1
|
Giegé R, Eriani G. The tRNA identity landscape for aminoacylation and beyond. Nucleic Acids Res 2023; 51:1528-1570. [PMID: 36744444 PMCID: PMC9976931 DOI: 10.1093/nar/gkad007] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 02/07/2023] Open
Abstract
tRNAs are key partners in ribosome-dependent protein synthesis. This process is highly dependent on the fidelity of tRNA aminoacylation by aminoacyl-tRNA synthetases and relies primarily on sets of identities within tRNA molecules composed of determinants and antideterminants preventing mischarging by non-cognate synthetases. Such identity sets were discovered in the tRNAs of a few model organisms, and their properties were generalized as universal identity rules. Since then, the panel of identity elements governing the accuracy of tRNA aminoacylation has expanded considerably, but the increasing number of reported functional idiosyncrasies has led to some confusion. In parallel, the description of other processes involving tRNAs, often well beyond aminoacylation, has progressed considerably, greatly expanding their interactome and uncovering multiple novel identities on the same tRNA molecule. This review highlights key findings on the mechanistics and evolution of tRNA and tRNA-like identities. In addition, new methods and their results for searching sets of multiple identities on a single tRNA are discussed. Taken together, this knowledge shows that a comprehensive understanding of the functional role of individual and collective nucleotide identity sets in tRNA molecules is needed for medical, biotechnological and other applications.
Collapse
Affiliation(s)
- Richard Giegé
- Correspondence may also be addressed to Richard Giegé.
| | | |
Collapse
|
2
|
Teufel F, Almagro Armenteros JJ, Johansen AR, Gíslason MH, Pihl SI, Tsirigos KD, Winther O, Brunak S, von Heijne G, Nielsen H. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol 2022. [PMID: 34980915 DOI: 10.1038/s41587-41021-01156-41583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Signal peptides (SPs) are short amino acid sequences that control protein secretion and translocation in all living organisms. SPs can be predicted from sequence data, but existing algorithms are unable to detect all known types of SPs. We introduce SignalP 6.0, a machine learning model that detects all five SP types and is applicable to metagenomic data.
Collapse
Affiliation(s)
- Felix Teufel
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.,Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - José Juan Almagro Armenteros
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Magnús Halldór Gíslason
- Center for Genomic Medicine, Rigshospitalet (Copenhagen University Hospital), Copenhagen, Denmark
| | - Silas Irby Pihl
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Ole Winther
- Center for Genomic Medicine, Rigshospitalet (Copenhagen University Hospital), Copenhagen, Denmark.,Department of Biology, Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark.,Section for Cognitive Systems, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Henrik Nielsen
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
3
|
Teufel F, Almagro Armenteros JJ, Johansen AR, Gíslason MH, Pihl SI, Tsirigos KD, Winther O, Brunak S, von Heijne G, Nielsen H. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol 2022; 40:1023-1025. [PMID: 34980915 PMCID: PMC9287161 DOI: 10.1038/s41587-021-01156-3] [Citation(s) in RCA: 946] [Impact Index Per Article: 473.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/08/2021] [Indexed: 11/09/2022]
Abstract
Signal peptides (SPs) are short amino acid sequences that control protein secretion and translocation in all living organisms. SPs can be predicted from sequence data, but existing algorithms are unable to detect all known types of SPs. We introduce SignalP 6.0, a machine learning model that detects all five SP types and is applicable to metagenomic data. A new version of SignalP predicts all types of signal peptides.
Collapse
Affiliation(s)
- Felix Teufel
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.,Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - José Juan Almagro Armenteros
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Magnús Halldór Gíslason
- Center for Genomic Medicine, Rigshospitalet (Copenhagen University Hospital), Copenhagen, Denmark
| | - Silas Irby Pihl
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Ole Winther
- Center for Genomic Medicine, Rigshospitalet (Copenhagen University Hospital), Copenhagen, Denmark.,Department of Biology, Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark.,Section for Cognitive Systems, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Henrik Nielsen
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
4
|
Mandal D, Köhrer C, Su D, Babu IR, Chan CT, Liu Y, Söll D, Blum P, Kuwahara M, Dedon PC, RajBhandary UL. Identification and codon reading properties of 5-cyanomethyl uridine, a new modified nucleoside found in the anticodon wobble position of mutant haloarchaeal isoleucine tRNAs. RNA (NEW YORK, N.Y.) 2014; 20:177-88. [PMID: 24344322 PMCID: PMC3895270 DOI: 10.1261/rna.042358.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Most archaea and bacteria use a modified C in the anticodon wobble position of isoleucine tRNA to base pair with A but not with G of the mRNA. This allows the tRNA to read the isoleucine codon AUA without also reading the methionine codon AUG. To understand why a modified C, and not U or modified U, is used to base pair with A, we mutated the C34 in the anticodon of Haloarcula marismortui isoleucine tRNA (tRNA2(Ile)) to U, expressed the mutant tRNA in Haloferax volcanii, and purified and analyzed the tRNA. Ribosome binding experiments show that although the wild-type tRNA2(Ile) binds exclusively to the isoleucine codon AUA, the mutant tRNA binds not only to AUA but also to AUU, another isoleucine codon, and to AUG, a methionine codon. The G34 to U mutant in the anticodon of another H. marismortui isoleucine tRNA species showed similar codon binding properties. Binding of the mutant tRNA to AUG could lead to misreading of the AUG codon and insertion of isoleucine in place of methionine. This result would explain why most archaea and bacteria do not normally use U or a modified U in the anticodon wobble position of isoleucine tRNA for reading the codon AUA. Biochemical and mass spectrometric analyses of the mutant tRNAs have led to the discovery of a new modified nucleoside, 5-cyanomethyl U in the anticodon wobble position of the mutant tRNAs. 5-Cyanomethyl U is present in total tRNAs from euryarchaea but not in crenarchaea, eubacteria, or eukaryotes.
Collapse
MESH Headings
- Anticodon/genetics
- Base Pairing
- Base Sequence
- Codon/genetics
- Escherichia coli/genetics
- Haloarcula marismortui/genetics
- Haloferax/genetics
- Molecular Structure
- Point Mutation
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Bacterial/genetics
- RNA, Fungal/genetics
- RNA, Transfer, Ile/chemistry
- RNA, Transfer, Ile/genetics
- RNA, Transfer, Ile/metabolism
- Ribosomes/chemistry
- Saccharomyces cerevisiae/genetics
- Sulfolobus/genetics
- Transfer RNA Aminoacylation
- Uridine/analogs & derivatives
- Uridine/chemistry
- Uridine/genetics
Collapse
Affiliation(s)
- Debabrata Mandal
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Caroline Köhrer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Dan Su
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - I. Ramesh Babu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Clement T.Y. Chan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yuchen Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Paul Blum
- School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska 68508, USA
| | - Masayasu Kuwahara
- Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Uttam L. RajBhandary
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Corresponding authorE-mail
| |
Collapse
|
5
|
Eichler J, Maupin-Furlow J. Post-translation modification in Archaea: lessons from Haloferax volcanii and other haloarchaea. FEMS Microbiol Rev 2012; 37:583-606. [PMID: 23167813 DOI: 10.1111/1574-6976.12012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 11/13/2012] [Accepted: 11/13/2012] [Indexed: 01/11/2023] Open
Abstract
As an ever-growing number of genome sequences appear, it is becoming increasingly clear that factors other than genome sequence impart complexity to the proteome. Of the various sources of proteomic variability, post-translational modifications (PTMs) most greatly serve to expand the variety of proteins found in the cell. Likewise, modulating the rates at which different proteins are degraded also results in a constantly changing cellular protein profile. While both strategies for generating proteomic diversity are adopted by organisms across evolution, the responsible pathways and enzymes in Archaea are often less well described than are their eukaryotic and bacterial counterparts. Studies on halophilic archaea, in particular Haloferax volcanii, originally isolated from the Dead Sea, are helping to fill the void. In this review, recent developments concerning PTMs and protein degradation in the haloarchaea are discussed.
Collapse
Affiliation(s)
- Jerry Eichler
- Department of Life Sciences, Ben Gurion University, Beersheva, Israel.
| | | |
Collapse
|
6
|
The human mitochondrial tRNAMet: structure/function relationship of a unique modification in the decoding of unconventional codons. J Mol Biol 2010; 406:257-74. [PMID: 21168417 DOI: 10.1016/j.jmb.2010.11.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 11/18/2010] [Accepted: 11/22/2010] [Indexed: 11/21/2022]
Abstract
Human mitochondrial mRNAs utilize the universal AUG and the unconventional isoleucine AUA codons for methionine. In contrast to translation in the cytoplasm, human mitochondria use one tRNA, hmtRNA(Met)(CAU), to read AUG and AUA codons at both the peptidyl- (P-), and aminoacyl- (A-) sites of the ribosome. The hmtRNA(Met)(CAU) has a unique post-transcriptional modification, 5-formylcytidine, at the wobble position 34 (f(5)C(34)), and a cytidine substituting for the invariant uridine at position 33 of the canonical U-turn in tRNAs. The structure of the tRNA anticodon stem and loop domain (hmtASL(Met)(CAU)), determined by NMR restrained molecular modeling, revealed how the f(5)C(34) modification facilitates the decoding of AUA at the P- and the A-sites. The f(5)C(34) defined a reduced conformational space for the nucleoside, in what appears to have restricted the conformational dynamics of the anticodon bases of the modified hmtASL(Met)(CAU). The hmtASL(Met)(CAU) exhibited a C-turn conformation that has some characteristics of the U-turn motif. Codon binding studies with both Escherichia coli and bovine mitochondrial ribosomes revealed that the f(5)C(34) facilitates AUA binding in the A-site and suggested that the modification favorably alters the ASL binding kinetics. Mitochondrial translation by many organisms, including humans, sometimes initiates with the universal isoleucine codons AUU and AUC. The f(5)C(34) enabled P-site codon binding to these normally isoleucine codons. Thus, the physicochemical properties of this one modification, f(5)C(34), expand codon recognition from the traditional AUG to the non-traditional, synonymous codons AUU and AUC as well as AUA, in the reassignment of universal codons in the mitochondria.
Collapse
|
7
|
The N-terminal penultimate residue of 20S proteasome alpha1 influences its N(alpha) acetylation and protein levels as well as growth rate and stress responses of Haloferax volcanii. J Bacteriol 2009; 191:3794-803. [PMID: 19376868 DOI: 10.1128/jb.00090-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteasomes are energy-dependent proteolytic machines. We elaborate here on the previously observed N(alpha) acetylation of the initiator methionine of the alpha1 protein of 20S core particles (CPs) of Haloferax volcanii proteasomes. Quantitative mass spectrometry revealed this was the dominant N-terminal form of alpha1 in H. volcanii cells. To further examine this, alpha1 proteins with substitutions in the N-terminal penultimate residue as well as deletion of the CP "gate" formed by the alpha1 N terminus were examined for their N(alpha) acetylation. Both the "gate" deletion and Q2A substitution completely altered the N(alpha)-acetylation pattern of alpha1, with the deletion rendering alpha1 unavailable for N(alpha) acetylation and the Q2A modification apparently enhancing cleavage of alpha1 by methionine aminopeptidase (MAP), resulting in acetylation of the N-terminal alanine. Cells expressing these two alpha1 variants were less tolerant of hypoosmotic stress than the wild type and produced CPs with enhanced peptidase activity. Although alpha1 proteins with Q2D, Q2P, and Q2T substitutions were N(alpha) acetylated in CPs similar to the wild type, cells expressing these variants accumulated unusually high levels of alpha1 as rings in N(alpha)-acetylated, unmodified, and/or MAP-cleaved forms. More detailed examination of this group revealed that while CP peptidase activity was not impaired, cells expressing these alpha1 variants displayed higher growth rates and were more tolerant of hypoosmotic and high-temperature stress than the wild type. Overall, these results suggest that N(alpha) acetylation of alpha1 is important in CP assembly and activity, high levels of alpha1 rings enhance cell proliferation and stress tolerance, and unregulated opening of the CP "gate" impairs the ability of cells to overcome salt stress.
Collapse
|
8
|
Kirkland PA, Humbard MA, Daniels CJ, Maupin-Furlow JA. Shotgun proteomics of the haloarchaeon Haloferax volcanii. J Proteome Res 2008; 7:5033-9. [PMID: 18816081 DOI: 10.1021/pr800517a] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Haloferax volcanii, an extreme halophile originally isolated from the Dead Sea, is used worldwide as a model organism for furthering our understanding of archaeal cell physiology. In this study, a combination of approaches was used to identify a total of 1296 proteins, representing 32% of the theoretical proteome of this haloarchaeon. This included separation of (phospho)proteins/peptides by 2-dimensional gel electrophoresis (2-D), immobilized metal affinity chromatography (IMAC), metal oxide affinity chromatography (MOAC), and Multidimensional Protein Identification Technology (MudPIT) including strong cation exchange (SCX) chromatography coupled with reversed phase (RP) HPLC. Proteins were identified by tandem mass spectrometry (MS/MS) using nanoelectrospray ionization hybrid quadrupole time-of-flight (QSTAR XL Hybrid LC/MS/MS System) and quadrupole ion trap (Thermo LCQ Deca). Results indicate that a SCX RP HPLC fractionation coupled with MS/MS provides the best high-throughput workflow for overall protein identification.
Collapse
Affiliation(s)
- P Aaron Kirkland
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611-0700, USA
| | | | | | | |
Collapse
|
9
|
Mechanism of ribosomal subunit joining during eukaryotic translation initiation. Biochem Soc Trans 2008; 36:653-7. [PMID: 18631135 DOI: 10.1042/bst0360653] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Decades of research have yielded significant insight into the mechanism by which a cell translates an mRNA into the encoded protein. However many of the molecular details of the process remain a mystery. Translation initiation is an important control point in gene expression, and misregulation can lead to diseases such as cancer. A better understanding of the mechanism of translation initiation is imperative for the development of novel therapeutic agents. Recently, a combination of genetic, biochemical and biophysical studies has begun to shed light on how, at a molecular level, the translational machinery initiates protein synthesis. In the present review, we briefly compare and contrast the initiation pathways utilized by bacteria, archaea and eukaryotes, and then focus on translation initiation in eukaryotes and recent advances in our understanding of the subunit joining step of the process.
Collapse
|
10
|
Köhrer C, RajBhandary UL. The many applications of acid urea polyacrylamide gel electrophoresis to studies of tRNAs and aminoacyl-tRNA synthetases. Methods 2008; 44:129-38. [PMID: 18241794 PMCID: PMC2277081 DOI: 10.1016/j.ymeth.2007.10.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 10/25/2007] [Indexed: 10/22/2022] Open
Abstract
Here we describe the many applications of acid urea polyacrylamide gel electrophoresis (acid urea PAGE) followed by Northern blot analysis to studies of tRNAs and aminoacyl-tRNA synthetases. Acid urea PAGE allows the electrophoretic separation of different forms of a tRNA, discriminated by changes in bulk, charge, and/or conformation that are brought about by aminoacylation, formylation, or modification of a tRNA. Among the examples described are (i) analysis of the effect of mutations in the Escherichia coli initiator tRNA on its aminoacylation and formylation; (ii) evidence of orthogonality of suppressor tRNAs in mammalian cells and yeast; (iii) analysis of aminoacylation specificity of an archaeal prolyl-tRNA synthetase that can aminoacylate archaeal tRNA(Pro) with cysteine, but does not aminoacylate archaeal tRNA(Cys) with cysteine; (iv) identification and characterization of the AUA-decoding minor tRNA(Ile) in archaea; and (v) evidence that the archaeal minor tRNA(Ile) contains a modified base in the wobble position different from lysidine found in the corresponding eubacterial tRNA.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/analysis
- Animals
- Archaea/metabolism
- Blotting, Northern/methods
- Electrophoresis, Polyacrylamide Gel/methods
- Humans
- Hydrogen-Ion Concentration
- Lysine/analogs & derivatives
- Lysine/biosynthesis
- Protein Engineering/methods
- Pyrimidine Nucleosides/biosynthesis
- RNA, Bacterial/isolation & purification
- RNA, Transfer/analysis
- RNA, Transfer/isolation & purification
- RNA, Transfer, Cys/biosynthesis
- RNA, Transfer, Ile/metabolism
- RNA, Transfer, Met/metabolism
- Urea
Collapse
Affiliation(s)
- Caroline Köhrer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Uttam L. RajBhandary
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
11
|
Köhrer C, Srinivasan G, Mandal D, Mallick B, Ghosh Z, Chakrabarti J, Rajbhandary UL. Identification and characterization of a tRNA decoding the rare AUA codon in Haloarcula marismortui. RNA (NEW YORK, N.Y.) 2008; 14:117-126. [PMID: 17998287 PMCID: PMC2151036 DOI: 10.1261/rna.795508] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 09/17/2007] [Indexed: 05/25/2023]
Abstract
Annotation of the complete genome of the extreme halophilic archaeon Haloarcula marismortui does not include a tRNA for translation of AUA, the rare codon for isoleucine. This is a situation typical for most archaeal genomes sequenced to date. Based on computational analysis, it has been proposed recently that a single intron-containing tRNA gene produces two very similar but functionally different tRNAs by means of alternative splicing; a UGG-decoding tRNA(TrpCCA) and an AUA-decoding tRNA(IleUAU). Through analysis of tRNAs from H. marismortui, we have confirmed the presence of tRNA(TrpCCA), but found no evidence for the presence of tRNA(IleUAU). Instead, we have shown that a tRNA, currently annotated as elongator methionine tRNA and containing CAU as the anticodon, is aminoacylated with isoleucine in vivo and that this tRNA represents the missing isoleucine tRNA. Interestingly, this tRNA carries a base modification of C34 in the anticodon different from the well-known lysidine found in eubacteria, which switches the amino acid identity of the tRNA from methionine to isoleucine and its decoding specificity from AUG to AUA. The methods described in this work for the identification of individual tRNAs present in H. marismortui provide the tools necessary for experimentally confirming the presence of any tRNA in a cell and, thereby, to test computational predictions of tRNA genes.
Collapse
Affiliation(s)
- Caroline Köhrer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Vasil'eva IA, Moor NA. Interaction of aminoacyl-tRNA synthetases with tRNA: general principles and distinguishing characteristics of the high-molecular-weight substrate recognition. BIOCHEMISTRY (MOSCOW) 2007; 72:247-63. [PMID: 17447878 DOI: 10.1134/s0006297907030029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review summarizes results of numerous (mainly functional) studies that have been accumulated over recent years on the problem of tRNA recognition by aminoacyl-tRNA synthetases. Development and employment of approaches that use synthetic mutant and chimeric tRNAs have demonstrated general principles underlying highly specific interaction in different systems. The specificity of interaction is determined by a certain number of nucleotides and structural elements of tRNA (constituting the set of recognition elements or specificity determinants), which are characteristic of each pair. Crystallographic structures available for many systems provide the details of the molecular basis of selective interaction. Diversity and identity of biochemical functions of the recognition elements make substantial contribution to the specificity of such interactions.
Collapse
Affiliation(s)
- I A Vasil'eva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | | |
Collapse
|
13
|
Falb M, Aivaliotis M, Garcia-Rizo C, Bisle B, Tebbe A, Klein C, Konstantinidis K, Siedler F, Pfeiffer F, Oesterhelt D. Archaeal N-terminal protein maturation commonly involves N-terminal acetylation: a large-scale proteomics survey. J Mol Biol 2006; 362:915-24. [PMID: 16950390 DOI: 10.1016/j.jmb.2006.07.086] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 07/28/2006] [Accepted: 07/31/2006] [Indexed: 11/16/2022]
Abstract
We present the first large-scale survey of N-terminal protein maturation in archaea based on 873 proteomically identified N-terminal peptides from the two haloarchaea Halobacterium salinarum and Natronomonas pharaonis. The observed protein maturation pattern can be attributed to the combined action of methionine aminopeptidase and N-terminal acetyltransferase and applies to cytosolic proteins as well as to a large fraction of integral membrane proteins. Both N-terminal maturation processes primarily depend on the amino acid in penultimate position, in which serine and threonine residues are over represented. Removal of the initiator methionine occurs in two-thirds of the haloarchaeal proteins and requires a small penultimate residue, indicating that methionine aminopeptidase specificity is conserved across all domains of life. While N-terminal acetylation is rare in bacteria, our proteomic data show that acetylated N termini are common in archaea affecting about 15% of the proteins and revealing a distinct archaeal N-terminal acetylation pattern. Haloarchaeal N-terminal acetyltransferase reveals narrow substrate specificity, which is limited to cleaved N termini starting with serine or alanine residues. A comparative analysis of 140 ortholog pairs with identified N-terminal peptide showed that acetylatable N-terminal residues are predominantly conserved amongst the two haloarchaea. Only few exceptions from the general N-terminal acetylation pattern were observed, which probably represent protein-specific modifications as they were confirmed by ortholog comparison.
Collapse
Affiliation(s)
- Michaela Falb
- Department of Membrane Biochemistry, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Srinivasan G, Krebs MP, RajBhandary UL. Translation initiation with GUC codon in the archaeon Halobacterium salinarum: implications for translation of leaderless mRNA and strict correlation between translation initiation and presence of mRNA. Mol Microbiol 2006; 59:1013-24. [PMID: 16420368 DOI: 10.1111/j.1365-2958.2005.04992.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have investigated whether anticodon sequence mutant of an archaeal initiator tRNA can initiate protein synthesis using reporter genes carrying mutations in the initiation codon. Halobacterium salinarum was used as the model organism and the bacterio-opsin gene (bop), which encodes the precursor of the protein component of the purple membrane protein bacterio-opsin (Bop), was chosen as the reporter. We demonstrate that a CAU to GAC anticodon sequence mutant of Haloferax volcanii initiator tRNA can initiate Bop protein synthesis using GUC as the initiation codon in H. salinarum. We generated four mutant bop genes, each carrying the AUG to GUC initiation codon mutation, with or without a compensatory mutation to maintain a predicted stem-loop structure at the 5'-end of the bop mRNA, and with or without mutations to test translation initiation at a site corresponding to the amino terminus of mature bacterio-opsin. H. salinarum chromosomal recombinants containing these mutant genes were phenotypically Pum- (purple membrane negative). Upon transformation with a plasmid carrying the mutant initiator tRNA gene, only strains designed to maintain the bop mRNA stem-loop structure produced Bop and were phenotypically Pum+ as indicated by purple colony colour, and immunoblotting and spectral analysis of cell extracts. Thus GUC can serve as an initiation codon in archaea and the stem-loop structure in the bop mRNA is important for translation. Interestingly, for the same mutant mRNA, only transformants that produce Bop protein contain bop mRNA. These results suggest either a strong coupling between translation and mRNA stability or strong transcriptional polarity in H. salinarum.
Collapse
MESH Headings
- 5' Untranslated Regions
- Archaeal Proteins/biosynthesis
- Archaeal Proteins/genetics
- Bacteriorhodopsins/biosynthesis
- Bacteriorhodopsins/genetics
- Base Sequence
- Codon, Initiator/genetics
- Genes, Archaeal
- Genes, Reporter
- Halobacterium salinarum/genetics
- Halobacterium salinarum/metabolism
- Molecular Sequence Data
- Mutation
- Peptide Chain Initiation, Translational/genetics
- Plasmids/genetics
- RNA, Archaeal/metabolism
- RNA, Messenger/metabolism
- RNA, Transfer, Met/genetics
- RNA, Transfer, Met/metabolism
Collapse
Affiliation(s)
- Gayathri Srinivasan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
15
|
Vetro JA, Dummitt B, Micka WS, Chang YH. Evidence of a dominant negative mutant of yeast methionine aminopeptidase type 2 in Saccharomyces cerevisiae. J Cell Biochem 2005; 94:656-68. [PMID: 15547949 DOI: 10.1002/jcb.20285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Eukaryotic methionine aminopeptidase type 2 (MetAP2, MetAP2 gene (MAP2)), together with eukaryotic MetAP1, cotranslationally hydrolyzes initiator methionine from nascent polypeptides when the side chain of the second residue is small and uncharged. In this report, we took advantage of the yeast (Saccharomyces cerevisiae) map1 null strain's reliance on MetAP2 activity for the growth and viability to provide evidence of the first dominant negative mutant of eukaryotic MetAP2. Replacement of the conserved His(174) with alanine within the C-terminal catalytic domain of yeast MetAP2 eliminated detectable catalytic activity against a peptide substrate in vitro. Overexpression of MetAP2 (H174A) under the strong GPD promoter in a yeast map1 null strain was lethal, whereas overexpression under the weaker GAL1 promoter slightly inhibited map1 null growth. Deletion mutants further revealed that the N-terminal region of MetAP2 (residues 2-57) is essential but not sufficient for MetAP2 (H174A) to fully interfere with map1 null growth. Together, these results indicate that catalytically inactive MetAP2 is a dominant negative mutant that requires its N-terminal region to interfere with wild-type MetAP2 function.
Collapse
Affiliation(s)
- Joseph A Vetro
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University Health Sciences Center, 1402 S. Grand Blvd., St. Louis, MO 63104, USA
| | | | | | | |
Collapse
|
16
|
Levin I, Giladi M, Altman-Price N, Ortenberg R, Mevarech M. An alternative pathway for reduced folate biosynthesis in bacteria and halophilic archaea. Mol Microbiol 2005; 54:1307-18. [PMID: 15554970 DOI: 10.1111/j.1365-2958.2004.04339.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Whereas tetrahydrofolate is an essential cofactor in all bacteria, the gene that encodes the enzyme dihydrofolate reductase (DHFR) could not be identified in many of the bacteria whose genomes have been entirely sequenced. In this communication we show that the halophilic archaea Halobacterium salinarum and Haloarcula marismortui contain genes coding for proteins with an N-terminal domain homologous to dihydrofolate synthase (FolC) and a C-terminal domain homologous to dihydropteroate synthase (FolP). These genes are able to complement a Haloferax volcanii mutant that lacks DHFR. We also show that the Helicobacter pylori dihydropteroate synthase can complement an Escherichia coli mutant that lacks DHFR. Activity resides in an N-terminal segment that is homologous to the polypeptide linker that connects the dihydrofolate synthase and dihydropteroate synthase domains in the haloarchaeal enzymes. The purified recombinant H. pylori dihydropteroate synthase was found to be a flavoprotein.
Collapse
Affiliation(s)
- Itay Levin
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
| | | | | | | | | |
Collapse
|
17
|
Abstract
Great advances have been made in the past three decades in understanding the molecular mechanics underlying protein synthesis in bacteria, but our understanding of the corresponding events in eukaryotic organisms is only beginning to catch up. In this review we describe the current state of our knowledge and ignorance of the molecular mechanics underlying eukaryotic translation. We discuss the mechanisms conserved across the three kingdoms of life as well as the important divergences that have taken place in the pathway.
Collapse
Affiliation(s)
- Lee D Kapp
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, USA.
| | | |
Collapse
|
18
|
Mayer C, Stortchevoi A, Köhrer C, Varshney U, RajBhandary UL. Initiator tRNA and its role in initiation of protein synthesis. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:195-206. [PMID: 12762022 DOI: 10.1101/sqb.2001.66.195] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- C Mayer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
19
|
Ramesh V, Köhrer C, RajBhandary UL. Expression of Escherichia coli methionyl-tRNA formyltransferase in Saccharomyces cerevisiae leads to formylation of the cytoplasmic initiator tRNA and possibly to initiation of protein synthesis with formylmethionine. Mol Cell Biol 2002; 22:5434-42. [PMID: 12101237 PMCID: PMC133937 DOI: 10.1128/mcb.22.15.5434-5442.2002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Protein synthesis in eukaryotic cytoplasm and in archaebacteria is initiated with methionine, whereas, that in eubacteria and in eukaryotic organelles, such as mitochondria and chloroplasts, is initiated with formylmethionine. In view of this clear distinction, we have investigated whether protein synthesis in the eukaryotic cytoplasm can be initiated with formylmethionine, and, if so, what the consequences are to the cell. For this purpose, we have expressed in an inducible manner the Escherichia coli methionyl-tRNA formyltransferase (MTF) in the cytoplasm of the yeast Saccharomyces cerevisiae. Expression of active MTF, but not of an inactive mutant, leads to formylation of methionine attached to the yeast cytoplasmic initiator tRNA to the extent of about 70%. As a consequence, the yeast strain grows slowly. Coexpression of the E. coli polypeptide deformylase (DEF), which removes the formyl group from the N-terminal formylmethionine in a polypeptide, rescues the slow-growth phenotype, whereas, coexpression of an inactive mutant of DEF does not. These results suggest that the cytoplasmic protein-synthesizing system of yeast, like that of eubacteria, can at least to some extent utilize formylated initiator Met-tRNA to initiate protein synthesis and that initiation of proteins with formylmethionine leads to the slow-growth phenotype. Removal of the formyl group in these proteins by DEF would explain the rescue of the slow-growth phenotype.
Collapse
Affiliation(s)
- Vaidyanathan Ramesh
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | |
Collapse
|