1
|
Jakobi AJ, Passon DM, Knoops K, Stellato F, Liang M, White TA, Seine T, Messerschmidt M, Chapman HN, Wilmanns M. In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells. IUCRJ 2016; 3:88-95. [PMID: 27006771 PMCID: PMC4775156 DOI: 10.1107/s2052252515022927] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. The observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined.
Collapse
Affiliation(s)
- Arjen J. Jakobi
- Hamburg Unit c/o DESY, European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22607 Hamburg, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Daniel M. Passon
- Hamburg Unit c/o DESY, European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22607 Hamburg, Germany
| | - Kèvin Knoops
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Francesco Stellato
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Mengning Liang
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Thomas A. White
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Thomas Seine
- Hamburg Unit c/o DESY, European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22607 Hamburg, Germany
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Marc Messerschmidt
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Henry N. Chapman
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
- Center for Ultrafast Imaging, Luruper Chaussee 149, 22607 Hamburg, Germany
| | - Matthias Wilmanns
- Hamburg Unit c/o DESY, European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22607 Hamburg, Germany
- University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
2
|
Kiel JAKW, Otzen M, Veenhuis M, van der Klei IJ. Obstruction of polyubiquitination affects PTS1 peroxisomal matrix protein import. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1745:176-86. [PMID: 16129125 DOI: 10.1016/j.bbamcr.2005.01.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 01/14/2005] [Accepted: 01/14/2005] [Indexed: 11/20/2022]
Abstract
Pex4p is an ubiquitin-conjugating enzyme that functions at a late stage of peroxisomal matrix protein import. Here we show that in the methylotrophic yeast Hansenula polymorpha production of a mutant form of ubiquitin (Ub(K48R)) has a dramatic effect on PTS1 matrix protein import. This effect was not observed in cells lacking Pex4p, in which the peroxisome biogenesis defect was largely suppressed. These findings provide the first indication that the function of Pex4p in matrix protein import involves polyubiquitination. We also demonstrate that the production of Ub(K48R) in H. polymorpha results in enhanced Pex5p degradation. A similar observation was made in cells in which the PEX4 gene was deleted. We demonstrate that in both strains Pex5p degradation was due to ubiquitination and subsequent degradation by the proteasome. This process appeared to be dependent on a conserved lysine residue in the N-terminus of Pex5p (Lys21) and was prevented in a Pex5p(K21R) mutant. We speculate that the degradation of Pex5p by the proteasome is important to remove receptor molecules that are stuck at a late stage of the Pex5p-mediated protein import pathway.
Collapse
Affiliation(s)
- Jan A K W Kiel
- Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, P.O. Box 14, NL-9750 AA Haren, The Netherlands
| | | | | | | |
Collapse
|
3
|
Moyersoen J, Choe J, Fan E, Hol WGJ, Michels PAM. Biogenesis of peroxisomes and glycosomes: trypanosomatid glycosome assembly is a promising new drug target. FEMS Microbiol Rev 2005; 28:603-43. [PMID: 15539076 DOI: 10.1016/j.femsre.2004.06.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 06/14/2004] [Accepted: 06/15/2004] [Indexed: 10/26/2022] Open
Abstract
In trypanosomatids (Trypanosoma and Leishmania), protozoa responsible for serious diseases of mankind in tropical and subtropical countries, core carbohydrate metabolism including glycolysis is compartmentalized in peculiar peroxisomes called glycosomes. Proper biogenesis of these organelles and the correct sequestering of glycolytic enzymes are essential to these parasites. Biogenesis of glycosomes in trypanosomatids and that of peroxisomes in other eukaryotes, including the human host, occur via homologous processes involving proteins called peroxins, which exert their function through multiple, transient interactions with each other. Decreased expression of peroxins leads to death of trypanosomes. Peroxins show only a low level of sequence conservation. Therefore, it seems feasible to design compounds that will prevent interactions of proteins involved in biogenesis of trypanosomatid glycosomes without interfering with peroxisome formation in the human host cells. Such compounds would be suitable as lead drugs against trypanosomatid-borne diseases.
Collapse
Affiliation(s)
- Juliette Moyersoen
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Université Catholique de Louvain, ICP-TROP 74.39, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | | | | | | | | |
Collapse
|
4
|
Kiel JAKW, van den Berg M, Bovenberg RAL, van der Klei IJ, Veenhuis M. Penicillium chrysogenum Pex5p mediates differential sorting of PTS1 proteins to microbodies of the methylotrophic yeast Hansenula polymorpha. Fungal Genet Biol 2004; 41:708-20. [PMID: 15275666 DOI: 10.1016/j.fgb.2004.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Accepted: 02/20/2004] [Indexed: 10/26/2022]
Abstract
We have isolated the Penicillium chrysogenum pex5 gene encoding the receptor for microbody matrix proteins containing a type 1 peroxisomal targeting signal (PTS1). Pc-pex5 contains 2 introns and encodes a protein of approximately 75 kDa. P. chrysogenum pex5 disruptants appear to be highly unstable, show poor growth, and are unable to sporulate asexually. Furthermore, pex5 cells mislocalize a fluorescent PTS1 reporter protein to the cytosol. Pc-pex5 was expressed in a PEX5 null mutant of the yeast Hansenula polymorpha. Detailed analysis demonstrated that the PTS1 proteins dihydroxyacetone synthase and catalase were almost fully imported into microbodies. Surprisingly, alcohol oxidase, which also depends on Pex5p for import into microbodies, remained mainly in the cytosol. Thus, P. chrysogenum Pex5p has a different specificity of cargo recognition than its H. polymorpha counterpart. This was also suggested by the observation that Pc-Pex5p sorted a reporter protein fused to various functional PTS1 signals with different efficiencies.
Collapse
Affiliation(s)
- Jan A K W Kiel
- Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, P.O. Box 14, Haren NL-9750 AA, The Netherlands.
| | | | | | | | | |
Collapse
|
5
|
Gunkel K, van Dijk R, Veenhuis M, van der Klei IJ. Routing of Hansenula polymorpha alcohol oxidase: an alternative peroxisomal protein-sorting machinery. Mol Biol Cell 2004; 15:1347-55. [PMID: 14699075 PMCID: PMC363140 DOI: 10.1091/mbc.e03-04-0258] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2003] [Revised: 11/05/2003] [Accepted: 11/07/2003] [Indexed: 01/20/2023] Open
Abstract
Import of Hansenula polymorpha alcohol oxidase (AO) into peroxisomes is dependent on the PTS1 receptor, HpPex5p. The PTS1 of AO (-LARF) is sufficient to direct reporter proteins to peroxisomes. To study AO sorting in more detail, strains producing mutant AO proteins were constructed. AO containing a mutation in the FAD binding fold was mislocalized to the cytosol. This indicates that the PTS1 of AO is not sufficient for import of AO. AO protein in which the PTS1 was destroyed (-LARA) was normally sorted to peroxisomes. Moreover, C-terminal deletions of up to 16 amino acids did not significantly affect AO import, indicating that the PTS1 was not necessary for targeting. Consistent with these observations we found that AO import occurred independent from the C-terminal TPR-domain of HpPex5p, known to bind PTS1 peptides. Synthesis of the N-terminal domain (amino acids 1-272) of HpPex5p in pex5 cells restored AO import, whereas other PTS1 proteins were mislocalized to the cytosol. These data indicate that AO is imported via a novel HpPex5p-dependent protein translocation pathway, which does not require the PTS1 of AO and the C-terminal TPR domains of HpPex5p, but involves FAD binding and the N-terminus of HpPex5p.
Collapse
Affiliation(s)
- Katja Gunkel
- Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9750 AA Haren, The Netherlands
| | | | | | | |
Collapse
|
6
|
Abstract
Peroxisome biogenesis conceptually consists of the (a) formation of the peroxisomal membrane, (b) import of proteins into the peroxisomal matrix and (c) proliferation of the organelles. Combined genetic and biochemical approaches led to the identification of 25 PEX genes-encoding proteins required for the biogenesis of peroxisomes, so-called peroxins. Peroxisomal matrix and membrane proteins are synthesized on free ribosomes in the cytosol and posttranslationally imported into the organelle in an unknown fashion. The protein import into the peroxisomal matrix and the targeting and insertion of peroxisomal membrane proteins is performed by distinct machineries. At least three peroxins have been shown to be involved in the topogenesis of peroxisomal membrane proteins. Elaborate peroxin complexes form the machinery which in a concerted action of the components transports folded, even oligomeric matrix proteins across the peroxisomal membrane. The past decade has significantly improved our knowledge of the involvement of certain peroxins in the distinct steps of the import process, like cargo recognition, docking of cargo-receptor complexes to the peroxisomal membrane, translocation, and receptor recycling. This review summarizes our knowledge of the functional role the known peroxins play in the biogenesis and maintenance of peroxisomes. Ideas on the involvement of preperoxisomal structures in the biogenesis of the peroxisomal membrane are highlighted and special attention is paid to the concept of cargo protein aggregation as a presupposition for peroxisomal matrix protein import.
Collapse
Affiliation(s)
- J H Eckert
- Institut für Physiologische Chemie, Medizinische Fakultät, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | |
Collapse
|
7
|
Abstract
Fifteen years ago, we had a model of peroxisome biogenesis that involved growth and division of preexisting peroxisomes. Today, thanks to genetically tractable model organisms and Chinese hamster ovary cells, 23 PEX genes have been cloned that encode the machinery ("peroxins") required to assemble the organelle. Membrane assembly and maintenance requires three of these (peroxins 3, 16, and 19) and may occur without the import of the matrix (lumen) enzymes. Matrix protein import follows a branched pathway of soluble recycling receptors, with one branch for each class of peroxisome targeting sequence (two are well characterized), and a common trunk for all. At least one of these receptors, Pex5p, enters and exits peroxisomes as it functions. Proliferation of the organelle is regulated by Pex11p. Peroxisome biogenesis is remarkably conserved among eukaryotes. A group of fatal, inherited neuropathologies are recognized as peroxisome biogenesis diseases; the responsible genes are orthologs of yeast or Chinese hamster ovary peroxins. Future studies must address the mechanism by which folded, oligomeric enzymes enter the organelle, how the peroxisome divides, and how it segregates at cell division. Most pex mutants contain largely empty membrane "ghosts" of peroxisomes; a few mutants apparently lacking peroxisomes entirely have led some to propose the de novo formation of the organelle. However, there is evidence for residual peroxisome membrane vesicles ("protoperoxisomes") in some of these, and the preponderance of data supports the continuity of the peroxisome compartment in space and time and between generations of cells.
Collapse
Affiliation(s)
- P E Purdue
- Department of Cell Biology and Anatomy, Mount Sinai School of Medicine, New York, NY 10029-6574, USA.
| | | |
Collapse
|
8
|
Current Awareness. Yeast 2001. [DOI: 10.1002/yea.686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|