1
|
Lutz-Bueno V, Arboleda C, Leu L, Blunt MJ, Busch A, Georgiadis A, Bertier P, Schmatz J, Varga Z, Villanueva-Perez P, Wang Z, Lebugle M, David C, Stampanoni M, Diaz A, Guizar-Sicairos M, Menzel A. Model-free classification of X-ray scattering signals applied to image segmentation. J Appl Crystallogr 2018; 51:1378-1386. [PMID: 30279640 PMCID: PMC6157705 DOI: 10.1107/s1600576718011032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/02/2018] [Indexed: 11/17/2022] Open
Abstract
This article describes a modeling framework to relate the molecular orientation of nanostructures to polarized resonant soft X-ray scattering measurements using the Born approximation and a full tensor treatment. In most cases, the analysis of small-angle and wide-angle X-ray scattering (SAXS and WAXS, respectively) requires a theoretical model to describe the sample’s scattering, complicating the interpretation of the scattering resulting from complex heterogeneous samples. This is the reason why, in general, the analysis of a large number of scattering patterns, such as are generated by time-resolved and scanning methods, remains challenging. Here, a model-free classification method to separate SAXS/WAXS signals on the basis of their inflection points is introduced and demonstrated. This article focuses on the segmentation of scanning SAXS/WAXS maps for which each pixel corresponds to an azimuthally integrated scattering curve. In such a way, the sample composition distribution can be segmented through signal classification without applying a model or previous sample knowledge. Dimensionality reduction and clustering algorithms are employed to classify SAXS/WAXS signals according to their similarity. The number of clusters, i.e. the main sample regions detected by SAXS/WAXS signal similarity, is automatically estimated. From each cluster, a main representative SAXS/WAXS signal is extracted to uncover the spatial distribution of the mixtures of phases that form the sample. As examples of applications, a mudrock sample and two breast tissue lesions are segmented.
Collapse
Affiliation(s)
- V Lutz-Bueno
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - C Arboleda
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.,ETH Zurich, 8092 Zurich, Switzerland
| | - L Leu
- Department of Earth Science and Engineering, Imperial College London, London SW7 2BP, UK.,Shell Global Solutions International B.V., 2288 GS, Rijswijk, The Netherlands
| | - M J Blunt
- Department of Earth Science and Engineering, Imperial College London, London SW7 2BP, UK
| | - A Busch
- Lyell Centre for Marine and Earth Science and Technology, Heriot-Watt University, Edinburgh EH14 4AP, UK
| | - A Georgiadis
- Shell Global Solutions International B.V., 2288 GS, Rijswijk, The Netherlands.,Department of Chemical Engineering, Imperial College London, London SW7 2BP, UK
| | - P Bertier
- Clay and Interface Mineralogy, RWTH Aachen, 52062 Aachen, Germany
| | - J Schmatz
- Microstructure and Pores GmbH, 52064 Aachen, Germany
| | - Z Varga
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, 8092 Zurich, Switzerland
| | - P Villanueva-Perez
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.,Deutsches Elektronen-Synchrotron, Center for Free-Electron Laser Science, 22607 Hamburg, Germany
| | - Z Wang
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.,ETH Zurich, 8092 Zurich, Switzerland
| | - M Lebugle
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - C David
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - M Stampanoni
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.,ETH Zurich, 8092 Zurich, Switzerland
| | - A Diaz
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | | | - A Menzel
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| |
Collapse
|
2
|
Rank KC, Rayment I. Functional asymmetry in kinesin and dynein dimers. Biol Cell 2012; 105:1-13. [PMID: 23066835 DOI: 10.1111/boc.201200044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/08/2012] [Indexed: 11/28/2022]
Abstract
Active transport along the microtubule lattice is a complex process that involves both the Kinesin and Dynein superfamily of motors. Transportation requires sophisticated regulation much of which occurs through the motor's tail domain. However, a significant portion of this regulation also occurs through structural changes that arise in the motor and the microtubule upon binding. The most obvious structural change being the manifestation of asymmetry. To a first approximation in solution, kinesin dimers exhibit twofold symmetry, and microtubules exhibit helical symmetry. The higher symmetries of both the kinesin dimers and microtubule lattice are lost on formation of the kinesin-microtubule complex. Loss of symmetry has functional consequences such as an asymmetric hand-over-hand mechanism in plus-end-directed kinesins, asymmetric microtubule binding in the Kinesin-14 family, spatially biased stepping in dynein and cooperative binding of additional motors to the microtubule. This review focusses on how the consequences of asymmetry affect regulation of motor heads within a dimer, dimers within an ensemble of motors, and suggests how these asymmetries may affect regulation of active transport within the cell.
Collapse
Affiliation(s)
- Katherine C Rank
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
3
|
Galfrè E, Galeno L, Moran O. A potentiator induces conformational changes on the recombinant CFTR nucleotide binding domains in solution. Cell Mol Life Sci 2012; 69:3701-13. [PMID: 22752155 PMCID: PMC11114511 DOI: 10.1007/s00018-012-1049-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/14/2012] [Accepted: 05/30/2012] [Indexed: 01/23/2023]
Abstract
Nucleotide binding domains (NBD1 and NBD2) of the cystic fibrosis transmembrane conductance regulator (CFTR), the defective protein in cystic fibrosis, are responsible for controlling the gating of the chloride channel and are the putative binding sites for several candidate drugs in the disease treatment. We studied the effects of the application of 2-pyrimidin-7,8-benzoflavone (PBF), a strong potentiator of the CFTR, on the properties of recombinant and equimolar NBD1/NBD2 mixture in solution. The results indicate that the potentiator induces significant conformational changes of the NBD1/NBD2 dimer in solution. The potentiator does not modify the ATP binding constant, but reduces the ATP hydrolysis activity of the NBD1/NBD2 mixture. The intrinsic fluorescence and the guanidinium denaturation measurements indicate that the potentiator induces different conformational changes on the NBD1/NBD2 mixture in the presence and absence of ATP. It was confirmed from small-angle X-ray scattering experiments that, in absence of ATP, the NBD1/NBD2 dimer was disrupted by the potentiator, but in the presence of 2 mM ATP, the two NBDs kept dimerised, and a major change in the size and the shape of the structure was observed. We propose that these conformational changes could modify the NBDs-intracellular loop interaction in a way that would facilitate the open state of the channel.
Collapse
Affiliation(s)
- Elena Galfrè
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini, 6, 16149 Genoa, Italy
| | - Lauretta Galeno
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini, 6, 16149 Genoa, Italy
| | - Oscar Moran
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini, 6, 16149 Genoa, Italy
| |
Collapse
|
4
|
Bernadó P, Pérez Y, Svergun DI, Pons M. Structural Characterization of the Active and Inactive States of Src Kinase in Solution by Small-Angle X-ray Scattering. J Mol Biol 2008; 376:492-505. [DOI: 10.1016/j.jmb.2007.11.066] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 11/15/2007] [Accepted: 11/21/2007] [Indexed: 11/29/2022]
|
5
|
Skoufias DA, DeBonis S, Saoudi Y, Lebeau L, Crevel I, Cross R, Wade RH, Hackney D, Kozielski F. S-trityl-L-cysteine is a reversible, tight binding inhibitor of the human kinesin Eg5 that specifically blocks mitotic progression. J Biol Chem 2006; 281:17559-69. [PMID: 16507573 DOI: 10.1074/jbc.m511735200] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human Eg5, responsible for the formation of the bipolar mitotic spindle, has been identified recently as one of the targets of S-trityl-L-cysteine, a potent tumor growth inhibitor in the NCI 60 tumor cell line screen. Here we show that in cell-based assays S-trityl-L-cysteine does not prevent cell cycle progression at the S or G(2) phases but inhibits both separation of the duplicated centrosomes and bipolar spindle formation, thereby blocking cells specifically in the M phase of the cell cycle with monoastral spindles. Following removal of S-trityl-L-cysteine, mitotically arrested cells exit mitosis normally. In vitro, S-trityl-L-cysteine targets the catalytic domain of Eg5 and inhibits Eg5 basal and microtubule-activated ATPase activity as well as mant-ADP release. S-trityl-L-cysteine is a tight binding inhibitor (estimation of K(i,app) <150 nm at 300 mm NaCl and 600 nm at 25 mm KCl). S-trityl-L-cysteine binds more tightly than monastrol because it has both an approximately 8-fold faster association rate and approximately 4-fold slower release rate (6.1 microM(-1) s(-1) and 3.6 s(-1) for S-trityl-L-cysteine versus 0.78 microM(-1) s(-1) and 15 s(-1) for monastrol). S-trityl-L-cysteine inhibits Eg5-driven microtubule sliding velocity in a reversible fashion with an IC(50) of 500 nm. The S and D-enantiomers of S-tritylcysteine are nearly equally potent, indicating that there is no significant stereospecificity. Among nine different human kinesins tested, S-trityl-L-cysteine is specific for Eg5. The results presented here together with the proven effect on human tumor cell line growth make S-trityl-L-cysteine a very attractive starting point for the development of more potent mitotic inhibitors.
Collapse
Affiliation(s)
- Dimitrios A Skoufias
- Laboratoire des Protéines du Cytosquelette and Laboratoire de Moteurs Moléculaires, Institut de Biologie Structurale (Commissariat à l'Energie Atomique-CNRS-UJF), 41 Rue Jules Horowitz, 38027 Grenoble Cedex 01, France
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ito M, Morii H, Shimizu T, Tanokura M. Coiled Coil in the Stalk Region of ncd Motor Protein Is Nonlocally Sustained. Biochemistry 2006; 45:3315-24. [PMID: 16519526 DOI: 10.1021/bi051480f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dimeric structure of kinesin superfamily proteins plays an important role in their motile functions and characteristics. In this study, the coiled-coil-forming property of the stalk region (192-346) of Drosophila ncd, a C-terminal kinesin motor protein, was investigated by synthesizing various peptide fragments. The alpha helicity of a set of 46-residue peptides spanning the stalk region appeared too low to form a coiled-coil dimer, probably because of insufficient continuity of the hydrophobic residues at (a and d) core positions in amphipathic heptad repeats. On the other hand, several peptides with leucine residues introduced at core positions or with extensional sequences with high alpha helicity had an advantage in coiled-coil formation. When we analyzed the thermal and urea-induced unfolding of these dimeric peptides, we identified four domains having a relatively high potential to form coiled coils. Among them, three domains on the C-terminal side of the stalk region, i.e., (252-272), (276-330), and (336-346), were in the same heptad frame, although these potential coiled-coil domains were not self-sustaining individually. This is in sharp contrast to the fragment of human kinesin, (332-369), which has an extremely high tendency toward coiled-coil formation. One of the possible triggers for coiled-coil formation of the ncd stalk region may be the interaction between the motor domain and the C-terminal part of the stalk as previously revealed by X-ray crystallography. The residues, S331 and R335, seem to act as a breaking point for alpha-helix continuity. This would make the region (336-346), as the head-stalk joint, more flexible such as seen with a plus-end-directed kinesin, if this region had no interaction with the motor domain. These characteristic differences between ncd and kinesin suggest that the nonlocally sustained coiled coil of ncd is one of the factors important for minus-end-directed motility.
Collapse
Affiliation(s)
- Mie Ito
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
7
|
Marx A, Müller J, Mandelkow EM, Hoenger A, Mandelkow E. Interaction of kinesin motors, microtubules, and MAPs. J Muscle Res Cell Motil 2005; 27:125-37. [PMID: 16362723 DOI: 10.1007/s10974-005-9051-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Accepted: 11/18/2005] [Indexed: 11/30/2022]
Abstract
Kinesins are a family of microtubule-dependent motor proteins that carry cargoes such as vesicles, organelles, or protein complexes along microtubules. Here we summarize structural studies of the "conventional" motor protein kinesin-1 and its interactions with microtubules, as determined by X-ray crystallography and cryo-electron microscopy. In particular, we consider the docking between the kinesin motor domain and tubulin subunits and summarize the evidence that kinesin binds mainly to beta tubulin with the switch-2 helix close to the intradimer interface between alpha and beta tubulin.
Collapse
Affiliation(s)
- A Marx
- Max-Planck-Unit for Structural Molecular Biology, Notkestrasse 85, 22607, Hamburg, Germany
| | | | | | | | | |
Collapse
|
8
|
Marx A, Müller J, Mandelkow E. The structure of microtubule motor proteins. ADVANCES IN PROTEIN CHEMISTRY 2005; 71:299-344. [PMID: 16230115 DOI: 10.1016/s0065-3233(04)71008-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microtubules are the intracellular tracks for two classes of motor proteins: kinesins and dyneins. During the past few years, the motor domain structures of several kinesins from different organisms have been determined by X-ray crystallography. Compared with kinesins, dyneins are much larger proteins and attempts to crystallize them have failed so far. Structural information about these proteins comes mostly from electron microscopy. In this chapter, we mainly focus on the crystal structures of kinesin motor domains.
Collapse
Affiliation(s)
- A Marx
- Max-Planck-Unit for Structural Molecular Biology; Notkestrasse 85, 22607 Hamburg, Germany
| | | | | |
Collapse
|
9
|
DeBonis S, Simorre JP, Crevel I, Lebeau L, Skoufias DA, Blangy A, Ebel C, Gans P, Cross R, Hackney DD, Wade RH, Kozielski F. Interaction of the mitotic inhibitor monastrol with human kinesin Eg5. Biochemistry 2003; 42:338-49. [PMID: 12525161 DOI: 10.1021/bi026716j] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The microtubule-dependent kinesin-like protein Eg5 from Homo sapiens is involved in the assembly of the mitotic spindle. It shows a three-domain structure with an N-terminal motor domain, a central coiled coil, and a C-terminal tail domain. In vivo HsEg5 is reversibly inhibited by monastrol, a small cell-permeable molecule that causes cells to be arrested in mitosis. Both monomeric and dimeric Eg5 constructs have been examined in order to define the minimal monastrol binding domain on HsEg5. NMR relaxation experiments show that monastrol interacts with all of the Eg5 constructs used in this study. Enzymatic techniques indicate that monastrol partially inhibits Eg5 ATPase activity by binding directly to the motor domain. The binding is noncompetitive with respect to microtubules, indicating that monastrol does not interfere with the formation of the motor-MT complex. The binding is not competitive with respect to ATP. Both enzymology and in vivo assays show that the S enantiomer of monastrol is more active than the R enantiomer and racemic monastrol. Stopped-flow fluorometry indicates that monastrol inhibits ADP release by forming an Eg5-ADP-monastrol ternary complex. Monastrol reversibly inhibits the motility of human Eg5. Monastrol has no inhibitory effect on the following members of the kinesin superfamily: MC5 (Drosophila melanogaster Ncd), HK379 (H. sapiens conventional kinesin), DKH392 (D. melanogaster conventional kinesin), BimC1-428 (Aspergillus nidulans BimC), Klp15 (Caenorhabditis elegans C-terminal motor), or Nkin460GST (Neurospora crassa conventional kinesin).
Collapse
Affiliation(s)
- Salvatore DeBonis
- Institut de Biologie Structurale, 41, rue Jules Horowitz, 38027 Grenoble Cedex 01, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Svergun DI, Zaccai G, Malfois M, Wade RH, Koch MH, Kozielski F. Conformation of the Drosophila motor protein non-claret disjunctional in solution from X-ray and neutron scattering. J Biol Chem 2001; 276:24826-32. [PMID: 11335729 DOI: 10.1074/jbc.m103618200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The quaternary structures of monomeric and dimeric Drosophila non-claret disjunctional (ncd) constructs were investigated using synchrotron x-ray and neutron solution scattering, and their low resolution shapes were restored ab initio from the scattering data. The experimental curves were further compared with those computed from crystallographic models of one monomeric and three available dimeric ncd structures in the microtubule-independent ADP-bound state. These comparisons indicate that accounting for the missing parts in the crystal structures for all these constructs is indispensable to obtain reasonable fits to the scattering patterns. A ncd construct (MC6) lacking the coiled-coil region is monomeric in solution, but the calculated scattering from the crystallographic monomer yields a poor fit to the data. A tentative configuration of the missing C-terminal residues in the form of an antiparallel beta-sheet was found that significantly improves the fit. The atomic model of a short dimeric ncd construct (MC5) without 2-fold symmetry is found to fit the data better than the symmetric models. Addition of the C-terminal residues to both head domains gives an excellent fit to the x-ray and neutron experimental data, although the orientation of the beta-sheet differs from that of the monomer. The solution structure of the long ncd construct (MC1) including complete N-terminal coiled-coil and motor domains is modeled by adding a straight coiled-coil section to the model of MC5.
Collapse
Affiliation(s)
- D I Svergun
- Institute of Crystallography, Russian Academy of Sciences, Leninsky Prospekt 59, 117333 Russia.
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Nucleotide-dependent movements of the head and neck of kinesin have been visualized by cryoelectron microscopy and have been inferred from single-molecule studies. Key predictions of the hand-over-hand model for dimeric kinesin have been confirmed, and a novel processivity mechanism for the one-headed, kinesin-related motor KIF1A has been discovered.
Collapse
Affiliation(s)
- W R Schief
- Department of Physiology & Biophysics, University of Washington, Box 357290, Seattle, Washington 98195-2790, USA.
| | | |
Collapse
|