1
|
Yoshino Y, Teruya T, Miyamoto C, Hirose M, Endo S, Ikari A. Unraveling the Mechanisms Involved in the Beneficial Effects of Magnesium Treatment on Skin Wound Healing. Int J Mol Sci 2024; 25:4994. [PMID: 38732212 PMCID: PMC11084488 DOI: 10.3390/ijms25094994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
The skin wound healing process consists of hemostatic, inflammatory, proliferative, and maturation phases, with a complex cellular response by multiple cell types in the epidermis, dermis, and immune system. Magnesium is a mineral essential for life, and although magnesium treatment promotes cutaneous wound healing, the molecular mechanism and timing of action of the healing process are unknown. This study, using human epidermal-derived HaCaT cells and human normal epidermal keratinocyte cells, was performed to investigate the mechanism involved in the effect of magnesium on wound healing. The expression levels of epidermal differentiation-promoting factors were reduced by MgCl2, suggesting an inhibitory effect on epidermal differentiation in the remodeling stage of the late wound healing process. On the other hand, MgCl2 treatment increased the expression of matrix metalloproteinase-7 (MMP7), a cell migration-promoting factor, and enhanced cell migration via the MEK/ERK pathway activation. The enhancement of cell migration by MgCl2 was inhibited by MMP7 knockdown, suggesting that MgCl2 enhances cell migration which is mediated by increased MMP7 expression. Our results revealed that MgCl2 inhibits epidermal differentiation but promotes cell migration, suggesting that applying magnesium to the early wound healing process could be beneficial.
Collapse
Affiliation(s)
| | | | | | | | | | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (Y.Y.); (T.T.); (C.M.); (M.H.); (S.E.)
| |
Collapse
|
2
|
Determining the fidelity of tRNA aminoacylation via microarrays. Methods 2016; 113:27-33. [PMID: 27639882 DOI: 10.1016/j.ymeth.2016.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/30/2016] [Accepted: 09/12/2016] [Indexed: 12/28/2022] Open
Abstract
The fidelity of tRNA aminoacylation is a critical determinant for the ultimate accuracy of protein synthesis. Although aminoacyl-tRNA synthetases are assumed to consistently maintain high tRNA charging fidelity, recent evidence has demonstrated that the fidelity of the aminoacylation reaction can be actively regulated and liable to change. Accordingly, the ability to conveniently assay the fidelity of tRNA charging is becoming increasingly relevant for studying mistranslation. Here we describe a combined radioactivity and microarray based method that can quantitatively elucidate which individual cognate or noncognate tRNA isoacceptors are charged with amino acid. In this technique, in vitro tRNA charging reactions or in vivo pulse-labeling is performed using a radiolabeled amino acid and tRNA microarrays are used to distinguish tRNA isoacceptors in total tRNA. During the tRNA array hybridization, each tRNA will hybridize to its unique probe and subsequent phosphorimaging of the array can determine which tRNAs were aminoacylated with the radiolabeled amino acid. The method can be used to assess the fidelity of tRNA charging in vivo or in vitro and can be applied to any organism with annotated tRNA genes.
Collapse
|
3
|
Ray S, Blaise M, Roy B, Ghosh S, Kern D, Banerjee R. Fusion with anticodon binding domain of GluRS is not sufficient to alter the substrate specificity of a chimeric Glu-Q-RS. Protein J 2014; 33:48-60. [PMID: 24374508 DOI: 10.1007/s10930-013-9537-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glutamyl-queuosine-tRNA(Asp) synthetase (Glu-Q-RS) is a paralog of glutamyl-tRNA synthetase (GluRS) and is found in more than forty species of proteobacteria, cyanobacteria, and actinobacteria. Glu-Q-RS shows striking structural similarity with N-terminal catalytic domain of GluRS (NGluRS) but it lacks the C-terminal anticodon binding domain (CGluRS). In spite of structural similarities, Glu-Q-RS and NGluRS differ in their functional properties. Glu-Q-RS glutamylates the Q34 nucleotide of the anticodon of tRNA(Asp) whereas NGluRS constitutes the catalytic domain of GluRS catalyzing the transfer of Glu on the acceptor end of tRNA(Glu). Since NGluRS is able to catalyze aminoacylation of only tRNA(Glu) the glutamylation capacity of tRNA(Asp) by Glu-Q-RS is surprising. To understand the substrate specificity of Glu-Q-RS we undertook a systemic approach by investigating the biophysical and biochemical properties of the NGluRS (1-301), CGluRS (314-471) and Glu-Q-RS-CGluRS, (1-298 of Glu-Q-RS fused to 314-471 from GluRS). Circular dichroism, fluorescence spectroscopy and differential scanning calorimetry analyses revealed absence of N-terminal domain (1-298 of Glu-Q-RS) and C-terminal domain (314-471 from GluRS) communication in chimera, in contrast to the native full length GluRS. The chimeric Glu-Q-RS is still able to aminoacylate tRNA(Asp) but has also the capacity to bind tRNA(Glu). However the chimeric protein is unable to aminoacylate tRNA(Glu) probably as a consequence of the lack of domain-domain communication.
Collapse
Affiliation(s)
- Sutapa Ray
- Department of Biotechnology and Dr. B C Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019, India
| | | | | | | | | | | |
Collapse
|
4
|
Choudhury A, Banerjee R. The N-terminal fragment of Acanthamoeba polyphaga
mimivirus tyrosyl-tRNA synthetase (TyrRSapm
) is a monomer in solution. FEBS Lett 2013; 587:590-9. [DOI: 10.1016/j.febslet.2013.01.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 01/14/2023]
|
5
|
Godinic V, Mocibob M, Rocak S, Ibba M, Weygand-Durasevic I. Peroxin Pex21p interacts with the C-terminal noncatalytic domain of yeast seryl-tRNA synthetase and forms a specific ternary complex with tRNA(Ser). FEBS J 2007; 274:2788-99. [PMID: 17451428 DOI: 10.1111/j.1742-4658.2007.05812.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The seryl-tRNA synthetase from Saccharomyces cerevisiae interacts with the peroxisome biogenesis-related factor Pex21p. Several deletion mutants of seryl-tRNA synthetase were constructed and inspected for their ability to interact with Pex21p in a yeast two-hybrid assay, allowing mapping of the synthetase domain required for complex assembly. Deletion of the 13 C-terminal amino acids abolished Pex21p binding to seryl-tRNA synthetase. The catalytic parameters of purified truncated seryl-tRNA synthetase, determined in the serylation reaction, were found to be almost identical to those of the native enzyme. In vivo loss of interaction with Pex21p was confirmed in vitro by coaffinity purification. These data indicate that the C-terminally appended domain of yeast seryl-tRNA synthetase does not participate in substrate binding, but instead is required for association with Pex21p. We further determined that Pex21p does not directly bind tRNA, and nor does it possess a tRNA-binding motif, but it instead participates in the formation of a specific ternary complex with seryl-tRNA synthetase and tRNA(Ser), strengthening the interaction of seryl-tRNA synthetase with its cognate tRNA(Ser).
Collapse
Affiliation(s)
- Vlatka Godinic
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | | | | | | | | |
Collapse
|
6
|
Golinelli-Cohen MP, Zakrzewska A, Mirande M. Complementation of yeast Arc1p by the p43 component of the human multisynthetase complex does not require its association with yeast MetRS and GluRS. J Mol Biol 2004; 340:15-27. [PMID: 15184019 DOI: 10.1016/j.jmb.2004.04.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 04/16/2004] [Accepted: 04/20/2004] [Indexed: 10/26/2022]
Abstract
Yeast Arc1p, human p43 and plant methionyl-tRNA synthetase (MetRS) possess an EMAPII-like domain capable of non-specific interactions with tRNA. Arc1p interacts with MetRS (MES1) and GluRS and operates as a tRNA-interacting factor (tIF) in trans of these two synthetases. In plant MetRS, the EMAPII-like domain is fused to the catalytic core of the synthetase and acts as a cis-acting tIF for aminoacylation. We observed that the catalytic core of plant MetRS expressed from a centromeric plasmid cannot complement a yeast arc1(-) mes1(-) strain. Overexpression of the mutant enzyme from a high-copy number plasmid restored cell growth, suggesting that deletion of its C-terminal tIF domain was responsible for the poor aminoacylation efficiency of that enzyme in vivo. Accordingly, expression of full-size plant MetRS from a centromeric plasmid, but also of fusion proteins between its catalytic core and the EMAPII-like domains of yeast Arc1p or of human p43 restored cell viability. These data showed that homologous tIF domains from different origins are interchangeable and may act indifferently in trans or in cis of the catalytic domain of a synthetase. Unexpectedly, co-expression of Arc1p with the catalytic core of plant MetRS restored cell viability as well, even though Arc1p did not associate with plant MetRS. Because Arc1p also interacts with yeast GluRS, restoration of cell growth could be due at least in part to its role of cofactor for that enzyme. However, co-expression of human p43, a tIF that did not associate with plant MetRS or with yeast GluRS and MetRS, also restored cell viability of a yeast strain that expressed the catalytic core of plant MetRS. These results show that p43 and Arc1p are able to facilitate tRNA aminoacylation in vivo even if they do not interact physically with the synthetases. We propose that p43/Arc1p may be involved in sequestering tRNAs in the cytoplasm of eukaryotic cells, thereby increasing their availability for protein synthesis.
Collapse
Affiliation(s)
- Marie-Pierre Golinelli-Cohen
- Laboratoire d'Enzymologie et Biochimie Structurales, UPR 9063 du Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette, France
| | | | | |
Collapse
|
7
|
Wang T, Evdokimov E, Yiadom K, Yan Z, Chock PB, Yang DCH. Biotin-ubiquitin tagging of mammalian proteins in Escherichia coli. Protein Expr Purif 2003; 30:140-9. [PMID: 12821332 DOI: 10.1016/s1046-5928(03)00098-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ubiquitin has been used in protein expression for enhancing yields and biological activities of recombinant proteins. Biotin binds tightly and specifically to avidin and has been widely utilized as a tag for protein purification and monitoring. Here, we report a versatile system that takes the advantages of both biotin and ubiquitin for protein expression, purification, and monitoring. The tripartite system contained coding sequences for a leader biotinylation peptide, ubiquitin, and biotin holoenzyme synthetase in two reading frames under the control of T7 promoter. The expression and purification of several large mammalian enzymes as biotin-ubiquitin fusions were accomplished including human ubiquitin activating enzyme, SUMO activating enzymes, and aspartyl-tRNA synthetase. Expressed proteins were purified by one-step affinity column chromatography on monomeric avidin columns and purified proteins exhibited active function. Additionally, the ubiquitin protein hydrolase UBP41, expressed and purified as biotin-UBP41, efficiently and specifically cleaved off the biotin-ubiquitin tag from biotin-ubiquitin fusions to produce unmodified proteins. The present expression system should be useful for the expression, purification, and functional characterization of mammalian proteins and the construction of protein microarrays.
Collapse
Affiliation(s)
- Tao Wang
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | | | | | | | | | | |
Collapse
|
8
|
Yiadom KPAB, Hammamieh R, Ukpabi N, Tsang P, Yang DCH. A peptide from the extension of Lys-tRNA synthetase binds to transfer RNA and DNA. Peptides 2003; 24:987-98. [PMID: 14499277 DOI: 10.1016/s0196-9781(03)00188-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Eukaryotic aminoacyl-tRNA synthetases have dispensable extensions appended at the amino- or carboxyl-terminus as compared to their bacterial counterparts. While a synthetic peptide corresponding to the basic amino-terminal extension in yeast Asp-tRNA synthetase binds to DNA, the extension in the intact protein evidently binds to tRNA and enhances the tRNA specificity of Asp-tRNA synthetase. On the other hand, the amino-terminal extension in human Asp-tRNA synthetase, both within the intact protein and as a synthetic peptide, binds to tRNA. Here, the tRNA binding of a synthetic peptide, hKRS(Arg(25)-Glu(42)), corresponding to the amino-terminal extension of human Lys-tRNA synthetase (hKRS) was analyzed. This basic peptide bound to tRNA(Phe) and the apparent-binding constant increased with increasing concentrations of Mg(2+). The hKRS peptide also bound to DNA and polyphosphate; however, the apparent DNA-binding constants decreased at increasing concentrations of Mg(2+). The ability of the hKRS peptide to adopt alpha-helical conformation was demonstrated by NMR and circular dichroism. A Lys-rich peptide derived from the elongation factor 1alpha was also examined and bound to DNA but not to tRNA.
Collapse
MESH Headings
- Amino Acid Sequence
- Cations, Divalent/chemistry
- Circular Dichroism
- DNA/chemistry
- DNA/metabolism
- DNA-Binding Proteins/chemical synthesis
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/metabolism
- Humans
- Hydrogen-Ion Concentration
- Lysine-tRNA Ligase/chemistry
- Magnesium Chloride/chemistry
- Magnetic Resonance Spectroscopy
- Models, Molecular
- Molecular Sequence Data
- Molecular Weight
- Peptide Elongation Factor 1/chemistry
- Peptides/chemical synthesis
- Peptides/chemistry
- Peptides/metabolism
- Polyphosphates/chemistry
- Protein Binding
- Protein Structure, Secondary
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/metabolism
- RNA-Binding Proteins/chemical synthesis
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- Sodium Chloride/chemistry
- Spectrometry, Fluorescence
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Trifluoroethanol/chemistry
Collapse
|
9
|
Francin M, Mirande M. Functional dissection of the eukaryotic-specific tRNA-interacting factor of lysyl-tRNA synthetase. J Biol Chem 2003; 278:1472-9. [PMID: 12417586 DOI: 10.1074/jbc.m208802200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the cytoplasm of higher eukaryotic cells, aminoacyl-tRNA synthetases (aaRSs) have polypeptide chain extensions appended to conventional prokaryotic-like synthetase domains. The supplementary domains, referred to as tRNA-interacting factors (tIFs), provide the core synthetases with potent tRNA-binding capacities, a functional requirement related to the low concentration of free tRNA prevailing in the cytoplasm of eukaryotic cells. Lysyl-tRNA synthetase is a component of the multi-tRNA synthetase complex. It exhibits a lysine-rich N-terminal polypeptide extension that increases its catalytic efficiency. The functional characterization of this new type of tRNA-interacting factor has been conducted. Here we describe the systematic substitution of the 13 lysine or arginine residues located within the general RNA-binding domain of hamster LysRS made of 70 residues. Our data show that three lysine and one arginine residues are major building blocks of the tRNA-binding site. Their mutation into alanine led to a reduced affinity for tRNA(3)(Lys) or minimalized tRNA mimicking the acceptor-TPsiC stem-loop of tRNA(3)(Lys) and a decrease in catalytic efficiency similar to that observed after a complete deletion of the N-terminal domain. Moreover, covalent continuity between the tRNA-binding and core domain is a prerequisite for providing LysRS with a tRNA binding capacity. Thus, our results suggest that the ability of LysRS to promote tRNA(Lys) networking during translation or to convey tRNA(3)(Lys) into the human immunodeficiency virus type 1 viral particles rests on the addition in evolution of this tRNA-interacting factor.
Collapse
Affiliation(s)
- Mathilde Francin
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | |
Collapse
|
10
|
Kaminska M, Shalak V, Mirande M. The appended C-domain of human methionyl-tRNA synthetase has a tRNA-sequestering function. Biochemistry 2001; 40:14309-16. [PMID: 11714285 DOI: 10.1021/bi015670b] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An ancillary RNA-binding domain is appended to the C-terminus of human methionyl-tRNA synthetase. It comprises a helix-turn-helix (HTH) motif related to the repeated units of the linker region of bifunctional glutamyl-prolyl-tRNA synthetase, and a specific C-terminal KGKKKK lysine-rich cluster (LRC). Here we show by gel retardation and tRNA aminoacylation experiments that these two regions are important for tRNA binding. However, the two pieces of this bipartite RNA-binding domain are functionally distinct. Analysis of MetRS mutant enzymes revealed that the HTH motif is more specifically endowed with a tRNA-sequestering activity and confers on MetRS a rate-limiting dissociation of aminoacylated tRNA. Elongation factor EF-1alpha enhanced the turnover in the aminoacylation reaction. In contrast, the LRC region is most probably involved in accelerating the association step of deacylated tRNA. These two nonredundant RNA-binding motifs strengthen tRNA binding by the synthetase. The native form of MetRS, containing the C-terminal RNA-binding domain, behaves as a processive enzyme; release of the reaction product is not spontaneous, but may be synchronized with the subsequent step of the tRNA cycle through EF-1alpha-assisted dissociation of Met-tRNA(Met). Therefore, the eukaryotic-specific C-domain of human MetRS may have a dual function. It may ensure an efficient capture of tRNA(Met) under conditions of suboptimal deacylated tRNA concentration prevailing in vivo, and may instigate direct transfer of aminoacylated tRNA from the synthetase to elongation factor EF-1alpha.
Collapse
Affiliation(s)
- M Kaminska
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | | | |
Collapse
|