research. Various cell lines have been derived from the two cellular origins by acquiring immortalization via overexpression of hTERT plus disruption of TP53 and the CDK4/RB pathway. Malignant transformation was achieved by adding canonical driver mutations (such as gain of CCNE1) revealed by The Cancer Genome Atlas or by noncanonical gain of YAP and miR181a. Alternatively, because of the extreme chromosomal instability, spontaneous transformation can be achieved by long passage of murine immortalized cells, whereas in humans, it requires ovulatory follicular fluid, containing regenerating growth factors to facilitate spontaneous transformation. These artificially and spontaneously transformed cell systems in both humans and mice have been widely used to discover carcinogens, oncogenic pathways and malignant behaviours in the development of HGSC. Here, we review the origin, aetiology and carcinogenic mechanism of HGSC and comprehensively summarize the cell models used to study this fatal cancer having multiple cells of origin and overt genomic instability.
Collapse
Affiliation(s)
- Jie Mei
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Huixiang Tian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Hsuan-Shun Huang
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC
| | - Che-Fang Hsu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC
| | - Yuligh Liou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China
| | - Nayiyuan Wu
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Tang-Yuan Chu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC.,Department of Obstetrics & Gynecology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC.,Department of Life Sciences, Tzu Chi University, Hualien, Taiwan, ROC
| |
Collapse
|
16
|
Mahmud MAA, Noguchi M, Domon A, Tochigi Y, Katayama K, Suzuki H. Cellular Expression and Subcellular Localization of Wwox Protein During Testicular Development and Spermatogenesis in Rats. J Histochem Cytochem 2021; 69:257-270. [PMID: 33565365 DOI: 10.1369/0022155421991629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A well-known putative tumor suppressor WW domain-containing oxidoreductase (Wwox) is highly expressed in hormonally regulated tissues and is considered important for the normal development and function of reproductive organs. In this study, we investigated the cellular and subcellular localization of Wwox in normal testes during postnatal days 0-70 using Western blotting and immunohistochemistry. Wwox is expressed in testes at all ages. Immunohistochemistry showed that fetal-type and adult-type Leydig cells, immature and mature Sertoli cells, and germ cells (from gonocytes to step 17 spermatids) expressed Wwox except peritubular myoid cells, step 18-19 spermatids, and mature sperm. Wwox localized diffusely in the cytoplasm with focal intense signals in all testicular cells. These signals gradually condensed in germ cells with their differentiation and colocalized with giantin for cis-Golgi marker and partially with golgin-97 for trans-Golgi marker. Biochemically, Wwox was detected in isolated Golgi-enriched fractions. But Wwox was undetectable in the nucleus. This subcellular localization pattern of Wwox was also confirmed in single-cell suspension. These findings indicate that Wwox is functional in most cell types of testis and might locate into Golgi apparatus via interaction with Golgi proteins. These unique localizations might be related to the function of Wwox in testicular development and spermatogenesis.
Collapse
Affiliation(s)
- Md Abdullah Al Mahmud
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Anatomy & Histology, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Maki Noguchi
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Ayaka Domon
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yuki Tochigi
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Kentaro Katayama
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Hiroetsu Suzuki
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| |
Collapse
|
17
|
Zhu ZJ, Teng M, Li HZ, Zheng LP, Liu JL, Yao Y, Nair V, Zhang GP, Luo J. Virus-encoded miR-155 ortholog in Marek's disease virus promotes cell proliferation via suppressing apoptosis by targeting tumor suppressor WWOX. Vet Microbiol 2020; 252:108919. [PMID: 33191002 DOI: 10.1016/j.vetmic.2020.108919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/30/2020] [Indexed: 01/15/2023]
Abstract
Marek's disease virus serotype 1 (MDV-1) is an important oncogenic α-herpesvirus that induces immunosuppressive and rapid-onset T-cell lymphomatous disease in poultry commonly referred to as Marek's disease (MD). As an excellent biomodel for the study of virally-induced cancers in natural hosts, MDV-1 encoded microRNAs (miRNAs) have been previously demonstrated with the potential roles to act as critical regulators in virus replication, latency, pathogenesis and especially in oncogenesis. Similar to the oncogenic γ-herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV), miR-M4-5p, the cellular microRNA-155 (miR-155) ortholog encoded by MDV-1, is also involved in MD oncogenesis. In lymphoblastoid cell lines derived from MDV-induced T-cell lymphomas, miR-M4-5p has been shown to be highly expressed and participate in inducing MD lymphomagenesis by regulating multiple signal pathways. Herein we report the new identification of the host WW domain-containing oxidoreductase (WWOX) as a biological target for miR-M4-5p. Further experiments revealed that as a critical oncomiRNA, miR-M4-5p promotes the proliferations of both chicken embryo fibroblast (CEF) and MSB-1 cells via suppressing cell apoptosis by targeting WWOX, a well-known tumor suppressor. Our data presents a novel insight in elucidating the regulatory mechanisms mediated by the viral analog of miR-155 that potentially contribute to MD tumorigenesis.
Collapse
Affiliation(s)
- Zhi-Jian Zhu
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Man Teng
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China
| | - Hui-Zhen Li
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Lu-Ping Zheng
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China
| | - Jin-Ling Liu
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, United Kingdom
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, United Kingdom
| | - Gai-Ping Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, People's Republic of China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, People's Republic of China.
| | - Jun Luo
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou 450002, People's Republic of China; Key Laboratory of Animal Disease and Public Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, People's Republic of China.
| |
Collapse
|
18
|
Chou YT, Lai FJ, Chang NS, Hsu LJ. Wwox Deficiency Causes Downregulation of Prosurvival ERK Signaling and Abnormal Homeostatic Responses in Mouse Skin. Front Cell Dev Biol 2020; 8:558432. [PMID: 33195192 PMCID: PMC7652735 DOI: 10.3389/fcell.2020.558432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/09/2020] [Indexed: 11/24/2022] Open
Abstract
Deficiency of tumor suppressor WW domain-containing oxidoreductase (WWOX) in humans and animals leads to growth retardation and premature death during postnatal developmental stages. Skin integrity is essential for organism survival due to its protection against dehydration and hypothermia. Our previous report demonstrated that human epidermal suprabasal cells express WWOX protein, and the expression is gradually increased toward the superficial differentiated cells prior to cornification. Here, we investigated whether abnormal skin development and homeostasis occur under Wwox deficiency that may correlate with early death. We determined that keratinocyte proliferation and differentiation were decreased, while apoptosis was increased in Wwox–/– mouse epidermis and primary keratinocyte cultures and WWOX-knockdown human HaCaT cells. Without WWOX, progenitor cells in hair follicle junctional zone underwent massive proliferation in early postnatal developmental stages and the stem/progenitor cell pools were depleted at postnatal day 21. These events lead to significantly decreased epidermal thickness, dehydration state, and delayed hair development in Wwox–/– mouse skin, which is associated with downregulation of prosurvival MEK/ERK signaling in Wwox–/– keratinocytes. Moreover, Wwox depletion results in substantial downregulation of dermal collagen contents in mice. Notably, Wwox–/– mice exhibit severe loss of subcutaneous adipose tissue and significant hypothermia. Collectively, our knockout mouse model supports the validity of WWOX in assisting epidermal and adipose homeostasis, and the involvement of prosurvival ERK pathway in the homeostatic responses regulated by WWOX.
Collapse
Affiliation(s)
- Ying-Tsen Chou
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Feng-Jie Lai
- Department of Dermatology, Chimei Medical Center, Tainan, Taiwan.,Center for General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Nan-Shan Chang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| | - Li-Jin Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
19
|
Therapeutic Zfra4-10 or WWOX7-21 Peptide Induces Complex Formation of WWOX with Selective Protein Targets in Organs that Leads to Cancer Suppression and Spleen Cytotoxic Memory Z Cell Activation In Vivo. Cancers (Basel) 2020; 12:cancers12082189. [PMID: 32764489 PMCID: PMC7464583 DOI: 10.3390/cancers12082189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
Synthetic Zfra4-10 and WWOX7-21 peptides strongly suppress cancer growth in vivo. Hypothetically, Zfra4-10 binds to the membrane Hyal-2 of spleen Z cells and activates the Hyal-2/WWOX/SMAD4 signaling for cytotoxic Z cell activation to kill cancer cells. Stimulation of membrane WWOX in the signaling complex by a WWOX epitope peptide, WWOX7-21, is likely to activate the signaling. Here, mice receiving Zfra4-10 or WWOX7-21 peptide alone exhibited an increased binding of endogenous tumor suppressor WWOX with ERK, C1qBP, NF-κB, Iba1, p21, CD133, JNK1, COX2, Oct4, and GFAP in the spleen, brain, and/or lung which led to cancer suppression. However, when in combination, Zfra4-10 and WWOX7-21 reduced the binding of WWOX with target proteins and allowed tumor growth in vivo. In addition to Zfra4-10 and WWOX7-21 peptides, stimulating the membrane Hyal-2/WWOX complex with Hyal-2 antibody and sonicated hyaluronan (HAson) induced Z cell activation for killing cancer cells in vivo and in vitro. Mechanistically, Zfra4-10 binds to membrane Hyal-2, induces dephosphorylation of WWOX at pY33 and pY61, and drives Z cell activation for the anticancer response. Thus, Zfra4-10 and WWOX7-21 peptides, HAson, and the Hyal-2 antibody are of therapeutic potential for cancer suppression.
Collapse
|
20
|
Abstract
Cancer is a genetic disease that involves the gradual accumulation of mutations. Human tumours are genetically unstable. However, the current knowledge about the origins and implications of genomic instability in this disease is limited. Understanding the biology of cancer requires the use of animal models. Here, we review relevant studies addressing the implications of genomic instability in cancer by using the fruit fly, Drosophila melanogaster, as a model system. We discuss how this invertebrate has helped us to expand the current knowledge about the mechanisms involved in genomic instability and how this hallmark of cancer influences disease progression.
Collapse
Affiliation(s)
- Stephan U Gerlach
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Héctor Herranz
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Huang S, Hsu L, Chang N. Functional role of WW domain-containing proteins in tumor biology and diseases: Insight into the role in ubiquitin-proteasome system. FASEB Bioadv 2020; 2:234-253. [PMID: 32259050 PMCID: PMC7133736 DOI: 10.1096/fba.2019-00060] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 07/23/2019] [Accepted: 01/31/2020] [Indexed: 01/10/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) governs the protein degradation process and balances proteostasis and cellular homeostasis. It is a well-controlled mechanism, in which removal of the damaged or excessive proteins is essential in driving signal pathways for cell survival or death. Accumulation of damaged proteins and failure in removal may contribute to disease initiation such as in cancers and neurodegenerative diseases. In this notion, specific protein-protein interaction is essential for the recognition of targeted proteins in UPS. WW domain plays an indispensable role in the protein-protein interactions during signaling. Among the 51 WW domain-containing proteins in the human proteomics, near one-quarter of them are involved in the UPS, suggesting that WW domains are crucial modules for driving the protein-protein binding and subsequent ubiquitination and degradation. In this review, we detail a broad spectrum of WW domains in protein-protein recognition, signal transduction, and relevance to diseases. New perspectives in dissecting the molecular interactions are provided.
Collapse
Affiliation(s)
- Shenq‐Shyang Huang
- Graduate Program of Biotechnology in MedicineInstitute of Molecular and Cellular BiologyNational Tsing Hua UniversityHsinchuTaiwan, ROC
| | - Li‐Jin Hsu
- Department of Medical Laboratory Science and BiotechnologyNational Cheng Kung University College of MedicineTainanTaiwan, ROC
| | - Nan‐Shan Chang
- Institute of Molecular MedicineNational Cheng Kung University College of MedicineTainanTaiwan, ROC
- Department of NeurochemistryNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandNYUSA
- Graduate Institute of Biomedical SciencesCollege of MedicineChina Medical UniversityTaichungTaiwan, ROC
| |
Collapse
|
22
|
Chu YH, Zhong W, Rehrauer W, Pavelec DM, Ong IM, Arjang D, Patel SS, Hu R. Clinicopathologic Characterization of Post-Renal Transplantation BK Polyomavirus-Associated Urothelial CarcinomaSingle Institutional Experience. Am J Clin Pathol 2020; 153:303-314. [PMID: 31628837 DOI: 10.1093/ajcp/aqz167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVES To review rare cases of BK polyomavirus (BKPyV) associated urologic carcinomas in kidney transplant recipients at one institution and in the literature. METHODS We describe the clinicopathologic features of BKPyV-associated urologic carcinomas in a single-institution cohort. RESULTS Among 4,772 kidney recipients during 1994 to 2014, 26 (0.5%) and 26 (0.5%) developed posttransplantation urothelial carcinomas (UCs) and renal cell carcinomas (RCCs), respectively, as of 2017. Six (27%) UCs but none of the RCCs expressed large T antigen (TAg). TAg-expressing UCs were high grade with p16 and p53 overexpression (P < .05 compared to TAg-negative UCs). Tumor genome sequencing revealed BKPyV integration and a lack of pathogenic mutations in 50 cancer-relevant genes. Compared to TAg-negative UCs, TAg-expressing UCs more frequently presented at advanced stages (50% T3-T4) with lymph node involvement (50%) and higher UC-specific mortality (50%). CONCLUSIONS Post-renal transplantation BKPyV-associated UCs are aggressive and genetically distinct from most non-BKPyV-related UCs.
Collapse
Affiliation(s)
- Ying-Hsia Chu
- Department of Pathology and Laboratory Medicine, Madison
| | - Weixiong Zhong
- Department of Pathology and Laboratory Medicine, Madison
- Department of Pathology and Laboratory Medicine Service, William S. Middleton Memorial Veterans Hospital, Madison, WI
| | | | - Derek M Pavelec
- Department of Bioinformatics Resource Center, University of Wisconsin Biotechnology Center, Madison
- Department of Cancer Informatics Shared Resource, University of Wisconsin Carbone Cancer Center, Madison
| | - Irene M Ong
- Department of Bioinformatics Resource Center, University of Wisconsin Biotechnology Center, Madison
| | - Djamali Arjang
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison
| | - Sanjay S Patel
- Department of Pathology and Laboratory Medicine, Madison
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, Madison
| |
Collapse
|
23
|
Cheng YY, Chou YT, Lai FJ, Jan MS, Chang TH, Jou IM, Chen PS, Lo JY, Huang SS, Chang NS, Liou YT, Hsu PC, Cheng HC, Lin YS, Hsu LJ. Wwox deficiency leads to neurodevelopmental and degenerative neuropathies and glycogen synthase kinase 3β-mediated epileptic seizure activity in mice. Acta Neuropathol Commun 2020; 8:6. [PMID: 32000863 PMCID: PMC6990504 DOI: 10.1186/s40478-020-0883-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/18/2020] [Indexed: 11/16/2022] Open
Abstract
Human WWOX gene resides in the chromosomal common fragile site FRA16D and encodes a tumor suppressor WW domain-containing oxidoreductase. Loss-of-function mutations in both alleles of WWOX gene lead to autosomal recessive abnormalities in pediatric patients from consanguineous families, including microcephaly, cerebellar ataxia with epilepsy, mental retardation, retinal degeneration, developmental delay and early death. Here, we report that targeted disruption of Wwox gene in mice causes neurodevelopmental disorders, encompassing abnormal neuronal differentiation and migration in the brain. Cerebral malformations, such as microcephaly and incomplete separation of the hemispheres by a partial interhemispheric fissure, neuronal disorganization and heterotopia, and defective cerebellar midline fusion are observed in Wwox−/− mice. Degenerative alterations including severe hypomyelination in the central nervous system, optic nerve atrophy, Purkinje cell loss and granular cell apoptosis in the cerebellum, and peripheral nerve demyelination due to Schwann cell apoptosis correspond to reduced amplitudes and a latency prolongation of transcranial motor evoked potentials, motor deficits and gait ataxia in Wwox−/− mice. Wwox gene ablation leads to the occurrence of spontaneous epilepsy and increased susceptibility to pilocarpine- and pentylenetetrazol (PTZ)-induced seizures in preweaning mice. We determined that a significantly increased activation of glycogen synthase kinase 3β (GSK3β) occurs in Wwox−/− mouse cerebral cortex, hippocampus and cerebellum. Inhibition of GSK3β by lithium ion significantly abolishes the onset of PTZ-induced seizure in Wwox−/− mice. Together, our findings reveal that the neurodevelopmental and neurodegenerative deficits in Wwox knockout mice strikingly recapitulate the key features of human neuropathies, and that targeting GSK3β with lithium ion ameliorates epilepsy.
Collapse
|
24
|
WWOX Possesses N-Terminal Cell Surface-Exposed Epitopes WWOX 7-21 and WWOX 7-11 for Signaling Cancer Growth Suppression and Prevention In Vivo. Cancers (Basel) 2019; 11:cancers11111818. [PMID: 31752354 PMCID: PMC6895976 DOI: 10.3390/cancers11111818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023] Open
Abstract
Membrane hyaluronidase Hyal-2 supports cancer cell growth. Inhibition of Hyal-2 by specific antibody against Hyal-2 or pY216-Hyal-2 leads to cancer growth suppression and prevention in vivo. By immunoelectron microscopy, tumor suppressor WWOX is shown to be anchored, in part, in the cell membrane by Hyal-2. Alternatively, WWOX undergoes self-polymerization and localizes in the cell membrane. Proapoptotic pY33-WWOX binds Hyal-2, and TGF-β induces internalization of the pY33-WWOX/Hyal-2 complex to the nucleus for causing cell death. In contrast, when pY33 is downregulated and pS14 upregulated in WWOX, pS14-WWOX supports cancer growth in vivo. Here, we investigated whether membrane WWOX receives extracellular signals via surface-exposed epitopes, especially at the S14 area, that signals for cancer growth suppression and prevention. By using a simulated 3-dimentional structure and generated specific antibodies, WWOX epitopes were determined at amino acid #7 to 21 and #286 to 299. Synthetic WWOX7-21 peptide, or truncation to 5-amino acid WWOX7-11, significantly suppressed and prevented the growth and metastasis of melanoma and skin cancer cells in mice. Time-lapse microscopy revealed that WWOX7-21 peptide potently enhanced the explosion and death of 4T1 breast cancer stem cell spheres by ceritinib. This is due to rapid upregulation of proapoptotic pY33-WWOX, downregulation of prosurvival pERK, prompt increases in Ca2+ influx, and disruption of the IkBα/WWOX/ERK prosurvival signaling. In contrast, pS14-WWOX7-21 peptide dramatically increased cancer growth in vivo and protected cancer cells from ceritinib-mediated apoptosis in vitro, due to a prolonged ERK phosphorylation. Further, specific antibody against pS14-WWOX significantly enhanced the ceritinib-induced apoptosis. Together, the N-terminal epitopes WWOX7-21 and WWOX7-11 are potent in blocking cancer growth in vivo. WWOX7-21 and WWOX7-11 peptides and pS14-WWOX antibody are of therapeutic values in suppressing and preventing cancer growth in vivo.
Collapse
|
25
|
Milković L, Tomljanović M, Čipak Gašparović A, Novak Kujundžić R, Šimunić D, Konjevoda P, Mojzeš A, Đaković N, Žarković N, Gall Trošelj K. Nutritional Stress in Head and Neck Cancer Originating Cell Lines: The Sensitivity of the NRF2-NQO1 Axis. Cells 2019; 8:cells8091001. [PMID: 31470592 PMCID: PMC6769674 DOI: 10.3390/cells8091001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/18/2022] Open
Abstract
Nutritional stress disturbs the cellular redox-status, which is characterized by the increased generation of reactive oxygen species (ROS). The NRF2-NQO1 axis represents a protective mechanism against ROS. Its strength is cell type-specific. FaDu, Cal 27 and Detroit 562 cells differ with respect to basal NQO1 activity. These cells were grown for 48 hours in nutritional conditions (NC): (a) Low glucose-NC2, (b) no glucose, no glutamine-NC3, (c) no glucose with glutamine-NC4. After determining the viability, proliferation and ROS generation, NC2 and NC3 were chosen for further exploration. These conditions were also applied to IMR-90 fibroblasts. The transcripts/transcript variants of NRF2 and NQO1 were quantified and transcript variants were characterized. The proteins (NRF2, NQO1 and TP53) were analyzed by a western blot in both cellular fractions. Under NC2, the NRF2-NQO1 axis did not appear activated in the cancer cell lines. Under NC3, the NRF2-NQO1axis appeared slightly activated in Detroit 562. There are opposite trends with respect to TP53 nuclear signal when comparing Cal 27 and Detroit 562 to FaDu, under NC2 and NC3. The strong activation of the NRF2-NQO1 axis in IMR-90 resulted in an increased expression of catalytically deficient NQO1, due to NQO1*2/*2 polymorphism (rs1800566). The presented results call for a comprehensive exploration of the stress response in complex biological systems.
Collapse
Affiliation(s)
- Lidija Milković
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Marko Tomljanović
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ana Čipak Gašparović
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Renata Novak Kujundžić
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Dina Šimunić
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Paško Konjevoda
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Anamarija Mojzeš
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Nikola Đaković
- University Hospital Centre Sisters of Charity, Institute for Clinical Medical Research and Education, 10000 Zagreb, Croatia
- Department of Clinical Oncology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Neven Žarković
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Koraljka Gall Trošelj
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia.
| |
Collapse
|
26
|
Chou PY, Lin SR, Lee MH, Schultz L, Sze CI, Chang NS. A p53/TIAF1/WWOX triad exerts cancer suppression but may cause brain protein aggregation due to p53/WWOX functional antagonism. Cell Commun Signal 2019; 17:76. [PMID: 31315632 PMCID: PMC6637503 DOI: 10.1186/s12964-019-0382-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/04/2019] [Indexed: 12/15/2022] Open
Abstract
Background Tumor suppressor WWOX physically binds p53 and TIAF1 and together induces apoptosis and tumor suppression. To understand the molecular action, here we investigated the formation of WWOX/TIAF1/p53 triad and its regulation of cancer cell migration, anchorage-independent growth, SMAD promoter activation, apoptosis, and potential role in neurodegeneration. Methods Time-lapse microscopy was used to measure the extent of cell migration. Protein/protein interactions were determined by co-immunoprecipitation, FRET microscopy, and yeast two-hybrid analysis. The WWOX/TIAF1/p53 triad-mediated cancer suppression was determined by measuring the extent of cell migration, anchorage-independent growth, SMAD promoter activation, and apoptosis. p53-deficient lung cancer cell growth in nude mice was carried out to assess the tumor suppressor function of ectopic p53 and/or WWOX. Results Wwox-deficient MEF cells exhibited constitutive Smad3 and p38 activation and migrated individually and much faster than wild type cells. TGF-β increased the migration of wild type MEF cells, but significantly suppressed Wwox knockout cell migration. While each of the triad proteins is responsive to TGF-β stimulation, ectopically expressed triad proteins suppressed cancer cell migration, anchorage-independent growth, and SMAD promoter activation, as well as caused apoptosis. The effects are due in part to TIAF1 polymerization and its retention of p53 and WWOX in the cytoplasm. p53 and TIAF1 were effective in suppressing anchorage-independent growth, and WWOX ineffective. p53 and TIAF1 blocked WWOX or Smad4-regulated SMAD promoter activation. WWOX suppressed lung cancer NCI-H1299 growth and inhibited splenomegaly by inflammatory immune response, and p53 blocked the event in nude mice. The p53/WWOX-cancer mice exhibited BACE upregulation, APP degradation, tau tangle formation, and amyloid β generation in the brain and lung. Conclusion The WWOX/TIAF1/p53 triad is potent in cancer suppression by blocking cancer cell migration, anchorage-independent growth and SMAD promoter activation, and causing apoptosis. Yet, p53 may functionally antagonize with WWOX. p53 blocks WWOX inhibition of inflammatory immune response induced by cancer, and this leads to protein aggregation in the brain as seen in the Alzheimer’s disease and other neurodegeneration. Electronic supplementary material The online version of this article (10.1186/s12964-019-0382-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pei-Yi Chou
- Institute of Molecular Medicine, National Cheng Kung University, College of Medicine, Tainan, Taiwan, 70101, Republic of China
| | - Sing-Ru Lin
- Institute of Molecular Medicine, National Cheng Kung University, College of Medicine, Tainan, Taiwan, 70101, Republic of China
| | - Ming-Hui Lee
- Institute of Molecular Medicine, National Cheng Kung University, College of Medicine, Tainan, Taiwan, 70101, Republic of China
| | - Lori Schultz
- Laboratory of Molecular Immunology, Guthrie Research Institute, Sayre, PA, 18840, USA
| | - Chun-I Sze
- Department of Cell Biology and Anatomy, National Cheng Kung University, College of Medicine, Tainan, Taiwan, 70101, Republic of China
| | - Nan-Shan Chang
- Institute of Molecular Medicine, National Cheng Kung University, College of Medicine, Tainan, Taiwan, 70101, Republic of China. .,Laboratory of Molecular Immunology, Guthrie Research Institute, Sayre, PA, 18840, USA. .,Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, 10314, USA. .,Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, 40402, Taiwan, Republic of China.
| |
Collapse
|
27
|
Abdeen SK, Aqeilan RI. Decoding the link between WWOX and p53 in aggressive breast cancer. Cell Cycle 2019; 18:1177-1186. [PMID: 31075076 PMCID: PMC6592247 DOI: 10.1080/15384101.2019.1616998] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/14/2019] [Accepted: 04/18/2019] [Indexed: 10/26/2022] Open
Abstract
Basal-like breast cancer (BLBC) and triple-negative breast cancer (TNBC) are aggressive forms of human breast cancer with poor prognosis and limited treatment response. Molecular understanding of BLBC and TNBC biology is instrumental to improve detection and management of these deadly diseases. Tumor suppressors WW domain-containing oxidoreductase (WWOX) and TP53 are altered in BLBC and in TNBC. Nevertheless, the functional interplay between WWOX and p53 is poorly understood. In a recent study by Abdeen and colleagues, it has been demonstrated that WWOX loss drives BLBC formation via deregulating p53 functions. In this review, we highlight important signaling pathways regulated by WWOX and p53 that are related to estrogen receptor signaling, epithelial-to-mesenchymal transition, and genomic instability and how they impact BLBC and TNBC development.
Collapse
Affiliation(s)
- Suhaib K. Abdeen
- Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, IMRIC, Jerusalem, Israel
| | - Rami I. Aqeilan
- Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, IMRIC, Jerusalem, Israel
- Department of Cancer Biology and Genetics, The Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
28
|
Strategies by which WWOX-deficient metastatic cancer cells utilize to survive via dodging, compromising, and causing damage to WWOX-positive normal microenvironment. Cell Death Discov 2019; 5:97. [PMID: 31123603 PMCID: PMC6529460 DOI: 10.1038/s41420-019-0176-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/12/2019] [Indexed: 12/21/2022] Open
Abstract
Proapoptotic tumor suppressor WWOX is upregulated in the early stage of cancer initiation, which probably provides limitation to cancer growth and progression. Later, WWOX protein is reduced to enhance cancer cell growth, migration, invasiveness and metastasis. To understand how WWOX works in controlling cancer progression, here we demonstrate that apoptotic stress mediated by ectopic WWOX stimulated cancer cells to secrete basic fibroblast growth factor (bFGF) in order to support capillary microtubule formation. This event may occur in the cancer initiation stage. Later, when WWOX loss occurs in cancer cells, hyaluronidase production is then increased in the cancer cells to facilitate metastasis. We determined that inhibition of membrane hyaluronidase Tyr216-phosphorylated Hyal-2 by antibody suppresses cancer growth in vivo. WWOX-negative (WWOX-) cells dodged WWOX+cells in the microenvironment by migrating individually backward to avoid physical contacts and yet significantly upregulating the redox activity of WWOX+parental cells or other WWOX+cell types for causing apoptosis. Upon detecting the presence of WWOX+cells from a distance, WWOX- cells exhibit activation of MIF, Hyal-2, Eph, and Wnt pathways, which converges to MEK/ERK signaling and enables WWOX- cells to evade WWOX+cells. Inhibition of each pathway by antibody or specific chemicals enables WWOX- cells to merge with WWOX+cells. In addition, exogenous TGF-β assists WWOX- cells to migrate collectively forward and merge with WWOX+cells. Metastatic WWOX- cancer cells frequently secrete high levels of TGF-β, which conceivably assists them to merge with WWOX+cells in target organs and secure a new home base in the WWOX+microenvironment. Together, loss of WWOX allows cancer cells to develop strategies to dodge, compromise and even kill WWOX-positive cells in microenvironment.
Collapse
|
29
|
Hussain T, Lee J, Abba MC, Chen J, Aldaz CM. Delineating WWOX Protein Interactome by Tandem Affinity Purification-Mass Spectrometry: Identification of Top Interactors and Key Metabolic Pathways Involved. Front Oncol 2018; 8:591. [PMID: 30619736 PMCID: PMC6300487 DOI: 10.3389/fonc.2018.00591] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/23/2018] [Indexed: 01/09/2023] Open
Abstract
It has become clear from multiple studies that WWOX (WW domain-containing oxidoreductase) operates as a "non-classical" tumor suppressor of significant relevance in cancer progression. Additionally, WWOX has been recognized for its role in a much wider array of human pathologies including metabolic conditions and central nervous system related syndromes. A myriad of putative functional roles has been attributed to WWOX mostly through the identification of various binding proteins. However, the reality is that much remains to be learned on the key relevant functions of WWOX in the normal cell. Here we employed a Tandem Affinity Purification-Mass Spectrometry (TAP-MS) approach in order to better define direct WWOX protein interactors and by extension interaction with multiprotein complexes under physiological conditions on a proteomic scale. This work led to the identification of both well-known, but more importantly novel high confidence WWOX interactors, suggesting the involvement of WWOX in specific biological and molecular processes while delineating a comprehensive portrait of WWOX protein interactome. Of particular relevance is WWOX interaction with key proteins from the endoplasmic reticulum (ER), Golgi, late endosomes, protein transport, and lysosomes networks such as SEC23IP, SCAMP3, and VOPP1. These binding partners harbor specific PPXY motifs which directly interact with the amino-terminal WW1 domain of WWOX. Pathway analysis of WWOX interactors identified a significant enrichment of metabolic pathways associated with proteins, carbohydrates, and lipids breakdown. Thus, suggesting that WWOX likely plays relevant roles in glycolysis, fatty acid degradation and other pathways that converge primarily in Acetyl-CoA generation, a fundamental molecule not only as the entry point to the tricarboxylic acid (TCA) cycle for energy production, but also as the key building block for de novo synthesis of lipids and amino acids. Our results provide a significant lead on subsets of protein partners and enzymatic complexes with which full-length WWOX protein interacts with in order to carry out its metabolic and other biological functions while also becoming a valuable resource for further mechanistic studies.
Collapse
Affiliation(s)
- Tabish Hussain
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Jaeho Lee
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Martin C Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, School of Medicine, Universidad de La Plata, La Plata, Argentina
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - C Marcelo Aldaz
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| |
Collapse
|
30
|
The phenotypic spectrum of WWOX-related disorders: 20 additional cases of WOREE syndrome and review of the literature. Genet Med 2018; 21:1308-1318. [PMID: 30356099 PMCID: PMC6752669 DOI: 10.1038/s41436-018-0339-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/03/2018] [Indexed: 11/18/2022] Open
Abstract
Purpose Germline WWOX pathogenic variants
have been associated with disorder of sex differentiation (DSD), spinocerebellar
ataxia (SCA), and WWOX-related epileptic
encephalopathy (WOREE syndrome). We review clinical and molecular data on
WWOX-related disorders, further
describing WOREE syndrome and phenotype/genotype correlations. Methods We report clinical and molecular findings in 20 additional patients
from 18 unrelated families with WOREE syndrome and biallelic pathogenic variants
in the WWOX gene. Different molecular
screening approaches were used (quantitative polymerase chain reaction/multiplex
ligation-dependent probe amplification [qPCR/MLPA], array comparative genomic
hybridization [array-CGH], Sanger sequencing, epilepsy gene panel, exome
sequencing), genome sequencing. Results Two copy-number variations (CNVs) or two single-nucleotide
variations (SNVs) were found respectively in four and nine families, with
compound heterozygosity for one SNV and one CNV in five families. Eight novel
missense pathogenic variants have been described. By aggregating our patients
with all cases reported in the literature, 37 patients from 27 families with
WOREE syndrome are known. This review suggests WOREE syndrome is a very severe
epileptic encephalopathy characterized by absence of language development and
acquisition of walking, early-onset drug-resistant seizures, ophthalmological
involvement, and a high likelihood of premature death. The most severe clinical
presentation seems to be associated with null genotypes. Conclusion Germline pathogenic variants in WWOX are clearly associated with a severe early-onset epileptic
encephalopathy. We report here the largest cohort of individuals with WOREE
syndrome.
Collapse
|
31
|
Tanna M, Aqeilan RI. Modeling WWOX Loss of Function in vivo: What Have We Learned? Front Oncol 2018; 8:420. [PMID: 30370248 PMCID: PMC6194312 DOI: 10.3389/fonc.2018.00420] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/10/2018] [Indexed: 12/21/2022] Open
Abstract
The WW domain–containing oxidoreductase (WWOX) gene encompasses a common fragile sites (CFS) known as FRA16D, and is implicated in cancer. WWOX encodes a 46kDa adaptor protein, which contains two N-terminal WW–domains and a catalytic domain at its C–terminus homologous to short–chain dehydrogenase/reductase (SDR) family proteins. A high sequence conservation of WWOX orthologues from insects to rodents and ultimately humans suggest its significant role in physiology and homeostasis. Indeed, data obtained from several animal models including flies, fish, and rodents demonstrate WWOX in vivo requirement and that its deregulation results in severe pathological consequences including growth retardation, post–natal lethality, neuropathy, metabolic disorders, and tumorigenesis. Altogether, these findings set WWOX as an essential protein that is necessary to maintain normal cellular/physiological homeostasis. Here, we review and discuss lessons and outcomes learned from modeling loss of WWOX expression in vivo.
Collapse
Affiliation(s)
- Mayur Tanna
- Faculty of Medicine, The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research, Israel-Canada (IMRIC), Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rami I Aqeilan
- Faculty of Medicine, The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research, Israel-Canada (IMRIC), Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Cancer Biology & Genetics, Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
32
|
Liu CC, Ho PC, Lee IT, Chen YA, Chu CH, Teng CC, Wu SN, Sze CI, Chiang MF, Chang NS. WWOX Phosphorylation, Signaling, and Role in Neurodegeneration. Front Neurosci 2018; 12:563. [PMID: 30158849 PMCID: PMC6104168 DOI: 10.3389/fnins.2018.00563] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022] Open
Abstract
Homozygous null mutation of tumor suppressor WWOX/Wwox gene leads to severe neural diseases, metabolic disorders and early death in the newborns of humans, mice and rats. WWOX is frequently downregulated in the hippocampi of patients with Alzheimer’s disease (AD). In vitro analysis revealed that knockdown of WWOX protein in neuroblastoma cells results in aggregation of TRAPPC6AΔ, TIAF1, amyloid β, and Tau in a sequential manner. Indeed, TRAPPC6AΔ and TIAF1, but not tau and amyloid β, aggregates are present in the brains of healthy mid-aged individuals. It is reasonable to assume that very slow activation of a protein aggregation cascade starts sequentially with TRAPPC6AΔ and TIAF1 aggregation at mid-ages, then caspase activation and APP de-phosphorylation and degradation, and final accumulation of amyloid β and Tau aggregates in the brains at greater than 70 years old. WWOX binds Tau-hyperphosphorylating enzymes (e.g., GSK-3β) and blocks their functions, thereby supporting neuronal survival and differentiation. As a neuronal protective hormone, 17β-estradiol (E2) binds WWOX at an NSYK motif in the C-terminal SDR (short-chain alcohol dehydrogenase/reductase) domain. In this review, we discuss how WWOX and E2 block protein aggregation during neurodegeneration, and how a 31-amino-acid zinc finger-like Zfra peptide restores memory loss in mice.
Collapse
Affiliation(s)
- Chan-Chuan Liu
- Department of Cell Biology and Anatomy, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Pei-Chuan Ho
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - I-Ting Lee
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Yu-An Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Hsien Chu
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Chih-Chuan Teng
- Department of Nursing, Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Chun-I Sze
- Department of Cell Biology and Anatomy, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Ming-Fu Chiang
- Department of Neurosurgery, Mackay Memorial Hospital, Mackay Medicine, Nursing and Management College, Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei, Taiwan
| | - Nan-Shan Chang
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan.,Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, United States.,Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
33
|
Chen W, Zhou C, Zhang W, Atyah M, Yin Y, Guo L, Tang W, Dong Q, Ye Q, Ren N. Association of WWOX rs9926344 polymorphism with poor prognosis of hepatocellular carcinoma. J Cancer 2018; 9:1239-1247. [PMID: 29675105 PMCID: PMC5907672 DOI: 10.7150/jca.23808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 02/28/2018] [Indexed: 02/07/2023] Open
Abstract
Introduction: The WW domain-containing oxidoreductase (WWOX), widely expressed in human tissues, is considered as a tumor suppressor gene and plays an important role in the incidence and progression of human cancer, HCC included. This study was to investigate the correlation between single nucleotide polymorphisms (SNPs) of the WWOX gene and the prognosis of hepatocellular carcinoma (HCC) patients. Materials and Methods: After a total of 152 HCC patients were recruited, 8 cases with tumor recurrence within 2-years after operation and 8 cases without recurrence were selected randomly for SNP genotyping and screening using Affymetrix Array 6.0. And then we confirmed candidate SNPs in the remaining 136 patients by time-of-flight mass spectrometry (TOF-MS). Results: In total, 32 SNPs were screened and identified as candidate SNPs with one SNP in particular, (rs9926344), being further verified to be valuable. We found that AA+AG genotype and A allele of WWOX rs9926344 were significantly associated with recurrent risk of HCC (p=0.002 and p=0.001, respectively). The Kaplan-Meier curve showed that patients carrying rs9926344 AA +AG genotype had poor RFS (P=0.004) and OS (P=0.005) compared to those carrying GG genotypes. The multivariate COX regression analysis showed that the AA+AG genotype were an independent prognostic factor for tumor recurrence (HR 1.787, 95% CI 1.042-3.064, P=0.035). Furthermore, IHC analysis showed that the WWOX protein down-regulation is more frequent in patients with AG genotype compared to those with GG genotype (P=0.023). Conclusion: Our findings indicate that WWOX rs9926344 polymorphism is positively correlated with tumor recurrence and can be used as an independent prognostic marker for HCC patients after operation.
Collapse
Affiliation(s)
- Wanyong Chen
- Department of Liver Surgery, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
- Department of Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, 201199, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Zhongshan Hospital, Fudan University, Shanghai, 201199, China
| | - Chenhao Zhou
- Department of Liver Surgery, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wentao Zhang
- Department of Liver Surgery, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Manar Atyah
- Department of Liver Surgery, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yirui Yin
- Department of Liver Surgery, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Lei Guo
- Department of Liver Surgery, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Weiguo Tang
- Department of Liver Surgery, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
- Department of Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, 201199, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Zhongshan Hospital, Fudan University, Shanghai, 201199, China
| | - Qiongzhu Dong
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Zhongshan Hospital, Fudan University, Shanghai, 201199, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Qinghai Ye
- Department of Liver Surgery, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Ning Ren
- Department of Liver Surgery, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
- Department of Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, 201199, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Zhongshan Hospital, Fudan University, Shanghai, 201199, China
| |
Collapse
|
34
|
Cheng HL, Liu YF, Su CW, Su SC, Chen MK, Yang SF, Lin CW. Functional genetic variant in the Kozak sequence of WW domain-containing oxidoreductase (WWOX) gene is associated with oral cancer risk. Oncotarget 2018; 7:69384-69396. [PMID: 27655721 PMCID: PMC5342485 DOI: 10.18632/oncotarget.12082] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/10/2016] [Indexed: 12/11/2022] Open
Abstract
In Taiwan, oral cancer is the fourth leading cancer in males and is associated with exposure to environmental carcinogens. WW domain-containing oxidoreductase (WWOX), a tumor suppressor gene, is associated with the development of various cancers. We hypothesized that genetic variants of WWOX influence the susceptibility to oral cancer. Five polymorphisms of WWOX gene from 761 male patients with oral cancer and 1199 male cancer-free individuals were genotyped. We observed that individuals carrying the polymorphic allele of WWOX rs11545028 are more susceptible to oral cancer. Furthermore, patients with advanced-stage oral cancer were associated with a higher frequency of WWOX rs11545028 polymorphisms with the variant genotype TT than did patients with the wild-type gene. An additional integrated in silico analysis confirmed that rs11545028 affects WWOX expression, which significantly correlates with tumor expression and subsequently with tumor development and aggressiveness. In conclusion, genetic variants of WWOX contribute to the occurrence of oral cancer, and the findings regarding these biomarkers provided a prediction model for risk assessment.
Collapse
Affiliation(s)
- Hsin-Lin Cheng
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Fan Liu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Wen Su
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Mu-Kuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
35
|
Huang SS, Chang NS. Phosphorylation/de-phosphorylation in specific sites of tumor suppressor WWOX and control of distinct biological events. Exp Biol Med (Maywood) 2018; 243:137-147. [PMID: 29310447 DOI: 10.1177/1535370217752350] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Abnormal differentiation and growth of hematopoietic stem cells cause the development of hematopoietic diseases and hematopoietic malignancies. However, the molecular events underlying leukemia development are not well understood. In our recent study, we have demonstrated that calcium ionophore and phorbol ester force the differentiation of T lymphoblastic leukemia. The event involves a newly identified IκBα/WWOX/ERK signaling, in which WWOX is Ser14 phosphorylated. Additional evidence also reveals that pS14-WWOX is involved in enhancing cancer progression and metastasis and facilitating neurodegeneration. In this mini-review, we update the current knowledge for the functional roles of WWOX under physiological and pathological settings, and provide new insights regarding pS14-WWOX in T leukemia cell maturation, and switching the anticancer pY33-WWOX to pS14-WWOX for cancer promotion and disease progression. Impact statement WWOX was originally designated as a tumor suppressor. However, human newborns deficient in WWOX do not spontaneously develop tumors. Activated WWOX with Tyr33 phosphorylation is present in normal tissues and organs. However, when pY33-WWOX is overly induced under stress conditions, it becomes apoptotic to eliminate damaged cells. Notably, WWOX with Ser14 phosphorylation is upregulated in the lesions of cancer, as well as in the brain hippocampus and cortex with Alzheimer's disease. Suppression of pS14-WWOX by Zfra reduces cancer growth and mitigates Alzheimer's disease progression, suggesting that pS14-WWOX facilitates disease progression. pS14-WWOX can be regarded as a marker of disease progression.
Collapse
Affiliation(s)
- Shenq-Shyang Huang
- 1 Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC.,2 Graduate Program of Biotechnology in Medicine, Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Nan-Shan Chang
- 1 Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC.,3 Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.,4 Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan, ROC
| |
Collapse
|
36
|
Bertini E, Zanni G, Boltshauser E. Nonprogressive congenital ataxias. HANDBOOK OF CLINICAL NEUROLOGY 2018; 155:91-103. [PMID: 29891079 DOI: 10.1016/b978-0-444-64189-2.00006-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The terminology of nonprogressive congenital ataxia (NPCA) refers to a clinically and genetically heterogeneous group of disorders characterized by congenital or early-onset ataxia, but no progression or even improvement on follow-up. Ataxia is preceded by muscular hypotonia and delayed motor (and usually language) milestones. We exclude children with prenatal, perinatal, and postnatal acquired diseases, malformations other than cerebellar hypoplasia, and defined syndromic disorders. Patients with NPCA have a high prevalence of cognitive and language impairments, in addition to increased occurrence of seizures, ocular signs (nystagmus, strabismus), behavior changes, and microcephaly. Neuroimaging is variable, ranging from normal cerebellar anatomy to reduced cerebellar volume (hypoplasia in the proper sense), and enlarged interfolial spaces, potentially mimicking atrophy. The latter appearance is often called "hypoplasia" as well, in view of the static clinical course. Some patients had progressive enlargement of cerebellar fissures, but a nonprogressive course. There is no imaging-clinical-genetic correlation. Dominant, recessive, and X-linked inheritance is documented for NPCA. Here, we focus on the still rather short list of dominant and recessive genes associated with NPCA, identified in the last few years. With future advances in genetics, we expect a rapid expansion of knowledge in this field.
Collapse
Affiliation(s)
- Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, Rome, Italy.
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, Rome, Italy
| | - Eugen Boltshauser
- Department of Pediatric Neurology, University Children's Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
37
|
Hyaluronan activates Hyal-2/WWOX/Smad4 signaling and causes bubbling cell death when the signaling complex is overexpressed. Oncotarget 2017; 8:19137-19155. [PMID: 27845895 PMCID: PMC5386674 DOI: 10.18632/oncotarget.13268] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 10/17/2016] [Indexed: 12/11/2022] Open
Abstract
Malignant cancer cells frequently secrete significant amounts of transforming growth factor beta (TGF-β), hyaluronan (HA) and hyaluronidases to facilitate metastasizing to target organs. In a non-canonical signaling, TGF-β binds membrane hyaluronidase Hyal-2 for recruiting tumor suppressors WWOX and Smad4, and the resulting Hyal-2/WWOX/Smad4 complex is accumulated in the nucleus to enhance SMAD-promoter dependent transcriptional activity. Yeast two-hybrid analysis showed that WWOX acts as a bridge to bind both Hyal-2 and Smad4. When WWOX-expressing cells were stimulated with high molecular weight HA, an increased formation of endogenous Hyal-2/WWOX/Smad4 complex occurred rapidly, followed by relocating to the nuclei in 20-40 min. In WWOX-deficient cells, HA failed to induce Smad2/3/4 relocation to the nucleus. To prove the signaling event, we designed a real time tri-molecular FRET analysis and revealed that HA induces the signaling pathway from ectopic Smad4 to WWOX and finally to p53, as well as from Smad4 to Hyal-2 and then to WWOX. An increased binding of the Smad4/Hyal-2/WWOX complex occurs with time in the nucleus that leads to bubbling cell death. In contrast, HA increases the binding of Smad4/WWOX/p53, which causes membrane blebbing but without cell death. In traumatic brain injury-induced neuronal death, the Hyal-2/WWOX complex was accumulated in the apoptotic nuclei of neurons in the rat brains in 24 hr post injury, as determined by immunoelectron microscopy. Together, HA activates the Hyal-2/WWOX/Smad4 signaling and causes bubbling cell death when the signaling complex is overexpressed.
Collapse
|
38
|
Liu P, Wang M, Li L, Jin T. Correlation between osteosarcoma and the expression of WWOX and p53. Oncol Lett 2017; 14:4779-4783. [PMID: 29085479 PMCID: PMC5649648 DOI: 10.3892/ol.2017.6747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/02/2017] [Indexed: 12/20/2022] Open
Abstract
The objective of this study was to analyze the effect of the expression of WWOX and p53 on the growth of MG-63 osteosarcoma cells and to explore the correlation between osteosarcoma and the expression of WWOX and p53. WWOX and p53-overexpressing MG-63 osteosarcoma cell lines were established by transfection and named the MW and MP cell lines, respectively. Untransfected MG-63 cells (blank control) were used as control. Quantitative polymerase chain reaction (qPCR) and western blot analysis were used to detect the expression of WWOX and wild-type p53 mRNA and protein, respectively. The effects of WWOX and p53 (wild-type) on the activity of MG-63 cells were determined by MTT assay and flow cytometry. The expression of mutant p53 protein in 65 cases of osteosarcoma was detected by immunohistochemistry to analyze the correlation between p53 and the development of osteosarcoma. qPCR showed that WWOX and p53 mRNA was overexpressed in MW and MP cells, respectively. Western blot analysis showed that the levels of WWOX and p53 protein in MW and MP cells were higher than in the blank control group. MTT assay showed that the cell proliferation ability of MW and MP cells was significantly lower than in the blank control group. Flow cytometry showed that 78.49% of MW and 66.76% of MP cells were arrested in the G0/G1 phase. Immunohistochemistry showed that mutant p53 was highly expressed in osteosarcoma, with a positive expression rate of 47.7%. The expression rate was positively correlated with the pathological grade of cancer. In conclusion, WWOX can affect the cell cycle of MG-63 osteosarcoma cells to inhibit cell proliferation, which provides new insights into gene therapy for osteosarcoma. The two types of the p53 gene have different functions in the development of osteosarcoma. Wild-type p53 acts as a tumor suppressor, while mutant p53, which is overexpressed in malignant osteosarcoma, has a carcinogenic effect associated with the degree of osteosarcoma.
Collapse
Affiliation(s)
- Pingtao Liu
- Department I of Orthopedics, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Mingyue Wang
- Jingmen Red Cross Blood Center, Jingmen, Hubei 448000, P.R. China
| | - Li Li
- Department I of Orthopedics, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Tao Jin
- Department III of Orthopedics, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| |
Collapse
|
39
|
Hao Y, Shan G, Nan K. Establishment of apoptotic regulatory network for genetic markers of colorectal cancer. Saudi J Biol Sci 2017; 24:466-476. [PMID: 28386169 PMCID: PMC5372377 DOI: 10.1016/j.sjbs.2017.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/25/2016] [Accepted: 01/06/2017] [Indexed: 11/30/2022] Open
Abstract
Our purpose is to screen out genetic markers applicable to early diagnosis for colorectal cancer and to establish apoptotic regulatory network model for colorectal cancer, thereby providing theoretical evidence and targeted therapy for early diagnosis of colorectal cancer. Taking databases including CNKI, VIP, Wanfang data, Pub Med, and MEDLINE as main sources of literature retrieval, literatures associated with genetic markers applied to early diagnosis of colorectal cancer were searched to perform comprehensive and quantitative analysis by Meta analysis, hence screening genetic markers used in early diagnosis of colorectal cancer. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were employed to establish apoptotic regulatory network model based on screened genetic markers, and then verification experiment was conducted. Through Meta analysis, seven genetic markers were screened out, including WWOX, K-ras, COX-2, p53, APC, DCC and PTEN, among which DCC shows highest diagnostic efficiency. GO analysis of genetic markers found that six genetic markers played role in biological process, molecular function and cellular component. It was indicated in apoptotic regulatory network built by KEGG analysis and verification experiment that WWOX could promote tumor cell apoptotic in colorectal cancer and elevate expression level of p53. The apoptotic regulatory model of colorectal cancer established in this study provides clinically theoretical evidence and targeted therapy for early diagnosis of colorectal cancer.
Collapse
Affiliation(s)
- Yibin Hao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710077, China
- Department of Oncological Radiotherapy, People’s Hospital of Zhengzhou, Zhengzhou 450003, China
| | - Guoyong Shan
- Department of Oncological Radiotherapy, People’s Hospital of Zhengzhou, Zhengzhou 450003, China
| | - Kejun Nan
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710077, China
- Corresponding author.
| |
Collapse
|
40
|
Lee MH, Shih YH, Lin SR, Chang JY, Lin YH, Sze CI, Kuo YM, Chang NS. Zfra restores memory deficits in Alzheimer's disease triple-transgenic mice by blocking aggregation of TRAPPC6AΔ, SH3GLB2, tau, and amyloid β, and inflammatory NF-κB activation. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2017; 3:189-204. [PMID: 29067327 PMCID: PMC5651433 DOI: 10.1016/j.trci.2017.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Introduction Zinc finger-like protein that regulates apoptosis (Zfra) is a naturally occurring 31-amino-acid protein. Synthetic peptides Zfra1–31 and Zfra4–10 are known to effectively block the growth of many types of cancer cells. Methods Ten-month-old triple-transgenic (3×Tg) mice for Alzheimer's disease (AD) received synthetic Zfra peptides via tail vein injections, followed by examining restoration of memory deficits. Results Zfra significantly downregulated TRAPPC6AΔ, SH3GLB2, tau, and amyloid β (Αβ) aggregates in the brains of 3×Tg mice and effectively restored their memory capabilities. Zfra inhibited melanoma-induced neuronal death in the hippocampus and plaque formation in the cortex. Mechanistically, Zfra blocked the aggregation of amyloid β 42 and many serine-containing peptides in vitro, suppressed tumor necrosis factor–mediated NF-κB activation, and bound cytosolic proteins for accelerating their degradation in ubiquitin/proteasome-independent manner. Discussion Zfra peptides exhibit a strong efficacy in blocking tau aggregation and amyloid Αβ formation and restore memory deficits in 3×Tg mice, suggesting its potential for treatment of AD.
Collapse
Affiliation(s)
- Ming-Hui Lee
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yao-Hsiang Shih
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Sing-Ru Lin
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Jean-Yun Chang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yu-Hao Lin
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Chun-I Sze
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yu-Min Kuo
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Nan-Shan Chang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.,Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, Taiwan, ROC.,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.,Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan, ROC.,Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, USA
| |
Collapse
|
41
|
Functions and Epigenetic Regulation of Wwox in Bone Metastasis from Breast Carcinoma: Comparison with Primary Tumors. Int J Mol Sci 2017; 18:ijms18010075. [PMID: 28045433 PMCID: PMC5297710 DOI: 10.3390/ijms18010075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/26/2016] [Accepted: 11/24/2016] [Indexed: 02/07/2023] Open
Abstract
Epigenetic mechanisms influence molecular patterns important for the bone-metastatic process, and here we highlight the role of WW-domain containing oxidoreductase (Wwox). The tumor-suppressor Wwox lacks in almost all cancer types; the variable expression in osteosarcomas is related to lung-metastasis formation, and exogenous Wwox destabilizes HIF-1α (subunit of Hypoxia inducible Factor-1, HIF-1) affecting aerobic glycolysis. Our recent studies show critical functions of Wwox present in 1833-osteotropic clone, in the corresponding xenograft model, and in human bone metastasis from breast carcinoma. In hypoxic-bone metastatic cells, Wwox enhances HIF-1α stabilization, phosphorylation, and nuclear translocation. Consistently, in bone-metastasis specimens Wwox localizes in cytosolic/perinuclear area, while TAZ (transcriptional co-activator with PDZ-binding motif) and HIF-1α co-localize in nuclei, playing specific regulatory mechanisms: TAZ is a co-factor of HIF-1, and Wwox regulates HIF-1 activity by controlling HIF-1α. In vitro, DNA methylation affects Wwox-protein synthesis; hypoxia decreases Wwox-protein level; hepatocyte growth factor (HGF) phosphorylates Wwox driving its nuclear shuttle, and counteracting a Twist program important for the epithelial phenotype and metastasis colonization. In agreement, in 1833-xenograft mice under DNA-methyltransferase blockade with decitabine, Wwox increases in nuclei/cytosol counteracting bone metastasis with prolongation of the survival. However, Wwox seems relevant for the autophagic process which sustains metastasis, enhancing more Beclin-1 than p62 protein levels, and p62 accumulates under decitabine consistent with adaptability of metastasis to therapy. In conclusion, Wwox methylation as a bone-metastasis therapeutic target would depend on autophagy conditions, and epigenetic mechanisms regulating Wwox may influence the phenotype of bone metastasis.
Collapse
|
42
|
Hazan I, Hofmann TG, Aqeilan RI. Tumor Suppressor Genes within Common Fragile Sites Are Active Players in the DNA Damage Response. PLoS Genet 2016; 12:e1006436. [PMID: 27977694 PMCID: PMC5157955 DOI: 10.1371/journal.pgen.1006436] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The role of common fragile sites (CFSs) in cancer remains controversial. Two main views dominate the discussion: one suggests that CFS loci are hotspots of genomic instability leading to inactivation of genes encoded within them, while the other view proposes that CFSs are functional units and that loss of the encoded genes confers selective pressure, leading to cancer development. The latter view is supported by emerging evidence showing that expression of a given CFS is associated with genome integrity and that inactivation of CFS-resident tumor suppressor genes leads to dysregulation of the DNA damage response (DDR) and increased genomic instability. These two viewpoints of CFS function are not mutually exclusive but rather coexist; when breaks at CFSs are not repaired accurately, this can lead to deletions by which cells acquire growth advantage because of loss of tumor suppressor activities. Here, we review recent advances linking some CFS gene products with the DDR, genomic instability, and carcinogenesis and discuss how their inactivation might represent a selective advantage for cancer cells.
Collapse
Affiliation(s)
- Idit Hazan
- Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Thomas G. Hofmann
- Cellular Senescence Group, Department of Epigenetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rami I. Aqeilan
- Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
43
|
Hsu LJ, Chiang MF, Sze CI, Su WP, Yap YV, Lee IT, Kuo HL, Chang NS. HYAL-2-WWOX-SMAD4 Signaling in Cell Death and Anticancer Response. Front Cell Dev Biol 2016; 4:141. [PMID: 27999774 PMCID: PMC5138198 DOI: 10.3389/fcell.2016.00141] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/18/2016] [Indexed: 02/04/2023] Open
Abstract
Hyaluronidase HYAL-2 is a membrane-anchored protein and also localizes, in part, in the lysosome. Recent study from animal models revealed that both HYAL-1 and HYAL-2 are essential for the metabolism of hyaluronan (HA). Hyal-2 deficiency is associated with chronic thrombotic microangiopathy with hemolytic anemia in mice due to over accumulation of high molecular size HA. HYAL-2 is essential for platelet generation. Membrane HYAL-2 degrades HA bound by co-receptor CD44. Also, in a non-canonical signal pathway, HYAL-2 serves as a receptor for transforming growth factor beta (TGF-β) to signal with downstream tumor suppressors WWOX and SMAD4 to control gene transcription. When SMAD4 responsive element is overly driven by the HYAL-2–WWOX–SMAD4 signaling complex, cell death occurs. When rats are subjected to traumatic brain injury, over accumulation of a HYAL-2–WWOX complex occurs in the nucleus to cause neuronal death. HA induces the signaling of HYAL-2–WWOX–SMAD4 and relocation of the signaling complex to the nucleus. If the signaling complex is overexpressed, bubbling cell death occurs in WWOX-expressing cells. In addition, a small synthetic peptide Zfra (zinc finger-like protein that regulates apoptosis) binds membrane HYAL-2 of non-T/non-B spleen HYAL-2+ CD3− CD19− Z lymphocytes and activates the cells to generate memory anticancer response against many types of cancer cells in vivo. Whether the HYAL-2–WWOX–SMAD4 signaling complex is involved is discussed. In this review and opinion article, we have updated the current knowledge of HA, HYAL-2 and WWOX, HYAL-2–WWOX–SMAD4 signaling, bubbling cell death, and Z cell activation for memory anticancer response.
Collapse
Affiliation(s)
- Li-Jin Hsu
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University Tainan, Taiwan
| | - Ming-Fu Chiang
- Department of Neurosurgery, Mackay Memorial Hospital, Mackay Medicine, Nursing and Management College, and Graduate Institute of Injury Prevention and Control, Taipei Medical University Taipei, Taiwan
| | - Chun-I Sze
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - Wan-Pei Su
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - Ye Vone Yap
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - I-Ting Lee
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - Hsiang-Ling Kuo
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - Nan-Shan Chang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan; Advanced Optoelectronic Technology Center, National Cheng Kung UniversityTainan, Taiwan; Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung UniversityTainan, Taiwan; Department of Neurochemistry, New York State Institute for Basic Research in Developmental DisabilitiesStaten Island, NY, USA; Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichung, Taiwan
| |
Collapse
|
44
|
WWOX inhibits the invasion of lung cancer cells by downregulating RUNX2. Cancer Gene Ther 2016; 23:433-438. [PMID: 27834355 DOI: 10.1038/cgt.2016.59] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 02/06/2023]
Abstract
The WW domain-containing oxidoreductase (WWOX) is a tumor suppressor that is lost or decreased in most human tumors. The role of WWOX in human lung carcinoma invasion is still not clear. This study aimed to elucidate the potential role of WWOX in lung cancer cell invasion. WWOX mRNA levels in human lung cancers and lung cancer cell lines were assayed by quantitative real-time PCR. WWOX in lung cancer cell lines was manipulated by transfection of expression vector or small interfering RNA. Cell migration and invasion were assessed by wound healing and/or transwell migration and invasion assays. The protein levels of WWOX, E-cadherin and RUNX2 were analyzed by western blot or immunofluorescence. WWOX expression is inversely correlated to invasiveness of lung cancer. WWOX overexpression in highly invasive H1299 cells reduced cell motility and invasiveness, and inhibited the expression of RUNX2 and its target gene matrix metalloproteinase-9 (MMP-9). Silencing WWOX in less invasive NL9980 cells resulted in opposite effects. Overexpressing RUNX2 in H1299 or silencing RUNX2 in NL9980 cells reversed the effects of WWOX. These results suggested that WWOX inhibited the invasive phenotype of lung cancer through downregulating the expression of RUNX2.
Collapse
|
45
|
Gao K, Yin J, Dong J. Deregulated WWOX is involved in a negative feedback loop with microRNA-214-3p in osteosarcoma. Int J Mol Med 2016; 38:1850-1856. [PMID: 27840941 DOI: 10.3892/ijmm.2016.2800] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 10/31/2016] [Indexed: 11/05/2022] Open
Abstract
WW domain-containing oxidoreductase (WWOX) is frequently inactivated in human osteosarcoma, and the restoration of its expression can suppress tumorigenicity in WWOX-negative OS cells. However, its regulatory mechanisms remain to be fully elucidated. In the present study, we demonstrate that WWOX is downregulated and that it regulates proliferation and epithelial-to-mesenchymal transition (EMT)-associated protein expression in osteosarcoma. As shown by our results, WWOX overexpression by transfection with WWOX overexpression plasmids suppressed the proliferation, migration and invasion of osteosarcoma MG63 cells (as shown by MTT and migration and invasion assays). The silencing of microRNA (miR)‑214‑3p by transfection with anti-miR‑14‑3p upregulated WWOX protein expression and also inhibited the proliferation, migration and invasion of osteosarcoma cells. Additionally, we found that WWOX negatively regulated miR‑214‑3p and miR‑10b expression. Our findings define a negative feedback pathway in control of WWOX and miR‑214‑3p expression, thus providing novel molecular targets for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Kaituo Gao
- Department of Orthopedics, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Jijuan Yin
- Department of Orthopedics, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Jian Dong
- Department of Orthopedics, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| |
Collapse
|
46
|
Su WP, Wang WJ, Sze CI, Chang NS. Zfra induction of memory anticancer response via a novel immune cell. Oncoimmunology 2016; 5:e1213935. [PMID: 27757310 DOI: 10.1080/2162402x.2016.1213935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022] Open
Abstract
When naive mice receive short Zfra peptides via tail vein injections, they develop lifetime resistance to growth of many cancer xenografts, due to activation of a novel spleen memory Hyal-2+ CD3- CD19- Z lymphocyte. In vitro education of spleen cells with Zfra activates Z cell for conferring memory anticancer response in vivo.
Collapse
Affiliation(s)
- Wan-Pei Su
- Institute of Molecular Medicine, National Cheng Kung University , Tainan, Taiwan, ROC
| | - Wan-Jan Wang
- Institute of Molecular Medicine, National Cheng Kung University , Tainan, Taiwan, ROC
| | - Chun-I Sze
- Department of Cell Biology and Anatomy, National Cheng Kung University , Tainan, Taiwan, ROC
| | - Nan-Shan Chang
- Institute of Molecular Medicine, National Cheng Kung University, Tainan, Taiwan, ROC; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan, ROC; Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, Taiwan, ROC; Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan, ROC
| |
Collapse
|
47
|
|
48
|
Huang SS, Su WP, Lin HP, Kuo HL, Wei HL, Chang NS. Role of WW Domain-containing Oxidoreductase WWOX in Driving T Cell Acute Lymphoblastic Leukemia Maturation. J Biol Chem 2016; 291:17319-31. [PMID: 27339895 DOI: 10.1074/jbc.m116.716167] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Indexed: 01/24/2023] Open
Abstract
Whether tumor suppressor WWOX (WW domain-containing oxidoreductase) stimulates immune cell maturation is largely unknown. Here, we determined that Tyr-33-phosphorylated WWOX physically binds non-phosphorylated ERK and IκBα in immature acute lymphoblastic leukemia MOLT-4 T cells and in the naïve mouse spleen. The IκBα·ERK·WWOX complex was shown to localize, in part, in the mitochondria. WWOX prevents IκBα from proteasomal degradation. Upon stimulating MOLT-4 with ionophore A23187/phorbol myristate acetate, endogenous IκBα and ERK undergo rapid phosphorylation in <5 min, and subsequently WWOX is Tyr-33 and Tyr-287 de-phosphorylated and Ser-14 phosphorylated. Three hours later, IκBα starts to degrade, and ERK returns to basal or non-phosphorylation, and this lasts for the next 12 h. Finally, expression of CD3 and CD8 occurs in MOLT-4 along with reappearance of the IκBα·ERK·WWOX complex near 24 h. Inhibition of ERK phosphorylation by U0126 or IκBα degradation by MG132 prevents MOLT-4 maturation. By time-lapse FRET microscopy, IκBα·ERK·WWOX complex exhibits an increased binding strength by 1-2-fold after exposure to ionophore A23187/phorbol myristate acetate for 15-24 h. Meanwhile, a portion of ERK and WWOX relocates to the nucleus, suggesting their role in the induction of CD3 and CD8 expression in MOLT-4.
Collapse
Affiliation(s)
| | - Wan-Pei Su
- From the Institute of Molecular Medicine
| | | | | | | | - Nan-Shan Chang
- From the Institute of Molecular Medicine, Center of Infectious Disease and Signaling Research, and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China, Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, New York 10314, Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York 13210, Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan, Republic of China
| |
Collapse
|
49
|
Chen SJ, Lin PW, Lin HP, Huang SS, Lai FJ, Sheu HM, Hsu LJ, Chang NS. UV irradiation/cold shock-mediated apoptosis is switched to bubbling cell death at low temperatures. Oncotarget 2016; 6:8007-18. [PMID: 25779665 PMCID: PMC4480731 DOI: 10.18632/oncotarget.3153] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 01/16/2015] [Indexed: 02/06/2023] Open
Abstract
When COS7 fibroblasts and other cells were exposed to UVC irradiation and cold shock at 4°C for 5 min, rapid upregulation and nuclear accumulation of NOS2, p53, WWOX, and TRAF2 occurred in 10-30 min. By time-lapse microscopy, an enlarging gas bubble containing nitric oxide (NO) was formed in the nucleus in each cell that finally popped out to cause "bubbling death". Bubbling occurred effectively at 4 and 22°C, whereas DNA fragmentation was markedly blocked at 4°C. When temperature was increased to 37°C, bubbling was retarded and DNA fragmentation occurred in 1 hr, suggesting that bubbling death is switched to apoptosis with increasing temperatures. Bubbling occurred prior to nuclear uptake of propidium iodide and DAPI stains. Arginine analog Nω-LAME inhibited NO synthase NOS2 and significantly suppressed the bubbling death. Unlike apoptosis, there were no caspase activation and flip-over of membrane phosphatidylserine (PS) during bubbling death. Bubbling death was significantly retarded in Wwox knockout MEF cells, as well as in cells overexpressing TRAF2 and dominant-negative p53. Together, UV/cold shock induces bubbling death at 4°C and the event is switched to apoptosis at 37°C. Presumably, proapoptotic WWOX and p53 block the protective TRAF2 to execute the bubbling death.
Collapse
Affiliation(s)
- Szu-Jung Chen
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan, ROC
| | - Pei-Wen Lin
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan, ROC
| | - Hsin-Ping Lin
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan, ROC
| | - Shenq-Shyang Huang
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan, ROC
| | - Feng-Jie Lai
- Department of Dermatology, Chi-Mei Medical Center, Tainan, Taiwan, ROC
| | - Hamm-Ming Sheu
- Department of Dermatology, National Cheng Kung University College of Medicine, Tainan, Taiwan, ROC
| | - Li-Jin Hsu
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University Medical College, Tainan, Taiwan, ROC.,Center of Infectious Disease and Signaling Research, National Cheng Kung University Medical College, Tainan, Taiwan, ROC
| | - Nan-Shan Chang
- Institute of Molecular Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan, ROC.,Center of Infectious Disease and Signaling Research, National Cheng Kung University Medical College, Tainan, Taiwan, ROC.,Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, Taiwan, ROC.,Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, NY, USA.,Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
50
|
Zhang J, Hochwald SN. Genomic Testing for Gemcitabine-Based Treatment of Pancreatic Cancer. J Natl Cancer Inst 2016; 108:djv424. [DOI: 10.1093/jnci/djv424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|