1
|
Albeitawi S, Bani-Mousa SU, Jarrar B, Aloqaily I, Al-Shlool N, Alsheyab G, Kassab A, Qawasmi B, Awaisheh A. Associations Between Follicular Fluid Biomarkers and IVF/ICSI Outcomes in Normo-Ovulatory Women-A Systematic Review. Biomolecules 2025; 15:443. [PMID: 40149979 PMCID: PMC11940193 DOI: 10.3390/biom15030443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
(1) Background: The follicular fluid (FF) comprises a large portion of ovarian follicles, and serves as both a communication and growth medium for oocytes, and thus should be representative of the metabolomic status of the follicle. This review aims to explore FF biomarkers as well as their effects on fertilization, oocyte, and embryo development, and later on implantation and maintenance of pregnancy. (2) Methods: This review was registered in the PROSPERO database with the ID: CRD42025633101. We parsed PubMed, Scopus, and Google Scholar for research on the effects of different FF biomarkers on IVF/ICSI outcomes in normo-ovulatory women. Included studies were assessed for risk of bias using the NOS scale. Data were extracted and tabulated by two independent researchers. (3) Results: 22 included articles, with a sample size range of 31 to 414 and a median of 60 participants, contained 61 biomarkers, including proteins, growth factors, steroid and polypeptide hormones, inflammation and oxidative stress markers, amino acids, vitamins, lipids of different types, and miRNAs. Most of the biomarkers studied had significant effects on IVF/ICSI outcomes, and seem to have roles in various cellular pathways responsible for oocyte and embryo growth, implantation, placental formation, and maintenance of pregnancy. The FF metabolome also seems to be interconnected, with its various components influencing the levels and activities of each other through feedback loops. (4) Conclusions: FF biomarkers can be utilized for diagnostic and therapeutic purposes in IVF; however, further studies are required for choosing the most promising ones due to heterogeneity of results. Widespread adoption of LC-MS and miRNA microarrays can help quantify a representative FF metabolome, and we see great potential for in vitro supplementation (IVS) of some FF biomarkers in improving IVF/ICSI outcomes.
Collapse
Affiliation(s)
- Soha Albeitawi
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | | | - Baraa Jarrar
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Ibrahim Aloqaily
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Nour Al-Shlool
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Ghaida Alsheyab
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Ahmad Kassab
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Baha’a Qawasmi
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| | - Abdalrahman Awaisheh
- Department of Pediatrics, Family Medicine and Obstetrics & Gynecology, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan; (B.J.); (I.A.); (N.A.-S.); (G.A.); (A.K.); (B.Q.); (A.A.)
| |
Collapse
|
2
|
Jinno M. Ovarian stimulation by promoting basal follicular growth. Reprod Biol Endocrinol 2025; 23:35. [PMID: 40050948 PMCID: PMC11884117 DOI: 10.1186/s12958-025-01356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/04/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND Most methods of ovarian stimulation rely on gonadotropin modulation. However, abnormal anti-Müllerian hormone concentrations are frequent in infertility, suggesting that defects in the gonadotropin-independent period of folliculogenesis preceding cyclic recruitment (i.e., basal follicular growth) may often occur. We need to better understand basal follicular growth and determine how to improve it. METHODS Section I summarizes a literature search concerning preantral and early antral folliculogenesis, cyclic recruitment, and selection. Section II presents current knowledge about interventions involving early antral folliculogenesis and cyclic recruitment. RESULTS While folliculogenesis following cyclic recruitment is gonadotropin-dependent, basal follicular growth is not. Basal follicular growth is regulated by follicle-stimulating hormone and local communication between the oocyte and its granulosa and thecal cells involving gap junctions and many autocrine/paracrine factors. This local communication sustains growth synergistically with follicle-stimulating hormone, but also suppresses this hormone to induce granulosa cell differentiation. As a follicle develops, its responsiveness to gonadotropin progressively increases. Section II describes 4 interventions affecting early antral folliculogenesis, including granulocyte colony-stimulating factor priming, bromocriptine rebound, carbohydrate metabolism intervention, and danazol priming, which have improved embryo development and live birth rate in patients with previous failures. CONCLUSION Basal follicular growth modulation can increase live birth rates.
Collapse
Affiliation(s)
- Masao Jinno
- Women's Clinic Jinno, 3-11-7 Kokuryou-Chou, Choufu City, Tokyo, 182-0022, Japan.
| |
Collapse
|
3
|
Wang S, Bai Y, Wang D, Zhang M, Alatan S, Cang M, Jin H, Li C, Du G, Cao G, Tong B. Variants in BMP15 Gene Affect Promoter Activity and Litter Size in Gobi Short Tail and Ujimqin Sheep. Vet Sci 2025; 12:222. [PMID: 40266917 PMCID: PMC11945889 DOI: 10.3390/vetsci12030222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 04/25/2025] Open
Abstract
Reproductive performance in sheep plays a crucial role in determining the economic efficiency of the industry, with increasing litter size being a key focus for genetic improvement. The BMP15 gene is widely recognized as a major gene influencing sheep fertility. In this study, specific mutations in the BMP15 gene of Gobi short tail sheep were identified through direct sequencing, and these mutations were genotyped using the MassARRAY system. The g.54285159_54285161TTA indel was significantly associated with litter size in Gobi short tail sheep (p < 0.05). Three mutations, including g.54291460G>A, g.54288671C>T, and the g.54285159_54285161TTA indel, were significantly associated with litter size in Ujimqin sheep (p < 0.05). Furthermore, the promoter activity analysis demonstrated that the A allele exhibited significantly higher promoter activity compared to the G allele of the g.54291460G>A mutation. These findings highlight valuable genetic markers for improving sheep litter size and provide a robust theoretical foundation for further research on the BMP15 gene's role in reproduction.
Collapse
Affiliation(s)
- Shenyuan Wang
- Inner Mongolia Key Laboratory of Biomanufacture, College of Life Sciences, Inner Mongolia Agriculture University, Hohhot 010020, China;
| | - Yanyu Bai
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010020, China; (Y.B.); (M.C.)
| | - Daqing Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (D.W.); (G.D.)
| | - Ming Zhang
- Inner Mongolia Mengyuan Sheep Breeding Company, Baotou 014016, China;
| | - Suhe Alatan
- East Ujimqin Hexig Animal Husbandry Development Company, Xilingol 026399, China;
| | - Ming Cang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010020, China; (Y.B.); (M.C.)
| | - Hai Jin
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China; (H.J.); (C.L.)
| | - Changqing Li
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China; (H.J.); (C.L.)
| | - Guangchen Du
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (D.W.); (G.D.)
| | - Guifang Cao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (D.W.); (G.D.)
| | - Bin Tong
- Inner Mongolia Key Laboratory of Biomanufacture, College of Life Sciences, Inner Mongolia Agriculture University, Hohhot 010020, China;
| |
Collapse
|
4
|
Cohen A, Rossetti R, Florsheim N, Samson AO, Renbaum P, Carbone E, Persani L, Levy-Lahad E, Abu-Libdeh A, Zangen D. A Novel Homozygous BMP15 Mutation Causes Ovarian Dysgenesis and Primary Amenorrhea. J Endocr Soc 2025; 9:bvae221. [PMID: 39850788 PMCID: PMC11756294 DOI: 10.1210/jendso/bvae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Indexed: 01/25/2025] Open
Abstract
Context Despite a growing number of studies, the genetic etiology in many cases of ovarian dysgenesis is incompletely understood. Objectives This work aimed to study the genetic etiology causing absence of spontaneous pubertal development, hypergonadotropic hypogonadism, and primary amenorrhea in 2 sisters. Methods Whole-exome sequencing was performed on DNA extracted from peripheral lymphocytes of 2 Palestinian sisters born to consanguineous parents. Following a BMP15 variant identification, confirming genetic segregation studies were performed in family members. Three-dimensional (3D) modeling for BMP15 dimer and BMP15-GDF-9 heterodimer were followed by functional studies in human ovarian COV434 granulosa cells cotransfected with plasmid harboring either the variant or a wild-type (WT) control, and a second plasmid harboring a luciferase-reporter-gene with a BMP-responsive element. Results A novel homozygous c.G959A/p.C320Y BMP15 mutation was identified in both sisters, and segregated with the disease in the family. By 3D-structure modeling, the mutations were predicted to damage a cysteine-knot motif, disrupt BMP15 dimerization, and severely impair activation of the BMP pathway. The homologous mutation C53Y occurring and identified spontaneously in sheep results in sterility in homozygotes, mimicking the human phenotype here. A 3.8-fold decrease in BMP15 signaling was observed in vitro in cells expressing the homozygous BMP15 mutant when compared to the WT control. Conclusion The novel homozygous missense C320Y mutation is the first homozygous human BMP15 variant causing impaired signaling ability, which correlates with the predicted 3D-structural changes leading to ovarian dysgenesis. The homologous mutation in sheep mimics the human phenotype by infertility. Beyond genetic counseling, and considering ovarian preservation, the ovine model enables further elucidation and interventions in the BMP signaling.
Collapse
Affiliation(s)
- Amitay Cohen
- Division of Pediatric Endocrinology, Hadassah Medical Center, Jerusalem 91240, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Raffaella Rossetti
- Department of Endocrine and Metabolic Diseases, IRCCS Instituto Auxologico Italiano, Milan 20149, Italy
| | - Natan Florsheim
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Institute of Medical Genetics, Shaare Zedek Medical Center, Jerusalem 91031, Israel
| | | | - Paul Renbaum
- Institute of Medical Genetics, Shaare Zedek Medical Center, Jerusalem 91031, Israel
| | - Erika Carbone
- Department of Endocrine and Metabolic Diseases, IRCCS Instituto Auxologico Italiano, Milan 20149, Italy
| | - Luca Persani
- Department of Endocrine and Metabolic Diseases, IRCCS Instituto Auxologico Italiano, Milan 20149, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan 20133, Italy
| | - Ephrat Levy-Lahad
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Institute of Medical Genetics, Shaare Zedek Medical Center, Jerusalem 91031, Israel
| | - Abdulsalam Abu-Libdeh
- Division of Pediatric Endocrinology, Hadassah Medical Center, Jerusalem 91240, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of Pediatrics, Makassed Islamic Charitable Hospital, Jerusalem 19482, Israel
| | - David Zangen
- Division of Pediatric Endocrinology, Hadassah Medical Center, Jerusalem 91240, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
5
|
Zhang C, Nie Y, Xu B, Mu C, Tian GG, Li X, Cheng W, Zhang A, Li D, Wu J. Luteinizing Hormone Receptor Mutation (LHR N316S) Causes Abnormal Follicular Development Revealed by Follicle Single-Cell Analysis and CRISPR/Cas9. Interdiscip Sci 2024; 16:976-989. [PMID: 39150470 PMCID: PMC11512921 DOI: 10.1007/s12539-024-00646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024]
Abstract
Abnormal interaction between granulosa cells and oocytes causes disordered development of ovarian follicles. However, the interactions between oocytes and cumulus granulosa cells (CGs), oocytes and mural granulosa cells (MGs), and CGs and MGs remain to be fully explored. Using single-cell RNA-sequencing (scRNA-seq), we determined the transcriptional profiles of oocytes, CGs and MGs in antral follicles. Analysis of scRNA-seq data revealed that CGs may regulate follicular development through the BMP15-KITL-KIT-PI3K-ARF6 pathway with elevated expression of luteinizing hormone receptor (LHR). Because internalization of the LHR is regulated by Arf6, we constructed LHRN316S mice by CRISPR/Cas9 to further explore mechanisms of follicular development and novel treatment strategies for female infertility. Ovaries of LHRN316S mice exhibited reduced numbers of corpora lutea and ovulation. The LHRN316S mice had a reduced rate of oocyte maturation in vitro and decreased serum progesterone levels. Mating LHRN316S female mice with ICR wild type male mice revealed that the infertility rate of LHRN316S mice was 21.4% (3/14). Litter sizes from LHRN316S mice were smaller than those from control wild type female mice. The oocytes from LHRN316S mice had an increased rate of maturation in vitro after progesterone administration in vitro. Furthermore, progesterone treated LHRN316S mice produced offspring numbers per litter equivalent to WT mice. These findings provide key insights into cellular interactions in ovarian follicles and provide important clues for infertility treatment.
Collapse
Affiliation(s)
- Chen Zhang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Hematology, Tangdu Hospital, Xi'an, 710032, China
| | - Yongqiang Nie
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bufang Xu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunlan Mu
- School of Basic Medical Sciences, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Geng G Tian
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyong Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weiwei Cheng
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Aijun Zhang
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Ji Wu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China.
- School of Basic Medical Sciences, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
6
|
Knight A, Sugin S, Jurisicova A. Searching for the 'X' factor: investigating the genetics of primary ovarian insufficiency. J Ovarian Res 2024; 17:238. [PMID: 39609914 PMCID: PMC11603650 DOI: 10.1186/s13048-024-01555-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/10/2024] [Indexed: 11/30/2024] Open
Abstract
Primary ovarian insufficiency (POI) is the cessation of ovarian function before the age of 40. The causes of POI are heterogeneous, but substantial evidence exists to support a genetic basis of POI, particularly in the critical involvement of genes on the X chromosome. Recent studies have revealed novel candidate genes through the identification of copy number variations associated with POI. This review summarizes the genes located on the X chromosome with variants shown to be associated with POI in humans and/or in mice. Additionally, we present evidence to support the potential involvement of these candidate genes in the etiology of POI. We conducted a literature search in PubMed to identify case studies and screenings for the genetic causes of POI. We then performed systematic searches for the proposed candidate genes to investigate their potential reproductive roles. Of the X-linked candidate genes investigated, 10 were found to have variants associated with cases of POI in humans. An additional 10 genes were found to play a supportive role in POI. Other genes were not implicated in any cases of POI but were associated with various roles in reproduction. In the majority of cases where variants were identified through whole-exome sequencing, rather than targeted screening of candidate genes, more than one genetic variant was identified. Overall, this review supports past findings that the X chromosome plays a critical role in ovarian function, as demonstrated by a link between POI and various disruptions to genes on the X chromosome. Current genetic screening for POI, which includes only FMR1, is inadequate to capture the majority of cases with a genetic origin. An expanded genetic testing may improve health outcomes for individuals with POI as it could lead to better early interventions and education about these health risks.
Collapse
Affiliation(s)
- Anya Knight
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Sara Sugin
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 25 Orde Street, Room 6-1016-1, Toronto, ON, M5T 3H7, Canada
| | - Andrea Jurisicova
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
- Department of Obstetrics and Gynecology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 25 Orde Street, Room 6-1016-1, Toronto, ON, M5T 3H7, Canada.
| |
Collapse
|
7
|
Mate NA, Wadhwa G, Taliyan R, Banerjee A. Impact of polyamine supplementation on GnRH expression, folliculogenesis, and puberty onset in young mice. Theriogenology 2024; 229:202-213. [PMID: 39217649 DOI: 10.1016/j.theriogenology.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/10/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The hypothalamic-pituitary-gonadal (HPG) axis is pivotal in regulating reproductive functions, with gonadotropin-releasing hormone (GnRH) acting as a central regulator. Recently, polyamines have been shown to regulate the HPG axis, including GnRH expression and ovarian biology in old and adult rodents. The present study firstly highlights the age-specific variation in the polyamine and their corresponding biosynthetic enzymes in the ovary during aging, and further, the study focuses on the effect of polyamines, putrescine, and agmatine, in young female mice. METHOD AND RESULT Immunofluorescence analysis revealed age-related differences in the expression of ornithine decarboxylase 1 (ODC1), spermine (SPM), and spermidine (SPD) in the ovaries, with adult mice exhibiting significantly higher expression levels compared to young and old mice. Likewise, qPCR analysis showed the mRNA levels of Odc1, Spermidine synthase (Srm), and Spermine synthase (Sms) show a significant increase in adult ovaries, which is then followed by a significant decline in old age. Histological examination demonstrated morphological alterations in the ovaries with age, including decreased follicle numbers and increased stromal cells in old mice. Furthermore, treatment with putrescine, a polyamine, in young mice resulted in larger ovaries and increased follicle numbers compared to controls. Additionally, serum levels of gonadotropin-releasing hormone (GnRH) and progesterone (P4) were measured, showing elevated levels in polyamine-treated mice. GnRH mRNA expression also increased significantly. Gene expression analysis revealed upregulation of genes associated with folliculogenesis such as Fshr, Bmp15, Gdf9, Amh, Star, Hsdb3, and Plaur in the ovaries and onset of puberty such as Tac2, and Kiss1, and a decrease in Mkrn3 in the hypothalamus of polyamine-treated mice. CONCLUSION This study investigates the effect of polyamines in young immature female mice, shedding light on their role in upregulating GnRH, and enhancing folliculogenesis. Overall, these findings suggest that polyamines play a crucial role in ovarian aging and HPG axis regulation, offering potential therapeutics to reinstate fertility in reproductively challenged individuals.
Collapse
Affiliation(s)
- Nayan Anand Mate
- Department of Biological Sciences, Birla Institute of Technology and Science, K K Birla Goa Campus, Zuarinagar, Goa, India
| | - Geetika Wadhwa
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Arnab Banerjee
- Department of Biological Sciences, Birla Institute of Technology and Science, K K Birla Goa Campus, Zuarinagar, Goa, India.
| |
Collapse
|
8
|
Crespo D, Fjelldal PG, Hansen TJ, Kjærner-Semb E, Skaftnesmo KO, Thorsen A, Norberg B, Edvardsen RB, Andersson E, Schulz RW, Wargelius A, Kleppe L. Loss of bmp15 function in the seasonal spawner Atlantic salmon results in ovulatory failure. FASEB J 2024; 38:e23837. [PMID: 39031536 DOI: 10.1096/fj.202400370r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/15/2024] [Accepted: 07/10/2024] [Indexed: 07/22/2024]
Abstract
Bone morphogenetic protein 15 (BMP15) is an oocyte-specific growth factor important for successful female reproduction in mammals. While mutations in BMP15/Bmp15 cause ovulatory deficiency and/or infertility in certain mammalian species, loss of bmp15 in zebrafish, a continuous spawner and the only bmp15 knockout model in fish to date, results in complete arrest of follicle development and later female-to-male sex reversal, preventing to examine effects on ovulation/fertilization. Here, we used Atlantic salmon, a seasonal spawner, and generated bmp15 mutants to investigate ovarian development and fertility. Histological and morphometric analyses revealed that in biallelic frameshift (bmp15 fs/fs) mutant ovaries, folliculogenesis started earlier, resulting in an advanced development compared to wild-type (WT) controls, accompanied by a weaker expression of the (early) oocyte-specific factor figla. This precocious ovarian development was followed in bmp15 fs/fs females by enhanced follicle atresia during vitellogenic stages. Although genes involved in steroid synthesis and signaling (star, cyp11b, cyp17a1 and esr1) were dramatically higher in late vitellogenic bmp15 fs/fs mutant ovaries, estradiol-17β plasma levels were lower than in WT counterparts, potentially reflecting compensatory changes at the level of ovarian gene expression. At spawning, bmp15 fs/fs females displayed lower gonado-somatic index values and reduced oocyte diameter, and the majority (71.4%), showed mature non-ovulating ovaries with a high degree of atresia. The remaining (28.6%) females spawned eggs but they either could not be fertilized or, upon fertilization, showed severe malformations and embryonic mortality. Our results show that Bmp15 is required for proper follicle recruitment and growth and later ovulatory success in Atlantic salmon, providing an alternative candidate target to induce sterility in farmed salmon. Moreover, since loss of bmp15 in salmon, in contrast to zebrafish, does not result in female-to-male sex change, this is the first mutant model in fish allowing further investigations on Bmp15-mediated functions in the ovulatory period.
Collapse
Affiliation(s)
- Diego Crespo
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Per Gunnar Fjelldal
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Matre Research Station, Matredal, Norway
| | - Tom J Hansen
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Matre Research Station, Matredal, Norway
| | - Erik Kjærner-Semb
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Kai Ove Skaftnesmo
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Anders Thorsen
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Birgitta Norberg
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Austevoll Research Station, Haukanes, Norway
| | - Rolf B Edvardsen
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Eva Andersson
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Rüdiger W Schulz
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | - Anna Wargelius
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Lene Kleppe
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| |
Collapse
|
9
|
Fountas S, Petinaki E, Bolaris S, Kargakou M, Dafopoulos S, Zikopoulos A, Moustakli E, Sotiriou S, Dafopoulos K. The Roles of GDF-9, BMP-15, BMP-4 and EMMPRIN in Folliculogenesis and In Vitro Fertilization. J Clin Med 2024; 13:3775. [PMID: 38999341 PMCID: PMC11242125 DOI: 10.3390/jcm13133775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Growth differentiation factor 9 (GDF-9) contributes to early ovarian development and oocyte survival. Higher concentrations of GDF-9 in follicular fluid (FF) are associated with oocyte nuclear maturation and optimal embryo development. In in vitro fertilization (IVF), GDF-9 affects the ability of the oocyte to fertilize and subsequent embryonic development. Bone morphogenetic protein 15 (BMP-15) is involved in the regulation of ovarian function and affects oocyte development. During IVF, BMP-15 contributes to the formation of competent blastocysts. BMP-15 may play a role in embryo implantation by affecting endometrial receptivity. Bone morphogenetic protein 4 (BMP-4) is involved in the regulation of follicle growth and development and affects granulosa cell (GC) differentiation. In relation to IVF, BMP-4 is important for embryonic development, influences cell fate and differentiation, and plays a role in facilitating embryo-endometrial interactions during the implantation process. Extracellular matrix metalloproteinase inducer (EMMPRIN) is associated with ovulation and follicle rupture, promotes the release of mature eggs, and affects the modification of the extracellular matrix of the follicular environment. In IVF, EMMPRIN is involved in embryo implantation by modulating the adhesive properties of endometrial cells and promotes trophoblastic invasion, which is essential for pregnancy to occur. The purpose of the current article is to review the studies and recent findings of GDF-9, BMP-15, BMP-4 and EMMPRIN as fundamental factors in normal follicular development and in vitro fertilization.
Collapse
Affiliation(s)
- Serafeim Fountas
- Fertility and Sterility Unit, Elena Venizelou General-Maternity District Hospital, 11521 Athens, Greece
| | - Efthymia Petinaki
- Department of Microbiology, University Hospital of Larissa, 41110 Larissa, Greece
| | - Stamatis Bolaris
- Fertility and Sterility Unit, Elena Venizelou General-Maternity District Hospital, 11521 Athens, Greece
| | - Magdalini Kargakou
- Fertility and Sterility Unit, Elena Venizelou General-Maternity District Hospital, 11521 Athens, Greece
| | - Stefanos Dafopoulos
- Department of Health Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| | | | - Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Sotirios Sotiriou
- Department of Embryology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| | - Konstantinos Dafopoulos
- ART Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
10
|
Fiorentino G, Merico V, Zanoni M, Comincini S, Sproviero D, Garofalo M, Gagliardi S, Cereda C, Lin CJ, Innocenti F, Taggi M, Vaiarelli A, Ubaldi FM, Rienzi L, Cimadomo D, Garagna S, Zuccotti M. Extracellular vesicles secreted by cumulus cells contain microRNAs that are potential regulatory factors of mouse oocyte developmental competence. Mol Hum Reprod 2024; 30:gaae019. [PMID: 38745364 DOI: 10.1093/molehr/gaae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
The role of cumulus cells (CCs) in the acquisition of oocyte developmental competence is not yet fully understood. In a previous study, we matured cumulus-denuded fully-grown mouse oocytes to metaphase II (MII) on a feeder layer of CCs (FL-CCs) isolated from developmentally competent (FL-SN-CCs) or incompetent (FL-NSN-CCs) SN (surrounded nucleolus) or NSN (not surrounding nucleolus) oocytes, respectively. We observed that oocytes cultured on the former could develop into blastocysts, while those matured on the latter arrested at the 2-cell stage. To investigate the CC factors contributing to oocyte developmental competence, here we focused on the CCs' release into the medium of extracellular vesicles (EVs) and on their miRNA content. We found that, during the 15-h transition to MII, both FL-SN-CCs and FL-NSN-CCs release EVs that can be detected, by confocal microscopy, inside the zona pellucida (ZP) or the ooplasm. The majority of EVs are <200 nm in size, which is compatible with their ability to cross the ZP. Next-generation sequencing of the miRNome of FL-SN-CC versus FL-NSN-CC EVs highlighted 74 differentially expressed miRNAs, with 43 up- and 31 down-regulated. Although most of these miRNAs do not have known roles in the ovary, in silico functional analysis showed that seven of these miRNAs regulate 71 target genes with specific roles in meiosis resumption (N = 24), follicle growth (N = 23), fertilization (N = 1), and the acquisition of oocyte developmental competence (N = 23). Overall, our results indicate CC EVs as emerging candidates of the CC-to-oocyte communication axis and uncover a group of miRNAs as potential regulatory factors.
Collapse
Affiliation(s)
- Giulia Fiorentino
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Valeria Merico
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Mario Zanoni
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Sergio Comincini
- Functional Genomics Laboratory, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Daisy Sproviero
- IFOM, IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Maria Garofalo
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Cristina Cereda
- Department of Pediatrics, Center of Functional Genomics and Rare Diseases, Buzzi Children's Hospital, Milan, Italy
| | - Chih-Jen Lin
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Federica Innocenti
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Marilena Taggi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Alberto Vaiarelli
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | | | - Laura Rienzi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Danilo Cimadomo
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Silvia Garagna
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | - Maurizio Zuccotti
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| |
Collapse
|
11
|
Li J, Fan H, Liu W, Zhang J, Xiao Y, Peng Y, Yang W, Liu W, He Y, Qin L, Ma X, Li J. Mesenchymal stem cells promote ovarian reconstruction in mice. Stem Cell Res Ther 2024; 15:115. [PMID: 38650029 PMCID: PMC11036642 DOI: 10.1186/s13287-024-03718-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/07/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Studies have shown that chemotherapy and radiotherapy can cause premature ovarian failure and loss of fertility in female cancer patients. Ovarian cortex cryopreservation is a good choice to preserve female fertility before cancer treatment. Following the remission of the disease, the thawed ovarian tissue can be transplanted back and restore fertility of the patient. However, there is a risk to reintroduce cancer cells in the body and leads to the recurrence of cancer. Given the low success rate of current in vitro culture techniques for obtaining mature oocytes from primordial follicles, an artificial ovary with primordial follicles may be a good way to solve this problem. METHODS In the study, we established an artificial ovary model based on the participation of mesenchymal stem cells (MSCs) to evaluate the effect of MSCs on follicular development and oocyte maturation. P2.5 mouse ovaries were digested into single cell suspensions and mixed with bone marrow derived mesenchymal stem cells (BM-MSCs) at a 1:1 ratio. The reconstituted ovarian model was then generated by using phytohemagglutinin. The phenotype and mechanism studies were explored by follicle counting, immunohistochemistry, immunofluorescence, in vitro maturation (IVM), in vitro fertilization (IVF), real-time quantitative polymerase chain reaction (RT-PCR), and Terminal-deoxynucleotidyl transferase mediated nick end labeling(TUNEL) assay. RESULTS Our study found that the addition of BM-MSCs to the reconstituted ovary can enhance the survival of oocytes and promote the growth and development of follicles. After transplanting the reconstituted ovaries under kidney capsules of the recipient mice, we observed normal folliculogenesis and oocyte maturation. Interestingly, we found that BM-MSCs did not contribute to the formation of follicles in ovarian aggregation, nor did they undergo proliferation during follicle growth. Instead, the cells were found to be located around growing follicles in the reconstituted ovary. When theca cells were labeled with CYP17a1, we found some overlapped staining with green fluorescent protein(GFP)-labeled BM-MSCs. The results suggest that BM-MSCs may participate in directing the differentiation of theca layer in the reconstituted ovary. CONCLUSIONS The presence of BM-MSCs in the artificial ovary was found to promote the survival of ovarian cells, as well as facilitate follicle formation and development. Since the cells didn't proliferate in the reconstituted ovary, this discovery suggests a potential new and safe method for the application of MSCs in clinical fertility preservation by enhancing the success rate of cryo-thawed ovarian tissues after transplantation.
Collapse
Affiliation(s)
- Jiazhao Li
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
- Scientific Research Department, Wannan Medical College, 241002, Wuhu, China
| | - Haonan Fan
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
| | - Wei Liu
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
| | - Jing Zhang
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
| | - Yue Xiao
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Yue Peng
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
- Pathology Department, Nanjing Kingmed Medical Laboratory Co.,Ltd., 210032, Nanjing, China
| | - Weijie Yang
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Zhejiang University School of Medicine, 310016, Hangzhou, China
| | - Wenwen Liu
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), 21003, Nanjing, China
| | - Yuanlin He
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China
| | - Lianju Qin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center of Clinical Reproductive Medicine, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.
| | - Xiang Ma
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center of Clinical Reproductive Medicine, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.
- Prenatal Diagnosis Department, First Affiliated Hospital, Nanjing Medical University, 210029, Nanjing, China.
| | - Jing Li
- State Key Laboratory of Reproductive Medicine and Offspring health, Nanjing Medical University, 210029, Nanjing, China.
| |
Collapse
|
12
|
Chakravarthi VP, Dilower I, Ghosh S, Borosha S, Mohamadi R, Dahiya V, Vo K, Lee EB, Ratri A, Kumar V, Marsh CA, Fields PE, Rumi MAK. ERβ Regulation of Indian Hedgehog Expression in the First Wave of Ovarian Follicles. Cells 2024; 13:644. [PMID: 38607081 PMCID: PMC11011683 DOI: 10.3390/cells13070644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Increased activation of ovarian primordial follicles in Erβ knockout (ErβKO) rats becomes evident as early as postnatal day 8.5. To identify the ERβ-regulated genes that may control ovarian primordial follicle activation, we analyzed the transcriptome profiles of ErβKO rat ovaries collected on postnatal days 4.5, 6.5, and 8.5. Compared to wildtype ovaries, ErβKO ovaries displayed dramatic downregulation of Indian hedgehog (Ihh) expression. IHH-regulated genes, including Hhip, Gli1, and Ptch1, were also downregulated in ErβKO ovaries. This was associated with a downregulation of steroidogenic enzymes Cyp11a1, Cyp19a1, and Hsd17b1. The expression of Ihh remained very low in ErβKO ovaries despite the high levels of Gdf9 and Bmp15, which are known upregulators of Ihh expression in the granulosa cells of activated ovarian follicles. Strikingly, the downregulation of the Ihh gene in ErβKO ovaries began to disappear on postnatal day 16.5 and recovered on postnatal day 21.5. In rat ovaries, the first wave of primordial follicles is rapidly activated after their formation, whereas the second wave of primordial follicles remains dormant in the ovarian cortex and slowly starts activating after postnatal day 12.5. We localized the expression of Ihh mRNA in postnatal day 8.5 wildtype rat ovaries but not in the age-matched ErβKO ovaries. In postnatal day 21.5 ErβKO rat ovaries, we detected Ihh mRNA mainly in the activated follicles in the ovaries' peripheral regions. Our findings indicate that the expression of Ihh in the granulosa cells of the activated first wave of ovarian follicles depends on ERβ.
Collapse
Affiliation(s)
- V. Praveen Chakravarthi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Iman Dilower
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Subhra Ghosh
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Shaon Borosha
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Ryan Mohamadi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Vinesh Dahiya
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Kevin Vo
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Eun B. Lee
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Anamika Ratri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Vishnu Kumar
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - Courtney A. Marsh
- Obstetrics and Gynecology, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA;
| | - Patrick E. Fields
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center (KUMC), Kansas City, KS 66160, USA; (V.P.C.); (I.D.); (S.G.); (S.B.); (R.M.); (V.D.); (K.V.); (E.B.L.); (A.R.); (V.K.); (P.E.F.)
| |
Collapse
|
13
|
Seok MC, Koo HW, Jeong JH, Ko MJ, Lee BJ. Bone Substitute Options for Spine Fusion in Patients With Spine Trauma-Part II: The Role of rhBMP. Korean J Neurotrauma 2024; 20:35-44. [PMID: 38576507 PMCID: PMC10990692 DOI: 10.13004/kjnt.2024.20.e13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/26/2023] [Accepted: 01/14/2024] [Indexed: 04/06/2024] Open
Abstract
In Part II, we focus on an important aspect of spine fusion in patients with spine trauma: the pivotal role of recombinant human bone morphogenetic protein-2 (rhBMP-2). Despite the influx of diverse techniques facilitated by technological advancements in spinal surgery, spinal fusion surgery remains widely used globally. The persistent challenge of spinal pseudarthrosis has driven extensive efforts to achieve clinically favorable fusion outcomes, with particular emphasis on the evolution of bone graft substitutes. Part II of this review aims to build upon the foundation laid out in Part I by providing a comprehensive summary of commonly utilized bone graft substitutes for spinal fusion in patients with spinal trauma. Additionally, it will delve into the latest advancements and insights regarding the application of rhBMP-2, offering an updated perspective on its role in enhancing the success of spinal fusion procedures.
Collapse
Affiliation(s)
- Min cheol Seok
- Department of Neurosurgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Hae-Won Koo
- Department of Neurosurgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Je Hoon Jeong
- Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Myeong Jin Ko
- Department of Neurosurgery, College of Medicine, Chung-Ang University Hospital, Seoul, Korea
| | - Byung-Jou Lee
- Department of Neurosurgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| |
Collapse
|
14
|
Dahmardeh T, Ghanian MH, Ebrahimi B. A self-gelling hydrogel based on thiolated hyaluronic acid for three-dimensional culture of ovine preantral follicles. Int J Biol Macromol 2023; 253:127147. [PMID: 37778594 DOI: 10.1016/j.ijbiomac.2023.127147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Three-dimensional (3D) ovarian follicle culture offers a promising option for fertility preservation in patients who cannot receive ovarian tissue transplantation. Our research evaluated the potential of a hydrogel composed of thiolated hyaluronic acid (HA-SH) for ovine preantral follicle development compared to routinely used alginate hydrogel (ALG). Synthesized via a carbodiimide reaction, HA-SH facilitated a self-crosslinking hydrogel through disulfide bond formation. Ovine preantral follicles (200-300 μm) retrieved through mechanical and enzymatic methods were encapsulated individually in either ALG or HA-SH hydrogels. Although both hydrogels adequately supported follicle survival, 3D integrity, and antrum formation over a 17-day in vitro culture, follicle growth was significantly higher within the HA-SH hydrogel. Gene expression analysis underscored that some folliculogenesis-related genes (ZP3, BMP7, and GJA1) and a steroidogenic gene (CYP19A1) demonstrated higher expression levels in HA-SH encapsulated follicles versus ALG. Collectively, our findings advocate for HA-SH hydrogel as a potent biomaterial for in vitro follicle cultures, attributing its efficacy to facile gelation, bio-responsiveness, and superior support for follicle growth.
Collapse
Affiliation(s)
- Tayebeh Dahmardeh
- Department of Reproductive Biology, Faculty of Basic Science and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran; Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad Hossein Ghanian
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Bita Ebrahimi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
15
|
Telfer EE, Grosbois J, Odey YL, Rosario R, Anderson RA. Making a good egg: human oocyte health, aging, and in vitro development. Physiol Rev 2023; 103:2623-2677. [PMID: 37171807 PMCID: PMC10625843 DOI: 10.1152/physrev.00032.2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023] Open
Abstract
Mammalian eggs (oocytes) are formed during fetal life and establish associations with somatic cells to form primordial follicles that create a store of germ cells (the primordial pool). The size of this pool is influenced by key events during the formation of germ cells and by factors that influence the subsequent activation of follicle growth. These regulatory pathways must ensure that the reserve of oocytes within primordial follicles in humans lasts for up to 50 years, yet only approximately 0.1% will ever be ovulated with the rest undergoing degeneration. This review outlines the mechanisms and regulatory pathways that govern the processes of oocyte and follicle formation and later growth, within the ovarian stroma, through to ovulation with particular reference to human oocytes/follicles. In addition, the effects of aging on female reproductive capacity through changes in oocyte number and quality are emphasized, with both the cellular mechanisms and clinical implications discussed. Finally, the details of current developments in culture systems that support all stages of follicle growth to generate mature oocytes in vitro and emerging prospects for making new oocytes from stem cells are outlined.
Collapse
Affiliation(s)
- Evelyn E Telfer
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Johanne Grosbois
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Yvonne L Odey
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Roseanne Rosario
- Centre for Discovery Brain Sciences, Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
16
|
Zhai Y, Zhang X, Zhao C, Geng R, Wu K, Yuan M, Ai N, Ge W. Rescue of bmp15 deficiency in zebrafish by mutation of inha reveals mechanisms of BMP15 regulation of folliculogenesis. PLoS Genet 2023; 19:e1010954. [PMID: 37713421 PMCID: PMC10529593 DOI: 10.1371/journal.pgen.1010954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/27/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023] Open
Abstract
As an oocyte-specific growth factor, bone morphogenetic protein 15 (BMP15) plays a critical role in controlling folliculogenesis. However, the mechanism of BMP15 action remains elusive. Using zebrafish as the model, we created a bmp15 mutant using CRISPR/Cas9 and demonstrated that bmp15 deficiency caused a significant delay in follicle activation and puberty onset followed by a complete arrest of follicle development at previtellogenic (PV) stage without yolk accumulation. The mutant females eventually underwent female-to-male sex reversal to become functional males, which was accompanied by a series of changes in secondary sexual characteristics. Interestingly, the blockade of folliculogenesis and sex reversal in bmp15 mutant could be partially rescued by the loss of inhibin (inha-/-). The follicles of double mutant (bmp15-/-;inha-/-) could progress to mid-vitellogenic (MV) stage with yolk accumulation and the fish maintained their femaleness without sex reversal. Transcriptome analysis revealed up-regulation of pathways related to TGF-β signaling and endocytosis in the double mutant follicles. Interestingly, the expression of inhibin/activin βAa subunit (inhbaa) increased significantly in the double mutant ovary. Further knockout of inhbaa in the triple mutant (bmp15-/-;inha-/-;inhbaa-/-) resulted in the loss of yolk granules again. The serum levels of estradiol (E2) and vitellogenin (Vtg) both decreased significantly in bmp15 single mutant females (bmp15-/-), returned to normal in the double mutant (bmp15-/-;inha-/-), but reduced again significantly in the triple mutant (bmp15-/-;inha-/-;inhbaa-/-). E2 treatment could rescue the arrested follicles in bmp15-/-, and fadrozole (a nonsteroidal aromatase inhibitor) treatment blocked yolk accumulation in bmp15-/-;inha-/- fish. The loss of inhbaa also caused a reduction of Vtg receptor-like molecules (e.g., lrp1ab and lrp2a). In summary, the present study provided comprehensive genetic evidence that Bmp15 acts together with the activin-inhibin system in the follicle to control E2 production from the follicle, Vtg biosynthesis in the liver and its uptake by the developing oocytes.
Collapse
Affiliation(s)
- Yue Zhai
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Xin Zhang
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Cheng Zhao
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Ruijing Geng
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Kun Wu
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Mingzhe Yuan
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Nana Ai
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
17
|
Yamamoto K, Nakano Y, Iwata N, Soejima Y, Suyama A, Hasegawa T, Otsuka F. Stimulatory effects of vasopressin on progesterone production and BMP signaling by ovarian granulosa cells. Biochem Biophys Res Commun 2023; 667:132-137. [PMID: 37224632 DOI: 10.1016/j.bbrc.2023.05.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
The aim of the present study was to clarify the effects of arginine vasopressin (AVP) on ovarian steroid production and its functional relationship to the ovarian bone morphogenetic protein (BMP) system. The results showed that AVP treatment significantly increased gonadotropin- and forskolin-induced progesterone synthesis by primary culture of rat granulosa cells and human granulosa cells, respectively. In contrast, estradiol production was not significantly affected by AVP. Treatment with AVP significantly increased forskolin-induced cAMP synthesis by human granulosa cells and mRNA levels of the progesterogenic enzymes CYP11A1 and HSD3B2 in the cells. On the other hand, AVP also enhanced BMP-15-induced phosphorylation of SMAD1/5/9 and ID1 transcription. It was further revealed that the expression levels of BMP receptors, including ALK3, ALK6 and BMPR2, were upregulated by AVP. Collectively, the results indicate that AVP stimulates progesterone production via the cAMP-PKA pathway with upregulation of BMP signaling that inhibits progesterone production, which may lead to fine adjustment of progesterone biosynthesis by granulosa cells.
Collapse
Affiliation(s)
- Koichiro Yamamoto
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Yasuhiro Nakano
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Nahoko Iwata
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Yoshiaki Soejima
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Atsuhito Suyama
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Toru Hasegawa
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan.
| |
Collapse
|
18
|
King AC, Zenker AK. Sex blind: bridging the gap between drug exposure and sex-related gene expression in Danio rerio using next-generation sequencing (NGS) data and a literature review to find the missing links in pharmaceutical and environmental toxicology studies. FRONTIERS IN TOXICOLOGY 2023; 5:1187302. [PMID: 37398910 PMCID: PMC10312089 DOI: 10.3389/ftox.2023.1187302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
The sex of both humans and Danio rerio has previously been shown to affect the way individuals respond to drug exposure. Genes which allow identification of sex in juvenile zebrafish show potential to reveal these confounding variables between sex in toxicological and preclinical trials but the link between these is so far missing. These sex-specific, early expressed genes where expression is not altered by drug exposure must be carefully selected for this purpose. We aimed to discover genes which can be used in pharmaceutical trials and environmental toxicology studies to uncover sex-related variations in gene expression with drug application using the model organism Danio rerio. Previously published early sex determining genes from King et al. were evaluated as well as additional genes selected from our zebrafish Next-generation sequencing (NGS) data which are known from previously published works not to be susceptible to changes in expression with drug exposure. NGS revealed a further ten female-specific genes (vtg1, cyp17a1, cyp19a1a, igf3, ftz-f1, gdf9, foxl2a, Nr0b1, ipo4, lhcgr) and five male related candidate genes (FKBP5, apobb1, hbaa1, dmrt1, spata6) which are also expressed in juvenile zebrafish, 28 days post fertilisation (dpf). Following this, a literature review was performed to classify which of these early-expressed sex specific genes are already known to be affected by drug exposure in order to determine candidate genes to be used in pharmaceutical trials or environmental toxicology testing studies. Discovery of these early sex-determining genes in Danio rerio will allow identification of sex-related responses to drug testing to improve sex-specific healthcare and the medical treatment of human patients.
Collapse
Affiliation(s)
| | - Armin K. Zenker
- University of Applied Sciences and Arts North-Western Switzerland (FHNW), Muttenz, Switzerland
| |
Collapse
|
19
|
Yang X, Yang L. Current understanding of the genomic abnormities in premature ovarian failure: chance for early diagnosis and management. Front Med (Lausanne) 2023; 10:1194865. [PMID: 37332766 PMCID: PMC10274511 DOI: 10.3389/fmed.2023.1194865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Premature ovarian failure (POF) is an insidious cause of female infertility and a devastating condition for women. POF also has a strong familial and heterogeneous genetic background. Management of POF is complicated by the variable etiology and presentation, which are generally characterized by abnormal hormone levels, gene instability and ovarian dysgenesis. To date, abnormal regulation associated with POF has been found in a small number of genes, including autosomal and sex chromosomal genes in folliculogenesis, granulosa cells, and oocytes. Due to the complex genomic contributions, ascertaining the exact causative mechanisms has been challenging in POF, and many pathogenic genomic characteristics have yet to be elucidated. However, emerging research has provided new insights into genomic variation in POF as well as novel etiological factors, pathogenic mechanisms and therapeutic intervention approaches. Meanwhile, scattered studies of transcriptional regulation revealed that ovarian cell function also depends on specific biomarker gene expression, which can influence protein activities, thus causing POF. In this review, we summarized the latest research and issues related to the genomic basis for POF and focused on insights gained from their biological effects and pathogenic mechanisms in POF. The present integrated studies of genomic variants, gene expression and related protein abnormalities were structured to establish the role of etiological genes associated with POF. In addition, we describe the design of some ongoing clinical trials that may suggest safe, feasible and effective approaches to improve the diagnosis and therapy of POF, such as Filgrastim, goserelin, resveratrol, natural plant antitoxin, Kuntai capsule et al. Understanding the candidate genomic characteristics in POF is beneficial for the early diagnosis of POF and provides appropriate methods for prevention and drug treatment. Additional efforts to clarify the POF genetic background are necessary and are beneficial for researchers and clinicians regarding genetic counseling and clinical practice. Taken together, recent genomic explorations have shown great potential to elucidate POF management in women and are stepping from the bench to the bedside.
Collapse
Affiliation(s)
- Xu Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Yang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Jitjumnong J, Tang PC. Bone Morphogenetic Protein 15 (BMP-15) Improves In Vitro Mouse Folliculogenesis. Animals (Basel) 2023; 13:ani13060980. [PMID: 36978521 PMCID: PMC10044016 DOI: 10.3390/ani13060980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Multilayered secondary follicles were encapsulated in a 0.5% alginate matrix and cultured in a 3D culture system supplemented with bone morphogenetic protein 15 (BMP-15; 15 ng/mL) for 12 days. The in vitro development of ovarian follicles was evaluated. On day 12, the follicle diameter, follicle survival rate, and antrum formation rate were significantly higher for follicles cultured in BMP-15-supplemented medium than those cultured in regular medium. The percentage of ovulated metaphase II oocytes retrieved from follicles cultured in BMP-15-supplemented medium was greater than that of oocytes retrieved from follicles cultured in regular medium. The secretion of P4 was significantly higher on days 6, 8, and 10 in follicles cultured in BMP-15-supplemented medium. The result for E2 tended toward significance on day 12. Intracellular reactive oxygen species levels were higher and glutathione levels were lower in mature oocytes from the in vitro culture than in mature oocytes from an in vivo control. A 3D culture system using an alginate matrix and supplemented with BMP-15 effectively improves the outcomes of in vitro ovarian follicle culture.
Collapse
Affiliation(s)
- Jakree Jitjumnong
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan
| | - Pin-Chi Tang
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
- Correspondence: ; Tel.: +886-4-2284-0365 (ext. 222); Fax: +886-4-2286-0265
| |
Collapse
|
21
|
Yamamoto K, Nakano Y, Iwata N, Soejima Y, Suyama A, Hasegawa T, Otsuka F. Oxytocin enhances progesterone production with upregulation of BMP-15 activity by granulosa cells. Biochem Biophys Res Commun 2023; 646:103-109. [PMID: 36708595 DOI: 10.1016/j.bbrc.2023.01.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 01/24/2023]
Abstract
To elucidate the reproductive role of oxytocin (OXT) in ovarian steroidogenesis and its functional interaction with bone morphogenetic proteins (BMPs), the effects of OXT on ovarian steroidogenesis were investigated by utilizing primary culture of rat granulosa cells and human granulosa KGN cells. Here we revealed that the OXT receptor was expressed in both rat and human granulosa cells and that OXT treatment significantly increased follicle-stimulating hormone (FSH)- and forskolin (FSK)-induced progesterone production, but not estradiol production, by rat and human granulosa cells, respectively. In accordance with the effects of OXT on progesterone production, OXT enhanced mRNA expression of CYP11A1 and HSD3B2 induced by FSK in human granulosa cells. Of note, OXT enhanced the phosphorylation of SMAD1/5/9 and the transcription of ID1 induced by BMP-15, but not those induced by BMP-6, in human granulosa cells. It was also revealed that OXT treatment upregulated the expression of BMPR2, a crucial type-II receptor of BMP-15, and enhanced the BMP-15-induced expression of inhibitory SMAD6 by human granulosa cells. Collectively, it was shown that OXT accelerates ovarian progesterone synthesis with upregulation of BMP-15 activity, leading to a fine-tuning of ovarian steroidogenesis (186 words).
Collapse
Affiliation(s)
- Koichiro Yamamoto
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yasuhiro Nakano
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Nahoko Iwata
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yoshiaki Soejima
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Atsuhito Suyama
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Toru Hasegawa
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| |
Collapse
|
22
|
Cadenas J, Poulsen LC, Nikiforov D, Grøndahl ML, Kumar A, Bahnu K, Englund ALM, Malm J, Marko-Varga G, Pla I, Sanchez A, Pors SE, Andersen CY. Regulation of human oocyte maturation in vivo during the final maturation of follicles. Hum Reprod 2023; 38:686-700. [PMID: 36762771 DOI: 10.1093/humrep/dead024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/03/2023] [Indexed: 02/11/2023] Open
Abstract
STUDY QUESTION Which substances and signal transduction pathways are potentially active downstream to the effect of FSH and LH in the regulation of human oocyte maturation in vivo? SUMMARY ANSWER The regulation of human oocyte maturation appears to be a multifactorial process in which several different signal transduction pathways are active. WHAT IS KNOWN ALREADY Many studies in animal species have provided insight into the mechanisms that govern the final maturation of oocytes. Currently, these studies have identified several different mechanisms downstream to the effects of FSH and LH. Some of the identified mechanisms include the regulation of cAMP/cGMP levels in oocytes involving C-type natriuretic peptide (CNP), effects of epidermal growth factor (EGF)-related peptides such as amphiregulin (AREG) and/or epiregulin (EREG), effect of TGF-β family members including growth differentiation factor 9 (GDF9) and morphogenetic protein 15 (BMP15), activins/inhibins, follicular fluid meiosis activating sterol (FF-MAS), the growth factor midkine (MDK), and several others. However, to what extent these pathways and mechanisms are active in humans in vivo is unknown. STUDY DESIGN, SIZE, DURATION This prospective cohort study included 50 women undergoing fertility treatment in a standard antagonist protocol at a university hospital affiliated fertility clinic in 2016-2018. PARTICIPANTS/MATERIALS, SETTING, METHODS We evaluated the substances and signalling pathways potentially affecting human oocyte maturation in follicular fluid (FF) and granulosa cells (GCs) collected at five time points during the final maturation of follicles. Using ELISA measurement and proteomic profiling of FF and whole genome gene expression in GC, the following substances and their signal transduction pathways were collectively evaluated: CNP, the EGF family, inhibin-A, inhibin-B, activins, FF-MAS, MDK, GDF9, and BMP15. MAIN RESULTS AND THE ROLE OF CHANCE All the evaluated substances and signal transduction pathways are potentially active in the regulation of human oocyte maturation in vivo except for GDF9/BMP15 signalling. In particular, AREG, inhibins, and MDK were significantly upregulated during the first 12-17 h after initiating the final maturation of follicles and were measured at significantly higher concentrations than previously reported. Additionally, the genes regulating FF-MAS synthesis and metabolism were significantly controlled in favour of accumulation during the first 12-17 h. In contrast, concentrations of CNP were low and did not change during the process of final maturation of follicles, and concentrations of GDF9 and BMP15 were much lower than reported in small antral follicles, suggesting a less pronounced influence from these substances. LARGE SCALE DATA None. LIMITATIONS, REASONS FOR CAUTION Although GC and cumulus cells have many similar features, it is a limitation of the current study that information for the corresponding cumulus cells is not available. However, we seldom recovered a cumulus-oocyte complex during the follicle aspiration from 0 to 32 h. WIDER IMPLICATIONS OF THE FINDINGS Delineating the mechanisms governing the regulation of human oocyte maturation in vivo advances the possibility of developing a platform for IVM that, as for most other mammalian species, results in healthy offspring with good efficacy. Mimicking the intrafollicular conditions during oocyte maturation in vivo in small culture droplets during IVM may enhance oocyte nuclear and cytoplasmic maturation. The primary outlook for such a method is, in the context of fertility preservation, to augment the chances of achieving biological children after a cancer treatment by subjecting oocytes from small antral follicles to IVM. Provided that aspiration of oocytes from small antral follicles in vivo can be developed with good efficacy, IVM may be applied to infertile patients on a larger scale and can provide a cheap alternative to conventional IVF treatment with ovarian stimulation. Successful IVM has the potential to change current established techniques for infertility treatment. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by the University Hospital of Copenhagen, Rigshospitalet, the Independent Research Fund Denmark (grant number 0134-00448), and the Interregional EU-sponsored ReproUnion network. There are no conflicts of interest to be declared.
Collapse
Affiliation(s)
- J Cadenas
- Laboratory of Reproductive Biology, Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - L C Poulsen
- Zealand Fertility Clinic, Zealand University Hospital, Køge, Denmark
| | - D Nikiforov
- Laboratory of Reproductive Biology, Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - M L Grøndahl
- The Fertility Clinic, Copenhagen University Hospital, Herlev Hospital, Herlev, Denmark
| | - A Kumar
- Ansh Labs LLC, Webster, TX, USA
| | - K Bahnu
- Ansh Labs LLC, Webster, TX, USA
| | - A L M Englund
- Zealand Fertility Clinic, Zealand University Hospital, Køge, Denmark
| | - J Malm
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, Malmö, Sweden.,Department of Biomedical Engineering, Clinical Protein Science & Imaging, Biomedical Centre, Lund University, Lund, Sweden
| | - G Marko-Varga
- Department of Biomedical Engineering, Clinical Protein Science & Imaging, Biomedical Centre, Lund University, Lund, Sweden
| | - I Pla
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, Malmö, Sweden.,Department of Biomedical Engineering, Clinical Protein Science & Imaging, Biomedical Centre, Lund University, Lund, Sweden
| | - A Sanchez
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, Malmö, Sweden.,Department of Biomedical Engineering, Clinical Protein Science & Imaging, Biomedical Centre, Lund University, Lund, Sweden
| | - S E Pors
- Laboratory of Reproductive Biology, Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - C Yding Andersen
- Laboratory of Reproductive Biology, Juliane Marie Centre for Women, Children and Reproduction, Copenhagen University Hospital, Rigshospitalet, Denmark.,Faculty of Health and Medical Science, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
23
|
Future potential of in vitro maturation including fertility preservation. Fertil Steril 2023; 119:550-559. [PMID: 36702341 DOI: 10.1016/j.fertnstert.2023.01.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
In several mammalian species, oocytes from small antral follicles after in vitro maturation (IVM) are successfully used for procreation. Humans are the exception, mainly because of limited access to immature oocytes and because oocyte maturation is uniquely regulated in women. With the introduction of cryopreservation of the ovarian cortex for fertility preservation, immature oocytes from small antral follicles in the medulla are now available for developing IVM on the basis of actual human studies. This review presents recent findings in favor of developing human IVM, including the oocyte diameter, follicle size from which the immature oocytes are collected, necessary level of follicle-stimulating hormone and luteinizing hormone to accelerate IVM, and secretion of factors from the cumulus-oocyte complex that affect the way oocyte maturation takes place. Furthermore, on the basis of studies in human granulosa cells and follicle fluid collected during the final maturation of follicles in vivo, a number of signal transduction pathways and hormone levels active during physiological conditions have been identified, providing new candidates and ways to improve the current IVM platform. Furthermore, it is suggested that the small droplet of culture medium in which IVM is performed mimics the hormonal milieu within a follicle created by the somatic cells and oocyte in vivo and may be used to advance oocyte nuclear and cytoplasmic maturation. Collectively, we envision that a continued research effort will develop a human IVM platform equally effective as for other mammalian species.
Collapse
|
24
|
Abedpour N, Javanmard MZ, Karimipour M, Farjah GH. Chlorogenic acid improves functional potential of follicles in mouse whole ovarian tissues in vitro. Mol Biol Rep 2022; 49:10327-10338. [PMID: 36097112 DOI: 10.1007/s11033-022-07793-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Chlorogenic acid (CGA) is one of the well-known polyphenol compounds possessing several important biological and therapeutic functions. In order to optimize a culture system to achieve complete development of follicles, we focused on the effects of CGA supplementation during in vitro culture (IVC) on follicular development, oxidative stress, antioxidant capacity, developmental gene expression, and functional potential in cultured mouse ovarian tissue. METHODS AND RESULTS The collected whole murine ovaries were randomly divided into four groups: (1) non-cultured group (control 1) with 7-day-old mouse ovaries, (2) non-cultured group (control 2) with 14-day-old mouse ovaries, (3) cultured group (experimental 1) with the culture plates containing only the basic culture medium, (4) cultured group (experimental 2) with the culture plates containing basic culture medium + CGA (50, 100 and 200 µmol/L CGA). Afterward, histological evaluation, biochemical analyses, the expression assessment of genes related to follicular development and apoptosis as well as the analysis of 17-β-estradiol were performed. The results showed that supplementation of ovarian tissue with the basic culture media using CGA (100 µmol/l) significantly increased the survival, developmental and functional potential of follicles in whole mouse ovarian tissues after 7 days of culture. Furthermore, CGA (100 µmol/L) attenuated oxidative damage and enhanced the concentration of antioxidant capacity along with developmental gene expression. CONCLUSION It seems that supplementation of ovarian tissue with culture media using CGA could optimize follicular growth and development in the culture system.
Collapse
Affiliation(s)
- Neda Abedpour
- Department of Anatomical Sciences, school of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Masoumeh Zirak Javanmard
- Department of Anatomical Sciences, school of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Karimipour
- Department of Anatomical Sciences, school of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Gholam Hossein Farjah
- Department of Anatomical Sciences, school of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
25
|
Arias-Betancur A, Badilla-Wenzel N, Astete-Sanhueza Á, Farfán-Beltrán N, Dias FJ. Carrier systems for bone morphogenetic proteins: An overview of biomaterials used for dentoalveolar and maxillofacial bone regeneration. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:316-327. [PMID: 36281233 PMCID: PMC9587372 DOI: 10.1016/j.jdsr.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
Different types of biomaterials have been used to fabricate carriers to deliver bone morphogenetic proteins (BMPs) in both dentoalveolar and maxillofacial bone regeneration procedures. Despite that absorbable collagen sponge (ACS) is considered the gold standard for BMP delivery, there is still some concerns regarding its use mainly due to its poor mechanical properties. To overcome this, novel systems are being developed, however, due to the wide variety of biomaterial combination, the heterogeneous assessment of newly formed tissue, and the intended clinical applications, there is still no consensus regarding which is more efficient in a particular clinical scenario. The combination of two or more biomaterials in different topological configurations has allowed specific controlled-release patterns for BMPs, improving their biological and mechanical properties compared with classical single-material carriers. However, more basic research is needed. Since the BMPs can be used in multiple clinical scenarios having different biological and mechanical needs, novel carriers should be developed in a context-specific manner. Thus, the purpose of this review is to gather current knowledge about biomaterials used to fabricate delivery systems for BMPs in both dentoalveolar and maxillofacial contexts. Aspects related with the biological, physical and mechanical characteristics of each biomaterial are also presented and discussed. Strategies for bone formation and regeneration are a major concern in dentistry. Topical delivery of bone morphogenetic proteins (BMPs) allows rapid bone formation. BMPs requires proper carrier system to allow controlled and sustained release. Carrier should also fulfill mechanical requirements of bone defect sites. By using complex composites, it would be possible to develop new carriers for BMPs.
Collapse
Affiliation(s)
- Alain Arias-Betancur
- Department of Integral Adult Dentistry, Research Centre for Dental Sciences (CICO-UFRO), Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| | - Nicolás Badilla-Wenzel
- Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| | - Álvaro Astete-Sanhueza
- Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| | - Nicole Farfán-Beltrán
- Department of Integral Adult Dentistry, Research Centre for Dental Sciences (CICO-UFRO), Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile.,Universidad Adventista de Chile, Chillán 3780000, Chile
| | - Fernando José Dias
- Department of Integral Adult Dentistry, Oral Biology Research Centre (CIBO-UFRO), Dental School-Facultad de Odontología, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
26
|
Shen W, Wang L, Ma Y, Cao Y, Zhang X, Han Q, Wu S, Wu G. Association between BMP15 Gene Polymorphisms of Growth Traits and Litter Size in Qinghai Bamei Pigs. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422080075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Xu S, Dong Y, Chen S, Liu Y, Li Z, Jia X, Briens M, Jiang X, Lin Y, Che L, Zhuo Y, Li J, Feng B, Fang Z, Wang J, Ren Z, Wu D. 2-Hydroxy-4-Methylselenobutanoic Acid Promotes Follicle Development by Antioxidant Pathway. Front Nutr 2022; 9:900789. [PMID: 35619952 PMCID: PMC9127692 DOI: 10.3389/fnut.2022.900789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/11/2022] [Indexed: 11/28/2022] Open
Abstract
Selenium (Se) is assumed to promote the follicle development by attenuating oxidative stress. The current study was developed to evaluate the effects of dietary 2-hydroxy-4-methylselenobutanoic acid (HMSeBA) supplementation on the follicle development in vivo and on the function of ovarian granulosa cells (GCs) in vitro. Thirty-six gilts were randomly assigned to fed control diet (CON), Na2SeO3 diet (0.3 mg Se/kg) or HMSeBA diet (0.3 mg Se/kg). The results showed that HMSeBA and Na2SeO3 supplementation both increased the total selenium content in liver and serum compared with control, while HMSeBA increased the total selenium content in liver compared with Na2SeO3 group. HMSeBA tended to increase the total selenium content in ovary compared with control. HMSeBA and Na2SeO3 supplementation both increased the weight of uteri in gilts at the third estrus. Moreover, HMSeBA supplementation down-regulated the gene expression of growth differentiation factor-9 (GDF-9) and bone morpho-genetic protein-15 (BMP-15) in cumulus-oocyte complexes (COCs). HMSeBA supplementation decreased malondialdehyde (MDA) content in serum, liver and ovary, increased activity of T-AOC in liver, TXNRD in ovary and GPX in serum, liver and ovary, while up-regulated the liver GPX2, SOD1 and TXNRD1, ovarian GPX1 gene expression. In vitro, HMSeBA treatment promoted GCs' proliferation and secretion of estradiol (E2). HMSeBA treatment increased the activity of T-AOC, T-SOD, GPX, TXNRD and decreased MDA content in GCs in vitro. Meanwhile, HMSeBA treatment up-regulated SOD2 and GPX1 gene expression in GCs in vitro. In conclusion, HMSeBA supplementation is more conducive to promoting follicle development by antioxidant pathway.
Collapse
Affiliation(s)
- Shengyu Xu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China,*Correspondence: Shengyu Xu
| | - Yanpeng Dong
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Sirun Chen
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yalei Liu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zimei Li
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xinlin Jia
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | | | - Xuemei Jiang
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yan Lin
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jianping Wang
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhihua Ren
- Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China,De Wu
| |
Collapse
|
28
|
Liver Transcriptome Response to Heat Stress in Beijing You Chickens and Guang Ming Broilers. Genes (Basel) 2022; 13:genes13030416. [PMID: 35327970 PMCID: PMC8953548 DOI: 10.3390/genes13030416] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
Heat stress is one of the most prevalent issues in poultry production that reduces performance, robustness, and economic gains. Previous studies have demonstrated that native chickens are more tolerant of heat than commercial breeds. However, the underlying mechanisms of the heat tolerance observed in native chicken breeds remain unelucidated. Therefore, we performed a phenotypical, physiological, liver transcriptome comparative analysis and WGCNA in response to heat stress in one native (Beijing You, BY) and one commercial (Guang Ming, GM) chicken breed. The objective of this study was to evaluate the heat tolerance and identify the potential driver and hub genes related to heat stress in these two genetically distinct chicken breeds. In brief, 80 BY and 60 GM, 21 days old chickens were submitted to a heat stress experiment for 5 days (33 °C, 8 h/day). Each breed was divided into experimental groups of control (Ctl) and heat stress (HS). The results showed that BY chickens were less affected by heat stress and displayed reduced DEGs than GM chickens, 365 DEGs and 382 DEGs, respectively. The transcriptome analysis showed that BY chickens exhibited enriched pathways related to metabolism activity, meanwhile GM chickens’ pathways were related to inflammatory reactions. CPT1A and ANGPTL4 for BY chickens, and HSP90B1 and HSPA5 for GM chickens were identified as potential candidate genes associated with HS. The WGCNA revealed TLR7, AR, BAG3 genes as hub genes, which could play an important role in HS. The results generated in this study provide valuable resources for studying liver transcriptome in response to heat stress in native and commercial chicken lines.
Collapse
|
29
|
Nautiyal H, Imam SS, Alshehri S, Ghoneim MM, Afzal M, Alzarea SI, Güven E, Al-Abbasi FA, Kazmi I. Polycystic Ovarian Syndrome: A Complex Disease with a Genetics Approach. Biomedicines 2022; 10:biomedicines10030540. [PMID: 35327342 PMCID: PMC8945152 DOI: 10.3390/biomedicines10030540] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a complex endocrine disorder affecting females in their reproductive age. The early diagnosis of PCOS is complicated and complex due to overlapping symptoms of this disease. The most accepted diagnostic approach today is the Rotterdam Consensus (2003), which supports the positive diagnosis of PCOS when patients present two out of the following three symptoms: biochemical and clinical signs of hyperandrogenism, oligo, and anovulation, also polycystic ovarian morphology on sonography. Genetic variance, epigenetic changes, and disturbed lifestyle lead to the development of pathophysiological disturbances, which include hyperandrogenism, insulin resistance, and chronic inflammation in PCOS females. At the molecular level, different proteins and molecular and signaling pathways are involved in disease progression, which leads to the failure of a single genetic diagnostic approach. The genetic approach to elucidate the mechanism of pathogenesis of PCOS was recently developed, whereby four phenotypic variances of PCOS categorize PCOS patients into classic, ovulatory, and non-hyperandrogenic types. Genetic studies help to identify the root cause for the development of this PCOS. PCOS genetic inheritance is autosomal dominant but the latest investigations revealed it as a multigene origin disease. Different genetic loci and specific genes have been identified so far as being associated with this disease. Genome-wide association studies (GWAS) and related genetic studies have changed the scenario for the diagnosis and treatment of this reproductive and metabolic condition known as PCOS. This review article briefly discusses different genes associated directly or indirectly with disease development and progression.
Collapse
Affiliation(s)
- Himani Nautiyal
- Siddhartha Institute of Pharmacy, Near IT-Park, Sahastradhara Road, Dehradun 248001, India;
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (S.A.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (S.A.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
- Correspondence: (M.A.); (I.K.)
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Emine Güven
- Biomedical Engineering Department, Faculty of Engineering, Düzce University, Düzce 81620, Turkey;
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: (M.A.); (I.K.)
| |
Collapse
|
30
|
Clark ZL, Karl KR, Ruebel ML, Latham KE, Ireland JJ. Excessive follicle-stimulating hormone during ovarian stimulation of cattle may induce premature luteinization of most ovulatory-size follicles†. Biol Reprod 2022; 106:968-978. [PMID: 35084014 PMCID: PMC9113431 DOI: 10.1093/biolre/ioac021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/03/2021] [Accepted: 01/20/2022] [Indexed: 01/29/2023] Open
Abstract
High follicle-stimulating hormone (FSH) doses during ovarian stimulation are detrimental to ovulatory follicle function and decrease live birth rate in cattle and women. However, the mechanism whereby excessive FSH causes ovarian dysfunction is unknown. This study tested the hypothesis that excessive FSH during ovarian stimulation induces premature luteinization of ovulatory-size follicles. Small ovarian reserve heifers were injected twice daily for 4 days with 70 IU (N = 7 heifers) or 210 IU (N = 6 heifers) Folltropin-V [commercial FSH-enriched preparation of porcine pituitary glands with minor (<1%) luteinizing hormone (LH) contamination, cpFSH]. Ovulatory-size (≥10 mm) follicles were excised from ovaries after the last cpFSH injection and hormone concentrations in follicular fluid (FF) were determined using ELISA. Luteinization was monitored by assessing cumulus cell-oocyte complex (COC) morphology and measuring concentrations of estradiol (E), progesterone (P), and oxytocin (O) in FF. COCs were classified as having compact (cCOC) or expanded (eCOC) cumulus cell layers, and as estrogen-active (E:P in FF ≥1), estrogen-inactive (EI, E:P in FF ≤1 > 0.1), or extreme-estrogen-inactive (EEI, E:P in FF ≤0.1). A high proportion (72%) of ovulatory-size follicles in 210 IU, but not 70 IU, dose heifers displayed eCOCs. The high doses also produced higher proportions of EI or EEI follicles which had lower E:P ratio and/or E but higher P and/or O concentrations compared with the 70 IU dose heifers. In conclusion, excessive cpFSH doses during ovarian stimulation may induce premature luteinization of most ovulatory-size follicles in heifers with small ovarian reserves.
Collapse
Affiliation(s)
- Zaramasina L Clark
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Kaitlin R Karl
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Meghan L Ruebel
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Keith E Latham
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - James J Ireland
- Correspondence: Molecular Reproductive Endocrinology Laboratory, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA. Tel: +1517 432 1384; E-mail:
| |
Collapse
|
31
|
MORIKAWA R, KYOGOKU H, LEE J, MIYANO T. Oocyte-derived growth factors promote development of antrum-like structures by porcine cumulus granulosa cells <i>in vitro</i>. J Reprod Dev 2022; 68:238-245. [PMID: 35491090 PMCID: PMC9334317 DOI: 10.1262/jrd.2022-023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oocytes communicate with the surrounding somatic cells during follicular development. We examined the effects of two oocyte-derived growth factors, growth differentiation factor 9 (GDF9)
and bone morphogenetic protein 15 (BMP15), on the development of porcine oocyte–cumulus cell complexes (OCCs) in vitro. We collected OCCs from early antral follicles
(1.2–1.5 mm) and prepared oocytectomized cumulus cell complexes (OXCs), which were then cultured in a growth medium supplemented with 0–100 ng/ml GDF9 and/or BMP15 for 7 days. In the medium
without GDF9 or BMP15, OCCs developed during culture, and approximately 30% of them formed antrum-like structures. GDF9 promoted OCC development and structure formation in a dose-dependent
manner. However, OXCs did not form antrum-like structures without growth factors. GDF9 promoted the development of OXCs, and 50 and 100 ng/ml GDF9 promoted the formation of the structures by
8% and 26%, respectively; however, BMP15 did not promote the formation of these structures. OXCs were then cultured with 100 ng/ml GDF9 and various concentrations of BMP15 to investigate
their cooperative effects on the formation of antrum-like structures. BMP15 promoted the formation of antrum-like structures in a dose-dependent manner. In conclusion, GDF9 derived from
oocytes is probably important for the formation of antrum-like structures in porcine OXCs, and BMP15 cooperates with GDF9 to form these structures.
Collapse
Affiliation(s)
- Riho MORIKAWA
- Laboratory of Developmental Biotechnology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Hirohisa KYOGOKU
- Laboratory of Developmental Biotechnology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Jibak LEE
- Laboratory of Developmental Biotechnology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Takashi MIYANO
- Laboratory of Developmental Biotechnology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
32
|
Chaudhary H, Patel J, Jain NK, Joshi R. The role of polymorphism in various potential genes on polycystic ovary syndrome susceptibility and pathogenesis. J Ovarian Res 2021; 14:125. [PMID: 34563259 PMCID: PMC8466925 DOI: 10.1186/s13048-021-00879-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/09/2021] [Indexed: 12/27/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrinopathies affecting the early reproductive age in women, whose pathophysiology perplexes many researchers till today. This syndrome is classically categorized by hyperandrogenism and/or hyperandrogenemia, menstrual and ovulatory dysfunction, bulky multi follicular ovaries on Ultrasonography (USG), and metabolic abnormalities such as hyperinsulinemia, dyslipidemia, obesity. The etiopathogenesis of PCOS is not fully elucidated, but it seems that the hypothalamus-pituitary-ovarian axis, ovarian, and/or adrenal androgen secretion may contribute to developing the syndrome. Infertility and poor reproductive health in women's lives are highly associated with elevated levels of androgens. Studies with ovarian theca cells taken from PCOS women have demonstrated increased androgen production due to augmented ovarian steroidogenesis attributed to mainly altered expression of critical enzymes (Cytochrome P450 enzymes: CYP17, CYP21, CYP19, CYP11A) in the steroid hormone biosynthesis pathway. Despite the heterogeneity of PCOS, candidate gene studies are the widely used technique to delineate the genetic variants and analyze for the correlation of androgen biosynthesis pathway and those affecting the secretion or action of insulin with PCOS etiology. Linkage and association studies have predicted the relationship between genetic variants and PCOS risk among families or populations. Several genes have been proposed as playing a role in the etiopathogenesis of PCOS, and the presence of mutations and/or polymorphisms has been discovered, which suggests that PCOS has a vital heritable component. The following review summarizes the influence of polymorphisms in crucial genes of the steroidogenesis pathway leading to intraovarian hyperandrogenism which can result in PCOS.
Collapse
Affiliation(s)
- Hiral Chaudhary
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009 India
| | - Jalpa Patel
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009 India
| | - Nayan K. Jain
- Department of Life Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009 India
| | - Rushikesh Joshi
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009 India
| |
Collapse
|
33
|
Faiza H, Khan M, Rafiq M, Khan AA, Rind NA, Naqvi SHA. Two novel mutations in exon 2 of bone morphogenetic protein (BMP) 15 gene in Pakistani infertile females. Saudi J Biol Sci 2021; 28:5364-5370. [PMID: 34466116 PMCID: PMC8381042 DOI: 10.1016/j.sjbs.2021.05.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/01/2022] Open
Abstract
Objective To determine the proportion of fertility in Pakistani infertile females and discover if there are considerable connection among BMP15 gene polymorphism, follicle maturation and hormonal regulation in Pakistani infertile females. Methods All selected participants were initially examined through follicle-stimulating hormones (FSH), luteinizing hormone (LH), thyroid-stimulating hormone (TSH), Prolactin, and Trans-vaginal scan (TVS). BMP15 gene polymorphism among infertile and fertile females was done by extracted Genomic DNA from whole blood. Sanger sequencing was performed for the identification of mutation in exons-intron boundaries of the BMP15 gene. Bioinformatics tools were used to assess the protein structure. Results The total five mutations including two novel missense variants of BMP15 in exon 2, whereas three previously reported i.e. two cosmic mutations (c.615delC), (c.584InsG) and one frame shift mutations (c.635delA) were also observed. The first novel mutation was found at (c.1038InsGG) (p.346Gln < Gly) in which the insertion of GG at DNA position 1038 of exon 2 resulting in a substitution of glutamine into glycine at 346th amino acid of BMP15 protein. The second novel variant (c.1049delT) (p. Ser334Pro) was also observed in exon 2 of the BMP15 gene, which substituted serine into proline at 334th amino acid of the BMP15 protein. Conclusion It is concluded that there are various missense mutations present in exon 2 of the BMP15 gene of Pakistani infertile females, consequently expected function of protein changes due to change in codons of amino acids. Provean and SIFT suggest the two novel variants as potentially deleterious. Although three other variants were also found in Pakistani infertile females which were previously reported. These mutations may result in early blockage of folliculogenesis and ovaries become streaky. Further research is required to resolve the actual allusion of these variations in the BMP15 gene.
Collapse
Affiliation(s)
- Hafiza Faiza
- Institute of Biotechnology and Genetic Engineering, University of Sindh, Jamshoro, Pakistan
| | - Majida Khan
- Department of Gynecology, Liaquat University of Medical Science, Jamshoro, Pakistan
| | - Muhammad Rafiq
- Institute of Biotechnology and Genetic Engineering, University of Sindh, Jamshoro, Pakistan
| | - Anoshiya Ali Khan
- Institute of Biotechnology and Genetic Engineering, University of Sindh, Jamshoro, Pakistan
| | - Nadir Ali Rind
- Institute of Biotechnology and Genetic Engineering, University of Sindh, Jamshoro, Pakistan.,Department of Genetics & Molecular Biology, SBBU, Shaheed Benazirabad, Pakistan
| | - Syed Habib Ahmed Naqvi
- Institute of Biotechnology and Genetic Engineering, University of Sindh, Jamshoro, Pakistan
| |
Collapse
|
34
|
Morikawa R, Lee J, Miyano T. Effects of oocyte-derived growth factors on the growth of porcine oocytes and oocyte-cumulus cell complexes in vitro. J Reprod Dev 2021; 67:273-281. [PMID: 34261834 PMCID: PMC8423607 DOI: 10.1262/jrd.2021-026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During oocyte growth and follicle development, oocytes closely communicate with cumulus cells. We examined the effects of oocyte-derived growth factors, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15), on the growth and acquisition of meiotic competence of porcine oocytes collected from early antral follicles (1.2-1.5 mm). First, we confirmed that GDF9 and BMP15 mRNAs were expressed almost exclusively in the oocytes. Oocyte-cumulus cell complexes (OCCs) collected from early antral follicles were cultured in growth medium supplemented with 0-100 ng/ml of GDF9 or BMP15 for 5 days. GDF9 dose-dependently increased the OCC diameter, while BMP15 did not. GDF9 and BMP15 had no significant effects on oocyte growth (P > 0.05). When OCCs that had been cultured with 50 and 100 ng/ml BMP15 were subjected to a subsequent maturation culture, they expanded fully by gonadotropic stimulation and 49% and 61% of oocytes matured to metaphase II (MII), respectively. In contrast, GDF9 did not promote cumulus expansion, and < 10% of oocytes matured to MII. Based on the difference in cumulus expansion, we compared the expression of luteinizing hormone/choriogonadotropin receptor (LHCGR) and follicle stimulating hormone receptor (FSHR) mRNAs in cumulus cells. The level of LHCGR mRNA was increased in cumulus cells of the BMP15 group, although there were no significant differences in FSHR mRNA levels among the groups. These results suggest that GDF9 promotes the growth of OCCs and that BMP15 promotes LHCGR mRNA expression in cumulus cells during oocyte growth culture, which may contribute to cumulus expansion and oocyte maturation.
Collapse
Affiliation(s)
- Riho Morikawa
- Laboratory of Developmental Biotechnology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Jibak Lee
- Laboratory of Developmental Biotechnology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Takashi Miyano
- Laboratory of Developmental Biotechnology, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
35
|
Ferrarini E, De Marco G, Orsolini F, Gianetti E, Benelli E, Fruzzetti F, Simoncini T, Agretti P, Tonacchera M. Characterization of a novel mutation V136L in bone morphogenetic protein 15 identified in a woman affected by POI. J Ovarian Res 2021; 14:85. [PMID: 34187539 PMCID: PMC8244212 DOI: 10.1186/s13048-021-00836-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/12/2021] [Indexed: 11/16/2022] Open
Abstract
Background Premature ovarian insufficiency (POI) is an ovarian defect characterized by primary or secondary amenorrhea, hypergonadotropism and hypoestrogenism which occurs before the age of 40 years with a major genetic component. In this study we performed clinical evaluation and genetic analysis of a group of 18 patients with POI. The study involved 18 consecutive women with POI. Karyotiping and genetic analysis for research of mutations in GDF9 (Growth Differentation Factor 9) and BMP15 (Bone morphogentic protein 15) genes and FMR1 (Fragile X Mental Retardation 1) premutation were carried out. In vitro functional study of the novel BMP15 mutation was performed using COV434 (Human ovarian granulosa tumour cells 434) cells of ovarian granulosa, which consistently express BMP responsive element, and luciferase reporter assay. Results Three patients (17%) had a family history of POI. Ten patients (56%) had a family history of autoimmune diseases and nine patients (50%) showed a personal history of one or more autoimmune diseases. Of patients for whom morphological assessment was available, almost half (44%) had poor follicle assets or small ovaries’s size at pelvic US. Two patients (13%) showed reduced bone density at DEXA (Dual Energy X-ray Absorptiometry). All the women had normal female kariotype and no mutations in the GDF-9 gene or FMR1 premutations were found. A novel heterozygous mutation c.406G > C (V136L) of BMP15 gene was identified in one patient. After transfection in COV434 cells, BMP15 variant showed a significantly reduced luciferase activity compared to wild type. Conclusions POI is a multifactorial disease with several health implications. Autoimmunity and genetics represent the most common aetiology. We identified and characterized a novel BMP15 mutation, providing an additional elucidation of molecular basis of this complex disorder.
Collapse
Affiliation(s)
- Eleonora Ferrarini
- Dipartimento Medicina Clinica E Sperimentale, Sezione Di Endocrinologia, Università Di Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - Giuseppina De Marco
- Dipartimento Medicina Clinica E Sperimentale, Sezione Di Endocrinologia, Università Di Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - Francesca Orsolini
- Dipartimento Medicina Clinica E Sperimentale, Sezione Di Endocrinologia, Università Di Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - Elena Gianetti
- Dipartimento Medicina Clinica E Sperimentale, Sezione Di Endocrinologia, Università Di Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - Elena Benelli
- Dipartimento Medicina Clinica E Sperimentale, Sezione Di Endocrinologia, Università Di Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - Franca Fruzzetti
- Department of Obstetrics and Gynecology, University Hospital Pisa, Pisa, Italy
| | - Tommaso Simoncini
- Department of Obstetrics and Gynecology, University Hospital Pisa, Pisa, Italy
| | - Patrizia Agretti
- Laboratory of Chemistry and Endocrinology, University Hospital of Pisa, Pisa, Italy
| | - Massimo Tonacchera
- Dipartimento Medicina Clinica E Sperimentale, Sezione Di Endocrinologia, Università Di Pisa, Via Paradisa 2, 56124, Pisa, Italy.
| |
Collapse
|
36
|
Tang T, Lin Q, Qin Y, Liang X, Guo Y, Cong P, Liu X, Chen Y, He Z. Effects of bone morphogenetic protein 15 (BMP15) knockdown on porcine testis morphology and spermatogenesis. Reprod Fertil Dev 2021; 32:999-1011. [PMID: 32693912 DOI: 10.1071/rd20056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022] Open
Abstract
Bone morphogenetic protein 15 (BMP15) is a member of the transforming growth factor-β (TGFB) superfamily that plays an essential role in mammalian ovary development, oocyte maturation and litter size. However, little is known regarding the expression pattern and biological function of BMP15 in male gonads. In this study we established, for the first time, a transgenic pig model with BMP15 constitutively knocked down by short hairpin (sh) RNA. The transgenic boars were fertile, but sperm viability was decreased. Further analysis of the TGFB/SMAD pathway and markers of reproductive capacity, namely androgen receptor and protamine 2, failed to identify any differentially expressed genes. These results indicate that, in the pig, the biological function of BMP15 in the development of male gonads is not as crucial as in ovary development. However, the role of BMP15 in sperm viability requires further investigation. This study provides new insights into the role of BMP15 in male pig reproduction.
Collapse
Affiliation(s)
- Tao Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Qiyuan Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yufeng Qin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Xinyu Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yang Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Peiqing Cong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; and Corresponding authors. ;
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; and Corresponding authors. ;
| |
Collapse
|
37
|
Wu Y, Sun Z, Wang Y, Chen H, Bian J. Human dermal fibroblasts support the development of human primordial/primary follicles in a 3-dimensional alginate matrix culture system. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:868. [PMID: 34164502 PMCID: PMC8184424 DOI: 10.21037/atm-21-2125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Alginate matrix 3-dimensional culture offers the opportunity for the development and maturation of human secondary follicles in vitro. However, alginate may not be the most suitable culture system for human primordial/primary follicles in vitro. Thus, the innovation of alginate matrix 3-dimensional culture systems for human primordial/primary follicles could hold promise as an ideal approach to restoring fertility. Methods We extracted primordial/primary follicles from ovarian tissues collected from patients with non-ovarian benign gynecological conditions. Fibroblasts were isolated from dermal tissue from 1 male patient who had undergone posthectomy. The isolated human follicles were randomly divided into 2 groups and encapsulated within fibroblast-alginate-hydrogels or alginate hydrogels. The survival and growth of human primordial/primary follicles were measured after 21 days of in vitro culture. Results The dermal fibroblasts in alginate hydrogel microcapsules were round in shape, and were distributed as uniform clouds on the surface and gaps of the alginate. After 21 days of culture, the survival rate of follicles in the fibroblast-alginate group was higher than that of the alginate group (P<0.05). The diameter of follicles in the fibroblast-alginate group and the alginate group after 21 days of culture was 152.80±13.64 and 129.14±9.95 μm, respectively (P<0.05). After 21-day culture, the mean cpm (log-converted) for 3H-thymidine incorporated by granulosa cells in the fibroblast-alginate and alginate groups was 6.87±0.24 and 4.63±0.38, respectively (P<0.05). After 21 days of culture, the messenger RNA expression levels of growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) were significantly higher in oocytes in fibroblast-alginate hydrogels than in those in alginate hydrogels (P<0.05). Conclusions Human fibroblasts are beneficial to the development of human follicles in 3-dimensional culture alginate gel systems over a long period of time. More studies are required to investigate the molecular biological mechanisms of human fibroblasts that promote follicle growth in vitro.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Reproductive Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zili Sun
- Reproductive Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Wang
- Reproductive Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong Chen
- Reproductive Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiang Bian
- Department of Obstetrics and Gynecology, Shanghai Everjoy Medical Polyclinic, Shanghai, China
| |
Collapse
|
38
|
Paulini F, Melo EO. Effects of Growth and Differentiation Factor 9 and Bone Morphogenetic Protein 15 overexpression on the steroidogenic metabolism in bovine granulosa cells in vitro. Reprod Domest Anim 2021; 56:837-847. [PMID: 33683747 DOI: 10.1111/rda.13923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/26/2022]
Abstract
Granulosa cells (GCs) play important roles in the regulation of ovarian functions, and in vitro culture is a relevant model for the study of steroidogenesis in ovarian follicles. Thus, growth factors secreted by the oocyte, like Growth and Differentiation Factor 9 (GDF9) and Bone Morphogenetic Protein 15 (BMP15), play an important part in the luteinization of granulosa cells. The aim of this work was to express GDF9 and BMP15 genes in bovine GCs in vitro and evaluate their effects on the luteinization process. Samples of culture medium and GCs transfected with GDF9 and BMP15 were obtained for 21 consecutive days to analyse the steroidogenic hormones' concentration (progesterone (P4 ) and estradiol (E2 )) and the expression of STAR, GDF9 and BMP15 and their respective receptors. The results demonstrated an inhibitory effect of GDF9 and BMPF15 on P4 secretion in bovine GCs cultured in vitro. Moreover, our study demonstrated the entire expression of their respective receptors (TGFBR1, BMPR1B and BMPR2) and the inhibition of the steroidogenic marker, STAR gene. This work sheds light on a novel biological function of BMP15 and GDF9 in bovine GCs physiology, which could elucidate a non-described biological role for GDF9 and BMP15 in bovine granulosa cells' metabolism.
Collapse
Affiliation(s)
- Fernanda Paulini
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Eduardo O Melo
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.,Postgraduate Program in Biotechnology, University of Tocantins-UFT, Gurupi, Brazil
| |
Collapse
|
39
|
Delgado JDC, Hamilton TRDS, Mendes CM, Siqueira AFP, Goissis MD, Buratini J, Assumpção MEOD. Bone morphogenetic protein 15 supplementation enhances cumulus expansion, nuclear maturation and progesterone production of in vitro-matured bovine cumulus-oocyte complexes. Reprod Domest Anim 2021; 56:754-763. [PMID: 33565658 DOI: 10.1111/rda.13914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/05/2021] [Indexed: 11/28/2022]
Abstract
In vitro embryo production (IVP) efficiency is reduced when compared to in vivo. The basic knowledge of bovine in vitro oocyte maturation (IVM) mechanisms provides support to improve in vitro embryo production yields. The present study assessed the effects of bone morphogenetic protein 15 (BMP15), fibroblast growth factor 16 (FGF16) and their combined action on cumulus cells (CC) expansion, oocyte and CC DNA fragmentation, oocyte nuclear maturation, energetic metabolism and progesterone production in bovine IVM. Cumulus-oocyte complexes (COC) were matured in control or supplemented media containing BMP15 (100 ng/ml), FGF16 (10 ng/ml) or BMP15 combined with FGF16; and assessed at 0 and 22 hr of IVM. BMP15 alone or its association with FGF16 enhanced cumulus expansion. BMP15 decreased DNA fragmentation in both CC and oocytes, and improved oocyte nuclear maturation rate. In addition, BMP15 increased CC progesterone production, an effect not previously reported. The present study reinforces previous data pointing to a beneficial influence of BMP15 during IVM, while providing novel evidence that the underlying mechanisms involve increased progesterone production.
Collapse
Affiliation(s)
- Juliana de Carvalho Delgado
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Thais Rose Dos Santos Hamilton
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Camilla Mota Mendes
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Adriano Felipe Perez Siqueira
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Marcelo Demarchi Goissis
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - José Buratini
- Department of Structural and Functional Biology, Institute of Biociences, State University of Sao Paulo, Botucatu, Brazil.,Biogenesi Reproductive Medicine Centre, Istituti Clinici Zucchi, Monza, Italy
| | | |
Collapse
|
40
|
Optimized culture system to maximize ovarian cell growth and functionality in vitro. Cell Tissue Res 2021; 385:161-171. [PMID: 33582866 DOI: 10.1007/s00441-021-03415-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
Ovaries are the primary physiological source of female sex hormones, which play a crucial role in maintaining ovarian cycle, determining secondary sexual characteristics and preparing the endometrium for implantation. In vitro follicle engineering has been used to investigate follicle development, including ovarian hormone production and gamete maturation. To engineer functional follicles, culture and expansion of the primary ovarian cells are essential. However, the phenotypic and functional characteristics of primary ovarian cells are often lost during culture. The objective of this study is to develop an optimized culture system for maintaining ovarian cell growth and functionality. Granulosa cells (GCs) and theca cells (TCs) were isolated from female rats. The addition of follicle-stimulating hormone (FSH) or luteinizing hormone (LH) to the basal culture media significantly enhanced the secretion of estradiol from GCs and androstenedione from TCs. Serum concentrations of 5% and 10% had a similar role in promoting ovarian cell expansion and secretion of estradiol and androstenedione hormones from both types of cells. Growth differentiation factor 9 (GDF9), bone morphogenic protein 15 (BMP15), BMP7 and basic fibroblast growth factor (bFGF) enhanced GC proliferation and estradiol production, respectively. Among them, the effect of bFGF was most significant. bFGF also enhanced TC proliferation. When GCs and TCs were cultured in 5% serum, gonadotropin and bFGF-containing medium, they proliferated exponentially throughout the culture period of up to 40 days while maintaining their functional characteristics. Taken together, these results indicate that our medium formula is optimal for maximizing proliferation of functionally differentiated ovarian cells.
Collapse
|
41
|
De Los Reyes M, Palomino J, Araujo A, Flores J, Ramirez G, Parraguez VH, Aspee K. Cyclooxygenase 2 messenger RNA levels in canine follicular cells: interrelationship with GDF-9, BMP-15, and progesterone. Domest Anim Endocrinol 2021; 74:106529. [PMID: 32890884 DOI: 10.1016/j.domaniend.2020.106529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 01/05/2023]
Abstract
Cyclooxygenase 2 (COX-2) encoded by the Cox-2 gene within the periovulatory follicles is a critical mediator of oocyte development. Growth differentiation factor 9 (GDF-9) and bone morphogenetic protein 15 (BMP-15) participate in the modulation of certain target genes in the ovary, possibly influencing the Cox-2 gene expression. However, this relationship has not been characterized in canines. This study aimed to examine the possible relationships among BMP-15, GDF-9, progesterone, and Cox-2 gene expression in granulosa-cumulus cells in dogs. Granulosa cells from antral follicles and their corresponding cumulus-oocyte complexes and follicular fluid (FF) were separately obtained from 56 ovaries collected from adult bitches at estrus (n = 15) and proestrus (n = 13) after ovariohysterectomy. Total RNA extraction was performed in follicular cells, and Cox-2 gene expression was assessed by quantitative PCR analysis. Progesterone, BMP-15, and GDF-9 were determined in the FF samples using ELISA assays. Cumulus-oocyte complexes were subjected to in vitro maturation (IVM) with or without (control) recombinant GDF-9 and BMP-15. After 72 h of culture, Cox-2 transcript analyses were performed in cumulus cells via quantitative PCR. Data were evaluated by ANOVA. An increase (P < 0.05) in Cox-2 messenger RNA levels was observed in follicular cells from follicles at estrus with respect to those at proestrus. However, the levels of BMP-15 and GDF-9 in FF decreased (P < 0.05), whereas progesterone increased (P < 0.05) from the proestrus phase to the estrus phase. The expression of Cox-2 gene in cumulus cells was 4-fold greater (P < 0.01) than that in the control when both growth factors were added to the IVM culture. In conclusion, although BMP-15 together with GDF-9 appears to upregulate the levels of Cox-2 transcripts during IVM, the inverse relationship of these paracrine factors with Cox-2 gene expression and the positive correlation of progesterone with Cox-2 transcripts suggest that the high progesterone levels could be more relevant in the local mechanisms regulating the Cox-2 gene expression.
Collapse
Affiliation(s)
- M De Los Reyes
- Laboratory of Animal Reproduction, Department of Animal Production, Faculty of Veterinary Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile.
| | - J Palomino
- Laboratory of Animal Reproduction, Department of Animal Production, Faculty of Veterinary Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | - A Araujo
- Laboratory of Animal Reproduction, Department of Animal Production, Faculty of Veterinary Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | - J Flores
- Laboratory of Animal Reproduction, Department of Animal Production, Faculty of Veterinary Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | - G Ramirez
- Laboratory of Animal Reproduction, Department of Animal Production, Faculty of Veterinary Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | - V H Parraguez
- Laboratory of Animal Physiology, Department of Biological Sciences, Faculty of Veterinary Sciences, University of Chile, Santa Rosa, 11735, La Pintana, Santiago, Chile
| | - K Aspee
- Laboratory of Animal Reproduction, Department of Animal Production, Faculty of Veterinary Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| |
Collapse
|
42
|
Ito M, Yoshino O, Ono Y, Yamaki‐Ushijima A, Tanaka T, Shima T, Orisaka M, Iwase A, Nakashima A, Saito S. Bone morphogenetic protein‐2 enhances gonadotropin‐independent follicular development via sphingosine kinase 1. Am J Reprod Immunol 2020; 85:e13374. [DOI: 10.1111/aji.13374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Masami Ito
- Department of Obstetrics and Gynecology University of Toyama Japan
| | - Osamu Yoshino
- Department of Obstetrics and Gynecology School of Medicine Kitasato University Kanagawa Japan
| | - Yosuke Ono
- Department of Obstetrics and Gynecology Teinekeijinkai Hospital Hokkaido Japan
| | | | - Tomoko Tanaka
- Department of Obstetrics and Gynecology University of Toyama Japan
| | - Tomoko Shima
- Department of Obstetrics and Gynecology University of Toyama Japan
| | - Makoto Orisaka
- Department of Obstetrics and Gynecology University of Fukui Fukui Japan
| | - Akira Iwase
- Department of Obstetrics and Gynecology University of Gunma Maebashi Japan
| | | | | |
Collapse
|
43
|
Jamalzaei P, Rezazadeh Valojerdi M, Montazeri L, Baharvand H. Applicability of Hyaluronic Acid-Alginate Hydrogel and Ovarian Cells for In Vitro Development of Mouse Preantral Follicles. CELL JOURNAL 2020; 22:49-60. [PMID: 32779433 PMCID: PMC7481901 DOI: 10.22074/cellj.2020.6925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 12/11/2019] [Indexed: 12/05/2022]
Abstract
Objective In the present study, the applicability of hyaluronic acid-alginate (HAA) hydrogel and ovarian cells (OCs) for
the culture of mouse ovarian follicles were investigated and compared with those of alginate (ALG) and fibrin-alginate
(FA) hydrogels.
Materials and Methods In the first step of this experimental study, mechanically isolated preantral follicles from the
ovaries of two-week-old mice were encapsulated in the absence or presence of OCs in ALG, HAA, and FA hydrogels and
cultured for 14 days. The morphology, diameter, survival and antrum formation rates of the follicles and the maturation
and quality of the oocytes were evaluated during culture. In the second step, preantral follicles were cultured similar
to the first step, but for 13 days, and their gene expressions and hormonal secretion were assessed on the last day of
culture.
Results In the absence of OCs, higher numbers of ALG- and HAA-encapsulated follicles reached the antral
stage compared to FA-encapsulated follicles (P<0.05). However, a higher percentage of HAA-developed oocytes
resumed meiosis up to the germinal vesicle breakdown (GVBD)/metaphase II (MII) stages in comparison with
ALG-developed oocytes (P<0.05). HAA-encapsulated follicles had significant overexpression of most of the growth
and differentiation genes, and secreted higher levels of estradiol (E2) compared to ALG- and FA-encapsulated
follicles (P<0.05). The co-culture condition increased the diameter of ALG-encapsulated follicles on day 13 of
culture (P<0.05). It also increased the survival and maturation rates of ALG- and FA-encapsulated follicles,
respectively (P<0.05). The co-culture condition improved cortical granule distribution in all groups, increased E2
and progesterone (P4) secretions in the ALG and FA groups, and androstenedione (A4) secretion in the FA group
(P<0.05).
Conclusion The present study results show that HAA hydrogel is a promising hydrogel for follicle culture. OCs
utilization could ameliorate the culture conditions regardless of the type of hydrogel.
Collapse
Affiliation(s)
- Parisa Jamalzaei
- Department of Pharmacology and Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojtaba Rezazadeh Valojerdi
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. Electronic Address: .,Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Leila Montazeri
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran. Electronic Address: .,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. Electronic Address:
| |
Collapse
|
44
|
Sha QQ, Jiang Y, Yu C, Xiang Y, Dai XX, Jiang JC, Ou XH, Fan HY. CFP1-dependent histone H3K4 trimethylation in murine oocytes facilitates ovarian follicle recruitment and ovulation in a cell-nonautonomous manner. Cell Mol Life Sci 2020; 77:2997-3012. [PMID: 31676962 PMCID: PMC11104893 DOI: 10.1007/s00018-019-03322-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/22/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022]
Abstract
CxxC-finger protein 1 (CFP1)-mediated trimethylated histone H3 at lysine-4 (H3K4me3) during oocyte development enables the oocyte genome to establish the competence to generate a new organism. Nevertheless, it remains unclear to which extent this epigenetic modification forms an instructive component of ovarian follicle development. We investigated the ovarian functions using an oocyte-specific Cxxc1 knockout mouse model, in which the H3K4me3 accumulation is downregulated in oocytes of developing follicles. CFP1-dependent H3K4 trimethylation in oocytes was necessary to maintain the expression of key paracrine factors and to facilitate the communication between an oocyte and the surrounding granulosa cells. The distinct gene expression patterns in cumulus cells within preovulatory follicles were disrupted by the Cxxc1 deletion in oocytes. Both follicle growth and ovulation were compromised after CFP1 deletion, because Cxxc1 deletion in oocytes indirectly impaired essential signaling pathways in granulosa cells that mediate the functions of follicle-stimulating hormone and luteinizing hormone. Therefore, CFP1-regulated epigenetic modification of the oocyte genome influences the responses of ovarian follicles to gonadotropin in a cell-nonautonomous manner.
Collapse
Affiliation(s)
- Qian-Qian Sha
- Life Sciences Institute, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Yu Jiang
- Life Sciences Institute, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| | - Chao Yu
- Life Sciences Institute, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| | - Yunlong Xiang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xing-Xing Dai
- Life Sciences Institute, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| | - Jun-Chao Jiang
- Life Sciences Institute, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| | - Xiang-Hong Ou
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China.
| |
Collapse
|
45
|
Khurchabilig A, Sato A, Ashibe S, Hara A, Fukumori R, Nagao Y. Expression levels of FSHR, IGF1R, CYP11al and HSD3β in cumulus cells can predict in vitro developmental competence of bovine oocytes. ZYGOTE 2020; 28:1-7. [PMID: 32482188 DOI: 10.1017/s0967199420000283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The efficiency of in vitro embryo production technologies would be improved by the development of suitable non-invasive biomarkers that allow the selection of good quality cumulus-oocyte complexes (COCs). The present study used whole, single oocyte culture to investigate whether the expression levels of follicle-stimulating hormone receptor (FSHR), insulin-like factor 1 receptor (IGF1R) and three steroidogenesis-related enzymes (CYP11al, CYP19al and HSD3β) in cumulus cells reflected the developmental competence of COCs. Cumulus cells were collected from single COCs before maturation culture and relative mRNA levels were assessed using real-time PCR. The analysis indicated that mRNAs for FSHR, IGF1R, CYP11al and HSD3β were present at higher levels in cumulus cells from COCs that failed to form blastocysts compared with cumulus cells from COCs that formed blastocysts. Moreover, FSHR and IGF1R mRNA levels were positively correlated with those of genes for steroidogenesis-related enzymes. In conclusion, poor developmental competence of COCs was related to higher expression of FSHR, IGF1R, CYP11al and HSD3β in cumulus cells, which may indicate the advanced differentiation of cumulus cells into granulosa cells.
Collapse
Affiliation(s)
- Atchalalt Khurchabilig
- Department of Animal Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo183-8509, Japan
- University Farm, Faculty of Agriculture, Utsunomiya University, Tochigi321-4415, Japan
| | - Akane Sato
- University Farm, Faculty of Agriculture, Utsunomiya University, Tochigi321-4415, Japan
| | - Shiori Ashibe
- Department of Animal Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo183-8509, Japan
- University Farm, Faculty of Agriculture, Utsunomiya University, Tochigi321-4415, Japan
| | - Asuka Hara
- University Farm, Faculty of Agriculture, Utsunomiya University, Tochigi321-4415, Japan
| | - Rika Fukumori
- University Farm, Faculty of Agriculture, Utsunomiya University, Tochigi321-4415, Japan
| | - Yoshikazu Nagao
- Department of Animal Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo183-8509, Japan
- University Farm, Faculty of Agriculture, Utsunomiya University, Tochigi321-4415, Japan
| |
Collapse
|
46
|
Alborzi P, Jafari Atrabi M, Akbarinejad V, Khanbabaei R, Fathi R. Incorporation of arginine, glutamine or leucine in culture medium accelerates in vitro activation of primordial follicles in 1-day-old mouse ovary. ZYGOTE 2020; 28:1-8. [PMID: 32482183 DOI: 10.1017/s096719942000026x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In vitro activation of primordial follicles provides cancer patients subjected to oncotherapy with a safe therapeutic strategy for fertility preservation, however a successful protocol for activation of primordial follicles in prepubertal patients has not yet been defined comprehensively. There is evidence that amino acids such as leucine, arginine and glutamine could stimulate the mammalian target of rapamycin (mTOR) pathway, which plays a pivotal role in primordial follicle activation. Nevertheless, there has been no report that elucidates the effect of these amino acids on in vitro development of ovarian follicles. Therefore, the present study was conducted to evaluate the effects of these amino acids and their combination on the formation and activation of primordial follicles in 1-day-old murine ovaries during an 11-day culture period. The experimental groups consisted of base medium (BM), base medium + arginine (ARG), base medium + glutamine (GLU), base medium + leucine (LEU) and base medium + a combination of arginine, glutamine and leucine (AGL). The proportions of different stages of ovarian follicles and gene expression of regulatory factors were assessed using histology and quantitative real-time PCR on days 5 and 11 of culture. The proportion of transitional and primary follicles was greater in all amino acid-treated groups compared with the BM group (P < 0.05). Moreover, leucine resulted in elevated expression of Gdf9 and Bmp15, and glutamine augmented the expression of Pi3k on day 11 of culture. In conclusion, the present study showed that inclusion of leucine, glutamine, arginine or their combination in the culture medium for murine ovarian tissue could accelerate the activation of primordial follicles and alter the expression of the corresponding factors.
Collapse
Affiliation(s)
- Parimah Alborzi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad Jafari Atrabi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Vahid Akbarinejad
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ramezan Khanbabaei
- Department of Biology, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
47
|
Gonadal development and sex determination in mouse. Reprod Biol 2020; 20:115-126. [DOI: 10.1016/j.repbio.2020.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 12/18/2022]
|
48
|
Stocker WA, Walton KL, Richani D, Chan KL, Beilby KH, Finger BJ, Green MP, Gilchrist RB, Harrison CA. A variant of human growth differentiation factor-9 that improves oocyte developmental competence. J Biol Chem 2020; 295:7981-7991. [PMID: 32350111 DOI: 10.1074/jbc.ra120.013050] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/26/2020] [Indexed: 11/06/2022] Open
Abstract
Growth differentiation factor-9 (GDF9) and bone morphogenetic protein-15 (BMP15) are co-expressed exclusively in oocytes throughout most of folliculogenesis and play central roles in controlling ovarian physiology. Although both growth factors exist as homodimers, recent evidence indicates that GDF9 and BMP15 can also heterodimerize to form the potent growth factor cumulin. Within the cumulin complex, BMP15 "activates" latent GDF9, enabling potent signaling in granulosa cells via type I receptors (i.e. activin receptor-like kinase-4/5 (ALK4/5)) and SMAD2/3 transcription factors. In the cumulin heterodimer, two distinct type I receptor interfaces are formed compared with homodimeric GDF9 and BMP15. Previous studies have highlighted the potential of cumulin to improve treatment of female infertility, but, as a noncovalent heterodimer, cumulin is difficult to produce and purify without contaminating GDF9 and BMP15 homodimers. In this study we addressed this challenge by focusing on the cumulin interface formed by the helix of the GDF9 chain and the fingers of the BMP15 chain. We demonstrate that unique BMP15 finger residues at this site (Arg301, Gly304, His307, and Met369) enable potent activation of the SMAD2/3 pathway. Incorporating these BMP15 residues into latent GDF9 generated a highly potent growth factor, called hereafter Super-GDF9. Super-GDF9 was >1000-fold more potent than WT human GDF9 and 4-fold more potent than cumulin in SMAD2/3-responsive transcriptional assays in granulosa cells. Our demonstration that Super-GDF9 can effectively promote mouse cumulus cell expansion and improve oocyte quality in vitro represents a potential solution to the current challenges of producing and purifying intact cumulin.
Collapse
Affiliation(s)
- William A Stocker
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Physiology, Monash University, Clayton, Victoria, Australia.,Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Kelly L Walton
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Dulama Richani
- School of Women's and Children's Health, Discipline of Obstetrics and Gynaecology, University of New South Wales Sydney, NSW, Australia
| | - Karen L Chan
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Kiri H Beilby
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Bethany J Finger
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Mark P Green
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Robert B Gilchrist
- School of Women's and Children's Health, Discipline of Obstetrics and Gynaecology, University of New South Wales Sydney, NSW, Australia
| | - Craig A Harrison
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia .,Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
49
|
A Comparative Analysis of Oocyte Development in Mammals. Cells 2020; 9:cells9041002. [PMID: 32316494 PMCID: PMC7226043 DOI: 10.3390/cells9041002] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Sexual reproduction requires the fertilization of a female gamete after it has undergone optimal development. Various aspects of oocyte development and many molecular actors in this process are shared among mammals, but phylogeny and experimental data reveal species specificities. In this chapter, we will present these common and distinctive features with a focus on three points: the shaping of the oocyte transcriptome from evolutionarily conserved and rapidly evolving genes, the control of folliculogenesis and ovulation rate by oocyte-secreted Growth and Differentiation Factor 9 and Bone Morphogenetic Protein 15, and the importance of lipid metabolism.
Collapse
|
50
|
Luteinizing Hormone Action in Human Oocyte Maturation and Quality: Signaling Pathways, Regulation, and Clinical Impact. Reprod Sci 2020; 27:1223-1252. [PMID: 32046451 PMCID: PMC7190682 DOI: 10.1007/s43032-019-00137-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022]
Abstract
The ovarian follicle luteinizing hormone (LH) signaling molecules that regulate oocyte meiotic maturation have recently been identified. The LH signal reduces preovulatory follicle cyclic nucleotide levels which releases oocytes from the first meiotic arrest. In the ovarian follicle, the LH signal reduces cyclic nucleotide levels via the CNP/NPR2 system, the EGF/EGF receptor network, and follicle/oocyte gap junctions. In the oocyte, reduced cyclic nucleotide levels activate the maturation promoting factor (MPF). The activated MPF induces chromosome segregation and completion of the first and second meiotic divisions. The purpose of this paper is to present an overview of the current understanding of human LH signaling regulation of oocyte meiotic maturation by identifying and integrating the human studies on this topic. We found 89 human studies in the literature that identified 24 LH follicle/oocyte signaling proteins. These studies show that human oocyte meiotic maturation is regulated by the same proteins that regulate animal oocyte meiotic maturation. We also found that these LH signaling pathway molecules regulate human oocyte quality and subsequent embryo quality. Remarkably, in vitro maturation (IVM) prematuration culture (PMC) protocols that manipulate the LH signaling pathway improve human oocyte quality of cultured human oocytes. This knowledge has improved clinical human IVM efficiency which may become a routine alternative ART for some infertile patients.
Collapse
|