1
|
Zhou H, Li W, Bai L, Wang J, Luo Y, Li S, Hickford JGH. Ovine KRTAP36-2: A New Keratin-Associated Protein Gene Related to Variation in Wool Yield. Genes (Basel) 2023; 14:2045. [PMID: 38002988 PMCID: PMC10671549 DOI: 10.3390/genes14112045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Keratin-associated proteins (KAPs) are structural components of wool fibres. High-glycine/tyrosine (HGT)-KAPs are a subset of the KAP family, and their abundance in fibres varies. In this study, we report the discovery of an ovine HGT-KAP gene to which we assigned the name KRTAP36-2. Polymerase chain reaction and single-strand conformation polymorphism (PCR-SSCP) analyses revealed four variants of this gene in a screening population of 170 sheep from a variety of breeds. The DNA sequencing of the variants revealed four single-nucleotide polymorphisms (SNPs) and a dinucleotide deletion. Three of these SNPs were in the coding region, and one of these was non-synonymous and potentially led to the amino acid substitution p.Cys27Gly near the middle of the protein. The remaining SNP was located near the putative TATA box, and the di-nucleotide deletion was near the putative transcription initiation site. The effect of this variation in KRTAP36-2 was investigated in 274 Southdown × Merino lambs that were the progeny of five sires. Variation was only found to be associated with wool yield, that is, the proportion of the greasy fleece that remained as clean fleece upon scouring (expressed as a percentage). This may have some value in increasing wool production.
Collapse
Affiliation(s)
- Huitong Zhou
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.); (J.W.); (Y.L.)
- Gene-Marker Laboratory, Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln 7647, New Zealand;
| | - Wenhao Li
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China;
| | - Lingrong Bai
- Gene-Marker Laboratory, Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln 7647, New Zealand;
| | - Jiqing Wang
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.); (J.W.); (Y.L.)
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuzhu Luo
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.); (J.W.); (Y.L.)
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaobin Li
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.); (J.W.); (Y.L.)
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jonathan G. H. Hickford
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.); (J.W.); (Y.L.)
- Gene-Marker Laboratory, Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln 7647, New Zealand;
| |
Collapse
|
2
|
Savinkova LK, Sharypova EB, Kolchanov NA. On the Role of TATA Boxes and TATA-Binding Protein in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2023; 12:1000. [PMID: 36903861 PMCID: PMC10005294 DOI: 10.3390/plants12051000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
For transcription initiation by RNA polymerase II (Pol II), all eukaryotes require assembly of basal transcription machinery on the core promoter, a region located approximately in the locus spanning a transcription start site (-50; +50 bp). Although Pol II is a complex multi-subunit enzyme conserved among all eukaryotes, it cannot initiate transcription without the participation of many other proteins. Transcription initiation on TATA-containing promoters requires the assembly of the preinitiation complex; this process is triggered by an interaction of TATA-binding protein (TBP, a component of the general transcription factor TFIID (transcription factor II D)) with a TATA box. The interaction of TBP with various TATA boxes in plants, in particular Arabidopsis thaliana, has hardly been investigated, except for a few early studies that addressed the role of a TATA box and substitutions in it in plant transcription systems. This is despite the fact that the interaction of TBP with TATA boxes and their variants can be used to regulate transcription. In this review, we examine the roles of some general transcription factors in the assembly of the basal transcription complex, as well as functions of TATA boxes of the model plant A. thaliana. We review examples showing not only the involvement of TATA boxes in the initiation of transcription machinery assembly but also their indirect participation in plant adaptation to environmental conditions in responses to light and other phenomena. Examples of an influence of the expression levels of A. thaliana TBP1 and TBP2 on morphological traits of the plants are also examined. We summarize available functional data on these two early players that trigger the assembly of transcription machinery. This information will deepen the understanding of the mechanisms underlying transcription by Pol II in plants and will help to utilize the functions of the interaction of TBP with TATA boxes in practice.
Collapse
|
3
|
Long L, Li X, Wei H, Li W. Features of the Influence of a DNA Sequence on Its Adjacent Sequence. ACS OMEGA 2020; 5:23631-23644. [PMID: 32984683 PMCID: PMC7512436 DOI: 10.1021/acsomega.0c02264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
To explore the features of the influence of a DNA sequence (here called sequence A) on its adjacent sequence (here called sequence B), we linked some DNA repeated sequences to the 5'-end of the T7 promoter in the plasmid pET-42a (+) or the 5'- and/or 3'-end(s) of the EcoRI site in some DNA fragments using PCR and other molecular cloning methods. As a result, we found that the efficiency of the T7 promoter and EcoRI could be impacted by some flanking sequences, indicating that sequence B could be impacted by sequence A. The features of such influence include the following: (i) sequence A can directly impact sequence B without changing/modifying the base composition of sequence B or destroying the inherent connection between sequence B and its function-related sequences; (ii) such influence does not need the participation of trans-acting factors or products of sequence A (if any); (iii) such an influence might be undetectable when the activities of trans-acting factors of sequence B are normal but might become detectable when those are lower than the normal one; (iv) such an influence might be enhancive, inhibitory, or unobvious; (v) the influence of sequence A linked to the 5'-end of sequence B might be the same as or opposite to that of sequence A linked to the 3'-end; and (vi) the influences of sequence A linked to different ends of sequence B could enhance or partially offset each other when sequence A is linked to both 5'- and 3'-ends of sequence B. These findings might give us a further understanding of the interaction of two adjacent DNA sequences.
Collapse
Affiliation(s)
- Lijuan Long
- Department
of Pediatrics, First Affiliated Hospital
of Guangxi Medical University, #6, Shuangyong Road, Nanning, 530021 Guangxi, China
| | - Xinxin Li
- Department
of Nuclear Medicine, First Affiliated Hospital
of Guangxi Medical University, #6, Shuangyong Road, Nanning, 530021 Guangxi, China
| | - Hailang Wei
- Medical
Scientific Research Center, Guangxi Medical
University, #22, Shuangyong Road, Nanning, 530021 Guangxi, China
| | - Wei Li
- Medical
Scientific Research Center, Guangxi Medical
University, #22, Shuangyong Road, Nanning, 530021 Guangxi, China
| |
Collapse
|
4
|
Heiss G, Ploetz E, Voith von Voithenberg L, Viswanathan R, Glaser S, Schluesche P, Madhira S, Meisterernst M, Auble DT, Lamb DC. Conformational changes and catalytic inefficiency associated with Mot1-mediated TBP-DNA dissociation. Nucleic Acids Res 2019; 47:2793-2806. [PMID: 30649478 PMCID: PMC6451094 DOI: 10.1093/nar/gky1322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 12/21/2018] [Accepted: 01/07/2019] [Indexed: 11/12/2022] Open
Abstract
The TATA-box Binding Protein (TBP) plays a central role in regulating gene expression and is the first step in the process of pre-initiation complex (PIC) formation on promoter DNA. The lifetime of TBP at the promoter site is controlled by several cofactors including the Modifier of transcription 1 (Mot1), an essential TBP-associated ATPase. Based on ensemble measurements, Mot1 can use adenosine triphosphate (ATP) hydrolysis to displace TBP from DNA and various models for how this activity is coupled to transcriptional regulation have been proposed. However, the underlying molecular mechanism of Mot1 action is not well understood. In this work, the interaction of Mot1 with the DNA/TBP complex was investigated by single-pair Förster resonance energy transfer (spFRET). Upon Mot1 binding to the DNA/TBP complex, a transition in the DNA/TBP conformation was observed. Hydrolysis of ATP by Mot1 led to a conformational change but was not sufficient to efficiently disrupt the complex. SpFRET measurements of dual-labeled DNA suggest that Mot1's ATPase activity primes incorrectly oriented TBP for dissociation from DNA and additional Mot1 in solution is necessary for TBP unbinding. These findings provide a framework for understanding how the efficiency of Mot1's catalytic activity is tuned to establish a dynamic pool of TBP without interfering with stable and functional TBP-containing complexes.
Collapse
Affiliation(s)
- Gregor Heiss
- Department für Chemie, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität, München 81377, Germany
| | - Evelyn Ploetz
- Department für Chemie, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität, München 81377, Germany
| | - Lena Voith von Voithenberg
- Department für Chemie, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität, München 81377, Germany
| | - Ramya Viswanathan
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Samson Glaser
- Department für Chemie, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität, München 81377, Germany
| | - Peter Schluesche
- Department für Chemie, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität, München 81377, Germany
| | - Sushi Madhira
- Department für Chemie, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität, München 81377, Germany
| | - Michael Meisterernst
- Institut für Molekulare Tumorbiologie, Westfälische Wilhelms-Universität, Münster 48149, Germany
| | - David T Auble
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Don C Lamb
- Department für Chemie, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität, München 81377, Germany
| |
Collapse
|
5
|
Gietl A, Holzmeister P, Blombach F, Schulz S, von Voithenberg LV, Lamb DC, Werner F, Tinnefeld P, Grohmann D. Eukaryotic and archaeal TBP and TFB/TF(II)B follow different promoter DNA bending pathways. Nucleic Acids Res 2014; 42:6219-31. [PMID: 24744242 PMCID: PMC4041446 DOI: 10.1093/nar/gku273] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 02/01/2023] Open
Abstract
During transcription initiation, the promoter DNA is recognized and bent by the basal transcription factor TATA-binding protein (TBP). Subsequent association of transcription factor B (TFB) with the TBP-DNA complex is followed by the recruitment of the ribonucleic acid polymerase resulting in the formation of the pre-initiation complex. TBP and TFB/TF(II)B are highly conserved in structure and function among the eukaryotic-archaeal domain but intriguingly have to operate under vastly different conditions. Employing single-pair fluorescence resonance energy transfer, we monitored DNA bending by eukaryotic and archaeal TBPs in the absence and presence of TFB in real-time. We observed that the lifetime of the TBP-DNA interaction differs significantly between the archaeal and eukaryotic system. We show that the eukaryotic DNA-TBP interaction is characterized by a linear, stepwise bending mechanism with an intermediate state distinguished by a distinct bending angle. TF(II)B specifically stabilizes the fully bent TBP-promoter DNA complex and we identify this step as a regulatory checkpoint. In contrast, the archaeal TBP-DNA interaction is extremely dynamic and TBP from the archaeal organism Sulfolobus acidocaldarius strictly requires TFB for DNA bending. Thus, we demonstrate that transcription initiation follows diverse pathways on the way to the formation of the pre-initiation complex.
Collapse
Affiliation(s)
- Andreas Gietl
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, 38106 Braunschweig, Germany
| | - Phil Holzmeister
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, 38106 Braunschweig, Germany
| | - Fabian Blombach
- RNAP Laboratory, University College London, Institute of Structural and Molecular Biology, Division of Biosciences, Gower St., London WC1E 6BT, UK
| | - Sarah Schulz
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, 38106 Braunschweig, Germany
| | - Lena Voith von Voithenberg
- Department of Chemistry, Center for Nanoscience (CeNS) and Center for Integrated Protein Science Munich (CiPSM), Ludwig Maximilian University, Butenandtstraße 11, 81377 Munich, Germany
| | - Don C Lamb
- Department of Chemistry, Center for Nanoscience (CeNS) and Center for Integrated Protein Science Munich (CiPSM), Ludwig Maximilian University, Butenandtstraße 11, 81377 Munich, Germany
| | - Finn Werner
- RNAP Laboratory, University College London, Institute of Structural and Molecular Biology, Division of Biosciences, Gower St., London WC1E 6BT, UK
| | - Philip Tinnefeld
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, 38106 Braunschweig, Germany
| | - Dina Grohmann
- Physikalische und Theoretische Chemie - NanoBioSciences, Technische Universität Braunschweig, Hans-Sommer-Strasse 10, 38106 Braunschweig, Germany
| |
Collapse
|
6
|
Savinkova L, Drachkova I, Arshinova T, Ponomarenko P, Ponomarenko M, Kolchanov N. An experimental verification of the predicted effects of promoter TATA-box polymorphisms associated with human diseases on interactions between the TATA boxes and TATA-binding protein. PLoS One 2013; 8:e54626. [PMID: 23424617 PMCID: PMC3570547 DOI: 10.1371/journal.pone.0054626] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 12/13/2012] [Indexed: 11/18/2022] Open
Abstract
Human genome sequencing has resulted in a great body of data, including a stunningly large number of single nucleotide polymorphisms (SNPs) with unknown phenotypic manifestations. Identification and comprehensive analysis of regulatory SNPs in human gene promoters will help quantify the effects of these SNPs on human health. Based on our experimental and computer-aided study of SNPs in TATA boxes and the use of literature data, we have derived an equation for TBP/TATA equilibrium binding in three successive steps: TATA-binding protein (TBP) sliding along DNA due to their nonspecific affinity for each other ↔ recognition of the TATA box ↔ stabilization of the TBP/TATA complex. Using this equation, we have analyzed TATA boxes containing SNPs associated with human diseases and made in silico predictions of changes in TBP/TATA affinity. An electrophoretic mobility shift assay (EMSA)-based experimental study performed under the most standardized conditions demonstrates that the experimentally measured values are highly correlated with the predicted values: the coefficient of linear correlation, r, was 0.822 at a significance level of α<10⁻⁷ for equilibrium K(D) values, (-ln K(D)), and 0.785 at a significance level of α<10⁻³ for changes in equilibrium K(D) (δ) due to SNPs in the TATA boxes (δ= -ln[K(D,TATAMut)]-(-ln[K(D,TATAMut)])). It has been demonstrated that the SNPs associated with increased risk of human diseases such as α-, β- and δ-thalassemia, myocardial infarction and thrombophlebitis, changes in immune response, amyotrophic lateral sclerosis, lung cancer and hemophilia B Leyden cause 2-4-fold changes in TBP/TATA affinity in most cases. The results obtained strongly suggest that the TBP/TATA equilibrium binding equation derived can be used for analysis of TATA-box sequences and identification of SNPs with a potential of being functionally important.
Collapse
Affiliation(s)
- Ludmila Savinkova
- Institute of Cytology and Genetics, Siberian Division, Russian Academy of Sciences, Novosibirsk, Russia.
| | | | | | | | | | | |
Collapse
|
7
|
Ponomarenko PM, Suslov VV, Savinkova LK, Ponomarenko MP, Kolchanov NA. A precise equation of equilibrium of four steps of TBP binding with the TATA box for prognosis of phenotypic manifestation of mutations. Biophysics (Nagoya-shi) 2010. [DOI: 10.1134/s0006350910030036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Ponomarenko PM, Ponomarenko MP, Drachkova IA, Lysova MV, Arshinova TV, Savinkova LK, Kolchanov NA. Prediction of the affinity of the TATA-binding protein to TATA boxes with single nucleotide polymorphisms. Mol Biol 2009. [DOI: 10.1134/s0026893309030157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Pitulescu ME, Teichmann M, Luo L, Kessel M. TIPT2 and geminin interact with basal transcription factors to synergize in transcriptional regulation. BMC BIOCHEMISTRY 2009; 10:16. [PMID: 19515240 PMCID: PMC2702275 DOI: 10.1186/1471-2091-10-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 06/10/2009] [Indexed: 12/20/2022]
Abstract
BACKGROUND The re-replication inhibitor Geminin binds to several transcription factors including homeodomain proteins, and to members of the polycomb and the SWI/SNF complexes. RESULTS Here we describe the TATA-binding protein-like factor-interacting protein (TIPT) isoform 2, as a strong binding partner of Geminin. TIPT2 is widely expressed in mouse embryonic and adult tissues, residing both in cyto- and nucleoplasma, and enriched in the nucleolus. Like Geminin, also TIPT2 interacts with several polycomb factors, with the general transcription factor TBP (TATA box binding protein), and with the related protein TBPL1 (TRF2). TIPT2 synergizes with geminin and TBP in the activation of TATA box-containing promoters, and with TBPL1 and geminin in the activation of the TATA-less NF1 promoter. Geminin and TIPT2 were detected in the chromatin near TBP/TBPL1 binding sites. CONCLUSION Together, our study introduces a novel transcriptional regulator and its function in cooperation with chromatin associated factors and the basal transcription machinery.
Collapse
Affiliation(s)
- Mara E Pitulescu
- Department of Molecular Cell Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| | | | | | | |
Collapse
|
10
|
Bonham AJ, Neumann T, Tirrell M, Reich NO. Tracking transcription factor complexes on DNA using total internal reflectance fluorescence protein binding microarrays. Nucleic Acids Res 2009; 37:e94. [PMID: 19487241 PMCID: PMC2715255 DOI: 10.1093/nar/gkp424] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have developed a high-throughput protein binding microarray (PBM) assay to systematically investigate transcription regulatory protein complexes binding to DNA with varied specificity and affinity. Our approach is based on the novel coupling of total internal reflectance fluorescence (TIRF) spectroscopy, swellable hydrogel double-stranded DNA microarrays and dye-labeled regulatory proteins, making it possible to determine both equilibrium binding specificities and kinetic rates for multiple protein:DNA interactions in a single experiment. DNA specificities and affinities for the general transcription factors TBP, TFIIA and IIB determined by TIRF–PBM are similar to those determined by traditional methods, while simultaneous measurement of the factors in binary and ternary protein complexes reveals preferred binding combinations. TIRF–PBM provides a novel and extendible platform for multi-protein transcription factor investigation.
Collapse
Affiliation(s)
- Andrew J Bonham
- Department of Biomolecular Science & Engineering, University of California, Santa Barbara, CA, USA
| | | | | | | |
Collapse
|
11
|
Savinkova LK, Ponomarenko MP, Ponomarenko PM, Drachkova IA, Lysova MV, Arshinova TV, Kolchanov NA. TATA box polymorphisms in human gene promoters and associated hereditary pathologies. BIOCHEMISTRY (MOSCOW) 2009; 74:117-29. [PMID: 19267666 DOI: 10.1134/s0006297909020011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
TATA-binding protein (TBP) is the first basal factor that recognizes and binds a TATA box on TATA-containing gene promoters transcribed by RNA polymerase II. Data available in the literature are indicative of admissible variability of the TATA box. The TATA box flanking sequences can influence TBP affinity as well as the level of basal and activated transcription. The possibility of mediated involvement in in vivo gene expression regulation of the TBP interactions with variant TATA boxes is supported by data on TATA box polymorphisms and associated human hereditary pathologies. A table containing data on TATA element polymorphisms in human gene promoters (about 40 mutations have been described), associated with particular pathologies, their short functional characteristics, and manifestation mechanisms of TATA-box SNPs is presented. Four classes of polymorphisms are considered: TATA box polymorphisms that weaken and enhance promoter, polymorphisms causing TATA box emergence and disappearance, and human virus TATA box polymorphisms. The described examples are indicative of the polymorphism-associated severe pathologies like thalassemia, the increased risk of hepatocellular carcinoma, sensitivity to H. pylori infection, oral cavity and lung cancers, arterial hypertension, etc.
Collapse
Affiliation(s)
- L K Savinkova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| | | | | | | | | | | | | |
Collapse
|
12
|
Müller J, Kuttler C, Hense BA, Zeiser S, Liebscher V. Transcription, intercellular variability and correlated random walk. Math Biosci 2009; 216:30-9. [PMID: 18762199 DOI: 10.1016/j.mbs.2008.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 07/29/2008] [Accepted: 08/02/2008] [Indexed: 01/03/2023]
Abstract
We develop a simple model for the random distribution of a gene product. It is assumed that the only source of variance is due to switching transcription on and off by a random process. Under the condition that the transition rates between on and off are constant we find that the amount of mRNA follows a scaled Beta distribution. Additionally, a simple positive feedback loop is considered. The simplicity of the model allows for an explicit solution also in this setting. These findings in turn allow, e.g., for easy parameter scans. We find that bistable behavior translates into bimodal distributions. These theoretical findings are in line with experimental results.
Collapse
Affiliation(s)
- Johannes Müller
- Technische Universität München, Centre for Mathematical Sciences, Boltzmannstrasse 3, 85748 Garching/Munich, Germany.
| | | | | | | | | |
Collapse
|
13
|
Autocatalytic genetic networks modeled by piecewise-deterministic Markov processes. J Math Biol 2009; 60:207-46. [DOI: 10.1007/s00285-009-0264-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 02/24/2009] [Indexed: 01/03/2023]
|
14
|
Variations in intracellular levels of TATA binding protein can affect specific genes by different mechanisms. Mol Cell Biol 2007; 28:83-92. [PMID: 17954564 DOI: 10.1128/mcb.00809-07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously showed that reduced intracellular levels of the TATA binding protein (TBP), brought about by tbp heterozygosity in DT40 cells, resulted in a mitotic delay reflecting reduced expression of the mitotic regulator cdc25B but did not significantly affect overall transcription. Here we extend these findings in several ways. We first provide evidence that the decrease in cdc25B expression reflects reduced activity of the cdc25B core promoter in the heterozygous (TBP-het) cells. Strikingly, mutations in a previously described repressor element that overlaps the TATA box restored promoter activity in TBP-het cells, supporting the idea that the sensitivity of this promoter to TBP levels reflects a competition between TBP and the repressor for DNA binding. To determine whether cells might have mechanisms to compensate for fluctuations in TBP levels, we next examined expression of the two known vertebrate TBP homologues, TLP and TBP2. Significantly, mRNAs encoding both were significantly overexpressed relative to levels observed in wild-type cells. In the case of TLP, this was shown to reflect regulation of the core promoter by both TBP and TLP. Together, our results indicate that variations in TBP levels can affect the transcription of specific promoters in distinct ways, but overall transcription may be buffered by corresponding alterations in the expression of TBP homologues.
Collapse
|
15
|
Tsihlis ND, Grove A. The Saccharomyces cerevisiae RNA polymerase III recruitment factor subunits Brf1 and Bdp1 impose a strict sequence preference for the downstream half of the TATA box. Nucleic Acids Res 2006; 34:5585-93. [PMID: 17028095 PMCID: PMC1636458 DOI: 10.1093/nar/gkl534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Association of the TATA-binding protein (TBP) with its cognate site within eukaryotic promoters is key to accurate and efficient transcriptional initiation. To achieve recruitment of Saccharomyces cerevisiae RNA polymerase III, TBP is associated with two additional factors, Brf1 and Bdp1, to form the initiation factor TFIIIB. Previous data have suggested that the structure or dynamics of the TBP–DNA complex may be altered upon entry of Brf1 and Bdp1 into the complex. We show here, using the altered specificity TBP mutant TBPm3 and an iterative in vitro selection assay, that entry of Brf1 and Bdp1 into the complex imposes a strict sequence preference for the downstream half of the TATA box. Notably, the selected sequence (TGTAAATA) is a perfect match to the TATA box of the RNA polymerase III-transcribed U6 small nuclear RNA (SNR6) gene. We suggest that the selected T•A base pair step at the downstream end of the 8 bp TBP site may provide a DNA flexure that promotes TFIIIB-DNA complex formation.
Collapse
Affiliation(s)
| | - Anne Grove
- To whom correspondence should be addressed. Tel: +1 225 578 5148; Fax: +1 225 578 8790;
| |
Collapse
|
16
|
Wierstra I, Alves J. FOXM1c transactivates the human c-myc promoter directly via the two TATA boxes P1 and P2. FEBS J 2006; 273:4645-67. [PMID: 16965535 DOI: 10.1111/j.1742-4658.2006.05468.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
FOXM1c transactivates the c-myc promoter via the P1 and P2 TATA boxes using a new mechanism. Whereas the P1 TATA box TATAATGC requires its sequence context to be FOXM1c responsive, the P2 TATA box TATAAAAG alone is sufficient to confer FOXM1c responsiveness to any minimal promoter. FOXM1c transactivates by binding to the TATA box as well as directly to TATA-binding protein, transcription factor IIB and transcription factor IIA. This new transactivation mechanism is clearly distinguished from the function of FOXM1c as a conventional transcription factor. The central domain of FOXM1c functions as an essential domain for activation via the TATA box, but as an inhibitory domain (retinoblastoma protein-independent transrepression domain and retinoblastoma protein-recruiting negative regulatory domain) for transactivation via conventional FOXM1c-binding sites. Each promoter with the P2 TATA box TATAAAAG is postulated to be transactivated by FOXM1c. This was demonstrated for the promoters of c-fos, hsp70 and histone H2B/a. A database search revealed almost 300 probable FOXM1c target genes, many of which function in proliferation and tumorigenesis. Accordingly, dominant-negative FOXM1c proteins reduced cell growth approximately threefold, demonstrating a proliferation-stimulating function for wild-type FOXM1c.
Collapse
Affiliation(s)
- Inken Wierstra
- Institute of Molecular Biology, Medical School Hannover, Germany.
| | | |
Collapse
|
17
|
Abstract
In eukaryotes, the core promoter serves as a platform for the assembly of transcription preinitiation complex (PIC) that includes TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and RNA polymerase II (pol II), which function collectively to specify the transcription start site. PIC formation usually begins with TFIID binding to the TATA box, initiator, and/or downstream promoter element (DPE) found in most core promoters, followed by the entry of other general transcription factors (GTFs) and pol II through either a sequential assembly or a preassembled pol II holoenzyme pathway. Formation of this promoter-bound complex is sufficient for a basal level of transcription. However, for activator-dependent (or regulated) transcription, general cofactors are often required to transmit regulatory signals between gene-specific activators and the general transcription machinery. Three classes of general cofactors, including TBP-associated factors (TAFs), Mediator, and upstream stimulatory activity (USA)-derived positive cofactors (PC1/PARP-1, PC2, PC3/DNA topoisomerase I, and PC4) and negative cofactor 1 (NC1/HMGB1), normally function independently or in combination to fine-tune the promoter activity in a gene-specific or cell-type-specific manner. In addition, other cofactors, such as TAF1, BTAF1, and negative cofactor 2 (NC2), can also modulate TBP or TFIID binding to the core promoter. In general, these cofactors are capable of repressing basal transcription when activators are absent and stimulating transcription in the presence of activators. Here we review the roles of these cofactors and GTFs, as well as TBP-related factors (TRFs), TAF-containing complexes (TFTC, SAGA, SLIK/SALSA, STAGA, and PRC1) and TAF variants, in pol II-mediated transcription, with emphasis on the events occurring after the chromatin has been remodeled but prior to the formation of the first phosphodiester bond.
Collapse
Affiliation(s)
- Mary C Thomas
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4935, USA
| | | |
Collapse
|
18
|
Kiran K, Ansari SA, Srivastava R, Lodhi N, Chaturvedi CP, Sawant SV, Tuli R. The TATA-box sequence in the basal promoter contributes to determining light-dependent gene expression in plants. PLANT PHYSIOLOGY 2006; 142:364-76. [PMID: 16844831 PMCID: PMC1557599 DOI: 10.1104/pp.106.084319] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 07/10/2006] [Indexed: 05/10/2023]
Abstract
A prototype 13-bp TATA-box sequence, TCACTATATATAG, was mutated at each nucleotide position and examined for its function in the core promoter. Specific nucleotides in the first TATA, the second TATA, as well as the flanking sequences influenced promoter function in transient transformation of tobacco (Nicotiana tabacum var Petit Havana) leaves. The effect of a given mutation on reporter gene expression in light versus dark was variable and sometimes contrasting. Some mutations, like T(7) or A(8)-->C or G, completely inactivated the expression of the minimal promoter in light but not in dark. In general, the sequence requirement for dark expression was less stringent than that for light expression. The selective effect of TATA-box mutations on light versus dark expression was exerted on core promoter function in the chromatin-integrated state also. Even in the presence of an upstream light response activator element, TATA-box mutations influenced modulation of the promoter by light. An A at the eighth position was specifically involved in the red light response of the promoter. Selectivity in gene expression was associated with a high level of transcript initiation from a site that was not active in the dark. Nuclear proteins from dark- and light-grown seedlings showed that the sequence variation within the TATA-box governs the formation of alternative transcriptional complexes. The experiments give direct evidence for the role of a core TATA-box sequence in determining the level as well as selectivity of gene expression in plants.
Collapse
Affiliation(s)
- Kanti Kiran
- National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | | | | | | | | | | | | |
Collapse
|
19
|
Faiger H, Ivanchenko M, Cohen I, Haran TE. TBP flanking sequences: asymmetry of binding, long-range effects and consensus sequences. Nucleic Acids Res 2006; 34:104-19. [PMID: 16407329 PMCID: PMC1326239 DOI: 10.1093/nar/gkj414] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We carried out in vitro selection experiments to systematically probe the effects of TATA-box flanking sequences on its interaction with the TATA-box binding protein (TBP). This study validates our previous hypothesis that the effect of the flanking sequences on TBP/TATA-box interactions is much more significant when the TATA box has a context-dependent DNA structure. Several interesting observations, with implications for protein-DNA interactions in general, came out of this study. (i) Selected sequences are selection-method specific and TATA-box dependent. (ii) The variability in binding stability as a function of the flanking sequences for (T-A)4 boxes is as large as the variability in binding stability as a function of the core TATA box itself. Thus, for (T-A)4 boxes the flanking sequences completely dominate and determine the binding interaction. (iii) Binding stabilities of all but one of the individual selected sequences of the (T-A)4 form is significantly higher than that of their mononucleotide-based consensus sequence. (iv) Even though the (T-A)4 sequence is symmetric the flanking sequence pattern is asymmetric. We propose that the plasticity of (T-A)n sequences increases the number of conformationally distinct TATA boxes without the need to extent the TBP contact region beyond the eight-base-pair long TATA box.
Collapse
Affiliation(s)
| | | | | | - Tali E. Haran
- To whom correspondence should be addressed. Tel: +972 4 8293767; Fax: +972 4 8225153;
| |
Collapse
|
20
|
Tang GQ, Bandwar RP, Patel SS. Extended upstream A-T sequence increases T7 promoter strength. J Biol Chem 2005; 280:40707-13. [PMID: 16215231 DOI: 10.1074/jbc.m508013200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriophage T7 promoters contain a consensus sequence from -17 to +6 relative to the transcription start site, +1. In addition, the strong class III promoters are characterized by an extended AT-rich region upstream of -17, which is often interrupted by one or more GC base pairs in the weaker class II promoters. Herein we studied the role of the AT-rich region upstream of -17 in transcription regulation of T7 RNA polymerase. Equilibrium DNA binding studies with promoter fragments of consensus sequence truncated at various positions between -17 and -27 showed that the polymerase-promoter complex is significantly stabilized as the upstream AT-rich sequence is extended to and beyond -22. Similarly, promoters in which the AT-rich region from -17 to -22 is interrupted by several GC base pairs showed weak binding. Kinetic studies indicated that the presence of extended AT-rich sequence slows the dissociation rate constant of the polymerase-promoter complex and slightly stimulates the association rate constant, thereby increasing the stability of the complex. Measurement of the transcription activity revealed that the extended AT-rich region does not affect the kinetics of abortive synthesis up to the formation of 8-nucleotide RNA but causes accumulation of longer abortive products between 9 and 13 nucleotides. The observed effects of the upstream DNA region were AT sequence-specific, and the results suggested a larger role for the extended AT-rich sequence that has been unappreciated previously. We propose that the AT-rich DNA sequence upstream of -17 plays a role in modulating the efficiency of transcription initiation by affecting both the affinity of T7 RNA polymerase for the promoter and the efficiency of promoter clearance.
Collapse
Affiliation(s)
- Guo-Qing Tang
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey (UMDNJ) Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
21
|
Huang Y, McGillicuddy E, Weindel M, Dong S, Maraia RJ. The fission yeast TFIIB-related factor limits RNA polymerase III to a TATA-dependent pathway of TBP recruitment. Nucleic Acids Res 2003; 31:2108-16. [PMID: 12682361 PMCID: PMC153730 DOI: 10.1093/nar/gkg301] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The RNA polymerase (pol) III-transcribed (e.g. tRNA and 5S rRNA) genes of traditionally studied organisms rely on gene-internal promoters that precisely position the initiation factor, TFIIIB, on the upstream promoter-less DNA. This is accomplished by the ability of the TFIIIB subunit, TFIIB-related factor (Brf1), to make stable protein-protein interactions with TATA-binding protein (TBP) and place it on the promoter-less upstream DNA. Unlike traditional model organisms, Schizosaccharomyces pombe tRNA and 5S rRNA genes contain upstream TATA promoters that are required to program functional pol III initiation complexes. In this study we demonstrate that S.pombe (Sp)Brf does not form stable interactions with TBP in the absence of DNA using approaches that do reveal stable association of TBP and S.cerevisiae (Sc)Brf1. Gel mobility analyses demonstrate that a TBP-TATA DNA complex can recruit SpBrf to a Pol III promoter. Consistent with this, overproduction of SpBrf in S.pombe increases the expression of a TATA-dependent, but not a TATA-less, suppressor tRNA gene. Since previous whole genome analysis also revealed TATA elements upstream of tRNA genes in Arabidopsis, this pathway may be more widespread than appreciated previously.
Collapse
Affiliation(s)
- Ying Huang
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2753, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
The functions of the basal transcription factors involved in RNA polymerase II dependent transcription have been the focus of many years of biochemical analysis. Recent advances have shed some light on the structure of these factors, how conformational changes and intramolecular interactions regulate activity, and have revealed an expanded role for TFIIH in nuclear transcription.
Collapse
Affiliation(s)
- Joseph C Reese
- Penn State University, Department of Biochemistry and Molecular Biology, 203 Althouse lab, University Park, Pennsylvania 16802, USA.
| |
Collapse
|
23
|
Cabart P, Murphy S. Assembly of human small nuclear RNA gene-specific transcription factor IIIB complex de novo on and off promoter. J Biol Chem 2002; 277:26831-8. [PMID: 12016223 DOI: 10.1074/jbc.m203119200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In humans, transcription factor IIIB (TFIIIB)-alpha governs basal transcription from small nuclear RNA genes by RNA polymerase III (pol III). One of the components of this complex, BRFU/TFIIIB50, is specific for these promoters, whereas TATA-binding protein (TBP) and hB" are required for pol III transcription from both gene external and internal promoters. We show that hB" is specifically recruited to a promoter-bound TBP.BRFU complex, which we have previously demonstrated as forming on TATA-containing templates. The N-terminal region of BRFU, containing a zinc ribbon domain, acts as a damper of hB" binding. TBP deactivates this negative mechanism through protein-protein contacts with both BRFU and hB", which may then promote their cooperative binding to form TFIIIB-alpha. In addition, we have identified a GC-rich sequence downstream from the TATA box (the BURE) which, depending on the strength of TATA box, can either enhance BRFU binding to the TBP.DNA complex or hB" association with the BRFU.TBP.DNA complex, and subsequently stimulate pol III transcription. Moreover, mutation of the BURE reduces pol III transcription and induces transcription by RNA polymerase II from the U2 gene promoter carrying a minimal TATA box.
Collapse
Affiliation(s)
- Pavel Cabart
- Chemical Pathology Unit, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom.
| | | |
Collapse
|
24
|
Powell RM, Parkhurst KM, Parkhurst LJ. Comparison of TATA-binding protein recognition of a variant and consensus DNA promoters. J Biol Chem 2002; 277:7776-84. [PMID: 11726667 DOI: 10.1074/jbc.m110147200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Assembly of transcription pre-initiation complexes proceeds from the initial complex formed between "TATA" bearing promoter DNA and the TATA-binding protein (TBP). Our laboratory has been investigating the relationships among TATA sequence, TBP center dot TATA solution structure, recognition mechanisms, and transcription efficiency. TBP center dot TATA interactions have been modeled by global analysis of detailed kinetic and thermodynamic data obtained using fluorimetric and fluorometric techniques in conjunction with fluorescence resonance energy transfer. We have reported recently that TBP recognition of two consensus promoters, adenovirus major late (AdMLP: TATAAAAG) and E4 (TATATATA), is well described by a linear two-intermediate mechanism with simultaneous DNA binding and bending. Similar DNA geometries and high transcription efficiencies characterize these TBP x TATA complexes. Here we show that, in contrast to the consensus sequences, TBP recognition of a variant sequence (C7: TATAAACG) is described by a three-step model with two branching pathways. One pathway proceeds through an intermediate having severely bent DNA, reminiscent of the consensus interactions, with the other branch yielding a unique conformer with shallowly bent DNA. The resulting TBP x C7 complex has a dramatically different solution conformation than for TBP x DNA(CONSENSUS) and is correlated with diminished relative transcription activity. The temperature dependence of the TBP x C7 helical bend is postulated to derive from population shifts between the conformers with slightly and severely bent DNA.
Collapse
Affiliation(s)
- Robyn M Powell
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, USA
| | | | | |
Collapse
|
25
|
Ferguson HA, Kugel JF, Goodrich JA. Kinetic and mechanistic analysis of the RNA polymerase II transcrption reaction at the human interleukin-2 promoter. J Mol Biol 2001; 314:993-1006. [PMID: 11743717 DOI: 10.1006/jmbi.2000.5215] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin-2 (IL-2) is a cytokine critical for the proper stimulation of T-cells during the mammalian immune response. Shortly after T-cell stimulation, transcription of the IL-2 gene is upregulated. Here, we studied the kinetic mechanism of basal transcription at the IL-2 promoter using a human in vitro RNA polymerase II transcription system. We experimentally divided the transcription reaction into discrete steps, including preinitiation complex formation, initiation, escape commitment, and promoter escape. Using pre-steady state approaches, we measured the rate at which each of these steps occurs. We found that the rate of functional preinitiation complex formation limits the overall rate of transcription at the IL-2 promoter under the conditions described here. Furthermore, we found that the recruitment of TFIIF and RNA polymerase II to a TFIID/TFIIA/TFIIB/promoter complex dictates the rate of preinitiation complex formation. The rate of synthesis of 28 nt RNA from preinitiation complexes was rapid compared to the rate of preinitiation complex formation. Moreover, we found that the synthesis of a four nucleotide RNA was necessary and sufficient to rapidly complete the escape commitment step of transcription at the IL-2 promoter. Comparative experiments with the adenovirus major late promoter revealed that, while the overall mechanism of transcription is the same at the two promoters, promoter sequence and/or architecture dictate the rate of promoter escape. We present a kinetic model for a single round of basal transcription at the IL-2 promoter that provides insight into mechanisms by which the IL-2 gene is transcriptionally regulated.
Collapse
Affiliation(s)
- H A Ferguson
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Campus Box 215, Boulder, CO.80309-0215, USA
| | | | | |
Collapse
|
26
|
Jung Y, Mikata Y, Lippard SJ. Kinetic studies of the TATA-binding protein interaction with cisplatin-modified DNA. J Biol Chem 2001; 276:43589-96. [PMID: 11568187 DOI: 10.1074/jbc.m108299200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TATA-binding protein (TBP) recognizes the TATA box element of transcriptional promoters and recruits other initiation factors. This essential protein binds selectively to cisplatin-damaged DNA. Electrophoretic mobility shift assays were performed to study the kinetics of TBP binding both to the TATA box and to cisplatin-damaged DNA in different sequence contexts. TBP binds with high affinity (K(d) = 0.3 nm) to DNA containing site-specific cisplatin 1,2-intrastrand d(GpG) cross-links. The k(on) and k(off) values for the formation of these TBP complexes are 1-3 x 10(5) m(-1) s(-1) and approximately 1-5 x 10(-4) s(-1), respectively, similar to the corresponding values for the formation of a TBP-TATA box complex. In electrophoretic mobility shift assay competition assays, cisplatin-damaged DNA extensively sequesters TBP from its natural binding site, the TATA box. Nine DNA probes were prepared to determine the flanking sequence dependence of TBP binding to cisplatin-modified DNA. TBP clearly displays sequence context selectivity for platinated DNA, very similar to but not as dramatic as that of the high mobility group protein HMGB1. When TBP was added to an in vitro nucleotide excision repair assay, it specifically shielded cisplatin-modified 1,2-(GpG) intrastrand cross-links from repair. These results indicate that TBP is likely to be a key protein in mediating the cytotoxicity of cisplatin.
Collapse
Affiliation(s)
- Y Jung
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | | | | |
Collapse
|
27
|
Das D, Scovell WM. The binding interaction of HMG-1 with the TATA-binding protein/TATA complex. J Biol Chem 2001; 276:32597-605. [PMID: 11390376 DOI: 10.1074/jbc.m011792200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
High mobility protein-1 (HMG-1) has been shown to regulate transcription by RNA polymerase II. In the context that it acts as a transcriptional repressor, it binds to the TATA-binding protein (TBP) to form the HMG-1/TBP/TATA complex, which is proposed to inhibit the assembly of the preinitiation complex. By using electrophoretic mobility shift assays, we show that the acidic C-terminal domain of HMG-1 and the N terminus of human TBP are the domains that are essential for the formation of a stable HMG-1/TBP/TATA complex. HMG-1 binding increases the affinity of TBP for the TATA element by 20-fold, which is reflected in a significant stimulation of the rate of TBP binding, with little effect on the dissociation rate constant. In support of the binding target of HMG-1 being the N terminus of hTBP, the N-terminal polypeptide of human TBP competes with and inhibits HMG-1/TBP/TATA complex formation. Deletion of segments of the N terminus of human TBP was used to map the region(s) where HMG-1 binds. These findings indicate that interaction of HMG-1 with the Q-tract (amino acids 55-95) in hTBP is primarily responsible for stable complex formation. In addition, HMG-1 and the monoclonal antibody, 1C2, specific to the Q-tract, compete for the same site. Furthermore, calf thymus HMG-1 forms a stable complex with the TBP/TATA complex that contains TBP from either human or Drosophila but not yeast. This is again consistent with the importance of the Q-tract for this stable interaction and shows that the interaction extends over many species but does not include yeast TBP.
Collapse
Affiliation(s)
- D Das
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | | |
Collapse
|
28
|
Cloutier TE, Librizzi MD, Mollah AK, Brenowitz M, Willis IM. Kinetic trapping of DNA by transcription factor IIIB. Proc Natl Acad Sci U S A 2001; 98:9581-6. [PMID: 11481428 PMCID: PMC55495 DOI: 10.1073/pnas.161292298] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
High levels of RNA polymerase III gene transcription are achieved by facilitated recycling of the polymerase on transcription factor IIIB (TFIIIB)-DNA complexes that are stable through multiple rounds of initiation. TFIIIB-DNA complexes in yeast comprise the TATA-binding protein (TBP), the TFIIB-related factor TFIIIB70, and TFIIIB90. The high stability of the TFIIIB-DNA complex is conferred by TFIIIB90 binding to TFIIIB70-TBP-DNA complexes. This stability is thought to result from compound bends introduced in the DNA by TBP and TFIIIB90 and by protein-protein interactions that obstruct DNA dissociation. Here we present biochemical evidence that the high stability of TFIIIB-DNA complexes results from kinetic trapping of the DNA. Thermodynamic analysis shows that the free energies of formation of TFIIIB70-TBP-DNA (DeltaG degrees = -12.10 +/- 0.12 kcal/mol) and TFIIIB-DNA (DeltaG degrees = -11.90 +/- 0.14 kcal/mol) complexes are equivalent whereas a kinetic analysis shows that the half-lives of these complexes (46 +/- 3 min and 95 +/- 6 min, respectively) differ significantly. The differential stability of these isoenergetic complexes demonstrates that TFIIIB90 binding energy is used to drive conformational changes and increase the barrier to complex dissociation.
Collapse
Affiliation(s)
- T E Cloutier
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|