1
|
Hagen T, Litke JL, Nasir N, Hou Q, Jaffrey SR. Engineering acyclovir-induced RNA nanodevices for reversible and tunable control of aptamer function. Cell Chem Biol 2024; 31:1827-1838.e7. [PMID: 39191249 DOI: 10.1016/j.chembiol.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/03/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
Small molecule-regulated RNA devices have the potential to modulate diverse aspects of cellular function, but the small molecules used to date have potential toxicities limiting their use in cells. Here we describe a method for creating drug-regulated RNA nanodevices (RNs) using acyclovir, a biologically compatible small molecule with minimal toxicity. Our modular approach involves a scaffold comprising a central F30 three-way junction, an integrated acyclovir aptamer on the input arm, and a variable effector-binding aptamer on the output arm. This design allows for the rapid engineering of acyclovir-regulated RNs, facilitating temporal, tunable, and reversible control of intracellular aptamers. We demonstrate the control of the Broccoli aptamer and the iron-responsive element (IRE) by acyclovir. Regulating the IRE with acyclovir enables precise control over iron-regulatory protein (IRP) sequestration, consequently promoting the inhibition of ferroptosis. Overall, the method described here provides a platform for transforming aptamers into acyclovir-controllable antagonists against physiologic target proteins.
Collapse
Affiliation(s)
- Timo Hagen
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Jacob L Litke
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA; Chimerna Therapeutics, New York, NY 10032, USA
| | | | - Qian Hou
- Tri-institutional PhD Program in Chemical Biology, Weill Cornell Medical College, The Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA; Tri-institutional PhD Program in Chemical Biology, Weill Cornell Medical College, The Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
Connell GJ, Abasiri IM, Chaney EH. A temporal difference in the stabilization of two mRNAs with a 3' iron-responsive element during iron deficiency. RNA (NEW YORK, N.Y.) 2023; 29:1117-1125. [PMID: 37160355 PMCID: PMC10351883 DOI: 10.1261/rna.079665.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/21/2023] [Indexed: 05/11/2023]
Abstract
The interactions of iron regulatory proteins (IRPs) with mRNAs containing an iron-responsive element (IRE) maintain cellular iron homeostasis and coordinate it with metabolism and possibly cellular behavior. The mRNA encoding transferrin receptor-1 (TFRC, TfR1), which is a major means of iron importation, has five IREs within its 3' UTR, and IRP interactions help maintain cytosolic iron through the protection of the TfR1 mRNA from degradation. An IRE within the 3' UTR of an mRNA splice variant encoding human cell division cycle 14A (CDC14A) has the potential to coordinate the cellular iron status with cellular behavior through a similar IRP-mediated mechanism. However, the stability of the CDC14A splice variant was reported earlier to be unaffected by the cellular iron status, which suggested that the IRE is not functional. We labeled newly synthesized mRNA in HEK293 cells with 5-ethynyl uridine and found that the stability of the CDC14A variant is responsive to iron deprivation, but there are two major differences from the regulation of TfR1 mRNA stability. First, the decay of the CDC14A mRNA does not utilize the Roquin-mediated reaction that acts on the TfR1 mRNA, indicating that there is flexibility in the degradative machinery antagonized by the IRE-IRP interactions. Second, the stabilization of the CDC14A mRNA is delayed relative to the TfR1 mRNA and does not occur until IRP binding activity has been induced. The result is consistent with a hierarchy of IRP interactions in which the maintenance of cellular iron through the stabilization of the TfR1 mRNA is initially prioritized.
Collapse
Affiliation(s)
- Gregory J Connell
- Department of Pharmacology, Medical School, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | - Elizabeth H Chaney
- Department of Pharmacology, Medical School, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
3
|
High-throughput techniques enable advances in the roles of DNA and RNA secondary structures in transcriptional and post-transcriptional gene regulation. Genome Biol 2022; 23:159. [PMID: 35851062 PMCID: PMC9290270 DOI: 10.1186/s13059-022-02727-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/07/2022] [Indexed: 12/27/2022] Open
Abstract
The most stable structure of DNA is the canonical right-handed double helix termed B DNA. However, certain environments and sequence motifs favor alternative conformations, termed non-canonical secondary structures. The roles of DNA and RNA secondary structures in transcriptional regulation remain incompletely understood. However, advances in high-throughput assays have enabled genome wide characterization of some secondary structures. Here, we describe their regulatory functions in promoters and 3’UTRs, providing insights into key mechanisms through which they regulate gene expression. We discuss their implication in human disease, and how advances in molecular technologies and emerging high-throughput experimental methods could provide additional insights.
Collapse
|
4
|
Chan D, Feng C, England WE, Wyman D, Flynn R, Wang X, Shi Y, Mortazavi A, Spitale R. Diverse functional elements in RNA predicted transcriptome-wide by orthogonal RNA structure probing. Nucleic Acids Res 2021; 49:11868-11882. [PMID: 34634799 PMCID: PMC8599799 DOI: 10.1093/nar/gkab885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 01/02/2023] Open
Abstract
RNA molecules can fold into complex structures and interact with trans-acting factors to control their biology. Recent methods have been focused on developing novel tools to measure RNA structure transcriptome-wide, but their utility to study and predict RNA-protein interactions or RNA processing has been limited thus far. Here, we extend these studies with the first transcriptome-wide mapping method for cataloging RNA solvent accessibility, icLASER. By combining solvent accessibility (icLASER) with RNA flexibility (icSHAPE) data, we efficiently predict RNA-protein interactions transcriptome-wide and catalog RNA polyadenylation sites by RNA structure alone. These studies showcase the power of designing novel chemical approaches to studying RNA biology. Further, our study exemplifies merging complementary methods to measure RNA structure inside cells and its utility for predicting transcriptome-wide interactions that are critical for control of and regulation by RNA structure. We envision such approaches can be applied to studying different cell types or cells under varying conditions, using RNA structure and footprinting to characterize cellular interactions and processing involving RNA.
Collapse
Affiliation(s)
- Dalen Chan
- Department of Pharmaceutical Sciences, University of California, Irvine. Irvine, CA 92697, USA
| | - Chao Feng
- Department of Pharmaceutical Sciences, University of California, Irvine. Irvine, CA 92697, USA
| | - Whitney E England
- Department of Pharmaceutical Sciences, University of California, Irvine. Irvine, CA 92697, USA
| | - Dana Wyman
- Department of Developmental and Cellular Biology, University of California, Irvine. Irvine, CA 92697, USA
| | - Ryan A Flynn
- Stem Cell Program, Boston Children’s Hospital, Boston, MA, USA and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Xiuye Wang
- Department Microbiology and Molecular Genetics, University of California, Irvine. Irvine, CA 92697, USA
| | - Yongsheng Shi
- Department Microbiology and Molecular Genetics, University of California, Irvine. Irvine, CA 92697, USA
| | - Ali Mortazavi
- Department of Developmental and Cellular Biology, University of California, Irvine. Irvine, CA 92697, USA
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine. Irvine, CA 92697, USA
- Department of Chemistry, University of California, Irvine. Irvine, CA 92697, USA
| |
Collapse
|
5
|
Conservation in the Iron Responsive Element Family. Genes (Basel) 2021; 12:genes12091365. [PMID: 34573347 PMCID: PMC8466369 DOI: 10.3390/genes12091365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/24/2022] Open
Abstract
Iron responsive elements (IREs) are mRNA stem-loop targets for translational control by the two iron regulatory proteins IRP1 and IRP2. They are found in the untranslated regions (UTRs) of genes that code for proteins involved in iron metabolism. There are ten “classic” IRE types that define the conserved secondary and tertiary structure elements necessary for proper IRP binding, and there are 83 published “IRE-like” sequences, most of which depart from the established IRE model. Here are structurally-guided discussions regarding the essential features of an IRE and what is important for IRE family membership.
Collapse
|
6
|
Evaluation of the iron regulatory protein-1 interactome. Biometals 2018; 31:139-146. [PMID: 29330752 DOI: 10.1007/s10534-018-0076-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 01/08/2018] [Indexed: 01/31/2023]
Abstract
The interactions of iron regulatory proteins (IRPs) with mRNAs containing an iron-responsive element (IRE) is a major means through which intracellular iron homeostasis is maintained and integrated with cellular function. Although IRE-IRP interactions have been proposed to modulate the expression of a diverse number of mRNAs, a transcriptome analysis of the interactions that form within the native mRNA structure and cellular environment has not previously been described. An RNA-CLIP study is described here that identified IRP-1 interactions occurring within a primary cell line expressing physiologically relevant amounts of mRNA and protein. The study suggests that only a small subset of the previously proposed IREs interact with IRP-1 in situ. Identifying authentic IRP interactions is not only important to a greater understanding of iron homeostasis and its integration with cell biology but also to the development of novel therapeutics that can compensate for iron imbalances.
Collapse
|
7
|
Abstract
Iron and oxygen metabolism are intimately linked with one another.
Collapse
Affiliation(s)
- Robert J. Simpson
- Diabetes and Nutritional Sciences
- School of Medicine
- Kings College London
- , UK
| | - Andrew T. McKie
- Diabetes and Nutritional Sciences
- School of Medicine
- Kings College London
- , UK
| |
Collapse
|
8
|
Spears JL, Xiao X, Hall CK, Agris PF. Amino acid signature enables proteins to recognize modified tRNA. Biochemistry 2014; 53:1125-33. [PMID: 24483944 PMCID: PMC3985708 DOI: 10.1021/bi401174h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
![]()
Human tRNALys3UUU is the primer for HIV replication.
The HIV-1 nucleocapsid protein, NCp7, facilitates htRNALys3UUU recruitment from the host cell by binding to and remodeling
the tRNA structure. Human tRNALys3UUU is post-transcriptionally
modified, but until recently, the importance of those modifications
in tRNA recognition by NCp7 was unknown. Modifications such as the
5-methoxycarbonylmethyl-2-thiouridine at anticodon wobble position-34
and 2-methylthio-N6-threonylcarbamoyladenosine,
adjacent to the anticodon at position-37, are important to the recognition
of htRNALys3UUU by NCp7. Several short peptides
selected from phage display libraries were found to also preferentially
recognize these modifications. Evolutionary algorithms (Monte Carlo
and self-consistent mean field) and assisted model building with energy
refinement were used to optimize the peptide sequence in silico, while fluorescence assays were developed and conducted to verify
the in silico results and elucidate a 15-amino acid
signature sequence (R-W-Q/N-H-X2-F-Pho-X-G/A-W-R-X2-G, where X can be most amino acids, and Pho is hydrophobic)
that recognized the tRNA’s fully modified anticodon stem and
loop domain, hASLLys3UUU. Peptides of this sequence
specifically recognized and bound modified htRNALys3UUU with an affinity 10-fold higher than that of the starting
sequence. Thus, this approach provides an effective means of predicting
sequences of RNA binding peptides that have better binding properties.
Such peptides can be used in cell and molecular biology as well as
biochemistry to explore RNA binding proteins and to inhibit those
protein functions.
Collapse
Affiliation(s)
- Jessica L Spears
- The RNA Institute, University at Albany-SUNY , Life Sciences Research Building, Albany, New York 12222, United States
| | | | | | | |
Collapse
|
9
|
Cheng CC, Hung KC, Huang-Fu WC. Differentiate RNA Single-Stranded Region of the Branched Structures and Hairpin Loops by an Octahedral Cobalt(II) Complex. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200500186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Anderson CP, Shen M, Eisenstein RS, Leibold EA. Mammalian iron metabolism and its control by iron regulatory proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1468-83. [PMID: 22610083 DOI: 10.1016/j.bbamcr.2012.05.010] [Citation(s) in RCA: 346] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/07/2012] [Accepted: 05/11/2012] [Indexed: 02/06/2023]
Abstract
Cellular iron homeostasis is maintained by iron regulatory proteins 1 and 2 (IRP1 and IRP2). IRPs bind to iron-responsive elements (IREs) located in the untranslated regions of mRNAs encoding protein involved in iron uptake, storage, utilization and export. Over the past decade, significant progress has been made in understanding how IRPs are regulated by iron-dependent and iron-independent mechanisms and the pathological consequences of IRP2 deficiency in mice. The identification of novel IREs involved in diverse cellular pathways has revealed that the IRP-IRE network extends to processes other than iron homeostasis. A mechanistic understanding of IRP regulation will likely yield important insights into the basis of disorders of iron metabolism. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Cole P Anderson
- Department of Oncological Sciences, University of Utah, 15 N. 2030 E., Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
11
|
Liu Z, Lanford R, Mueller S, Gerhard GS, Luscieti S, Sanchez M, Devireddy L. Siderophore-mediated iron trafficking in humans is regulated by iron. J Mol Med (Berl) 2012; 90:1209-21. [PMID: 22527885 DOI: 10.1007/s00109-012-0899-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 03/21/2012] [Accepted: 03/26/2012] [Indexed: 01/24/2023]
Abstract
Siderophores are best known as small iron binding molecules that facilitate microbial iron transport. In our previous study we identified a siderophore-like molecule in mammalian cells and found that its biogenesis is evolutionarily conserved. A member of the short chain dehydrogenase family of reductases, 3-hydroxy butyrate dehydrogenase (BDH2) catalyzes a rate-limiting step in the biogenesis of the mammalian siderophore. We have shown that depletion of the mammalian siderophore by inhibiting expression of bdh2 results in abnormal accumulation of cellular iron and mitochondrial iron deficiency. These observations suggest that the mammalian siderophore is a critical regulator of cellular iron homeostasis and facilitates mitochondrial iron import. By utilizing bioinformatics, we identified an iron-responsive element (IRE; a stem-loop structure that regulates genes expression post-transcriptionally upon binding to iron regulatory proteins or IRPs) in the 3'-untranslated region of the human BDH2 (hBDH2) gene. In cultured cells as well as in patient samples we now demonstrate that the IRE confers iron-dependent regulation on hBDH2 and binds IRPs in RNA electrophoretic mobility shift assays. In addition, we show that the hBDH2 IRE associates with IRPs in cells and that abrogation of IRPs by RNAi eliminates the iron-dependent regulation of hBDH2 mRNA. The key physiologic implication is that iron-mediated post-transcriptional regulation of hBDH2 controls mitochondrial iron homeostasis in human cells. These observations provide a new and an unanticipated mechanism by which iron regulates its intracellular trafficking.
Collapse
Affiliation(s)
- Zhuoming Liu
- Case Comprehensive Cancer Center and Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Tan W, Wang X, Cheng P, Liu L, Wang H, Gong M, Quan X, Gao H, Zhu C. Molecular cloning and preliminary function study of iron responsive element binding protein 1 gene from cypermethrin-resistant Culex pipiens pallens. Parasit Vectors 2011; 4:215. [PMID: 22075242 PMCID: PMC3223502 DOI: 10.1186/1756-3305-4-215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/10/2011] [Indexed: 11/10/2022] Open
Abstract
Background Insecticide resistance jeopardizes the control of mosquito populations and mosquito-borne disease control, which creates a major public health concern. Two-dimensional electrophoresis identified one protein segment with high sequence homology to part of Aedes aegypti iron-responsive element binding protein (IRE-BP). Method RT-PCR and RACE (rapid amplification of cDNA end) were used to clone a cDNA encoding full length IRE-BP 1. Real-time quantitative RT-PCR was used to evaluate the transcriptional level changes in the Cr-IRE strain Aedes aegypti compared to the susceptible strain of Cx. pipiens pallens. The expression profile of the gene was established in the mosquito life cycle. Methyl tritiated thymidine (3H-TdR) was used to observe the cypermethrin resistance changes in C6/36 cells containing the stably transfected IRE-BP 1 gene of Cx. pipiens pallens. Results The complete sequence of iron responsive element binding protein 1 (IRE-BP 1) has been cloned from the cypermethrin-resistant strain of Culex pipiens pallens (Cr-IRE strain). Quantitative RT-PCR analysis indicated that the IRE-BP 1 transcription level was 6.7 times higher in the Cr-IRE strain than in the susceptible strain of 4th instar larvae. The IRE-BP 1 expression was also found to be consistently higher throughout the life cycle of the Cr-IRE strain. A protein of predicted size 109.4 kDa has been detected by Western blotting in IRE-BP 1-transfected mosquito C6/36 cells. These IRE-BP 1-transfected cells also showed enhanced cypermethrin resistance compared to null-transfected or plasmid vector-transfected cells as determined by 3H-TdR incorporation. Conclusion IRE-BP 1 is expressed at higher levels in the Cr-IRE strain, and may confer some insecticide resistance in Cx. pipiens pallens.
Collapse
Affiliation(s)
- Wenbin Tan
- Department of Pathogenic Biology, Jining Medical University, Jining, Shandong Province, 272067, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Iron regulatory protein-1 and -2: transcriptome-wide definition of binding mRNAs and shaping of the cellular proteome by iron regulatory proteins. Blood 2011; 118:e168-79. [PMID: 21940823 DOI: 10.1182/blood-2011-04-343541] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron regulatory proteins (IRPs) 1 and 2 are RNA-binding proteins that control cellular iron metabolism by binding to conserved RNA motifs called iron-responsive elements (IREs). The currently known IRP-binding mRNAs encode proteins involved in iron uptake, storage, and release as well as heme synthesis. To systematically define the IRE/IRP regulatory network on a transcriptome-wide scale, IRP1/IRE and IRP2/IRE messenger ribonucleoprotein complexes were immunoselected, and the mRNA composition was determined using microarrays. We identify 35 novel mRNAs that bind both IRP1 and IRP2, and we also report for the first time cellular mRNAs with exclusive specificity for IRP1 or IRP2. To further explore cellular iron metabolism at a system-wide level, we undertook proteomic analysis by pulsed stable isotope labeling by amino acids in cell culture in an iron-modulated mouse hepatic cell line and in bone marrow-derived macrophages from IRP1- and IRP2-deficient mice. This work investigates cellular iron metabolism in unprecedented depth and defines a wide network of mRNAs and proteins with iron-dependent regulation, IRP-dependent regulation, or both.
Collapse
|
14
|
Goforth JB, Anderson SA, Nizzi CP, Eisenstein RS. Multiple determinants within iron-responsive elements dictate iron regulatory protein binding and regulatory hierarchy. RNA (NEW YORK, N.Y.) 2010; 16:154-69. [PMID: 19939970 PMCID: PMC2802025 DOI: 10.1261/rna.1857210] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Iron regulatory proteins (IRPs) are iron-regulated RNA binding proteins that, along with iron-responsive elements (IREs), control the translation of a diverse set of mRNA with 5' IRE. Dysregulation of IRP action causes disease with etiology that may reflect differential control of IRE-containing mRNA. IREs are defined by a conserved stem-loop structure including a midstem bulge at C8 and a terminal CAGUGH sequence that forms an AGU pseudo-triloop and N19 bulge. C8 and the pseudo-triloop nucleotides make the majority of the 22 identified bonds with IRP1. We show that IRP1 binds 5' IREs in a hierarchy extending over a ninefold range of affinities that encompasses changes in IRE binding affinity observed with human L-ferritin IRE mutants. The limits of this IRE binding hierarchy are predicted to arise due to small differences in binding energy (e.g., equivalent to one H-bond). We demonstrate that multiple regions of the IRE stem not predicted to contact IRP1 help establish the binding hierarchy with the sequence and structure of the C8 region displaying a major role. In contrast, base-pairing and stacking in the upper stem region proximal to the terminal loop had a minor role. Unexpectedly, an N20 bulge compensated for the lack of an N19 bulge, suggesting the existence of novel IREs. Taken together, we suggest that a regulatory binding hierarchy is established through the impact of the IRE stem on the strength, not the number, of bonds between C8 or pseudo-triloop nucleotides and IRP1 or through their impact on an induced fit mechanism of binding.
Collapse
Affiliation(s)
- Jeremy B Goforth
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
15
|
dos Santos CO, Dore LC, Valentine E, Shelat SG, Hardison RC, Ghosh M, Wang W, Eisenstein RS, Costa FF, Weiss MJ. An iron responsive element-like stem-loop regulates alpha-hemoglobin-stabilizing protein mRNA. J Biol Chem 2008; 283:26956-64. [PMID: 18676996 DOI: 10.1074/jbc.m802421200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hemoglobin production during erythropoiesis is mechanistically coupled to the acquisition and metabolism of iron. We discovered that iron regulates the expression of alpha-hemoglobin-stabilizing protein (AHSP), a molecular chaperone that binds and stabilizes free alpha-globin during hemoglobin synthesis. In primates, the 3'-untranslated region (UTR) of AHSP mRNA contains a nucleotide sequence resembling iron responsive elements (IREs), stem-loop structures that regulate gene expression post-transcriptionally by binding iron regulatory proteins (IRPs). The AHSP IRE-like stem-loop deviates from classical consensus sequences and binds IRPs poorly in electrophoretic mobility shift assays. However, in cytoplasmic extracts, AHSP mRNA co-immunoprecipitates with IRPs in a fashion that is dependent on the stem-loop structure and inhibited by iron. Moreover, this interaction enhances AHSP mRNA stability in erythroid and heterologous cells. Our findings demonstrate that IRPs can regulate mRNA expression through non-canonical IREs and extend the repertoire of known iron-regulated genes. In addition, we illustrate a new mechanism through which hemoglobin may be modulated according to iron status.
Collapse
Affiliation(s)
- Camila O dos Santos
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Iron regulatory proteins 1 and 2 (IRP1 and IRP2) are mammalian proteins that register cytosolic iron concentrations and post-transcriptionally regulate expression of iron metabolism genes to optimize cellular iron availability. In iron-deficient cells, IRPs bind to iron-responsive elements (IREs) found in the mRNAs of ferritin, the transferrin receptor and other iron metabolism transcripts, thereby enhancing iron uptake and decreasing iron sequestration. IRP1 registers cytosolic iron status mainly through an iron-sulfur switch mechanism, alternating between an active cytosolic aconitase form with an iron-sulfur cluster ligated to its active site and an apoprotein form that binds IREs. Although IRP2 is homologous to IRP1, IRP2 activity is regulated primarily by iron-dependent degradation through the ubiquitin-proteasomal system in iron-replete cells. Targeted deletions of IRP1 and IRP2 in animals have demonstrated that IRP2 is the chief physiologic iron sensor. The physiological role of the IRP-IRE system is illustrated by (i) hereditary hyperferritinemia cataract syndrome, a human disease in which ferritin L-chain IRE mutations interfere with IRP binding and appropriate translational repression, and (ii) a syndrome of progressive neurodegenerative disease and anemia that develops in adult mice lacking IRP2. The early death of mouse embryos that lack both IRP1 and IRP2 suggests a central role for IRP-mediated regulation in cellular viability.
Collapse
Affiliation(s)
- Tracey A Rouault
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Building 18T, Room 101, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
17
|
Chen JM, Férec C, Cooper DN. A systematic analysis of disease-associated variants in the 3' regulatory regions of human protein-coding genes II: the importance of mRNA secondary structure in assessing the functionality of 3' UTR variants. Hum Genet 2006; 120:301-33. [PMID: 16807757 DOI: 10.1007/s00439-006-0218-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 05/29/2006] [Indexed: 12/13/2022]
Abstract
In an attempt both to catalogue 3' regulatory region (3' RR)-mediated disease and to improve our understanding of the structure and function of the 3' RR, we have performed a systematic analysis of disease-associated variants in the 3' RRs of human protein-coding genes. We have previously analysed the variants that have occurred in two specific domains/motifs of the 3' untranslated region (3' UTR) as well as in the 3' flanking region. Here we have focused upon 83 known variants within the upstream sequence (USS; between the translational termination codon and the upstream core polyadenylation signal sequence) of the 3' UTR. To place these variants in their proper context, we first performed a comprehensive survey of known cis-regulatory elements within the USS and the mechanisms by which they effect post-transcriptional gene regulation. Although this survey supports the view that RNA regulatory elements function within the context of specific secondary structures, there are no general rules governing how secondary structure might exert its influence. We have therefore addressed this question by systematically evaluating both functional and non-functional (based upon in vitro reporter gene and/or electrophoretic mobility shift assay data) USS variant-containing sequences against known cis-regulatory motifs within the context of predicted RNA secondary structures. This has allowed us not only to establish a reliable and objective means to perform secondary structure prediction but also to identify consistent patterns of secondary structural change that could potentiate the discrimination of functional USS variants from their non-functional counterparts. The resulting rules were then used to infer potential functionality in the case of some of the remaining functionally uncharacterized USS variants, from their predicted secondary structures. This not only led us to identify further patterns of secondary structural change but also several potential novel cis-regulatory motifs within the 3' UTRs studied.
Collapse
|
18
|
Sanchez M, Galy B, Dandekar T, Bengert P, Vainshtein Y, Stolte J, Muckenthaler MU, Hentze MW. Iron regulation and the cell cycle: identification of an iron-responsive element in the 3'-untranslated region of human cell division cycle 14A mRNA by a refined microarray-based screening strategy. J Biol Chem 2006; 281:22865-74. [PMID: 16760464 DOI: 10.1074/jbc.m603876200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Iron regulatory proteins (IRPs) 1 and 2 post-transcriptionally control mammalian iron homeostasis by binding to iron-responsive elements (IREs), conserved RNA stem-loop structures located in the 5'- or 3'-untranslated regions of genes involved in iron metabolism (e.g. FTH1, FTL, and TFRC). To identify novel IRE-containing mRNAs, we integrated biochemical, biocomputational, and microarray-based experimental approaches. IRP/IRE messenger ribonucleoproteins were immunoselected, and their mRNA composition was analyzed using an IronChip microarray enriched for genes predicted computationally to contain IRE-like motifs. Among different candidates, this report focuses on a novel IRE located in the 3'-untranslated region of the cell division cycle 14A mRNA. We show that this IRE motif efficiently binds both IRP1 and IRP2. Differential splicing of cell division cycle 14A produces IRE- and non-IRE-containing mRNA isoforms. Interestingly, only the expression of the IRE-containing mRNA isoforms is selectively increased by cellular iron deficiency. This work describes a new experimental strategy to explore the IRE/IRP regulatory network and uncovers a previously unrecognized regulatory link between iron metabolism and the cell cycle.
Collapse
Affiliation(s)
- Mayka Sanchez
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Wallander ML, Leibold EA, Eisenstein RS. Molecular control of vertebrate iron homeostasis by iron regulatory proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:668-89. [PMID: 16872694 PMCID: PMC2291536 DOI: 10.1016/j.bbamcr.2006.05.004] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 05/09/2006] [Accepted: 05/10/2006] [Indexed: 02/06/2023]
Abstract
Both deficiencies and excesses of iron represent major public health problems throughout the world. Understanding the cellular and organismal processes controlling iron homeostasis is critical for identifying iron-related diseases and in advancing the clinical treatments for such disorders of iron metabolism. Iron regulatory proteins (IRPs) 1 and 2 are key regulators of vertebrate iron metabolism. These RNA binding proteins post-transcriptionally control the stability or translation of mRNAs encoding proteins involved in iron homeostasis thereby controlling the uptake, utilization, storage or export of iron. Recent evidence provides insight into how IRPs selectively control the translation or stability of target mRNAs, how IRP RNA binding activity is controlled by iron-dependent and iron-independent effectors, and the pathological consequences of dysregulation of the IRP system.
Collapse
Affiliation(s)
- Michelle L. Wallander
- Department of Oncological Sciences, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
- Eccles Program in Human Molecular Biology and Genetics, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
| | - Elizabeth A. Leibold
- Department of Medicine, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
- Eccles Program in Human Molecular Biology and Genetics, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
| | - Richard S. Eisenstein
- Department of Nutritional Sciences, University of Wisconsin, 1415 Linden Drive, Madison, WI 53706, USA
- Corresponding author. Tel.: +1 608 262 5830. E-mail address: (R.S. Eisenstein)
| |
Collapse
|
20
|
Dupuy J, Volbeda A, Carpentier P, Darnault C, Moulis JM, Fontecilla-Camps JC. Crystal structure of human iron regulatory protein 1 as cytosolic aconitase. Structure 2006; 14:129-39. [PMID: 16407072 DOI: 10.1016/j.str.2005.09.009] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 09/22/2005] [Accepted: 09/23/2005] [Indexed: 11/22/2022]
Abstract
Iron regulatory proteins (IRPs) control the translation of proteins involved in iron uptake, storage and utilization by binding to specific noncoding sequences of the corresponding mRNAs known as iron-responsive elements (IREs). This strong interaction assures proper iron homeostasis in animal cells under iron shortage. Conversely, under iron-replete conditions, IRP1 binds a [4Fe-4S] cluster and functions as cytosolic aconitase. Regulation of the balance between the two IRP1 activities is complex, and it does not depend only on iron availability. Here, we report the crystal structure of human IRP1 in its aconitase form. Comparison with known structures of homologous enzymes reveals well-conserved folds and active site environments with significantly different surface shapes and charge distributions. The specific features of human IRP1 allow us to propose a tentative model of an IRP1-IRE complex that agrees with a range of previously obtained data.
Collapse
Affiliation(s)
- Jérôme Dupuy
- Laboratoire de Cristallographie et de Cristallogenèse des Protéines, Institut de Biologie Structurale JP Ebel, CEA/CNRS/Université Joseph Fourier, 38027 Grenoble Cedex 1, France
| | | | | | | | | | | |
Collapse
|
21
|
Yikilmaz E, Rouault TA, Schuck P. Self-Association and Ligand-Induced Conformational Changes of Iron Regulatory Proteins 1 and 2. Biochemistry 2005; 44:8470-8. [PMID: 15938636 DOI: 10.1021/bi0500325] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Iron regulatory proteins (IRPs) regulate iron metabolism in mammalian cells. We used biophysical techniques to examine the solution properties of apo-IRP1 and apo-IRP2 and the interaction with their RNA ligand, the iron regulatory element (IRE). Sedimentation velocity and equilibrium experiments have shown that apo-IRP1 exists as an equilibrium mixture of monomers and dimers in solution, with an equilibrium dissociation constant in the low micromolar range and slow kinetic exchange between the two forms. However, only monomeric IRP1 is observed in complex with IRE. In contrast, IRP2 exists as monomer in both the apo-IRP2 form and in the IRP2/IRE complex. For both IRPs, sedimentation velocity and dynamic light-scattering experiments show a decrease of the Stokes radius upon binding of IRE. This conformational change was also observed by circular dichroism. Studies with an RNA molecule complementary to IRE indicate that, although specific base interactions can increase the stability of the protein/RNA complex, they are not essential for inducing this conformational change. The dynamic change of the IRP between different oligomeric and conformational states induced by interaction with IRE may play a role in the iron regulatory functions of IRPs.
Collapse
Affiliation(s)
- Emine Yikilmaz
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-5766, USA
| | | | | |
Collapse
|
22
|
Mayo JJ, Kohlhepp P, Zhang D, Winzerling JJ. Effects of sham air and cigarette smoke on A549 lung cells: implications for iron-mediated oxidative damage. Am J Physiol Lung Cell Mol Physiol 2004; 286:L866-76. [PMID: 15003939 DOI: 10.1152/ajplung.00268.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inhalation of airborne pollution particles that contain iron can result in a variety of detrimental changes to lung cells and tissues. The lung iron burden can be substantially increased by exposure to cigarette smoke, and cigarette smoke contains iron particulates, as well as several environmental toxins, that could influence intracellular iron status. We are interested in the effects of environmental contaminants on intracellular iron metabolism. We initiated our studies using lung A549 type II epithelial cells as a model, and we evaluated the effects of iron dose and smoke treatment on several parameters of intracellular iron metabolism. We show that iron at a physiological dose stimulates ferritin synthesis without altering the transferrin receptor (TfR) mRNA levels of these cells. This is mediated primarily by a reduction of iron regulatory protein 2. Higher doses of iron reduce iron regulatory protein-1 binding activity and are accompanied by a reduction in TfR mRNA. Thus, for A549 cells, different mechanisms influencing IRP-IRE interaction allow ferritin translation in the presence of TfR mRNA to provide for iron needs and yet prevent excessive iron uptake. More importantly, we report that smoke treatment diminishes ferritin levels and increases TfR mRNA of A549 cells. Ferritin serves as a cytoprotective agent against oxidative stress. These data suggest that exposure of lung cells to low levels of smoke as are present in environmental pollutants could result in reduced cytoprotection by ferritin at a time when iron uptake is sustained, thus enhancing the possibility of lung damage by iron-mediated oxidative stress.
Collapse
Affiliation(s)
- Jonathan J Mayo
- Dept. of Nutritional Sciences, P.O. Box 210038, The Univ. of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
23
|
Allerson CR, Martinez A, Yikilmaz E, Rouault TA. A high-capacity RNA affinity column for the purification of human IRP1 and IRP2 overexpressed in Pichia pastoris. RNA (NEW YORK, N.Y.) 2003; 9:364-374. [PMID: 12592010 PMCID: PMC1370403 DOI: 10.1261/rna.2143303] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2002] [Accepted: 12/02/2002] [Indexed: 05/24/2023]
Abstract
Regulated expression of proteins involved in mammalian iron metabolism is achieved in part through the interaction of the iron regulatory proteins IRP1 and IRP2 with highly conserved RNA stem-loop structures, known as iron-responsive elements (IREs), that are located within the 5' or 3' untranslated regions of regulated transcripts. As part of an effort to determine the structures of the IRP-IRE complexes using crystallographic methods, we have developed an efficient process for obtaining functionally pure IRP1 and IRP2 that relies upon the improved overexpression (>10 mg of soluble IRP per liter of culture) of each human IRP in the yeast Pichia pastoris and large-scale purification using RNA affinity chromatography. Despite the utility of RNA affinity chromatography in the isolation of RNA-binding proteins, current methods for preparing RNA affinity matrices produce columns of low capacity and limited stability. To address these limitations, we have devised a simple method for preparing stable, reusable, high-capacity RNA affinity columns. This method utilizes a bifunctional linker to covalently join a 5'-amino tethered RNA with a thiol-modified Sepharose, and can be used to load 150 nmole or more of RNA per milliliter of solid support. We demonstrate here the use of an IRE affinity column in the large-scale purification of IRP1 and IRP2, and suggest that the convenience of this approach will prove attractive in the analysis of other RNA-binding proteins.
Collapse
Affiliation(s)
- Charles R Allerson
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
24
|
Erlitzki R, Long JC, Theil EC. Multiple, conserved iron-responsive elements in the 3'-untranslated region of transferrin receptor mRNA enhance binding of iron regulatory protein 2. J Biol Chem 2002; 277:42579-87. [PMID: 12200453 DOI: 10.1074/jbc.m207918200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synthesis of proteins for iron homeostasis is regulated by specific, combinatorial mRNA/protein interactions between RNA stem-loop structures (iron-responsive elements, IREs) and iron-regulatory proteins (IRP1 and IRP2), controlling either mRNA translation or stability. The transferrin receptor 3'-untranslated region (TfR-3'-UTR) mRNA is unique in having five IREs, linked by AU-rich elements. A C-bulge in the stem of each TfR-IRE folds into an IRE that has low IRP2 binding, whereas a loop/bulge in the stem of the ferritin-IRE allows equivalent IRP1 and IRP2 binding. Effects of multiple IRE interactions with IRP1 and IRP2 were compared between the native TfR-3'-UTR sequence (5xIRE) and RNA with only 3 or 2 IREs. We show 1) equivalent IRP1 and IRP2 binding to multiple TfR-IRE RNAs; 2) increased IRP-dependent nuclease resistance of 5xIRE compared with lower IRE copy-number RNAs; 3) distorted TfR-IRE helix structure within the context of 5xIRE, detected by Cu-(phen)(2) binding/cleavage, that coincides with ferritin-IRE conformation and enhanced IRP2 binding; and 4) variable IRP1 and IRP2 expression in human cells and during development (IRP2-mRNA predominated). Changes in TfR-IRE structure conferred by the full length TfR-3'-UTR mRNA explain in part evolutionary conservation of multiple IRE-RNA, which allows TfR mRNA stabilization and receptor synthesis when IRP activity varies, and ensures iron uptake for cell growth.
Collapse
Affiliation(s)
- Ronit Erlitzki
- Children's Hospital Oakland Research Institute, The Research Institute of the Children's Hospital and Medical Center Oakland, 5700 Martin Luther King, Jr. Way, Oakland, California 94609-1673, USA
| | | | | |
Collapse
|
25
|
Chen H, Waldbieser GC, Rice CD, Elibol B, Wolters WR, Hanson LA. Isolation and characterization of channel catfish natural resistance associated macrophage protein gene. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2002; 26:517-531. [PMID: 12031412 DOI: 10.1016/s0145-305x(01)00096-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Natural resistance associated macrophage protein 1 (Nramp1) affects the ability of macrophages to kill pathogens. We cloned Nramp cDNA of channel catfish to identify potential molecular markers for disease resistance. Three different Nramp transcripts were identified: NrampCa-2912 nucleotides (nt), NrampCb-3245 nt, and NrampCc-3721 nt. At the 5' end, the transcripts have a common 2263 nt sequence containing the open reading frame. The differences are in the 3' untranslated region resulting from alternative splicing and polyadenylation. NrampCc is the predominant form expressed. The deduced 550 amino acid sequence of the channel catfish Nramp (NrampC) has high homology to Nramp from other vertebrates and a predicted conserved structure. The NrampC contains the 12 transmembrane domains, and the consensus transport motif. Post-transcriptional processing is also conserved. Phylogenetic analysis grouped NrampC with other fish Nramps and closer to Nramp2 than to Nramp1 of mammals. However, the catfish transcript does not contain an iron-responsive regulatory-protein binding site, a characteristic of Nramp2, and, like Nramp1, NrampC expression is induced in macrophage-rich tissues after exposure to lipopolysaccharide and in a macrophage cell line when stimulated. Thus NrampC is structurally closer to mammalian Nramp2 but may function similar to Nramp1.
Collapse
Affiliation(s)
- Hai Chen
- College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762, USA
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Like other organisms, insects must balance two properties of ionic iron, that of an essential nutrient and a potent toxin. Iron must be acquired to provide catalysis for oxidative metabolism, but it must be controlled to avoid destructive oxidative reactions. Insects have evolved distinctive forms of the serum iron transport protein, transferrin, and the storage protein, ferritin. These proteins may serve different functions in insects than they do in other organisms. A form of translational control of protein synthesis by iron in insects is similar to that of vertebrates. The Drosophila melanogaster genome contains many genes that may encode other proteins involved in iron metabolism.
Collapse
Affiliation(s)
- Helen Nichol
- Department of Nutritional Science, University of Arizona, Shantz 309, P.O. Box 210038, Tucson, Arizona 85721-0038, USA.
| | | | | |
Collapse
|
27
|
Gunshin H, Allerson CR, Polycarpou-Schwarz M, Rofts A, Rogers JT, Kishi F, Hentze MW, Rouault TA, Andrews NC, Hediger MA. Iron-dependent regulation of the divalent metal ion transporter. FEBS Lett 2001; 509:309-16. [PMID: 11741608 DOI: 10.1016/s0014-5793(01)03189-1] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The first step in intestinal iron absorption is mediated by the H(+)-coupled Fe(2+) transporter called divalent cation transporter 1/divalent metal ion transporter 1 (DCT1/DMT1) (also known as natural resistance-associated macrophage protein 2). DCT1/DMT1 mRNA levels in the duodenum strongly increase in response to iron depletion. To study the mechanism of iron-dependent DCT1/DMT1 mRNA regulation, we investigated the endogenous expression of DCT1/DMT1 mRNA in various cell types. We found that only the iron responsive element (IRE)-containing form, which corresponds to one of two splice forms of DCT1/DMT1, is responsive to iron treatment and this responsiveness was cell type specific. We also examined the interaction of the putative 3'-UTR IRE with iron responsive binding proteins (IRP1 and IRP2), and found that IRP1 binds to the DCT1/DMT1-IRE with higher affinity compared to IRP2. This differential binding of IRP1 and IRP2 was also reported for the IREs of transferrin receptors, erythroid 5-aminolevulinate synthase and mitochondrial aconitase. We propose that regulation of DCT1/DMT1 mRNA by iron involves post-transcriptional regulation through the binding of IRP1 to the transporter's IRE, as well as other as yet unknown factors.
Collapse
Affiliation(s)
- H Gunshin
- Membrane Biology Program and Renal Division, Brigham and Women's Hospital and Harvard Medical School, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
The Transcription of Genes. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|