1
|
Habeeb E, Aldosari S, Saghir SA, Cheema M, Momenah T, Husain K, Omidi Y, Rizvi SA, Akram M, Ansari RA. Role of Environmental Toxicants in the Development of Hypertensive and Cardiovascular Diseases. Toxicol Rep 2022; 9:521-533. [PMID: 35371924 PMCID: PMC8971584 DOI: 10.1016/j.toxrep.2022.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
The incidence of hypertension with diabetes mellitus (DM) as a co-morbid condition is on the rise worldwide. In 2000, an estimated 972 million adults had hypertension, which is predicted to grow to 1.56 billion by 2025. Hypertension often leads to diabetes mellitus that strongly puts the patients at an increased risk of cardiovascular, kidney, and/or atherosclerotic diseases. Hypertension has been identified as a major risk factor for the development of diabetes; patients with hypertension are at two-to-three-fold higher risk of developing diabetes than patients with normal blood pressure (BP). Causes for the increase in hypertension and diabetes are not well understood, environmental factors (e.g., exposure to environmental toxicants like heavy metals, organic solvents, pesticides, alcohol, and urban lifestyle) have been postulated as one of the reasons contributing to hypertension and cardiovascular diseases (CVD). The mechanism of action(s) of these toxicants in developing hypertension and CVDs is not well defined. Research studies have linked hypertension with the chronic consumption of alcohol and exposure to metals like lead, mercury, and arsenic have also been linked to hypertension and CVD. Workers chronically exposed to styrene have a higher incidence of CVD. Recent studies have demonstrated that exposure to particulate matter (PM) in diesel exhaust and urban air contributes to increased CVD and mortality. In this review, we have imparted the role of environmental toxicants such as heavy metals, organic pollutants, PM, alcohol, and some drugs in hypertension and CVD along with possible mechanisms and limitations in extrapolating animal data to humans. Rising incidence of hypertension may be linked to chronic exposure with environmental toxicants. Urban lifestyle and alcohol intake may be responsible for increased incidence of hypertension among urbanites. Exposure with organic solvent, heavy metals and pesticides could also be contributing to the rise in blood pressure.
Collapse
Affiliation(s)
- Ehsan Habeeb
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| | - Saad Aldosari
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| | - Shakil A. Saghir
- The Scotts Company LLC, Marysville, OH 43041, USA
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Mariam Cheema
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| | - Tahani Momenah
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| | - Kazim Husain
- Department of Gastrointestinal Oncology (FOB-2), Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| | - Syed A.A. Rizvi
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, VA 23668, USA
| | - Muhammad Akram
- Department of Eastern Medicine and Surgery, Government College University Faisalabad, Faisalabad, Pakistan
| | - Rais A. Ansari
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
- Corresponding author.
| |
Collapse
|
2
|
Wang L, Zhang Z, Liu D, Yuan K, Zhu G, Qi X. Association of -344C/T polymorphism in the aldosterone synthase (CYP11B2) gene with cardiac and cerebrovascular events in Chinese patients with hypertension. J Int Med Res 2020; 48:300060520949409. [PMID: 32938270 PMCID: PMC7503017 DOI: 10.1177/0300060520949409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Objective Several recent studies have shown that the aldosterone synthase gene (CYP11B2) −344C/T polymorphism is related to cardiovascular diseases. However, whether the −344C allele influences the incidence of cardiovascular diseases in Chinese patients with hypertension is unclear. Methods Chinese patients with essential hypertension were genotyped for the −344C/T polymorphism in CYP11B2 (n = 755; CC, n = 112; CT, n = 361; TT, n = 282) and followed for 11 years for major adverse cardiovascular events (MACEs), including stroke, onset of coronary artery disease (CAD), and CAD-related death. Established cardiovascular risk factors were used to adjust the multivariate Cox analysis. Results After a mean follow-up period of 7.60 ± 1.12 years, a significantly higher incidence of MACEs was seen in patients with the CC genotype than in those with the CT and TT genotypes. The CC variant was significantly and independently predictive of MACEs (hazard ratio = 2.049), CAD (hazard ratio = 1.754), and stroke (hazard ratio = 2.588), but not CAD-related stroke or death. Conclusion The CYP11B2 −344 CC genotype is a risk factor for CAD and stroke, independent of other established cardiovascular risk factors in Chinese patients with hypertension.
Collapse
Affiliation(s)
- Lili Wang
- School of Graduate, Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China.,Department of Cardiology Center, Hebei General Hospital, Shijiazhuang, Hebei Province, People's Republic of China
| | - Zhi Zhang
- Department of Cardiology Center, Hebei General Hospital, Shijiazhuang, Hebei Province, People's Republic of China
| | - Dongxia Liu
- Department of Cardiology Center, Hebei General Hospital, Shijiazhuang, Hebei Province, People's Republic of China
| | - Kexin Yuan
- Department of Cardiology Center, Hebei General Hospital, Shijiazhuang, Hebei Province, People's Republic of China
| | - Guohua Zhu
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiaoyong Qi
- School of Graduate, Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China.,Department of Cardiology Center, Hebei General Hospital, Shijiazhuang, Hebei Province, People's Republic of China
| |
Collapse
|
3
|
Dhole B, Gupta S, Shekhar S, Kumar A. A Novel Antigonadotropic Role of Thyroid Stimulating Hormone on Leydig Cell-Derived Mouse Leydig Tumor Cells-1 Line. ANNALS OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES (INDIA) 2020; 56:30-37. [PMID: 32655207 DOI: 10.1055/s-0040-1709091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Subclinical hypothyroid men characterized by a rise in only thyroid stimulating hormone (TSH) levels and normal thyroid hormone levels showed a fall in their serum progesterone and testosterone levels. This suggested a role of TSH in regulating Leydig cell steroidogenesis. Therefore, we investigated the direct role of TSH on steroid production and secretion using a mouse Leydig tumour cell line, MLTC-1. MLTC-1 cells were treated with different doses of TSH isolated from porcine pituitary as well as recombinant TSH. Steroid secretion was measured by radioimmunoassay. The mRNA levels of steroidogenic enzymes were quantitated by real time PCR whereas the corresponding protein levels were determined by Western blot. In MLTC-1 cells, pituitary TSH as well as recombinant TSH inhibited progesterone and testosterone secretion in a dose dependent manner. The inhibitory action of TSH on steroid secretion was unique and not mimicked by other anterior pituitary hormones including FSH and ACTH. Recombinant TSH showed no effect on StAR and CYP11A1, the enzymes catalysing the non-steroidogenic and steroidogenic rate-limiting steps of steroid synthesis respectively. Recombinant TSH was shown to inhibit steroidogenesis in MLTC-1 cells by inhibiting the 3β hydroxy steroid dehydrogenase mRNA and protein levels, the enzyme that catalyses the conversion of pregnenolone to progesterone. This inhibitory effect of TSH is probably direct as both mRNA and protein of the TSH receptor were shown to be present in the MLTC-1 cells.
Collapse
Affiliation(s)
- Bodhana Dhole
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi- 110029, India
| | - Surabhi Gupta
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi- 110029, India
| | - Skand Shekhar
- Section on Endocrinology and Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anand Kumar
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi- 110029, India
| |
Collapse
|
4
|
Rendic SP, Peter Guengerich F. Human cytochrome P450 enzymes 5-51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition - toxic effects and benefits. Drug Metab Rev 2019; 50:256-342. [PMID: 30717606 DOI: 10.1080/03602532.2018.1483401] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 (P450, CYP) enzymes have long been of interest due to their roles in the metabolism of drugs, pesticides, pro-carcinogens, and other xenobiotic chemicals. They have also been of interest due to their very critical roles in the biosynthesis and metabolism of steroids, vitamins, and certain eicosanoids. This review covers the 22 (of the total of 57) human P450s in Families 5-51 and their substrate selectivity. Furthermore, included is information and references regarding inducibility, inhibition, and (in some cases) stimulation by chemicals. We update and discuss important aspects of each of these 22 P450s and questions that remain open.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- b Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| |
Collapse
|
5
|
Abstract
Aldosterone is a steroid hormone synthesized in and secreted from the outer layer of the adrenal cortex, the zona glomerulosa. Aldosterone is responsible for regulating sodium homeostasis, thereby helping to control blood volume and blood pressure. Insufficient aldosterone secretion can lead to hypotension and circulatory shock, particularly in infancy. On the other hand, excessive aldosterone levels, or those too high for sodium status, can cause hypertension and exacerbate the effects of high blood pressure on multiple organs, contributing to renal disease, stroke, visual loss, and congestive heart failure. Aldosterone is also thought to directly induce end-organ damage, including in the kidneys and heart. Because of the significance of aldosterone to the physiology and pathophysiology of the cardiovascular system, it is important to understand the regulation of its biosynthesis and secretion from the adrenal cortex. Herein, the mechanisms regulating aldosterone production in zona glomerulosa cells are discussed, with a particular emphasis on signaling pathways involved in the secretory response to the main controllers of aldosterone production, the renin-angiotensin II system, serum potassium levels and adrenocorticotrophic hormone. The signaling pathways involved include phospholipase C-mediated phosphoinositide hydrolysis, inositol 1,4,5-trisphosphate, cytosolic calcium levels, calcium influx pathways, calcium/calmodulin-dependent protein kinases, diacylglycerol, protein kinases C and D, 12-hydroxyeicostetraenoic acid, phospholipase D, mitogen-activated protein kinase pathways, tyrosine kinases, adenylate cyclase, and cAMP-dependent protein kinase. A complete understanding of the signaling events regulating aldosterone biosynthesis may allow the identification of novel targets for therapeutic interventions in hypertension, primary aldosteronism, congestive heart failure, renal disease, and other cardiovascular disorders.
Collapse
Affiliation(s)
- Wendy B Bollag
- Charlie Norwood VA Medical Center, Augusta, Georgia; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, Georgia
| |
Collapse
|
6
|
Abstract
The purpose of this article is to review fundamentals in adrenal gland histophysiology. Key findings regarding the important signaling pathways involved in the regulation of steroidogenesis and adrenal growth are summarized. We illustrate how adrenal gland morphology and function are deeply interconnected in which novel signaling pathways (Wnt, Sonic hedgehog, Notch, β-catenin) or ionic channels are required for their integrity. Emphasis is given to exploring the mechanisms and challenges underlying the regulation of proliferation, growth, and functionality. Also addressed is the fact that while it is now well-accepted that steroidogenesis results from an enzymatic shuttle between mitochondria and endoplasmic reticulum, key questions still remain on the various aspects related to cellular uptake and delivery of free cholesterol. The significant progress achieved over the past decade regarding the precise molecular mechanisms by which the two main regulators of adrenal cortex, adrenocorticotropin hormone (ACTH) and angiotensin II act on their receptors is reviewed, including structure-activity relationships and their potential applications. Particular attention has been given to crucial second messengers and how various kinases, phosphatases, and cytoskeleton-associated proteins interact to ensure homeostasis and/or meet physiological demands. References to animal studies are also made in an attempt to unravel associated clinical conditions. Many of the aspects addressed in this article still represent a challenge for future studies, their outcome aimed at providing evidence that the adrenal gland, through its steroid hormones, occupies a central position in many situations where homeostasis is disrupted, thus highlighting the relevance of exploring and understanding how this key organ is regulated. © 2014 American Physiological Society. Compr Physiol 4:889-964, 2014.
Collapse
Affiliation(s)
- Nicole Gallo-Payet
- Division of Endocrinology, Department of Medicine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, and Centre de Recherche Clinique Étienne-Le Bel of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, Quebec, Canada
| | | |
Collapse
|
7
|
Olala LO, Shapiro BA, Merchen TC, Wynn JJ, Bollag WB. Protein kinase C and Src family kinases mediate angiotensin II-induced protein kinase D activation and acute aldosterone production. Mol Cell Endocrinol 2014; 392:173-81. [PMID: 24859649 PMCID: PMC4120960 DOI: 10.1016/j.mce.2014.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/26/2014] [Accepted: 05/14/2014] [Indexed: 12/26/2022]
Abstract
Recent evidence has shown a role for the serine/threonine protein kinase D (PKD) in the regulation of acute aldosterone secretion upon angiotensin II (AngII) stimulation. However, the mechanism by which AngII activates PKD remains unclear. In this study, using both pharmacological and molecular approaches, we demonstrate that AngII-induced PKD activation is mediated by protein kinase C (PKC) and Src family kinases in primary bovine adrenal glomerulosa cells and leads to increased aldosterone production. The pan PKC inhibitor Ro 31-8220 and the Src family kinase inhibitors PP2 and Src-1 inhibited both PKD activation and acute aldosterone production. Additionally, like the dominant-negative serine-738/742-to-alanine PKD mutant that cannot be phosphorylated by PKC, the dominant-negative tyrosine-463-to-phenylalanine PKD mutant, which is not phosphorylatable by the Src/Abl pathway, inhibited acute AngII-induced aldosterone production. Taken together, our results demonstrate that AngII activates PKD via a mechanism involving Src family kinases and PKC, to underlie increased aldosterone production.
Collapse
Affiliation(s)
- Lawrence O Olala
- Charlie Norwood VA Medical Center, Augusta, GA 30904, United States; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, United States
| | - Brian A Shapiro
- Institute of Molecular Medicine and Genetics, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, United States
| | - Todd C Merchen
- Department of Surgery, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, United States
| | - James J Wynn
- Department of Surgery, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, United States
| | - Wendy B Bollag
- Charlie Norwood VA Medical Center, Augusta, GA 30904, United States; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, United States; Departments of Cell Biology and Anatomy, Medicine and Orthopaedic Surgery, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, United States.
| |
Collapse
|
8
|
Ramanjaneya M, Karteris E, Chen J, Rucinski M, Ziolkowska A, Ahmed N, Kagerer S, Jöhren O, Lehnert H, Malendowicz LK, Randeva HS. QRFP induces aldosterone production via PKC and T-type calcium channel-mediated pathways in human adrenocortical cells: evidence for a novel role of GPR103. Am J Physiol Endocrinol Metab 2013; 305:E1049-58. [PMID: 23964068 DOI: 10.1152/ajpendo.00191.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hormonal regulation of adrenal function occurs primarily through activation of GPCRs. GPCRs are central to many of the body's endocrine and neurotransmitter pathways. Recently, it was shown that activation of GPR103 by its ligand QRFP induced feeding, locomotor activity, and metabolic rate, and QRFP is bioactive in adipose tissue of obese individuals. Given that the adrenal gland is a pivotal organ for energy balance and homeostasis, we hypothesized that GPR103 and QRFP are involved in steroidogenic responses. Using qRT-PCR and immunohistochemistry, we mapped both GPR103 and QRFP in human fetal and adult adrenal gland as well as rat adrenals. Both were primarily localized in the adrenal cortex but not in the medulla. Activation of GPR103 in human adrenocortical H295R cells led to a decrease in forskolin-increased cAMP and an increase of intracellular Ca(2+) levels. In addition, treatment of H295R cells with QRFP induced aldosterone and cortisol secretion as measured by ELISA. These increases were accompanied by increased expression and activity of StAR, CYB11B1, and CYP11B2 as assessed by qRT-PCR and luciferase reporter assay, respectively. Using specific inhibitors, we also demonstrated that aldosterone induction involves MAPK, PKC, and/or T-type Ca(2+) channel-dependent pathways. These novel data demonstrate that QRFP induces adrenal steroidogenesis in vitro by regulating key steroidogenic enzymes involving MAPK/PKC and Ca(2+) signaling pathways.
Collapse
Affiliation(s)
- Manjunath Ramanjaneya
- Division of Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Pi Y, Zhang LL, Chang K, Guo L, Liu Y, Li BH, Cao XJ, Liao SQ, Gao CY, Li JC. Lack of an association between CYP11B2 C-344T gene polymorphism and ischemic stroke: a meta-analysis of 7,710 subjects. PLoS One 2013; 8:e68842. [PMID: 23950878 PMCID: PMC3738569 DOI: 10.1371/journal.pone.0068842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/03/2013] [Indexed: 01/11/2023] Open
Abstract
Background The association between aldosterone synthase (CYP11B2) C-344T gene polymorphism and ischemic stroke remains controversial and ambiguous. To better explain the association between CYP11B2 polymorphism and ischemic stroke risk, a meta-analysis was performed. Methods Based on comprehensive searches of Medline, Embase, Web of Science, CNKI and CBM databases, we identified and abstracted outcome data from all articles to evaluate the association between CYP11B2 polymorphism and ischemic stroke. The pooled odds ratios (ORs) with 95% confidence intervals (CIs) were performed in all genetic models. Fixed or random effects model was separately used depending on the heterogeneity between studies. Publication bias was tested by Begg's funnel plot and Egger's regression test. Results A total of 12 studies including 3,620 ischemic stroke cases and 4,090 controls were identified. There was no statistical evidence of association between CYP11B2 C-344T polymorphism and ischemic stroke in all genetic models (allelic model: OR = 1.19, 95% CI = 0.95–1.49; additive model: OR = 1.43, 95% CI = 0.91–2.27; dominant model: OR = 1.30, 95% CI = 0.89–1.89; and recessive model: OR = 1.24, 95% CI = 0.96–1.60). On subgroup analysis by ethnicity, similarly results were found in both Asians and non-Asians. For Asians, the combined ORs and 95% CIs were (allelic model: OR = 1.07, 95% CI = 0.87–1.32; additive model: OR = 1.15, 95% CI = 0.77–1.71; dominant model: OR = 1.13, 95% CI = 0.92–1.38; and recessive model: OR = 1.09, 95% CI = 0.84–1.40). For none-Asians, the combined ORs and 95% CIs were (allelic model: OR = 1.58, 95% CI = 0.90–2.76; additive model: OR = 2.37, 95% CI = 0.79–7.05; dominant model: OR = 1.79, 95% CI = 0.77–4.19; and recessive model: OR = 1.80, 95% CI = 0.96–3.36). Conclusion The present meta-analysis suggested that CYP11B2 C-344T polymorphism was unlikely contribute to ischemic stroke susceptibility.
Collapse
Affiliation(s)
- Yan Pi
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Li-li Zhang
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Kai Chang
- Department of Clinical Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lu Guo
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yun Liu
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Bing-hu Li
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiao-jie Cao
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Shao-qiong Liao
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Chang-yue Gao
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jing-cheng Li
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
10
|
Ji P, Jiang L, Zhang S, Cui W, Zhang D, Fu S, Zhang H. Aldosterone synthase gene (CYP11B2) -344C/T polymorphism contributes to the risk of recurrent cerebral ischemia. Genet Test Mol Biomarkers 2013; 17:548-52. [PMID: 23701507 DOI: 10.1089/gtmb.2013.0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Accumulating evidence suggests that CYP11B2 rs1799998 (-344C/T) polymorphism is independently associated with an increased risk of stroke. Our aim was to determine whether -344C/T also predisposes to recurrent cerebral ischemia following in patients with symptomatic intracranial atherosclerosis disease (ICAD). METHODS Genotypes of the CYP11B2 -344C/T polymorphism were determined by polymerase chain reaction-restriction fragment length polymorphism. A total of 208 ICAD patients were enrolled and underwent a long-term clinical follow-up to detect the recurrent cerebral ischemia. RESULTS During a median follow-up time of 35 months, 40 recurrent strokes (19.2%) were documented. Kaplan-Meier and multivariable Cox regression analyses adjusted for age, gender, and other cardiovascular risk factors identified that the presence of the TT genotype within the CYP11B2 -344C/T polymorphism was associated with an increased risk of 1.98-fold for recurrent cerebral ischemia (the hazard ratio 1.98, 95% confidence interval 1.16-3.41; p=0.01). CONCLUSIONS Our findings suggest that the -344C/T polymorphism of the CYP11B2 gene confers an increased risk of recurrent cerebral ischemia.
Collapse
Affiliation(s)
- Peng Ji
- Department of Neurology-Muscle, Brain Hospital of People's Hospital of Zhengzhou, Henan Province, China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Giambra V, Jenkins CR, Wang H, Lam SH, Shevchuk OO, Nemirovsky O, Wai C, Gusscott S, Chiang MY, Aster JC, Humphries RK, Eaves C, Weng AP. NOTCH1 promotes T cell leukemia-initiating activity by RUNX-mediated regulation of PKC-θ and reactive oxygen species. Nat Med 2012; 18:1693-8. [PMID: 23086478 PMCID: PMC3738873 DOI: 10.1038/nm.2960] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 08/29/2012] [Indexed: 12/19/2022]
Abstract
Reactive oxygen species (ROS), a byproduct of cellular metabolism, damage intracellular macromolecules and, when present in excess, can promote normal hematopoietic stem cell differentiation and exhaustion. However, mechanisms that regulate the amount of ROS in leukemia-initiating cells (LICs) and the biological role of ROS in these cells are largely unknown. We show here that the ROS(low) subset of CD44(+) cells in T cell acute lymphoblastic leukemia (T-ALL), a malignancy of immature T cell progenitors, is highly enriched in the most aggressive LICs and that ROS accumulation is restrained by downregulation of protein kinase C θ (PKC-θ). Notably, primary mouse T-ALLs lacking PKC-θ show improved LIC activity, whereas enforced PKC-θ expression in both mouse and human primary T-ALLs compromised LIC activity. We also show that PKC-θ is regulated by a new pathway in which NOTCH1 induces runt-related transcription factor 3 (RUNX3), RUNX3 represses RUNX1 and RUNX1 induces PKC-θ. NOTCH1, which is frequently activated by mutation in T-ALL and required for LIC activity in both mouse and human models, thus acts to repress PKC-θ. These results reveal key functional roles for PKC-θ and ROS in T-ALL and suggest that aggressive biological behavior in vivo could be limited by therapeutic strategies that promote PKC-θ expression or activity, or the accumulation of ROS.
Collapse
Affiliation(s)
- Vincenzo Giambra
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | | | - Hongfang Wang
- Department of Pathology, Brigham & Women’s Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - Sonya H. Lam
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Olena O. Shevchuk
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Oksana Nemirovsky
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Carol Wai
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Sam Gusscott
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Mark Y. Chiang
- Division of Hematology/Oncology, University of Michigan Cancer Center, Ann Arbor, MI 48103, USA
| | - Jon C. Aster
- Department of Pathology, Brigham & Women’s Hospital/Harvard Medical School, Boston, MA 02115, USA
| | | | - Connie Eaves
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Andrew P. Weng
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| |
Collapse
|
12
|
Hattangady N, Olala L, Bollag WB, Rainey WE. Acute and chronic regulation of aldosterone production. Mol Cell Endocrinol 2012; 350:151-62. [PMID: 21839803 PMCID: PMC3253327 DOI: 10.1016/j.mce.2011.07.034] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/11/2011] [Accepted: 07/17/2011] [Indexed: 11/28/2022]
Abstract
Aldosterone is the major mineralocorticoid synthesized by the adrenal and plays an important role in the regulation of systemic blood pressure through the absorption of sodium and water. Aldosterone production is regulated tightly by selective expression of aldosterone synthase (CYP11B2) in the adrenal outermost zone, the zona glomerulosa. Angiotensin II (Ang II), potassium (K(+)) and adrenocorticotropin (ACTH) are the main physiological agonists which regulate aldosterone secretion. Aldosterone production is regulated within minutes of stimulation (acutely) through increased expression and phosphorylation of the steroidogenic acute regulatory (StAR) protein and over hours to days (chronically) by increased expression of the enzymes involved in the synthesis of aldosterone, particularly CYP11B2. Imbalance in any of these processes may lead to several disorders of aldosterone excess. In this review we attempt to summarize the key molecular events involved in the acute and chronic phases of aldosterone secretion.
Collapse
Affiliation(s)
- Namita Hattangady
- Department of Physiology, Georgia Health Sciences University (formerly the Medical College of Georgia), 1120 15 Street, Augusta, GA 30912
| | - Lawrence Olala
- Department of Physiology, Georgia Health Sciences University (formerly the Medical College of Georgia), 1120 15 Street, Augusta, GA 30912
| | - Wendy B. Bollag
- Department of Physiology, Georgia Health Sciences University (formerly the Medical College of Georgia), 1120 15 Street, Augusta, GA 30912
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904
| | - William E. Rainey
- Department of Physiology, Georgia Health Sciences University (formerly the Medical College of Georgia), 1120 15 Street, Augusta, GA 30912
- To whom correspondence should be addressed: William E. Rainey, Department of Physiology, Georgia Health Sciences University, 1120 15 Street, Augusta, GA 30912, , Tel: (706) 721-7665, Fax: (706) 721-7299
| |
Collapse
|
13
|
Protein kinase Cμ mediates adenosine-stimulated steroidogenesis in primary rat adrenal cells. FEBS Lett 2010; 584:4442-8. [DOI: 10.1016/j.febslet.2010.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/17/2010] [Accepted: 10/06/2010] [Indexed: 11/22/2022]
|
14
|
Cheng MB, Zhang Y, Zhong X, Sutter B, Cao CY, Chen XS, Cheng XK, Zhang Y, Xiao L, Shen YF. Stat1 mediates an auto-regulation of hsp90β gene in heat shock response. Cell Signal 2010; 22:1206-13. [DOI: 10.1016/j.cellsig.2010.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/17/2010] [Accepted: 03/17/2010] [Indexed: 11/30/2022]
|
15
|
Association of the -344C/T aldosterone synthase (CYP11B2) gene variant with hypertension and stroke. J Neurol Sci 2010; 296:34-8. [PMID: 20598712 DOI: 10.1016/j.jns.2010.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 05/19/2010] [Accepted: 06/15/2010] [Indexed: 10/19/2022]
Abstract
Stroke is a complex disease caused by combination of multiple risk factors. Recent findings have suggested that stroke has a significant genetic component. Various types of genetic polymorphisms have been suggested to contribute to the risk of stroke. Gene polymorphisms of renin-angiontensin aldosterone system (RAAS) have been suggested to be risk factors for hypertension, cardiovascular diseases and stroke. In the present case-control study we investigated the association of -344C/T (rs1799998) [corrected] polymorphism in the promoter region of the human aldosterone (CYP11B2) gene with genetic predisposition to hypertension, ischemic stroke and stroke subtypes classified according to TOAST (Trial of Org 10172 in Acute Stroke Treatment) classification. Four hundred and three stroke patients (hypertensives:normotensives=219:184) and three hundred and ninety four, sex and age matched healthy controls (hypertensives:normotensives=118:276) were involved in the study. The region of interest in the CYP11B2 gene was amplified by polymerase chain reaction and genotypes determined by subjecting the PCR products to restriction digestion by the enzyme HaeIII. Significant difference was observed in the genotypic distribution and allelic frequency between the stroke patients and healthy controls. TT genotype and T allele associated significantly with hypertension and stroke (p<0.000 in hypertension and p=0.000 in case of stroke). A stepwise logistic regression analysis confirmed these findings. To establish that this polymorphism is associated with stroke independent of hypertension, we compared stroke patients without hypertension with normotensive controls. Significant difference was observed in genotypic distribution and allelic frequency between the two groups (p=0.000). Further evaluating the association of this polymorphism with stroke subtypes we found significant associations with intracranial large artery atherosclerosis, lacunar stroke and cardioembolic stroke (p=0.000 in each case). In conclusion our study suggests that -344T allele of CYP11B2 gene is an important risk factor for hypertension and ischemic stroke. However, this is a preliminary study and the results need to be confirmed in a larger cohort.
Collapse
|
16
|
Giroux M, Delisle JS, O'Brien A, Hébert MJ, Perreault C. T cell activation leads to protein kinase C theta-dependent inhibition of TGF-beta signaling. THE JOURNAL OF IMMUNOLOGY 2010; 185:1568-76. [PMID: 20592275 DOI: 10.4049/jimmunol.1000137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
TGF-beta is an ubiquitous cytokine that plays a pivotal role in the maintenance of self-tolerance and prevention of immunopathologies. Under steady-state conditions, TGF-beta keeps naive T cells in a resting state and inhibits Th1 and Th2 cell differentiation. Because rapid generation of Th1 and Th2 effector cells is needed in response to pathogen invasion, how do naive T cells escape from the quiescent state maintained by TGF-beta? We hypothesized that stimulation by strong TCR agonists might interfere with TGF-beta signaling. Using both primary mouse CD4(+) T cells and human Jurkat cells, we observed that strong TCR agonists swiftly suppress TGF-beta signaling. TCR engagement leads to a rapid increase in SMAD7 levels and decreased SMAD3 phosphorylation. We present evidence that TCR signaling hinders SMAD3 activation by inducing recruitment of TGF-betaRs in lipid rafts together with inhibitory SMAD7. This effect is dependent on protein kinase C, a downstream TCR signaling intermediary, as revealed by both pharmacological inhibition and expression of dominant-negative and constitutively active protein kinase C mutants. This work broadens our understanding of the cross-talk occurring between the TCR and TGF-beta signaling pathways and reveals that strong TCR agonists can release CD4 T cells from constitutive TGF-beta signaling. We propose that this process may be of vital importance upon confrontation with microbial pathogens.
Collapse
Affiliation(s)
- Martin Giroux
- Institute for Research in Immunology and Cancer, Montreal, Quebec H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
17
|
Shapiro BA, Olala L, Arun SN, Parker PM, George MV, Bollag WB. Angiotensin II-activated protein kinase D mediates acute aldosterone secretion. Mol Cell Endocrinol 2010; 317:99-105. [PMID: 19961896 PMCID: PMC2814994 DOI: 10.1016/j.mce.2009.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 10/21/2009] [Accepted: 11/27/2009] [Indexed: 11/23/2022]
Abstract
Dysregulation of the renin-angiotensin II (AngII)-aldosterone system can contribute to cardiovascular disease, such that an understanding of this system is critical. Diacylglycerol-sensitive serine/threonine protein kinase D (PKD) is activated by AngII in several systems, including the human adrenocortical carcinoma cell line NCI H295R, where this enzyme enhances chronic (24h) AngII-evoked aldosterone secretion. However, the role of PKD in acute AngII-elicited aldosterone secretion has not been previously examined. In primary cultures of bovine adrenal glomerulosa cells, which secrete detectable quantities of aldosterone in response to secretagogues within minutes, PKD was activated in response to AngII, but not an elevated potassium concentration or adrenocorticotrophic hormone. This activation was time- and dose-dependent and occurred through the AT1, but not the AT2, receptor. Adenovirus-mediated overexpression of constitutively active PKD resulted in enhanced AngII-induced aldosterone secretion; whereas overexpression of a dominant-negative PKD construct decreased AngII-stimulated aldosterone secretion. Thus, we demonstrate for the first time that PKD mediates acute AngII-induced aldosterone secretion.
Collapse
Affiliation(s)
- Brian A. Shapiro
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, 1120 15th Street, Augusta, Georgia 30912
| | - Lawrence Olala
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, 1120 15th Street, Augusta, Georgia 30912
| | - Senthil Nathan Arun
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, 1120 15th Street, Augusta, Georgia 30912
| | - Peter M. Parker
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, 1120 15th Street, Augusta, Georgia 30912
| | - Mariya V. George
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, 1120 15th Street, Augusta, Georgia 30912
| | - Wendy B. Bollag
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, 1120 15th Street, Augusta, Georgia 30912
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904
- Departments of Physiolgy, Medicine, Cell Biology and Anatomy and Orthopaedic Surgery, Medical College of Georgia, 1120 15th Street, Augusta, Georgia 30912
- To whom correspondence should be addressed: Wendy B. Bollag, Department of Physiology, Medical College of Georgia, 1120 15th Street, Augusta, Georgia 30912, TEL: (706) 721-0698, FAX: (706) 721-7299,
| |
Collapse
|
18
|
Yanes LL, Romero DG. Dihydrotestosterone stimulates aldosterone secretion by H295R human adrenocortical cells. Mol Cell Endocrinol 2009; 303:50-6. [PMID: 19428991 PMCID: PMC2681414 DOI: 10.1016/j.mce.2008.12.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 12/08/2008] [Accepted: 12/19/2008] [Indexed: 11/22/2022]
Abstract
Men exhibit a higher incidence of cardiovascular diseases than do women. The cardiovascular actions of sex steroids have been suggested as primary factors in mediating this sex difference. The mechanisms by which sex steroids, androgens and estrogens, mediate cardiovascular actions remain unclear. Excess aldosterone secretion has been associated with cardiovascular diseases. The hypothesis tested in this study was that at physiological concentrations, androgens stimulate and estradiol inhibits aldosterone secretion by human adrenal cells. In contrast to our hypothesis, physiological concentrations of sex steroids did not modify aldosterone secretion by H295R human adrenocortical cells. However, supraphysiological concentrations (300-1000 nM) of dihydrotestosterone (DHT) significantly stimulated basal and Angiotensin II-mediated aldosterone secretion. The stimulatory effect of DHT on aldosterone secretion was not blocked by the classical androgen receptor blocker flutamide. The stimulatory effect of DHT on aldosterone secretion was also independent of the intra-adrenal renin-angiotensin system since it was neither modified by treatment with the Angiotensin II receptor type 1 blocker losartan or the angiotensin converting enzyme inhibitor captopril. Inhibitors of the calmodulin/calmodulin-dependent protein kinase (CaMK) and protein kinase C intracellular signaling pathways abolished the DHT stimulatory effect on aldosterone secretion by H295R cells. In conclusion, physiological concentrations of sex steroids did not modify aldosterone secretion by human adrenal cells. However, supraphysiological concentrations of DHT-stimulated aldosterone secretion by human adrenal cells by the calmodulin/CaMK and protein kinase C intracellular signaling pathways but independently of the classical androgen receptor. Supraphysiological doses of androgen may promote cardiovascular diseases via stimulation of aldosterone secretion.
Collapse
Affiliation(s)
- Licy L Yanes
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | | |
Collapse
|
19
|
Szekeres M, Turu G, Orient A, Szalai B, Süpeki K, Cserzo M, Várnai P, Hunyady L. Mechanisms of angiotensin II-mediated regulation of aldosterone synthase expression in H295R human adrenocortical and rat adrenal glomerulosa cells. Mol Cell Endocrinol 2009; 302:244-53. [PMID: 19418629 DOI: 10.1016/j.mce.2008.12.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In adrenal zona glomerulosa cells angiotensin II (Ang II) is a key regulator of steroidogenesis. Our purpose was to compare the mechanisms of Ang II-induced changes in the expression level of early transcription factors NR4A1 (NGFIB) and NR4A2 (Nurr1) genes, and the CYP11B2 gene encoding aldosterone synthase in H295R human adrenocortical tumor cells and in primary rat adrenal glomerulosa cells. Real-time PCR studies have demonstrated that Ang II increased the expression levels of NR4A1 and NR4A2 in H295R cells within 1 h after stimulation, which persisted up to 6 h; whereas in rat adrenal glomerulosa cells the kinetics of the expression of these genes were more rapid and transient. Ang II also induced prolonged nuclear translocation of Nurr1 and NGFIB proteins in both cell types. Studies using MEK inhibitor (PD98059, 20 microM), protein kinase C inhibitor (BIM1, 3 microM) and calmodulin kinase (CAMK) inhibitor (KN93, 10 microM) revealed that in rat adrenal glomerulosa cells CAMK-mediated mechanisms play a predominant role in the regulation of CYP11B2. In accordance with earlier findings, in H295R cells MEK inhibition increased the expression of NR4A1, NR4A2 and CYP11B2 genes, however, it decreased the Ang II-induced gene expression levels, suggesting that ERK activation has a role in control of expression of these genes. No such mechanism was detected in rat glomerulosa cells. Sar1-Ile4-Ile8-AngII, which can cause G protein-independent ERK activation, also stimulated the expression of CYP11B2 in H295R cells. These data suggest that the previously reported CAMK-mediated stimulation of early transcription factors NGFIB and Nurr1 has a predominant role in Ang II-induced CYP11B2 activation in rat adrenal glomerulosa cells, whereas in H295R cells ERK activation and G protein-independent mechanisms also contribute to this process.
Collapse
Affiliation(s)
- Mária Szekeres
- Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Nogueira EF, Xing Y, Morris CAV, Rainey WE. Role of angiotensin II-induced rapid response genes in the regulation of enzymes needed for aldosterone synthesis. J Mol Endocrinol 2009; 42:319-30. [PMID: 19158234 PMCID: PMC4176876 DOI: 10.1677/jme-08-0112] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Aldosterone is principally synthesized in the zona glomerulosa of the adrenal by a series of enzymatic reactions leading to the conversion of cholesterol to aldosterone. Angiotensin II (Ang II) is the major physiological regulator of aldosterone production acting acutely to stimulate aldosterone biosynthesis and chronically to increase the capacity of the adrenals to produce aldosterone. We previously defined eight transcription factors that are rapidly induced following Ang II treatment using three in vitro adrenocortical cell models. Herein, we investigated the function of these transcription factors in the regulation of the enzymes needed for aldosterone production. H295R adrenal cells were co-transfected with expression vectors for each transcription factor and promoter/reporter constructs prepared for genes encoding the enzymes needed for aldosterone production. NGFI-B family members induced promoter activity of 3-beta-hydroxysteroid-dehydrogenase type 2 (HSD3B2), 21-hydroxylase (CYP21A2), and aldosterone synthase (CYP11B2). The importance of NGFI-B in the regulation of CYP11B2 was also demonstrated by reduced CYP11B2 transcription in the presence of a dominant-negative-NGFI-B. A pharmacological approach was used to characterize the Ang II pathways regulating transcription of NGFI-B family genes. Transcription of NGFI-B members were decreased following inhibition of Ang II type 1 receptor (AT1R), protein kinase C (PKC), calcium/calmodulin-dependent kinases (CaMK), and Src tyrosine kinase (SRC). Taken together, these results suggest that Ang II binding to the AT1R increases activity of PKC, CaMK, and SRC, which act to increase expression of the family of NGFI-B genes as well as CYP11B2. Ang II induction of the NGFI-B family members represents an important pathway to increase the capacity of adrenal cells to produce aldosterone.
Collapse
Affiliation(s)
- Edson F Nogueira
- Department of Physiology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | |
Collapse
|
21
|
Chang HW, Wu VC, Huang CY, Huang HY, Chen YM, Chu TS, Wu KD, Hsieh BS. D4 dopamine receptor enhances angiotensin II-stimulated aldosterone secretion through PKC-epsilon and calcium signaling. Am J Physiol Endocrinol Metab 2008; 294:E622-9. [PMID: 18171914 DOI: 10.1152/ajpendo.00657.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aldosterone secretion is subjected to dopaminergic regulation. Our previous study showed that both human D2 and D4 dopamine receptors (D2R and D4R) modulate aldosterone secretion, but in opposing directions. The inhibitory effect of D2R is mediated by attenuating protein kinase C-micro (PKC-micro) and calcium-dependent signaling. The mechanism of D4R effect on angiotensin II (AII)-stimulated aldosterone secretion is explored in this study. Experiments were done with primary human adrenal cortical cells and human adrenocarcinoma (NCI-H295R) cells. Activation of different PKC isoforms was detected by specific phospho-PKC antibodies and PKC translocation. The role of calcium-dependent signaling was examined by measuring the cytoplasmic inositol 1,4,5-triphosphate (IP(3)) and calcium ([Ca(2+)](i)). The D4R agonist PD-168,077 enhanced AII-stimulated aldosterone synthesis and secretion as early as 30 min following exposure independently of the modulation of aldosterone synthase (CYP11B2) transcription. CYP11B2 mRNA level elevated by AII was augmented by D4R in the later period. These effects were reversed by the D4R antagonist L-745,870. AII activated PKC-alpha/betaII, -epsilon, and -micro but not PKC-delta, -theta, or -zeta/lambda of H295R cells. The D4R agonist selectively enhanced AII-stimulated PKC-epsilon phosphorylation and its translocation to the cell membrane. Furthermore, the D4R agonist enhanced the AII-stimulated elevation of intracellular IP(3) and [Ca(2+)](i). Inhibition of PKC-epsilon translocation by the PKC-epsilon-specific inhibitory peptide attenuated AII-stimulated aldosterone secretion, CYP11B2 mRNA expression, and elevation of intracellular IP(3) and [Ca(2+)](i). We conclude that D4R augmented aldosterone synthesis/secretion induced by AII. The mechanisms responsible for this augmentation are mediated through enhancing PKC-epsilon phosphorylation and [Ca(2+)](i) elevation.
Collapse
Affiliation(s)
- Hong-Wei Chang
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Szanda G, Koncz P, Rajki A, Spät A. Participation of p38 MAPK and a novel-type protein kinase C in the control of mitochondrial Ca2+ uptake. Cell Calcium 2008; 43:250-9. [PMID: 17628663 DOI: 10.1016/j.ceca.2007.05.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 05/16/2007] [Accepted: 05/18/2007] [Indexed: 11/23/2022]
Abstract
Angiotensin II elicits cytosolic and mitochondrial Ca2+ signal in H295R adrenocortical cells. We found that Ca2+ uptake rate and peak values in small mitochondrial regions both depend on the colocalization of these mitochondrial regions with GFP-marked endoplasmic reticular (ER) vesicles. The dependence of the Ca2+ response on this colocalization is abolished by SB202190 and PD169316, inhibitors of p38 MAPK, as well as by transfection with siRNA against p38 MAPK mRNA. The same manoeuvres result in an increased ratio of global mitochondrial to global cytosolic Ca2+ response, indicating that inhibition of p38 MAPK is followed by enhanced mitochondrial Ca2+ uptake. alpha-Toxin and TNFalpha, agents which similarly to angiotensin II increase the phosphorylation of p38, failed to affect mitochondrial Ca2+ uptake, indicating that activation of p38 MAPK is necessary but not sufficient for the inhibition of Ca2+ uptake. Bisindolylmaleimide, an inhibitor of the conventional and novel-type protein kinase C isoforms also evokes enhanced mitochondrial Ca2+ uptake, whereas Gö6976 that inhibits the conventional isoforms only failed to exert any effect. These data show that angiotensin II attenuates Ca2+ uptake predominantly into mitochondria that do not colocalize with ER, by a mechanism involving p38 MAPK and a novel-type PKC.
Collapse
Affiliation(s)
- Gergo Szanda
- Department of Physiology, Faculty of Medicine, Semmelweis University and Laboratory of Neurobiochemistry and Molecular Physiology, Hungarian Academy of Sciences, PO Box 259, H-1444 Budapest, Hungary
| | | | | | | |
Collapse
|
23
|
Thompson C, Cloutier A, Bossé Y, Poisson C, Larivée P, McDonald PP, Stankova J, Rola-Pleszczynski M. Signaling by the Cysteinyl-Leukotriene Receptor 2. J Biol Chem 2008; 283:1974-84. [DOI: 10.1074/jbc.m608197200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
24
|
Dupré DJ, Thompson C, Chen Z, Rollin S, Larrivée JF, Le Gouill C, Rola-Pleszczynski M, Stanková J. Inverse agonist-induced signaling and down-regulation of the platelet-activating factor receptor. Cell Signal 2007; 19:2068-79. [PMID: 17609120 DOI: 10.1016/j.cellsig.2007.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 05/25/2007] [Accepted: 05/28/2007] [Indexed: 11/16/2022]
Abstract
Platelet-activating factor (PAF) is a potent phospholipid mediator involved in several diseases such as allergic asthma, atherosclerosis and psoriasis. The human PAF receptor (PAFR) is a member of the G-protein-coupled receptor family. Following stimulation, PAFR becomes rapidly desensitized; this refractory state is dependent on PAFR phosphorylation, internalization and down-regulation. In this report, we show that the PAFR inverse agonist, WEB2086, can induce phosphorylation and down-regulation of PAFR. Using selective inhibitors, we determined that the agonist, PAF, and WEB2086 could induce phosphorylation of PAFR by PKC. Moreover, dominant-negative (DN) mutant of PKC isoforms beta inhibited WEB2086-stimulated PAFR phosphorylation, whereas PAF-stimulated phosphorylation was inhibited by DN PKCalpha and delta. WEB2086 also induced PAFR down-regulation which could be blocked by PKC inhibitors and by DN PKCbeta. WEB2086-induced down-regulation was dynamin-dependent but arrestin-independent. Unlike PAF, WEB2086-stimulated intracellular trafficking of PAFR was independent of Rab5. Specific inhibitors of lysosomal proteases and of proteasomes were both effective in reducing WEB2086-induced PAFR down-regulation, indicating the importance of receptor targeting to both lysosomes and proteasomes in long-term cell desensitization to WEB2086. These results indicate that although both agonists and inverse agonists induce receptor PAFR down-regulation, this may be accomplished through different signal transduction and trafficking pathways.
Collapse
Affiliation(s)
- Denis J Dupré
- Immunology Division, Department of Pediatrics, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, 3001 12th Avenue North, Sherbrooke, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Chang HW, Chu TS, Huang HY, Chueh SC, Wu VC, Chen YM, Hsieh BS, Wu KD. Down-regulation of D2 dopamine receptor and increased protein kinase Cmu phosphorylation in aldosterone-producing adenoma play roles in aldosterone overproduction. J Clin Endocrinol Metab 2007; 92:1863-70. [PMID: 17299068 DOI: 10.1210/jc.2006-2338] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT The mechanism associated with the overproduction of aldosterone by aldosterone-producing adenomas (APA) is unknown. OBJECTIVE The objective of the study was to explore the role of the D2 dopamine receptor (D2R) on aldosterone synthesis and secretion and clarify the clinical importance of this role on aldosterone overproduction in APA. RESULTS D2R expression in APA was examined in 24 patients and was much less than that in the nontumorous adrenal cortex. D2R mRNA levels in APA were inversely correlated with CYP11B2 mRNA levels and the patient's plasma aldosterone concentration. Angiotensin II (AII)-stimulated aldosterone secretion and CYP11B2 mRNA expression in human adenocarcinoma cells (H295R) was attenuated by the D2 agonist, bromocriptine (BMC). BMC selectively attenuated AII-induced protein kinase C (PKC)-mu phosphorylation and its translocation to the cell membrane. PKCmu-specific short-hairpin RNA significantly decreased AII-induced CYP11B2 mRNA expression and aldosterone secretion. BMC also attenuated the AII-induced increase in cytoplasmic calcium, partially through an inhibition of cytoplasmic inositol 1,4,5 triphosphate production. Despite similar total PKCmu levels in APA and the nontumorous adrenal cortex, expression of phosphorylated PKCmu in APA was much higher. CONCLUSION This is the first study to demonstrate that the D2R modulated aldosterone secretion and synthesis through a specific attenuation of PKCmu activity, as well as the intracellular calcium level. Down-regulation of the D2R in APA, in turn, increased PKCmu activity and led to overproduction of aldosterone in affected patients. The D2R may thus serve as a potential treatment target for primary aldosteronism.
Collapse
MESH Headings
- Adrenal Cortex Neoplasms/enzymology
- Adrenal Cortex Neoplasms/metabolism
- Adrenocortical Adenoma/enzymology
- Adrenocortical Adenoma/metabolism
- Aldosterone/biosynthesis
- Aldosterone/blood
- Angiotensin II/pharmacology
- Calcium/metabolism
- Cell Line, Tumor
- Cytochrome P-450 CYP11B2/biosynthesis
- Cytochrome P-450 CYP11B2/metabolism
- Cytoplasm/metabolism
- Down-Regulation/physiology
- Humans
- Immunoblotting
- Inositol 1,4,5-Trisphosphate/metabolism
- Membrane Proteins/biosynthesis
- Phosphorylation
- Protein Kinase C/biosynthesis
- Protein Kinase C/physiology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Dopamine D2/biosynthesis
- Receptors, Dopamine D2/physiology
- Receptors, Dopamine D4/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Hong-Wei Chang
- Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Sun South Road, Taipei, Taiwan 100
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lehoux JG, Lefebvre A. Angiotensin II activates p44/42 MAP kinase partly through PKCepsilon in H295R cells. Mol Cell Endocrinol 2007; 265-266:121-5. [PMID: 17215072 DOI: 10.1016/j.mce.2006.12.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Using pharmaceutical and overexpression approaches we have previously reported that in H295R cells, (a) angiotensin II (AII) activates PKCepsilon, PKCalpha and p44/42 MAPK pathway, (b) PKCepsilon, PKCalpha and p44/42 MAPK overexpression inhibits AII-induced CYP11B2 gene transcription and (c) overexpression of PKCepsilon inhibits CYP11B2 gene transcription through p44/42 MAPK activation [LeHoux, J.G., Dupuis, G., Lefebvre, A., 2001. Control of CYP11B2 gene expression through differential regulation of its promoter by atypical and conventional protein kinase C isoforms. J. Biol. Chem. 276 (11), 8021-8028; LeHoux, J.G., Lefebvre, A., 2006. Novel protein kinase C-epsilon inhibits human CYP11B2 gene expression through ERK1/2 signalling pathway and JunB. J. Mol. Endocrinol. 36 (1), 51-64]. The aim of the present work was to evaluate the physiological role of endogenous PKCepsilon and PKCalpha isoforms in the activation of p44/42 MAPK by AII. A 50% reduction of PKCepsilon protein by siRNA-PKCepsilon resulted in 35% inhibition of AII-induced p44/42 MAPK activation. Knockdown of PKCepsilon stimulated AII-induced CYP11B2 transcription indicating that the PKCepsilon is not involved in the activation of CYP11B2 gene expression by AII. Furthermore, knockdown of PKCalpha enhanced AII-stimulated CYP11B2 transcription without altering p44/42 MAPK indicating that inhibition of AII-stimulated CYP11B2 gene by PKCalpha does not involve the p44/42 MAPK signalling pathway. These results thus establish that physiologically, PKCepsilon and PKCalpha act through different signalling pathways to inhibit AII-stimulated CYP11B2 gene expression.
Collapse
Affiliation(s)
- Jean-Guy Lehoux
- Department of Biochemistry, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4.
| | | |
Collapse
|
27
|
Romero DG, Welsh BL, Gomez-Sanchez EP, Yanes LL, Rilli S, Gomez-Sanchez CE. Angiotensin II-mediated protein kinase D activation stimulates aldosterone and cortisol secretion in H295R human adrenocortical cells. Endocrinology 2006; 147:6046-55. [PMID: 16973724 DOI: 10.1210/en.2006-0794] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protein kinases are important mediators in intracellular signaling. Angiotensin II is the most important modulator of adrenal zona glomerulosa cell physiology. Angiotensin II regulates steroidogenesis and proliferation among many other metabolic processes. H295R human adrenal cells are a widely used experimental model to study adrenal cell physiology and metabolism. We screened for protein kinase expression levels using the Kinetwork system in H295R cells after 3 h angiotensin II treatment. Protein kinase D (PKD) was the protein kinase that suffers the most dramatic changes. PKD is a member of a new class of serine/threonine protein kinases that is activated by phosphorylation. Our studies indicated that angiotensin II time- and dose-dependently increased PKD phosphorylation, which occurred within 2 min of angiotensin II treatment and at concentrations as low as 1 nm. PKD phosphorylation was also dose-dependently increased by the PKC activator phorbol 12-myristate 13-acetate. Angiotensin II-mediated PKD phosphorylation was blocked by several PKC inhibitors. Furthermore, PKCepsilon translocation inhibitor peptide decreased angiotensin II-mediated PKD phosphorylation, and PKCepsilon down-regulation by RNA interference also decreased PKD phosphorylation mediated by angiotensin II. Cotransfection of constitutively active PKD mutant constructs up-regulated aldosterone synthase and 11beta-hydroxylase expression in reporter assays. Constitutively active PKD mutants increased aldosterone and cortisol secretion under angiotensin II stimulatory conditions. This study reveals that PKD is an intracellular signaling mediator of angiotensin II regulation of steroidogenesis in human adrenal cells. These data provide new insights into the molecular mechanisms involved in angiotensin II-induced physiological and pathophysiological events in adrenal cells.
Collapse
Affiliation(s)
- Damian G Romero
- Division of Endocrinology, Department of Medicine, Montgomery Veterans Affairs Medical Center, and The University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi 39216, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Beaudry H, Gendron L, Guimond MO, Payet MD, Gallo-Payet N. Involvement of protein kinase C alpha (PKC alpha) in the early action of angiotensin II type 2 (AT2) effects on neurite outgrowth in NG108-15 cells: AT2-receptor inhibits PKC alpha and p21ras activity. Endocrinology 2006; 147:4263-72. [PMID: 16740968 DOI: 10.1210/en.2006-0411] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of the present study was to investigate whether protein kinase C (PKC) isoforms may be among the putative candidates implicated in the primary effects of the Ang II type 2 (AT2) receptor. Western blot analyses revealed the presence of PKC alpha,epsilon, iota, and zeta in NG108-15 cells. After a 3-d treatment with 3 nm Gö6976, a specific inhibitor of classical PKC isoforms, cells were characterized by the presence of one elongated process similar to that observed after treatment with Ang II or with CGP42112, a selective AT2 receptor agonist. Similar findings were observed in cells expressing a dominant-negative mutant of PKC alpha (K368A). Inhibition of PKC alpha in NG108-15 cells also decreased cell number and proliferation. In conditions of acute stimulation, Ang II induced a time-dependent and transient inhibition of PKC alpha activity, as well as a decrease in PKC alpha levels associated with the membrane. Treatment of cells with Gö6976 was also found to inhibit p21(ras) (between 1-10 min) but stimulated Rap1 activity (1-5 min) in a time-course similar to that of Ang II. Incubation of NG108-15 cells with Gö6976 (3 nm) inhibited basal p42/p44(mapk) phosphorylation, but failed to interfere with its activation by the AT(2) receptor, indicating that inhibition of PKC alpha is not directly involved in the Rap1-MEK-p42/p44(mapk) cascade. Taken together, these results indicate that PKC alpha is a primary target of the AT2 receptor. Inhibition of PKC alpha leads to a decrease in both p21(ras) activity and cell proliferation, which may facilitate AT2 receptor signaling through p42/p44(mapk), thereby leading to neurite outgrowth.
Collapse
Affiliation(s)
- Hélène Beaudry
- Service of Endocrinology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | | | | | | | | |
Collapse
|
29
|
Abstract
We have previously reported that the protein kinase C ligand 12-O-tetradecanoyphorbol-13-acetate (TPA) inhibited the angiotensin II (AII) stimulated CYP11B2 gene expression in the adrenocortical H295R cell line. Here we report that TPA increased the level of phospho-p44/42 MAPK but AII did not. The MEK1 inhibitor PD98059 was found to increase the level of aldosterone synthase mRNA and the activity of a human CYP11B2(-2023 bp)-promoter construct. The cotransfection of H295R with ERK 1 and the hCYP11B2 promoter resulted in the inhibition of the promoter activity. TPA but not AII increased the level of the transcription factor JunB in nuclear extracts and the increase was partially abolished by the MEK1 inhibitor PD98059. The cotransfection of H295R with JunB and the hCYP11B2 promoter abolished the AII stimulating effect. Taken together these results suggest that TPA inhibits the AII-dependent activation of CYP11B2 via the p44/42 MAPK signaling pathway leading to an increase of the level of nuclear JunB.
Collapse
Affiliation(s)
- Jean-Guy LeHoux
- Department of Biochemistry, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada.
| | | |
Collapse
|
30
|
Rose A, Froment P, Perrot V, Quon MJ, LeRoith D, Dupont J. The luteinizing hormone-releasing hormone inhibits the anti-apoptotic activity of insulin-like growth factor-1 in pituitary alphaT3 cells by protein kinase Calpha-mediated negative regulation of Akt. J Biol Chem 2004; 279:52500-16. [PMID: 15448167 DOI: 10.1074/jbc.m404571200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The luteinizing hormone-releasing hormone (LHRH) receptor is a G protein-coupled receptor involved in the synthesis and release of pituitary gonadotropins and in the proliferation and apoptosis of pituitary cells. Insulin-like growth factor-1 receptor (IGF-1R) is a tyrosine kinase receptor that has a mitogenic effect on pituitary cells. In this study, we used the alphaT3 gonadotrope cell line as a model to characterize the IGF-1R signaling pathways and to investigate whether this receptor interacts with the LHRH cascade. We found that IGF-1 activated the IGF-1R, insulin receptor substrate (IRS)-1, phosphatidylinositol 3-kinase, and Akt in a time-dependent manner in alphaT3 cells. The MAPK (ERK1/2, p38, and JNK) pathways were only weakly activated by IGF-1. In contrast, LHRH strongly stimulated the MAPK pathways but had no effect on Akt activation. Cotreatment with IGF-1 and LHRH had various effects on these signaling pathways. 1) It strongly increased IGF-1-induced tyrosine phosphorylation of IRS-1 and IRS-1-associated phosphatidylinositol 3-kinase through activation of the epidermal growth factor receptor. 2) It had an additive effect on ERK1/2 activation without modifying the phosphorylation of p38 and JNK1/2. 3) It strongly reduced IGF-1 activation of Akt. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays and cell cycle analysis revealed that, in addition to having an additive effect on ERK1/2 activation, cotreatment with IGF-1 and LHRH also had an additive effect on cell proliferation. The LHRH-induced inhibition of Akt stimulated by IGF-1 was completely blocked by Safingol, a protein kinase C (PKC) alpha-specific inhibitor, and by a dominant negative form of PKCalpha. Finally, we showed that the inhibitory effect of LHRH on IGF-1-induced PKCalpha-mediated Akt activation was associated with a marked reduction in Bad phosphorylation and a substantial decrease in the ability of IGF-1 to rescue alphaT3 cells from apoptosis induced by serum starvation. Our results demonstrate for the first time that several interactions take place between IGF-1 and LHRH receptors in gonadotrope cells.
Collapse
Affiliation(s)
- Annabel Rose
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
| | | | | | | | | | | |
Collapse
|
31
|
Tsybouleva N, Zhang L, Chen S, Patel R, Lutucuta S, Nemoto S, DeFreitas G, Entman M, Carabello BA, Roberts R, Marian AJ. Aldosterone, through novel signaling proteins, is a fundamental molecular bridge between the genetic defect and the cardiac phenotype of hypertrophic cardiomyopathy. Circulation 2004; 109:1284-91. [PMID: 14993121 PMCID: PMC2779533 DOI: 10.1161/01.cir.0000121426.43044.2b] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Human hypertrophic cardiomyopathy (HCM), the most common cause of sudden cardiac death in the young, is characterized by cardiac hypertrophy, myocyte disarray, and interstitial fibrosis. The genetic basis of HCM is largely known; however, the molecular mediators of cardiac phenotypes are unknown. METHODS AND RESULTS We show myocardial aldosterone and aldosterone synthase mRNA levels were elevated by 4- to 6-fold in humans with HCM, whereas cAMP levels were normal. Aldosterone provoked expression of hypertrophic markers (NPPA, NPPB, and ACTA1) in rat cardiac myocytes by phosphorylation of protein kinase D (PKD) and expression of collagens (COL1A1, COL1A2, and COL3A1) and transforming growth factor-beta1 in rat cardiac fibroblasts by upregulation of phosphoinositide 3-kinase (PI3K)-p100delta. Inhibition of PKD and PI3K-p110delta abrogated the hypertrophic and profibrotic effects, respectively, as did the mineralocorticoid receptor (MR) antagonist spironolactone. Spironolactone reversed interstitial fibrosis, attenuated myocyte disarray by 50%, and improved diastolic function in the cardiac troponin T (cTnT)-Q92 transgenic mouse model of human HCM. Myocyte disarray was associated with increased levels of phosphorylated beta-catenin (serine 38) and reduced beta-catenin-N-cadherin complexing in the heart of cTnT-Q92 mice. Concordantly, distribution of N-cadherin, predominantly localized to cell membrane in normal myocardium, was diffuse in disarrayed myocardium. Spironolactone restored beta-catenin-N-cadherin complexing and cellular distribution of N-cadherin and reduced myocyte disarray in 2 independent randomized studies. CONCLUSIONS The results implicate aldosterone as a major link between sarcomeric mutations and cardiac phenotype in HCM and, if confirmed in additional models, signal the need for clinical studies to determine the potential beneficial effects of MR blockade in human HCM.
Collapse
Affiliation(s)
- Natalia Tsybouleva
- Section of Cardiology, Department of Medicine, Baylor College of Medicine and The Methodist Hospital, Houston, Tex 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Nicod J, Dick B, Frey FJ, Ferrari P. Mutation analysis of CYP11B1 and CYP11B2 in patients with increased 18-hydroxycortisol production. Mol Cell Endocrinol 2004; 214:167-74. [PMID: 15062555 DOI: 10.1016/j.mce.2003.10.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2003] [Accepted: 10/21/2003] [Indexed: 11/26/2022]
Abstract
BACKGROUND In patients with glucocorticoid remediable aldosteronism (GRA), a rare hypertensive disorder caused by the presence of a chimeric aldosterone synthase (CYP11B2) and 11beta-hydroxylase (CYP11B1) gene, high level of urinary 18-hydroxycortisol (18OHF) excretion are observed. In some patients with hypertension, increased urinary 18OHF secretion is also found in the absence of the hybrid CYP11B1/CYP11B2 gene. We hypothesised that gene variants of CYP11B1 or CYP11B2 may be linked to this abnormal glucocorticoid production. METHODS The urinary steroid profile was analysed by gas chromatography/mass spectrometry in 429 hypertensive patients and 98 (23%) thereof tested positive for increased 18OHF excretion. After correction for total cortisol excretion, 12 subjects showed an abnormally high 18OHF excretion. For genotyping DNA was obtained from six of these patients. All were tested negative for the hybrid CYP11B1/CYP11B2 gene and were further analysed for mutations in all exons and promoter regions of both CYP11B1 and CYP11B2 by single strand conformation polymorphism (SSCP) and sequencing when appropriate. RESULTS The genetic analysis of the two genes revealed the presence of nine molecular variants in CYP11B2 and three in CYP11B1. In addition to published polymorphic sites, we identified two new variants in CYP11B2 but no new variants in CYP11B1. The newly identified CYP11B2 mutations are a C/T single nucleotide exchange located in the first intron and a double nucleotide exchange at the 3'-splice site of exon 8. The mutated sequence corresponds to the sequence of CYP11B1 indicating a gene conversion. This suggests that the mutant is not likely to affect splicing. Thus, none of the genetic variants identified explains the high urinary excretion of 18OHF. CONCLUSIONS We present here a complete method for the genetic analysis of the CYP11B1 and CYP11B2 genes. By this method we could not identify genetic variants responsible for a GRA-like phenotype. The presence of high levels of 18OHF should not be used alone as a diagnosis tool for GRA.
Collapse
Affiliation(s)
- Jérôme Nicod
- Division of Nephrology and Hypertension, Inselspital, University of Berne, Berne, Switzerland
| | | | | | | |
Collapse
|
33
|
Li LA, Wang PW, Chang LW. Polychlorinated biphenyl 126 stimulates basal and inducible aldosterone biosynthesis of human adrenocortical H295R cells. Toxicol Appl Pharmacol 2004; 195:92-102. [PMID: 14962509 DOI: 10.1016/j.taap.2003.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Accepted: 11/03/2003] [Indexed: 11/26/2022]
Abstract
To understand the effects of polychlorinated biphenyls (PCBs) on adrenal aldosterone biosynthesis, we have performed a systematical study to characterize the corresponding steroidogenic response of human adrenocortical cell line H295R to PCB126 exposure. We found that PCB126 at high concentrations stimulated basal and inducible aldosterone production. The aldosterone induction occurred concomitantly with activation of the CYP11B2 gene. Despite the fact that PCB126 acted in synergy with both potassium and angiotensin II (Ang II) in activation of aldosterone synthesis, PCB126 only modestly increased CYP11B2 mRNA expression in the presence of Ang II contrary to the synergistic transcriptional induction elicited by PCB126 and potassium. This implicated that PCB126 had differential interactions with the potassium and Ang II signaling systems in the regulation of aldosterone biosynthesis. In addition, high concentrations of PCB126 elevated transcriptional expression of the type I Ang II receptor (AT(1)) and might thus sensitize the cellular Ang II responsiveness in both basal and inducible aldosterone biosynthesis. SF-1 was not involved in the PCB126-induced transcriptional regulation despite its importance in steroidogenic gene activation.
Collapse
Affiliation(s)
- Lih-Ann Li
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Kao-hsiung 807, Taiwan, ROC.
| | | | | |
Collapse
|
34
|
Li J, Feltzer RE, Dawson KL, Hudson EA, Clark BJ. Janus Kinase 2 and Calcium Are Required for Angiotensin II-dependent Activation of Steroidogenic Acute Regulatory Protein Transcription in H295R Human Adrenocortical Cells. J Biol Chem 2003; 278:52355-62. [PMID: 14565954 DOI: 10.1074/jbc.m305232200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Angiotensin II- and K+-stimulated aldosterone production in the adrenocortical glomerulosa cells requires induction of the steroidogenic acute regulatory protein (StAR). While both agents activate Ca2+ signaling, the mechanisms leading to aldosterone synthesis are distinct, and the angiotensin II response cannot be mimicked by K+. We previously reported that StAR mRNA levels and promoter-reporter gene activity in transiently transfected H295R human adrenocortical cells were stimulated by angiotensin II but not by K+ treatment. The current study focused on identifying signaling pathways activated by angiotensin II that contribute to StAR transcriptional activation. We show that the angiotensin II-stimulated transcriptional activation of StAR was dependent upon influx of external calcium and requires protein kinase C activation. Furthermore we describe for the first time that the Janus tyrosine kinase family member, JAK2, was activated by angiotensin II treatment of H295R cells. Treatment of the cells with AG490, a selective inhibitor of JAK2, blocked JAK2 activation and StAR reporter gene activity and inhibited steroid production. Taken together these studies describe a novel pathway controlling StAR expression and steroidogenesis in adrenocortical cells.
Collapse
Affiliation(s)
- Jianghong Li
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, Louisville, Kentucky 40292, USA
| | | | | | | | | |
Collapse
|
35
|
Wu JM, Xiao L, Cheng XK, Cui LX, Wu NH, Shen YF. PKCϵ Is a Unique Regulator for hsp90β Gene in Heat Shock Response. J Biol Chem 2003; 278:51143-9. [PMID: 14532285 DOI: 10.1074/jbc.m305537200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An early event in cellular heat shock response is the transmittance of stress signals from the cell surface into the nuclei, resulting in the induction of heat shock proteins (Hsps). Protein kinase C (PKC) has been implicated as a key player in transducing stress signals. However, mechanism(s) by which PKC regulates heat shock-induced events remains largely unknown. Here we present data that pan-PKC inhibitor GF109203X, but not classic PKC inhibitor Gö6976, specifically repressed heat shock-induced accumulation of mRNA as well as promoter activity of hsp90 beta, but not hsp90 alpha, in Jurkat cells. Subcellular fractionation studies revealed that heat shock exclusively induced PKC-epsilon membrane translocation. Consistently, expression of a constitutively active PKC-epsilon(A159E) resulted in an enhanced promoter activity of hsp90 beta upon heat shock, whereas a dominant-negative PKC-epsilon(K437R) abolished this effect. In contrast, constitutively active-PKC-alpha or dominant-negative-PKC-alpha had no effects on heat shock induction of the gene. The effect of PKC-epsilon on hsp90 beta expression seems to be stimuli-specific, as phorbol myristate acetate-mediated hsp90 beta expression was PKC-epsilon-independent. We conclude that PKC-epsilon is specifically required in the signaling pathway leading to the induction of hsp90 beta gene in response to heat shock.
Collapse
Affiliation(s)
- Jian-Min Wu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | | | | | | | | | | |
Collapse
|
36
|
Pilon A, Martin G, Bultel-Brienne S, Junquero D, Delhon A, Fruchart JC, Staels B, Clavey V. Regulation of the scavenger receptor BI and the LDL receptor by activators of aldosterone production, angiotensin II and PMA, in the human NCI-H295R adrenocortical cell line. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1631:218-28. [PMID: 12668173 DOI: 10.1016/s1388-1981(03)00020-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In human adrenal cells, cholesterol for steroidogenesis is derived from both high-density lipoproteins (HDL) via the Scavenger Receptor Class B Type I (SR-BI) and low-density lipoproteins (LDL) via the LDL receptor pathway. We have previously shown that, in the human adrenocortical carcinoma cell line, NCI-H295R, SR-BI and LDL receptor expression and steroidogenesis are coordinately regulated by activators of protein kinase A (PKA) leading to glucocorticoid synthesis. In the present study, we studied whether SR-BI and LDL receptor expression are regulated by activators of the protein kinase C (PKC) signaling pathway, such as angiotensin II, which stimulate mineralocorticoid synthesis. First, it is shown that, in NCI-H295R cells, aldosterone synthesis is stimulated by a phorbol ester (phorbol-12-myristate-13 acetate, PMA), a potent PKC activator. Northern blot analysis indicated that both angiotensin II and PMA stimulated SR-BI expression in a time-dependent manner. LDL receptor expression is slightly stimulated by PMA. The induction of SR-BI gene expression occurs at the transcriptional level, via an activation of the human SR-BI promoter, as shown by transient transfection experiments. Finally, SR-BI protein level was increased in angiotensin II- and PMA-stimulated cells, resulting in higher lipoprotein binding and specific cholesteryl ester (CE) uptake from HDL, as well from LDL after angiotensin II and PMA stimulation.
Collapse
MESH Headings
- Adrenal Cortex/drug effects
- Adrenal Cortex/metabolism
- Aldosterone/biosynthesis
- Aldosterone/metabolism
- Angiotensin II/pharmacology
- CD36 Antigens
- Cholesterol Esters/metabolism
- Cholesterol, HDL/metabolism
- Cholesterol, LDL/metabolism
- Gene Expression Regulation/drug effects
- Humans
- Membrane Proteins
- RNA, Messenger/biosynthesis
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/metabolism
- Receptors, LDL/biosynthesis
- Receptors, LDL/metabolism
- Receptors, Lipoprotein
- Receptors, Scavenger
- Scavenger Receptors, Class B
- Tetradecanoylphorbol Acetate/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Antoine Pilon
- INSERM U545, Institut Pasteur de Lille and Faculté de Pharmacie, Université de Lille 2, 59019, Lille, France
| | | | | | | | | | | | | | | |
Collapse
|