1
|
Farag N, Ercolani G, Del Grosso E, Ricci F. DNA Tile Self‐Assembly Guided by Base Excision Repair Enzymes. Angew Chem Int Ed Engl 2022; 61:e202208367. [DOI: 10.1002/anie.202208367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Nada Farag
- Department of Chemical Sciences and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Gianfranco Ercolani
- Department of Chemical Sciences and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Erica Del Grosso
- Department of Chemical Sciences and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Francesco Ricci
- Department of Chemical Sciences and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
2
|
Farag N, Ercolani G, Del Grosso E, Ricci F. DNA Tile Self‐Assembly Guided by Base Excision Repair Enzymes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nada Farag
- Universita degli Studi di Roma Tor Vergata Chemistry ITALY
| | | | | | - Francesco Ricci
- University of Rome, Tor Vergata Department of Chemistry Via della Ricerca Scientifica 00133 Rome ITALY
| |
Collapse
|
3
|
Mehta A, Raj P, Sundriyal S, Gopal B, Varshney U. Use of a molecular beacon based fluorescent method for assaying uracil DNA glycosylase (Ung) activity and inhibitor screening. Biochem Biophys Rep 2021; 26:100954. [PMID: 33665381 PMCID: PMC7900708 DOI: 10.1016/j.bbrep.2021.100954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 11/27/2022] Open
Abstract
Uracil DNA glycosylases are an important class of enzymes that hydrolyze the N-glycosidic bond between the uracil base and the deoxyribose sugar to initiate uracil excision repair. Uracil may arise in DNA either because of its direct incorporation (against A in the template) or because of cytosine deamination. Mycobacteria with G, C rich genomes are inherently at high risk of cytosine deamination. Uracil DNA glycosylase activity is thus important for the survival of mycobacteria. A limitation in evaluating the druggability of this enzyme, however, is the absence of a rapid assay to evaluate catalytic activity that can be scaled for medium to high-throughput screening of inhibitors. Here we report a fluorescence-based method to assay uracil DNA glycosylase activity. A hairpin DNA oligomer with a fluorophore at its 5′ end and a quencher at its 3′ ends was designed incorporating five consecutive U:A base pairs immediately after the first base pair (5′ C:G 3’) at the top of the hairpin stem. Enzyme assays performed using this fluorescent substrate were seen to be highly sensitive thus enabling investigation of the real time kinetics of uracil excision. Here we present data that demonstrate the feasibility of using this assay to screen for inhibitors of Mycobacterium tuberculosis uracil DNA glycosylase. We note that this assay is suitable for high-throughput screening of compound libraries for uracil DNA glycosylase inhibitors. A novel molecular beacon based fluorescent method to assay uracil DNA glycosylase (UDG) activity has been developed. The single step assay is useful to determine real-time kinetics of uracil release. The assay is useful for high throughput screening of uracil DNA glycosylase inhibitors.
Collapse
Affiliation(s)
- Avani Mehta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Prateek Raj
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Sandeep Sundriyal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | | | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| |
Collapse
|
4
|
Pathak D, Kwon E, Kim DY. Selective interactions between mimivirus uracil-DNA glycosylase and inhibitory proteins determined by a single amino acid. J Struct Biol 2020; 211:107552. [PMID: 32569642 DOI: 10.1016/j.jsb.2020.107552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/06/2020] [Accepted: 06/16/2020] [Indexed: 11/27/2022]
Abstract
Uracil-N-glycosylase (UNG) is found in most organisms as well as in large DNA viruses. Its inhibitory proteins, including uracil glycosylase inhibitor (UGI) and p56, tightly bind to the active site of UNG by mimicking the DNA substrates. As the binding motifs are conserved in UNG family proteins, the inhibitory proteins bind to various UNG proteins across species. However, the intercalation residue that penetrates the DNA minor groove during uracil excision is not conserved among UNG proteins. To understand the role of the intercalation residue in their binding to the inhibitory proteins, we prepared mutants of mimivirus UNG, measured the binding affinity between the UNG mutants and inhibitory proteins, and analyzed the interactions based on the crystal structures of mimivirus UNG mutants complexed with UGI. The results show that mimivirus UNG, which harbors Tyr as an intercalation residue, did not interact with the inhibitory proteins intrinsically, whereas mutations of the intercalation residue to Phe or Leu resulted in tight interactions with UGI and p56; mutation to Met resulted in tight interactions only with p56. The crystal structures revealed that Phe and Leu stabilize the interactions by fitting into the hydrophobic pocket of UGI. These results show that differences in size and hydrophobicity of the intercalation residues determine the interactions between UNG family proteins and the inhibitory proteins, UGI and p56.
Collapse
Affiliation(s)
- Deepak Pathak
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Eunju Kwon
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea.
| | - Dong Young Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea.
| |
Collapse
|
5
|
Earl C, Bagnéris C, Zeman K, Cole A, Barrett T, Savva R. A structurally conserved motif in γ-herpesvirus uracil-DNA glycosylases elicits duplex nucleotide-flipping. Nucleic Acids Res 2019; 46:4286-4300. [PMID: 29596604 PMCID: PMC5934625 DOI: 10.1093/nar/gky217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 03/19/2018] [Indexed: 11/13/2022] Open
Abstract
Efficient γ-herpesvirus lytic phase replication requires a virally encoded UNG-type uracil-DNA glycosylase as a structural element of the viral replisome. Uniquely, γ-herpesvirus UNGs carry a seven or eight residue insertion of variable sequence in the otherwise highly conserved minor-groove DNA binding loop. In Epstein-Barr Virus [HHV-4] UNG, this motif forms a disc-shaped loop structure of unclear significance. To ascertain the biological role of the loop insertion, we determined the crystal structure of Kaposi's sarcoma-associated herpesvirus [HHV-8] UNG (kUNG) in its product complex with a uracil-containing dsDNA, as well as two structures of kUNG in its apo state. We find the disc-like conformation is conserved, but only when the kUNG DNA-binding cleft is occupied. Surprisingly, kUNG uses this structure to flip the orphaned partner base of the substrate deoxyuridine out of the DNA duplex while retaining canonical UNG deoxyuridine-flipping and catalysis. The orphan base is stably posed in the DNA major groove which, due to DNA backbone manipulation by kUNG, is more open than in other UNG-dsDNA structures. Mutagenesis suggests a model in which the kUNG loop is pinned outside the DNA-binding cleft until DNA docking promotes rigid structuring of the loop and duplex nucleotide flipping, a novel observation for UNGs.
Collapse
Affiliation(s)
- Christopher Earl
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Claire Bagnéris
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Kara Zeman
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Ambrose Cole
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Tracey Barrett
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Renos Savva
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
6
|
Chembazhi UV, Patil VV, Sah S, Reeve W, Tiwari RP, Woo E, Varshney U. Uracil DNA glycosylase (UDG) activities in Bradyrhizobium diazoefficiens: characterization of a new class of UDG with broad substrate specificity. Nucleic Acids Res 2017; 45:5863-5876. [PMID: 28369586 PMCID: PMC5449639 DOI: 10.1093/nar/gkx209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 03/27/2017] [Indexed: 01/01/2023] Open
Abstract
Repair of uracils in DNA is initiated by uracil DNA glycosylases (UDGs). Family 1 UDGs (Ung) are the most efficient and ubiquitous proteins having an exquisite specificity for uracils in DNA. Ung are characterized by motifs A (GQDPY) and B (HPSPLS) sequences. We report a novel dimeric UDG, Blr0248 (BdiUng) from Bradyrhizobium diazoefficiens. Although BdiUng contains the motif A (GQDPA), it has low sequence identity to known UDGs. BdiUng prefers single stranded DNA and excises uracil, 5-hydroxymethyl-uracil or xanthine from it. BdiUng is impervious to inhibition by AP DNA, and Ugi protein that specifically inhibits family 1 UDGs. Crystal structure of BdiUng shows similarity with the family 4 UDGs in its overall fold but with family 1 UDGs in key active site residues. However, instead of a classical motif B, BdiUng has a uniquely extended protrusion explaining the lack of Ugi inhibition. Structural and mutational analyses of BdiUng have revealed the basis for the accommodation of diverse substrates into its substrate binding pocket. Phylogenetically, BdiUng belongs to a new UDG family. Bradyrhizobium diazoefficiens presents a unique scenario where the presence of at least four families of UDGs may compensate for the absence of an efficient family 1 homologue.
Collapse
Affiliation(s)
- Ullas Valiya Chembazhi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Vinod Vikas Patil
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-Ro, Yuseon-Gu, Daejeon 34141, Republic of Korea.,Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Shivjee Sah
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Wayne Reeve
- Centre for Rhizobium Studies, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Ravi P Tiwari
- Centre for Rhizobium Studies, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Euijeon Woo
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-Ro, Yuseon-Gu, Daejeon 34141, Republic of Korea.,Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.,Centre for Rhizobium Studies, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia.,Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
7
|
Kwon E, Pathak D, Chang HW, Kim DY. Crystal structure of mimivirus uracil-DNA glycosylase. PLoS One 2017; 12:e0182382. [PMID: 28763516 PMCID: PMC5538708 DOI: 10.1371/journal.pone.0182382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/17/2017] [Indexed: 01/28/2023] Open
Abstract
Cytosine deamination induced by stresses or enzymatic catalysis converts deoxycytidine into deoxyuridine, thereby introducing a G to A mutation after DNA replication. Base-excision repair to correct uracil to cytosine is initiated by uracil-DNA glycosylase (UDG), which recognizes and eliminates uracil from DNA. Mimivirus, one of the largest known viruses, also encodes a distinctive UDG gene containing a long N-terminal domain (N-domain; residues 1–130) and a motif-I (residues 327–343), in addition to the canonical catalytic domain of family I UDGs (also called UNGs). To understand the structural and functional features of the additional segments, we have determined the crystal structure of UNG from Acanthamoeba polyphaga mimivirus (mvUNG). In the crystal structure of mvUNG, residues 95–130 in the N-domain bind to a hydrophobic groove in the catalytic domain, and motif-I forms a short β-sheet with a positively charged surface near the active site. Circular dichroism spectra showed that residues 1–94 are in a random coil conformation. Deletion of the three additional fragments reduced the activity and thermal stability, compared to full-length mvUNG. The results suggested that the mvUNG N-domain and motif-I are required for its structural and functional integrity.
Collapse
Affiliation(s)
- Eunju Kwon
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, South Korea
| | - Deepak Pathak
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, South Korea
| | - Hyeun Wook Chang
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, South Korea
| | - Dong Young Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, South Korea
- * E-mail:
| |
Collapse
|
8
|
Burmeister WP, Tarbouriech N, Fender P, Contesto-Richefeu C, Peyrefitte CN, Iseni F. Crystal Structure of the Vaccinia Virus Uracil-DNA Glycosylase in Complex with DNA. J Biol Chem 2015; 290:17923-17934. [PMID: 26045555 DOI: 10.1074/jbc.m115.648352] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Indexed: 11/06/2022] Open
Abstract
Vaccinia virus polymerase holoenzyme is composed of the DNA polymerase catalytic subunit E9 associated with its heterodimeric co-factor A20·D4 required for processive genome synthesis. Although A20 has no known enzymatic activity, D4 is an active uracil-DNA glycosylase (UNG). The presence of a repair enzyme as a component of the viral replication machinery suggests that, for poxviruses, DNA synthesis and base excision repair is coupled. We present the 2.7 Å crystal structure of the complex formed by D4 and the first 50 amino acids of A20 (D4·A201-50) bound to a 10-mer DNA duplex containing an abasic site resulting from the cleavage of a uracil base. Comparison of the viral complex with its human counterpart revealed major divergences in the contacts between protein and DNA and in the enzyme orientation on the DNA. However, the conformation of the dsDNA within both structures is very similar, suggesting a dominant role of the DNA conformation for UNG function. In contrast to human UNG, D4 appears rigid, and we do not observe a conformational change upon DNA binding. We also studied the interaction of D4·A201-50 with different DNA oligomers by surface plasmon resonance. D4 binds weakly to nonspecific DNA and to uracil-containing substrates but binds abasic sites with a Kd of <1.4 μm. This second DNA complex structure of a family I UNG gives new insight into the role of D4 as a co-factor of vaccinia virus DNA polymerase and allows a better understanding of the structural determinants required for UNG action.
Collapse
Affiliation(s)
- Wim P Burmeister
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France; CNRS, UVHCI, F-38000 Grenoble, France.
| | - Nicolas Tarbouriech
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France; CNRS, UVHCI, F-38000 Grenoble, France
| | - Pascal Fender
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), F-38000 Grenoble, France; CNRS, UVHCI, F-38000 Grenoble, France
| | - Céline Contesto-Richefeu
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, F-91223 Brétigny-sur-Orge cedex, France
| | - Christophe N Peyrefitte
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, F-91223 Brétigny-sur-Orge cedex, France; Emerging Pathogens Laboratory, Fondation Mérieux, F-69007 Lyon, France
| | - Frédéric Iseni
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, F-91223 Brétigny-sur-Orge cedex, France.
| |
Collapse
|
9
|
Schormann N, Ricciardi R, Chattopadhyay D. Uracil-DNA glycosylases-structural and functional perspectives on an essential family of DNA repair enzymes. Protein Sci 2014; 23:1667-85. [PMID: 25252105 DOI: 10.1002/pro.2554] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 09/16/2014] [Indexed: 12/26/2022]
Abstract
Uracil-DNA glycosylases (UDGs) are evolutionarily conserved DNA repair enzymes that initiate the base excision repair pathway and remove uracil from DNA. The UDG superfamily is classified into six families based on their substrate specificity. This review focuses on the family I enzymes since these are the most extensively studied members of the superfamily. The structural basis for substrate specificity and base recognition as well as for DNA binding, nucleotide flipping and catalytic mechanism is discussed in detail. Other topics include the mechanism of lesion search and molecular mimicry through interaction with uracil-DNA glycosylase inhibitors. The latest studies and findings detailing structure and function in the UDG superfamily are presented.
Collapse
Affiliation(s)
- N Schormann
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | | | | |
Collapse
|
10
|
Schormann N, Banerjee S, Ricciardi R, Chattopadhyay D. Structure of the uracil complex of Vaccinia virus uracil DNA glycosylase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1328-34. [PMID: 24316823 PMCID: PMC3855713 DOI: 10.1107/s1744309113030613] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/07/2013] [Indexed: 11/23/2022]
Abstract
Poxvirus uracil DNA glycosylases are the most diverse members of the family I uracil DNA glycosylases (UNGs). The crystal structure of the uracil complex of Vaccinia virus uracil DNA glycosylase (D4) was determined at 2.03 Å resolution. One uracil molecule was located in the active-site pocket in each of the 12 noncrystallographic symmetry-related D4 subunits. Although the UNGs of the poxviruses (including D4) feature significant differences in the characteristic motifs designated for uracil recognition and in the base-excision mechanism, the architecture of the active-site pocket in D4 is very similar to that in UNGs of other organisms. Overall, the interactions of the bound uracil with the active-site residues are also similar to the interactions previously observed in the structures of human and Escherichia coli UNG.
Collapse
Affiliation(s)
- N. Schormann
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - S. Banerjee
- Northeastern Collaborative Access Team and Department of Chemistry and Chemical Biology, Cornell University, Argonne, IL 60439, USA
| | - R. Ricciardi
- Department of Microbiology, School of Dental Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - D. Chattopadhyay
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
11
|
Wang HC, Hsu KC, Yang JM, Wu ML, Ko TP, Lin SR, Wang AHJ. Staphylococcus aureus protein SAUGI acts as a uracil-DNA glycosylase inhibitor. Nucleic Acids Res 2013; 42:1354-64. [PMID: 24150946 PMCID: PMC3902945 DOI: 10.1093/nar/gkt964] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
DNA mimic proteins are unique factors that control the DNA binding activity of target proteins by directly occupying their DNA binding sites. The extremely divergent amino acid sequences of the DNA mimics make these proteins hard to predict, and although they are likely to be ubiquitous, to date, only a few have been reported and functionally analyzed. Here we used a bioinformatic approach to look for potential DNA mimic proteins among previously reported protein structures. From ∼14 candidates, we selected the Staphylococcus conserved hypothetical protein SSP0047, and used proteomic and structural approaches to show that it is a novel DNA mimic protein. In Staphylococcus aureus, we found that this protein acts as a uracil-DNA glycosylase inhibitor, and therefore named it S. aureus uracil-DNA glycosylase inhibitor (SAUGI). We also determined and analyzed the complex structure of SAUGI and S. aureus uracil-DNA glycosylase (SAUDG). Subsequent BIAcore studies further showed that SAUGI has a high binding affinity to both S. aureus and human UDG. The two uracil-DNA glycosylase inhibitors (UGI and p56) previously known to science were both found in Bacillus phages, and this is the first report of a bacterial DNA mimic that may regulate SAUDG’s functional roles in DNA repair and host defense.
Collapse
Affiliation(s)
- Hao-Ching Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan, Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan, Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 30050, Taiwan, Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 30050, Taiwan, Center for Bioinformatics Research, National Chiao Tung University, Hsinchu, 30050, Taiwan and Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | | | |
Collapse
|
12
|
Baños-Sanz JI, Mojardín L, Sanz-Aparicio J, Lázaro JM, Villar L, Serrano-Heras G, González B, Salas M. Crystal structure and functional insights into uracil-DNA glycosylase inhibition by phage Φ29 DNA mimic protein p56. Nucleic Acids Res 2013; 41:6761-73. [PMID: 23671337 PMCID: PMC3711442 DOI: 10.1093/nar/gkt395] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Uracil-DNA glycosylase (UDG) is a key repair enzyme responsible for removing uracil residues from DNA. Interestingly, UDG is the only enzyme known to be inhibited by two different DNA mimic proteins: p56 encoded by the Bacillus subtilis phage ϕ29 and the well-characterized protein Ugi encoded by the B. subtilis phage PBS1/PBS2. Atomic-resolution crystal structures of the B. subtilis UDG both free and in complex with p56, combined with site-directed mutagenesis analysis, allowed us to identify the key amino acid residues required for enzyme activity, DNA binding and complex formation. An important requirement for complex formation is the recognition carried out by p56 of the protruding Phe191 residue from B. subtilis UDG, whose side-chain is inserted into the DNA minor groove to replace the flipped-out uracil. A comparative analysis of both p56 and Ugi inhibitors enabled us to identify their common and distinctive features. Thereby, our results provide an insight into how two DNA mimic proteins with different structural and biochemical properties are able to specifically block the DNA-binding domain of the same enzyme.
Collapse
Affiliation(s)
- José Ignacio Baños-Sanz
- Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física 'Rocasolano' (CSIC), Serrano 119, 28006 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Asensio JL, Pérez-Lago L, Lázaro JM, González C, Serrano-Heras G, Salas M. Novel dimeric structure of phage φ29-encoded protein p56: insights into uracil-DNA glycosylase inhibition. Nucleic Acids Res 2011; 39:9779-88. [PMID: 21890898 PMCID: PMC3239192 DOI: 10.1093/nar/gkr667] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Protein p56 encoded by the Bacillus subtilis phage φ29 inhibits the host uracil-DNA glycosylase (UDG) activity. To get insights into the structural basis for this inhibition, the NMR solution structure of p56 has been determined. The inhibitor defines a novel dimeric fold, stabilized by a combination of polar and extensive hydrophobic interactions. Each polypeptide chain contains three stretches of anti-parallel β-sheets and a helical region linked by three short loops. In addition, microcalorimetry titration experiments showed that it forms a tight 2:1 complex with UDG, strongly suggesting that the dimer represents the functional form of the inhibitor. This was further confirmed by the functional analysis of p56 mutants unable to assemble into dimers. We have also shown that the highly anionic region of the inhibitor plays a significant role in the inhibition of UDG. Thus, based on these findings and taking into account previous results that revealed similarities between the association mode of p56 and the phage PBS-1/PBS-2-encoded inhibitor Ugi with UDG, we propose that protein p56 might inhibit the enzyme by mimicking its DNA substrate.
Collapse
Affiliation(s)
- Juan Luis Asensio
- Departamento de Química Orgánica Biológica, Instituto de Química Orgánica General, CSIC, 28006 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
14
|
Pérez-Lago L, Serrano-Heras G, Baños B, Lázaro JM, Alcorlo M, Villar L, Salas M. Characterization of Bacillus subtilis uracil-DNA glycosylase and its inhibition by phage φ29 protein p56. Mol Microbiol 2011; 80:1657-66. [PMID: 21542855 DOI: 10.1111/j.1365-2958.2011.07675.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Uracil-DNA glycosylase (UDG) is a conserved DNA repair enzyme involved in uracil excision from DNA. Here, we report the biochemical characterization of UDG encoded by Bacillus subtilis, a model low G+C Gram-positive organism. The purified enzyme removes uracil preferentially from single-stranded DNA over double-stranded DNA, exhibiting higher preference for U:G than U:A mismatches. Furthermore, we have identified key amino acids necessary for B. subtilis UDG activity. Our results showed that Asp-65 and His-187 are catalytic residues involved in glycosidic bond cleavage, whereas Phe-78 would participate in DNA recognition. Recently, it has been reported that B. subtilis phage φ29 encodes an inhibitor of the UDG enzyme, named protein p56, whose role has been proposed to ensure an efficient viral DNA replication, preventing the deleterious effect caused by UDG when it eliminates uracils present in the φ29 genome. In this work, we also show that a φ29-related phage, GA-1, encodes a p56-like protein with UDG inhibition activity. In addition, mutagenesis analysis revealed that residue Phe-191 of B. subtilis UDG is critical for the interaction with φ29 and GA-1 p56 proteins, suggesting that both proteins have similar mechanism of inhibition.
Collapse
Affiliation(s)
- Laura Pérez-Lago
- Instituto de Biología Molecular Eladio Viñuela, CSIC, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
15
|
Bharti SK, Varshney U. Analysis of the impact of a uracil DNA glycosylase attenuated in AP-DNA binding in maintenance of the genomic integrity in Escherichia coli. Nucleic Acids Res 2010; 38:2291-301. [PMID: 20056657 PMCID: PMC2853124 DOI: 10.1093/nar/gkp1210] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Uracil DNA glycosylase (Ung) initiates the uracil excision repair pathway. We have earlier characterized the Y66W and Y66H mutants of Ung and shown that they are compromised by ∼7- and ∼170-fold, respectively in their uracil excision activities. In this study, fluorescence anisotropy measurements show that compared with the wild-type, the Y66W protein is moderately compromised and attenuated in binding to AP-DNA. Allelic exchange of ung in Escherichia coli with ung::kan, ungY66H:amp or ungY66W:amp alleles showed ∼5-, ∼3.0- and ∼2.0-fold, respectively increase in mutation frequencies. Analysis of mutations in the rifampicin resistance determining region of rpoB revealed that the Y66W allele resulted in an increase in A to G (or T to C) mutations. However, the increase in A to G mutations was mitigated upon expression of wild-type Ung from a plasmid borne gene. Biochemical and computational analyses showed that the Y66W mutant maintains strict specificity for uracil excision from DNA. Interestingly, a strain deficient in AP-endonucleases also showed an increase in A to G mutations. We discuss these findings in the context of a proposal that the residency of DNA glycosylase(s) onto the AP-sites they generate shields them until recruitment of AP-endonucleases for further repair.
Collapse
Affiliation(s)
- Sanjay Kumar Bharti
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012 and Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012 and Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
- *To whom correspondence should be addressed. Tel: +91 80 2293 2686; Fax: +91 80 2360 2697; ;
| |
Collapse
|
16
|
Di Noia JM, Williams GT, Chan DTY, Buerstedde JM, Baldwin GS, Neuberger MS. Dependence of antibody gene diversification on uracil excision. ACTA ACUST UNITED AC 2007; 204:3209-19. [PMID: 18070939 PMCID: PMC2150978 DOI: 10.1084/jem.20071768] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Activation-induced deaminase (AID) catalyses deamination of deoxycytidine to deoxyuridine within immunoglobulin loci, triggering pathways of antibody diversification that are largely dependent on uracil-DNA glycosylase (uracil-N-glycolase [UNG]). Surprisingly efficient class switch recombination is restored to ung(-/-) B cells through retroviral delivery of active-site mutants of UNG, stimulating discussion about the need for UNG's uracil-excision activity. In this study, however, we find that even with the overexpression achieved through retroviral delivery, switching is only mediated by UNG mutants that retain detectable excision activity, with this switching being especially dependent on MSH2. In contrast to their potentiation of switching, low-activity UNGs are relatively ineffective in restoring transversion mutations at C:G pairs during hypermutation, or in restoring gene conversion in stably transfected DT40 cells. The results indicate that UNG does, indeed, act through uracil excision, but suggest that, in the presence of MSH2, efficient switch recombination requires base excision at only a small proportion of the AID-generated uracils in the S region. Interestingly, enforced expression of thymine-DNA glycosylase (which can excise U from U:G mispairs) does not (unlike enforced UNG or SMUG1 expression) potentiate efficient switching, which is consistent with a need either for specific recruitment of the uracil-excision enzyme or for it to be active on single-stranded DNA.
Collapse
Affiliation(s)
- Javier M Di Noia
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 QH, UK.
| | | | | | | | | | | |
Collapse
|
17
|
Serrano-Heras G, Ruiz-Masó JA, del Solar G, Espinosa M, Bravo A, Salas M. Protein p56 from the Bacillus subtilis phage phi29 inhibits DNA-binding ability of uracil-DNA glycosylase. Nucleic Acids Res 2007; 35:5393-401. [PMID: 17698500 PMCID: PMC2018632 DOI: 10.1093/nar/gkm584] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Protein p56 (56 amino acids) from the Bacillus subtilis phage ϕ29 inactivates the host uracil-DNA glycosylase (UDG), an enzyme involved in the base excision repair pathway. At present, p56 is the only known example of a UDG inhibitor encoded by a non-uracil containing viral DNA. Using analytical ultracentrifugation methods, we found that protein p56 formed dimers at physiological concentrations. In addition, circular dichroism spectroscopic analyses revealed that protein p56 had a high content of β-strands (around 40%). To understand the mechanism underlying UDG inhibition by p56, we carried out in vitro experiments using the Escherichia coli UDG enzyme. The highly acidic protein p56 was able to compete with DNA for binding to UDG. Moreover, the interaction between p56 and UDG blocked DNA binding by UDG. We also demonstrated that Ugi, a protein that interacts with the DNA-binding domain of UDG, was able to replace protein p56 previously bound to the UDG enzyme. These results suggest that protein p56 could be a novel naturally occurring DNA mimicry.
Collapse
Affiliation(s)
- Gemma Serrano-Heras
- Instituto de Biología Molecular ‘Eladio Viñuela’ (CSIC), Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma, Cantoblanco, 28049 Madrid and Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - José A. Ruiz-Masó
- Instituto de Biología Molecular ‘Eladio Viñuela’ (CSIC), Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma, Cantoblanco, 28049 Madrid and Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Gloria del Solar
- Instituto de Biología Molecular ‘Eladio Viñuela’ (CSIC), Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma, Cantoblanco, 28049 Madrid and Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Manuel Espinosa
- Instituto de Biología Molecular ‘Eladio Viñuela’ (CSIC), Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma, Cantoblanco, 28049 Madrid and Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Alicia Bravo
- Instituto de Biología Molecular ‘Eladio Viñuela’ (CSIC), Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma, Cantoblanco, 28049 Madrid and Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Margarita Salas
- Instituto de Biología Molecular ‘Eladio Viñuela’ (CSIC), Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma, Cantoblanco, 28049 Madrid and Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
- *To whom correspondence should be addressed. +34 91 497 8435+34 91 497 8490
| |
Collapse
|
18
|
Crystal structure of vaccinia virus uracil-DNA glycosylase reveals dimeric assembly. BMC STRUCTURAL BIOLOGY 2007; 7:45. [PMID: 17605817 PMCID: PMC1936997 DOI: 10.1186/1472-6807-7-45] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 07/02/2007] [Indexed: 11/13/2022]
Abstract
Background Uracil-DNA glycosylases (UDGs) catalyze excision of uracil from DNA. Vaccinia virus, which is the prototype of poxviruses, encodes a UDG (vvUDG) that is significantly different from the UDGs of other organisms in primary, secondary and tertiary structure and characteristic motifs. It adopted a novel catalysis-independent role in DNA replication that involves interaction with a viral protein, A20, to form the processivity factor. UDG:A20 association is essential for assembling of the processive DNA polymerase complex. The structure of the protein must have provisions for such interactions with A20. This paper provides the first glimpse into the structure of a poxvirus UDG. Results Results of dynamic light scattering experiments and native size exclusion chromatography showed that vvUDG is a dimer in solution. The dimeric assembly is also maintained in two crystal forms. The core of vvUDG is reasonably well conserved but the structure contains one additional β-sheet at each terminus. A glycerol molecule is found in the active site of the enzyme in both crystal forms. Interaction of this glycerol molecule with the protein possibly mimics the enzyme-substrate (uracil) interactions. Conclusion The crystal structures reveal several distinctive features of vvUDG. The new structural features may have evolved for adopting novel functions in the replication machinery of poxviruses. The mode of interaction between the subunits in the dimers suggests a possible model for binding to its partner and the nature of the processivity factor in the polymerase complex.
Collapse
|
19
|
Walker RK, McCullough AK, Lloyd RS. Uncoupling of nucleotide flipping and DNA bending by the t4 pyrimidine dimer DNA glycosylase. Biochemistry 2006; 45:14192-200. [PMID: 17115714 PMCID: PMC2673921 DOI: 10.1021/bi060802s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacteriophage T4 pyrimidine dimer glycosylase (T4-Pdg) is a base excision repair protein that incises DNA at cyclobutane pyrimidine dimers that are formed as a consequence of exposure to ultraviolet light. Cocrystallization of T4-Pdg with substrate DNA has shown that the adenosine opposite the 5'-thymine of a thymine-thymine (TT) dimer is flipped into an extrahelical conformation and that the DNA backbone is kinked 60 degrees in the enzyme-substrate (ES) complex. To examine the kinetic details of the precatalytic events in the T4-Pdg reaction mechanism, investigations were designed to separately assess nucleotide flipping and DNA bending. The fluorescent adenine base analogue, 2-aminopurine (2-AP), placed opposite an abasic site analogue, tetrahydrofuran, exhibited a 2.8-fold increase in emission intensity when flipped in the ES complex. Using the 2-AP fluorescence signal for nucleotide flipping, kon and koff pre-steady-state kinetic measurements were determined. DNA bending was assessed by fluorescence resonance energy transfer using fluorescent donor-acceptor pairs located at the 5'-ends of oligonucleotides in duplex DNA. The fluorescence intensity of the donor fluorophore was quenched by 15% in the ES complex as a result of an increased efficiency of energy transfer between the labeled ends of the DNA in the bent conformation. Kinetic analyses of the bending signal revealed an off rate that was 2.5-fold faster than the off rate for nucleotide flipping. These results demonstrate that the nucleotide flipping step can be uncoupled from the bending of DNA in the formation of an ES complex.
Collapse
Affiliation(s)
- Randall K Walker
- PerkinElmer Life and Analytical Sciences, Boston, Massachusetts 02118-2512, USA
| | | | | |
Collapse
|
20
|
Kumar P, Krishna K, Srinivasan R, Ajitkumar P, Varshney U. Mycobacterium tuberculosis and Escherichia coli nucleoside diphosphate kinases lack multifunctional activities to process uracil containing DNA. DNA Repair (Amst) 2004; 3:1483-92. [PMID: 15380104 DOI: 10.1016/j.dnarep.2004.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2004] [Indexed: 11/23/2022]
Abstract
E. coli nucleoside diphosphate kinase (EcoNDK) is an important cellular enzyme required to maintain balanced nucleotide pools in the cells. Recently, it was reported that EcoNDK is also a multifunctional base excision repair enzyme, possessing uracil-DNA glycosylase (UDG) and AP-DNA processing activities. We investigated for the presence of such activities in M. tuberculosis NDK (MtuNDK), which shares 45.2% identity, and 52.6% similarity with EcoNDK. In contrast to the robust uracil excision activity reported for EcoNDK, MtuNDK preparation exhibited very poor excision of uracil from DNA. However, this activity was undetectable when MtuNDK was purified from an ung(-) strain of E. coli, or when the assays were performed in the presence of extremely low amounts of a highly specific proteinaceous inhibitor, Ugi which forms an extremely tight complex with the host Ung (UDG), showing that MtuNDK preparation was contaminated with UDG. Reinvestigation of uracil processing activity of EcoNDK, showed that even this protein lacked UDG activity. All preparations of NDK were shown to be active by their autophosphorylation activity. Ugi neither displayed a physical interaction with EcoNDK nor did it affect autophosphorylation of NDKs. Further, neither of the NDK preparations processed the AP-DNA generated by UDG treatment of the uracil containing DNA duplexes. However, partially purified preparations of NDK did process such DNA substrates.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | | | |
Collapse
|
21
|
Stivers JT. Site-specific DNA damage recognition by enzyme-induced base flipping. ACTA ACUST UNITED AC 2004; 77:37-65. [PMID: 15196890 DOI: 10.1016/s0079-6603(04)77002-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- James T Stivers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, MD 21205 USA
| |
Collapse
|
22
|
Acharya N, Talawar RK, Purnapatre K, Varshney U. Use of sequence microdivergence in mycobacterial ortholog to analyze contributions of the water-activating loop histidine of Escherichia coli uracil-DNA glycosylase in reactant binding and catalysis. Biochem Biophys Res Commun 2004; 320:893-9. [PMID: 15240132 DOI: 10.1016/j.bbrc.2004.06.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2004] [Indexed: 10/26/2022]
Abstract
Uracil-DNA glycosylase (Ung), a DNA repair enzyme, pioneers uracil excision repair pathway. Structural determinations and mutational analyses of the Ung class of proteins have greatly facilitated our understanding of the mechanism of uracil excision from DNA. More recently, a hybrid quantum-mechanical/molecular mechanical analysis revealed that while the histidine (H67 in EcoUng) of the GQDPYH motif (omega loop) in the active site pocket is important in positioning the reactants, it makes an unfavorable energetic contribution (penalty) in achieving the transition state intermediate. Mutational analysis of this histidine is unavailable from any of the Ung class of proteins. A complication in demonstrating negative role of a residue, especially when located within the active site pocket, is that the mutants with enhanced activity are rarely obtained. Interestingly, unlike the most Ung proteins, the H67 equivalent in the omega loop in mycobacterial Ung is represented by P67. Exploiting this natural diversity to maintain structural integrity of the active site, we transplanted an H67P mutation in EcoUng. Uracil inhibition assays and binding of a proteinaceous inhibitor, Ugi (a transition state substrate mimic), with the mutant (H67P) revealed that its active site pocket was not perturbed. The catalytic efficiency (Vmax/Km) of the mutant was similar to that of the wild type Ung. However, the mutant showed increased Km and Vmax. Together with the data from a double mutation H67P/G68T, these observations provide the first biochemical evidence for the proposed diverse roles of H67 in catalysis by Ung.
Collapse
Affiliation(s)
- Narottam Acharya
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | |
Collapse
|
23
|
Liu X, Liu J. Cloning, expression, and characterization of uracil-DNA glycosylase of Chlamydia pneumoniae in Escherichia coli. Protein Expr Purif 2004; 35:46-53. [PMID: 15039065 DOI: 10.1016/j.pep.2003.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Revised: 12/12/2003] [Indexed: 12/01/2022]
Abstract
A uracil-DNA glycosylase gene was cloned from Chlamydia pneumoniae AR39 and expressed in E. coli strains BL21 (DE3) and BL21 (DE3) pLysS. After purification by Ni-NTA His x Bind Resin and DEAE Sepharose Fast Flow column chromatography, recombinant CpUDG with a specific activity of 1,000,000 U/mg was obtained. The enzymatic activity of the purified CpUDG protein was further characterized using oligodeoxyribonucleotides carrying uracil bases as substrates. The base opposite to uracil in double strand DNAs affected uracil removal efficiencies in the order: U/- > U/T > U/C > U/G > U/A. Free uracil and abasic sites (AP site) could inhibit the reaction. The optimal temperature and pH for uracil removal by CpUDG were 37 degrees C and pH 8.0, respectively. Site-directed mutagenesis studies indicated that amino acids D77, H200, and A205 were important for the catalytic activity of CpUDG. Together, these data suggest that CpUDG is a member of the UDG family-I protein. This is the first report on cloning, expression, and characterization of Chlamydia uracil-DNA glycosylase.
Collapse
Affiliation(s)
- Xipeng Liu
- College of Life Sciences and Technology, Shanghai Jiaotong University, No. 1954 Hua-Shan Road, Shanghai 200030, China.
| | | |
Collapse
|
24
|
Acharya N, Talawar RK, Saikrishnan K, Vijayan M, Varshney U. Substitutions at tyrosine 66 of Escherichia coli uracil DNA glycosylase lead to characterization of an efficient enzyme that is recalcitrant to product inhibition. Nucleic Acids Res 2004; 31:7216-26. [PMID: 14654697 PMCID: PMC291862 DOI: 10.1093/nar/gkg918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Uracil DNA glycosylase (UDG), a ubiquitous and highly specific enzyme, commences the uracil excision repair pathway. Structural studies have shown that the tyrosine in a highly conserved GQDPY water-activating loop of UDGs blocks the entry of thymine or purines into the active site pocket. To further understand the role of this tyrosine (Y66 in Escherichia coli UDG), we have overproduced and characterized Y66F, Y66H, Y66L and Y66W mutants. The complexes of the wild-type, Y66F, Y66H and Y66L UDGs with uracil DNA glycosylase inhibitor (Ugi) (a proteinaceous substrate mimic) were stable to 8 M urea. However, some dissociation of the complex involving the Y66W UDG occurred at this concentration of urea. The catalytic efficiencies (V(max) / K(m)) of the Y66L and Y66F mutants were similar to those of the wild-type UDG. However, the Y66W and Y66H mutants were approximately 7- and approximately 173-fold compromised, respectively, in their activities. Interestingly, the Y66W mutation has resulted in an enzyme which is resistant to product inhibition. Preferential utilization of a substrate enabling a long range contact between the -5 phosphate (upstream to the scissile uracil) and the enzyme, and the results of modeling studies showing that the uracil-binding cavity of Y66W is wider than those of the wild type and other mutant UDGs, suggest a weaker interaction between uracil and the Y66W mutant. Furthermore, the fluorescence spectroscopy of UDGs and their complexes with Ugi, in the presence of uracil or its analog, 5-bromouracil, suggests compromised binding of uracil in the active site pocket of the Y66W mutant. Lack of inhibition of the Y66W UDG by apyrimidinic DNA (AP-DNA) is discussed to highlight a potential additional role of Y66 in shielding the toxic effects of AP-DNA, by lowering the rate of its release for subsequent recognition by an AP endonuclease.
Collapse
Affiliation(s)
- Narottam Acharya
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560 012, India
| | | | | | | | | |
Collapse
|
25
|
Acharya N, Kumar P, Varshney U. Complexes of the uracil-DNA glycosylase inhibitor protein, Ugi, with Mycobacterium smegmatis and Mycobacterium tuberculosis uracil-DNA glycosylases. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1647-1658. [PMID: 12855717 DOI: 10.1099/mic.0.26228-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Uracil, a promutagenic base, appears in DNA either by deamination of cytosine or by incorporation of dUMP by DNA polymerases. This unconventional base in DNA is removed by uracil-DNA glycosylase (UDG). Interestingly, a bacteriophage-encoded short polypeptide, UDG inhibitor (Ugi), specifically inhibits UDGs by forming a tight complex. Three-dimensional structures of the complexes of Ugi with UDGs from Escherichia coli, human and herpes simplex virus have shown that two of the structural elements in Ugi, the hydrophobic pocket and the beta1-edge, establish key interactions with UDGs. In this report the characterization of complexes of Ugi with UDGs from Mycobacterium tuberculosis, a pathogenic bacterium, and Mycobacterium smegmatis, a widely used model organism for the former, is described. Unlike the E. coli (Eco) UDG-Ugi complex, which is stable to treatment with 8 M urea, the mycobacterial UDG-Ugi complexes dissociate in 5-6 M urea. Furthermore, the Ugi from the complexes of mycobacterial UDGs can be exchanged by the DNA substrate. Interestingly, while EcoUDG sequestered Ugi into the EcoUDG-Ugi complex when incubated with mycobacterial UDG-Ugi complexes, even a large excess of mycobacterial UDGs failed to sequester Ugi from the EcoUDG-Ugi complex. However, the M. tuberculosis (Mtu) UDG-Ugi complex was seen when MtuUDG was incubated with M. smegmatis (Msm) UDG-Ugi or EcoUDG(L191G)-Ugi complexes. The reversible nature of the complexes of Ugi with mycobacterial UDGs (which naturally lack some of the structural elements important for interaction with the beta1-edge of Ugi) and with mutants of EcoUDG (which are deficient in interaction with the hydrophobic pocket of Ugi) highlights the significance of both classes of interaction in formation of UDG-Ugi complexes. Furthermore, it is shown that even though mycobacterial UDG-Ugi complexes dissociate in 5-6 M urea, Ugi is still a potent inhibitor of UDG activity in mycobacteria.
Collapse
Affiliation(s)
- Narottam Acharya
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560 012, India
| | - Pradeep Kumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560 012, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
26
|
Stivers JT, Jiang YL. A mechanistic perspective on the chemistry of DNA repair glycosylases. Chem Rev 2003; 103:2729-59. [PMID: 12848584 DOI: 10.1021/cr010219b] [Citation(s) in RCA: 377] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- James T Stivers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
27
|
Abstract
Uracil in DNA results from deamination of cytosine, resulting in mutagenic U : G mispairs, and misincorporation of dUMP, which gives a less harmful U : A pair. At least four different human DNA glycosylases may remove uracil and thus generate an abasic site, which is itself cytotoxic and potentially mutagenic. These enzymes are UNG, SMUG1, TDG and MBD4. The base excision repair process is completed either by a short patch- or long patch pathway, which largely use different proteins. UNG2 is a major nuclear uracil-DNA glycosylase central in removal of misincorporated dUMP in replication foci, but recent evidence also indicates an important role in repair of U : G mispairs and possibly U in single-stranded DNA. SMUG1 has broader specificity than UNG2 and may serve as a relatively efficient backup for UNG in repair of U : G mismatches and single-stranded DNA. TDG and MBD4 may have specialized roles in the repair of U and T in mismatches in CpG contexts. Recently, a role for UNG2, together with activation induced deaminase (AID) which generates uracil, has been demonstrated in immunoglobulin diversification. Studies are now underway to examine whether mice deficient in Ung develop lymphoproliferative malignancies and have a different life span.
Collapse
Affiliation(s)
- Hans E Krokan
- Institute of Cancer Research and Molecular Biology, Norwegian University of Science and Technology, N-7489 Trondheim, Norway.
| | | | | |
Collapse
|
28
|
Di Noia J, Neuberger MS. Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature 2002; 419:43-8. [PMID: 12214226 DOI: 10.1038/nature00981] [Citation(s) in RCA: 415] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A functional immune system depends on the production of a wide range of immunoglobulin molecules. Immunoglobulin variable region (IgV) genes are diversified after gene rearrangement by hypermutation. In the DNA deamination model, we have proposed that deamination of dC residues to dU by activation-induced deaminase (AID) triggers this diversification. In hypermutating chicken DT40 B cells, most IgV mutations are dC --> dG/dA or dG --> dC/dT transversions, which are proposed to result from replication over sites of base loss produced by the excision activity of uracil-DNA glycosylase. Blocking the activity of uracil-DNA glycosylase should instead lead to replication over the dU lesion, resulting in dC --> dT (and dG --> dA) transitions. Here we show that expression in DT40 cells of a bacteriophage-encoded protein that inhibits uracil-DNA glycosylase shifts the pattern of IgV gene mutations from transversion dominance to transition dominance. This is good evidence that antibody diversification involves dC --> dU deamination within the immunoglobulin locus itself.
Collapse
Affiliation(s)
- Javier Di Noia
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | |
Collapse
|
29
|
Vallur AC, Feller JA, Abner CW, Tran RK, Bloom LB. Effects of hydrogen bonding within a damaged base pair on the activity of wild type and DNA-intercalating mutants of human alkyladenine DNA glycosylase. J Biol Chem 2002; 277:31673-8. [PMID: 12077143 DOI: 10.1074/jbc.m204475200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human alkyladenine DNA glycosylase "flips" damaged DNA bases into its active site where excision occurs. Tyrosine 162 is inserted into the DNA helix in place of the damaged base and may assist in nucleotide flipping by "pushing" it. Mutating this DNA-intercalating Tyr to Ser reduces the DNA binding and base excision activities of alkyladenine DNA glycosylase to undetectable levels demonstrating that Tyr-162 is critical for both activities. Mutation of Tyr-162 to Phe reduces the single turnover excision rate of hypoxanthine by a factor of 4 when paired with thymine. Interestingly, when the base pairing partner for hypoxanthine is changed to difluorotoluene, which cannot hydrogen bond to hypoxanthine, single turnover excision rates increase by a factor of 2 for the wild type enzyme and about 3 to 4 for the Phe mutant. In assays with DNA substrates containing 1,N(6)-ethenoadenine, which does not form hydrogen bonds with either thymine or difluorotoluene, base excision rates for both the wild type and Phe mutant were unaffected. These results are consistent with a role for Tyr-162 in pushing the damaged base to assist in nucleotide flipping and indicate that a nucleotide flipping step may be rate-limiting for excision of hypoxanthine.
Collapse
Affiliation(s)
- Aarthy C Vallur
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610-0245, USA
| | | | | | | | | |
Collapse
|
30
|
Acharya N, Roy S, Varshney U. Mutational analysis of the uracil DNA glycosylase inhibitor protein and its interaction with Escherichia coli uracil DNA glycosylase. J Mol Biol 2002; 321:579-90. [PMID: 12206774 DOI: 10.1016/s0022-2836(02)00654-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Uracil DNA glycosylase inhibitor (Ugi), a protein of 9.4 kDa consists of a five-stranded antiparallel beta sheet flanked on either side by single alpha helices, forms an exclusive complex with uracil DNA glycosylases (UDGs) that is stable in 8M urea. We report on the mutational analysis of various structural elements in Ugi, two of which (hydrophobic pocket and the beta1 edge) establish key interactions with Escherichia coli UDG. The point mutations in helix alpha1 (amino acid residues 3-14) do not affect the stability of the UDG-Ugi complexes in urea. And, while the complex of the deltaN13 mutant with UDG is stable in only approximately 4M urea, its overall structure and thermostability are maintained. The identity of P37, stacked between P26 and W68, was not important for the maintenance of the hydrophobic pocket or for the stability of the complex. However, the M24K mutation at the rim of the hydrophobic pocket lowered the stability of the complex in 6M urea. On the other hand, non-conservative mutations E49G, D61G (cancels the only ionic interaction with UDG) and N76K, in three of the loops connecting the beta strands, conferred no such phenotype. The L23R and S21P mutations (beta1 edge) at the UDG-Ugi interface, and the N35D mutation far from the interface resulted in poor stability of the complex. However, the stability of the complexes was restored in the L23A, S21T and N35A mutations. These analyses and the studies on the exchange of Ugi mutants in preformed complexes with the substrate or the native Ugi have provided insights into the two-step mechanism of UDG-Ugi complex formation. Finally, we discuss the application of the Ugi isolates in overproduction of UDG mutants, toxic to cells.
Collapse
Affiliation(s)
- Narottam Acharya
- Department of Microbiology and Cell Biology, Indian Institute of Science, 560 012, Bangalore, India
| | | | | |
Collapse
|
31
|
Handa P, Acharya N, Varshney U. Effects of mutations at tyrosine 66 and asparagine 123 in the active site pocket of Escherichia coli uracil DNA glycosylase on uracil excision from synthetic DNA oligomers: evidence for the occurrence of long-range interactions between the enzyme and substrate. Nucleic Acids Res 2002; 30:3086-95. [PMID: 12136091 PMCID: PMC135746 DOI: 10.1093/nar/gkf425] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Uracil DNA glycosylase (UDG), a highly conserved DNA repair enzyme, excises uracil from DNA. Crystal structures of several UDGs have identified residues important for their exquisite specificity in detection and removal of uracil. Of these, Y66 and N123 in Escherichia coli UDG have been proposed to restrict the entry of non-uracil residues into the active site pocket. In this study, we show that the uracil excision activity of the Y66F mutant was similar to that of the wild-type protein, whereas the activities of the other mutants (Y66C, Y66S, N123D, N123E and N123Q) were compromised approximately 1000-fold. The latter class of mutants showed an increased dependence on the substrate chain length and suggested the existence of long-range interactions of the substrate with UDG. Investigation of the phosphate interactions by the ethylation interference assay reaffirmed the key importance of the -1, +1 and +2 phosphates (with respect to the scissile uracil) to the enzyme activity. Interestingly, this assay also revealed an additional interference at the -5 position phosphate, whose presence in the substrate had a positive effect on substrate utilisation by the mutants that do not possess a full complement of interactions in the active site pocket. Such long-range interactions may be crucial even for the wild-type enzyme under in vivo conditions. Further, our results suggest that the role of Y66 and N123 in UDG is not restricted merely to preventing the entry of non-uracil residues. We discuss their additional roles in conferring stability to the transition state enzyme-substrate complex and/or enhancing the leaving group quality of the uracilate anion during catalysis.
Collapse
Affiliation(s)
- Priya Handa
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
32
|
Wong I, Lundquist AJ, Bernards AS, Mosbaugh DW. Presteady-state analysis of a single catalytic turnover by Escherichia coli uracil-DNA glycosylase reveals a "pinch-pull-push" mechanism. J Biol Chem 2002; 277:19424-32. [PMID: 11907039 DOI: 10.1074/jbc.m201198200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Uracil-DNA glycosylase catalyzes the excision of uracils from DNA via a mechanism where the uracil is extrahelically flipped out of the DNA helix into the enzyme active site. A conserved leucine is inserted into the DNA duplex space vacated by the uracil leading to the paradigmatic "push-pull" mechanism of nucleotide flipping. However, the order of these two steps during catalysis has not been conclusively established. We report a complete kinetic analysis of a single catalytic turnover using a hydrolyzable duplex oligodeoxyribonucleotide substrate containing a uracil:2-aminopurine base pair. Rapid chemical-quenched-flow methods defined the kinetics of excision at the active site during catalysis. Stopped-flow fluorometry monitoring the 2-aminopurine fluorescence defined the kinetics of uracil flipping. Parallel experiments detecting the protein fluorescence showed a slower Leu(191) insertion step occurring after nucleotide flipping but before excision. The inserted Leu(191) acts as a doorstop to prevent the return of the flipped-out uracil residue, thereby facilitating the capture of the uracil in the active site and does not play a direct role in "pushing" the uracil out of the DNA helix. The results define for the first time the proper sequence of events during a catalytic cycle and establish a "pull-push", as opposed to a "push-pull", mechanism for nucleotide flipping.
Collapse
Affiliation(s)
- Isaac Wong
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA.
| | | | | | | |
Collapse
|
33
|
Acharya N, Varshney U. Biochemical properties of single-stranded DNA-binding protein from Mycobacterium smegmatis, a fast-growing mycobacterium and its physical and functional interaction with uracil DNA glycosylases. J Mol Biol 2002; 318:1251-64. [PMID: 12083515 DOI: 10.1016/s0022-2836(02)00053-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The single-stranded DNA-binding proteins (SSBs) are vital to virtually all DNA functions. Here, we report on the biochemical properties of SSB from a fast-growing mycobacteria, Mycobacterium smegmatis, and the interaction of the homotetrameric SSBs with uracil DNA glycosylases (UDGs) from M. smegmatis (Msm), Mycobacterium tuberculosis (Mtu) and Escherichia coli (Eco). UDG is a crucial DNA repair enzyme, which removes the promutagenic uracil residues. MsmSSB stimulates activity of the homologous Msm UDG and of the heterologous Mtu-, and Eco-UDGs. On the contrary, while the MtuSSB stimulates the Mtu UDG, it inhibits the other two UDGs. Although the MsmSSB shares 84% identity with MtuSSB, the two are strikingly different, in that MsmSSB contains a glycine-rich segment (11 out of 13 residues) in the spacer connecting the N-terminal DNA-binding domain with the C-terminal acidic tail. While the DNA-binding properties of MsmSSB, such as its affinity to oligomeric DNA, requirement of minimum size DNA and the modes of interaction are indistinguishable from those of Eco-, and Mtu-SSBs, it is unclear if the glycine-rich segment confers structural advantage to MsmSSB, responsible for its stimulatory effect on all UDGs tested. More importantly, by using a small polypeptide inhibitor of UDGs, and the deletion mutants of SSBs, we suggest that the C-terminal acidic tail of the SSBs interacts within the DNA-binding groove of the UDGs, and propose a role for SSBs in the recruitment of UDGs to the damaged DNA.
Collapse
Affiliation(s)
- Narottam Acharya
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore
| | | |
Collapse
|
34
|
Jiang YL, Kwon K, Stivers JT. Turning On uracil-DNA glycosylase using a pyrene nucleotide switch. J Biol Chem 2001; 276:42347-54. [PMID: 11551943 DOI: 10.1074/jbc.m106594200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Base flipping is a highly conserved process by which enzymes swivel an entire nucleotide from the DNA base stack into their active site pockets. Uracil DNA glycosylase (UDG) is a paradigm enzyme that uses a base flipping mechanism to catalyze the hydrolysis of the N-glycosidic bond of 2'-deoxyuridine (2'-dUrd) in DNA as the first step in uracil base excision repair. Flipping of 2'-dUrd by UDG has been proposed to follow a "pushing" mechanism in which a completely conserved leucine side chain (Leu-191) is inserted into the DNA minor groove to expel the uracil. Here we report a novel implementation of the "chemical rescue" approach to show that the weak binding affinity and low catalytic activity of L191A or L191G can be completely or partially restored by substitution of a pyrene (Y) nucleotide wedge on the DNA strand opposite to the uracil base (U/A to U/Y). These results indicate that pyrene acts both as a wedge to push the uracil from the base stack in the free DNA and as a "plug" to hinder its reinsertion after base flipping. Pyrene rescue should serve as a useful and novel tool to diagnose the functional roles of other amino acid side chains involved in base flipping.
Collapse
Affiliation(s)
- Y L Jiang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | | | |
Collapse
|
35
|
Handa P, Acharya N, Varshney U. Chimeras between single-stranded DNA-binding proteins from Escherichia coli and Mycobacterium tuberculosis reveal that their C-terminal domains interact with uracil DNA glycosylases. J Biol Chem 2001; 276:16992-7. [PMID: 11279060 DOI: 10.1074/jbc.m100393200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Uracil, a promutagenic base in DNA can arise by spontaneous deamination of cytosine or incorporation of dUMP by DNA polymerase. Uracil is removed from DNA by uracil DNA glycosylase (UDG), the first enzyme in the uracil excision repair pathway. We recently reported that the Escherichia coli single-stranded DNA binding protein (SSB) facilitated uracil excision from certain structured substrates by E. coli UDG (EcoUDG) and suggested the existence of interaction between SSB and UDG. In this study, we have made use of the chimeric proteins obtained by fusion of N- and C-terminal domains of SSBs from E. coli and Mycobacterium tuberculosis to investigate interactions between SSBs and UDGs. The EcoSSB or a chimera containing its C-terminal domain interacts with EcoUDG in a binary (SSB-UDG) or a ternary (DNA-SSB-UDG) complex. However, the chimera containing the N-terminal domain from EcoSSB showed no interactions with EcoUDG. Thus, the C-terminal domain (48 amino acids) of EcoSSB is necessary and sufficient for interaction with EcoUDG. The data also suggest that the C-terminal domain (34 amino acids) of MtuSSB is a predominant determinant for mediating its interaction with MtuUDG. The mechanism of how the interactions between SSB and UDG could be important in uracil excision repair pathway has been discussed.
Collapse
Affiliation(s)
- P Handa
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560 012, India
| | | | | |
Collapse
|