1
|
Albers MD, Tiemann B, Kaynert JT, Pich A, Bakker H. Conserved cysteines prevent C-mannosylation of mucin Cys domains. FEBS J 2024; 291:3539-3552. [PMID: 38708720 DOI: 10.1111/febs.17152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/15/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Mucins are major components of the mucus. Besides the highly O-glycosylated tandem repeat domains, mucins contain Cys domains (CysDs). CysDs contain conserved disulfide-forming cysteine residues as well as a WxxW motif. Since this is the consensus sequence for tryptophan C-mannosylation, mucin CysDs have been suggested to be targets for C-mannosyltransferases, but this has never been directly shown. Here, we recombinantly expressed human mucin CysDs in Chinese hamster ovary (CHO) cells and analyzed the C-mannosylation status. Mass spectrometric analysis revealed that the putative C-mannose site is not or only barely C-mannosylated. However, mutation of the adjacent cysteine residues enabled C-mannosylation to occur. In contrast to mucin CysDs, the homologous CysD of human cartilage intermediate layer protein 1 (CILP1) lacks these cysteine residues preceding the WxxW motif. We show that CILP1 CysD is C-mannosylated, but introducing a cysteine at the -2 position causes this modification to be lost. We thus conclude that the presence of cysteine residues prevents the modification of the WxxW motif in CysDs.
Collapse
Affiliation(s)
| | - Birgit Tiemann
- Institute of Clinical Biochemistry, Hannover Medical School, Germany
| | | | - Andreas Pich
- Research Core Unit Proteomics and Institute of Toxicology, Hannover Medical School, Germany
| | - Hans Bakker
- Institute of Clinical Biochemistry, Hannover Medical School, Germany
| |
Collapse
|
2
|
Recktenwald CV, Karlsson G, Garcia-Bonete MJ, Katona G, Jensen M, Lymer R, Bäckström M, Johansson MEV, Hansson GC, Trillo-Muyo S. The structure of the second CysD domain of MUC2 and role in mucin organization by transglutaminase-based cross-linking. Cell Rep 2024; 43:114207. [PMID: 38733585 DOI: 10.1016/j.celrep.2024.114207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/15/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The MUC2 mucin protects the colonic epithelium by a two-layered mucus with an inner attached bacteria-free layer and an outer layer harboring commensal bacteria. CysD domains are 100 amino-acid-long sequences containing 10 cysteines that separate highly O-glycosylated proline, threonine, serine (PTS) regions in mucins. The structure of the second CysD, CysD2, of MUC2 is now solved by nuclear magnetic resonance. CysD2 shows a stable stalk region predicted to be partly covered by adjacent O-glycans attached to neighboring PTS sequences, whereas the CysD2 tip with three flexible loops is suggested to be well exposed. It shows transient dimer interactions at acidic pH, weakened at physiological pH. This transient interaction can be stabilized in vitro and in vivo by transglutaminase 3-catalyzed isopeptide bonds, preferring a specific glutamine residue on one flexible loop. This covalent dimer is modeled suggesting that CysD domains act as connecting hubs for covalent stabilization of mucins to form a protective mucus.
Collapse
Affiliation(s)
- Christian V Recktenwald
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden.
| | - Göran Karlsson
- Swedish NMR Centre, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Maria-Jose Garcia-Bonete
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Gergely Katona
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Maja Jensen
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Richard Lymer
- Mammalian Protein Expression core facility, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Malin Bäckström
- Mammalian Protein Expression core facility, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Gunnar C Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden.
| | - Sergio Trillo-Muyo
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden.
| |
Collapse
|
3
|
Henriet S, Aasjord A, Chourrout D. Laboratory study of Fritillaria lifecycle reveals key morphogenetic events leading to genus-specific anatomy. Front Zool 2022; 19:26. [PMID: 36307829 PMCID: PMC9617304 DOI: 10.1186/s12983-022-00471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
A fascinating variety of adult body plans can be found in the Tunicates, the closest existing relatives of vertebrates. A distinctive feature of the larvacean class of pelagic tunicates is the presence of a highly specialized surface epithelium that produces a cellulose test, the “larvacean house”. While substantial differences exist between the anatomy of larvacean families, most of the ontogeny is derived from the observations of a single genus, Oikopleura. We present the first study of Fritillaria development based on the observation of individuals reproduced in the laboratory. Like the other small epipelagic species Oikopleura dioica, the larvae of Fritillaria borealis grow rapidly in the laboratory, and they acquire the adult form within a day. We could show that major morphological differences exhibited by Fritillaria and Oikopleura adults originate from a key developmental stage during larval organogenesis. Here, the surface epithelium progressively retracts from the posterior digestive organs of Fritillaria larvae, and it establishes house-producing territories around the pharynx. Our results show that the divergence between larvacean genera was associated with a profound rearrangement of the mechanisms controlling the differentiation of the larval ectoderm.
Collapse
|
4
|
Onuma TA, Nishida H. Developmental biology of the larvacean Oikopleura dioica: Genome resources, functional screening, and imaging. Dev Growth Differ 2021; 64:67-82. [PMID: 34964127 DOI: 10.1111/dgd.12769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/01/2022]
Abstract
The larvacean Oikopleura dioica is a cosmopolitan planktonic chordate and is closely related to vertebrates. It is characterized by a tadpole-shaped morphology with notochord flanked by muscle in the tail and brain on the dorsal side, a short life cycle of five days, a compact genome of approximately 56 Mb, a simple and transparent body with a small number of cells (~4000 in functional juveniles), invariant embryonic cell lineages, and fast development that ensures complete morphogenesis and organ formation 10 h after fertilization. With these features, this marine chordate is a promising and advantageous animal model in which genetic manipulation is feasible. In this review, we introduce relevant resources and modern techniques that have been developed: (1) Genome and transcriptomes. Oikopleura dioica has the smallest genome among non-parasitic metazoans. Its genome databases have been generated using three geographically distant O. dioica populations, and several intra-species sequence differences are becoming evident; (2) Functional genetic knockdown techniques. Comprehensive screening of genes is feasible using ovarian microinjection and double-strand DNA-induced gene knockdown; and (3) Live imaging of embryos and larvae. Application of these techniques has uncovered novel aspects of development, including meiotic cell arrest, left-right patterning, epidermal cell patterning, and mouth formation involving the connection of ectoderm and endoderm sheets. Oikopleura dioca has become very useful for developmental and evolutionary studies in chordates.
Collapse
Affiliation(s)
- Takeshi A Onuma
- Graduate School of Science and Engineering, Faculty of Science, Kagoshima University, Kagoshima, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
5
|
Razghandi K, Janßen N, Le MLV, Stach T. The filter-house of the larvacean Oikopleura dioica. A complex extracellular architecture: From fiber production to rudimentary state to inflated house. J Morphol 2021; 282:1259-1273. [PMID: 34041785 DOI: 10.1002/jmor.21382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/20/2021] [Accepted: 05/09/2021] [Indexed: 11/06/2022]
Abstract
While cellulose is the most abundant macromolecule in the biosphere, most animals are unable to produce cellulose with the exception of tunicates. Some tunicates have evolved the ability to secrete a complex house containing cellulosic fibers, yet little is known about the early stages of the house building process. Here, we investigate the rudimentary house of Oikopleura dioica for the first time using complementary light and electron microscopic techniques. In addition, we digitally modeled the arrangement of chambers, nets, and filters of the functional, expanded house in three dimensions based on life-video-imaging. Combining 3D-reconstructions based on serial histological semithin-sections, confocal laser scanning microscopy, transmission electron microscopy, scanning electron microscopy (SEM), and focused ion beam (FIB)-SEM, we were able to elucidate the arrangement of structural components, including cellulosic fibers, of the rudimentary house with a focus on the food concentration filter. We developed a model for the arrangement of folded structures in the house rudiment and show it is a precisely preformed structure with identifiable components intricately correlated with specific cells. Moreover, we demonstrate that structural details of the apical surfaces of Nasse cells provide the exact locations and shapes to produce the fibers of the house and interact among each other, with Giant Fol cells, and with the fibers to arrange them in the precise positions necessary for expansion of the house rudiment into the functional state. The presented data and hypotheses advance our knowledge about the interrelation of structure and function on different biological levels and prompt investigations into this astonishing biological object.
Collapse
Affiliation(s)
- Khashayar Razghandi
- Biomaterials Department, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Cluster of Excellence "Matters of Activity. Image Space Material", Humboldt Universität zu Berlin, Berlin, Germany
| | - Nils Janßen
- Biomaterials Department, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Mai-Lee Van Le
- Institut für Biologie, AG Vergleichende Zoologie, Humboldt Universität zu Berlin, Berlin, Germany
| | - Thomas Stach
- Institut für Biologie, AG Vergleichende Elektronenmikroskopie, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
6
|
Demouveaux B, Gouyer V, Robbe-Masselot C, Gottrand F, Narita T, Desseyn JL. Mucin CYS domain stiffens the mucus gel hindering bacteria and spermatozoa. Sci Rep 2019; 9:16993. [PMID: 31740753 PMCID: PMC6861317 DOI: 10.1038/s41598-019-53547-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022] Open
Abstract
Mucus is the first biological barrier encountered by particles and pathogenic bacteria at the surface of secretory epithelia. The viscoelasticity of mucus is governed in part by low energy interactions that are difficult to assess. The CYS domain is a good candidate to support low energy interactions between GFMs and/or mucus constituents. Our aim was to stiffen the mucus from HT29-MTX cell cocultures and the colon of mice through the delivery of a recombinant protein made of hydrophobic CYS domains and found in multiple copies in polymeric mucins. The ability of the delivery of a poly-CYS molecule to stiffen mucus gels was assessed by probing cellular motility and particle diffusion. We demonstrated that poly-CYS enrichment decreases mucus permeability and hinders displacement of pathogenic flagellated bacteria and spermatozoa. Particle tracking microrheology showed a decrease of mucus diffusivity. The empirical obstruction scaling model evidenced a decrease of mesh size for mouse mucus enriched with poly-CYS molecules. Our data bring evidence that enrichment with a protein made of CYS domains stiffens the mucin network to provide a more impermeable and protective mucus barrier than mucus without such enrichment.
Collapse
Affiliation(s)
| | - Valérie Gouyer
- Inserm, Univ. Lille, CHU Lille, LIRIC UMR 995, F-59000, Lille, France
| | - Catherine Robbe-Masselot
- CNRS, Univ. Lille, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), F-59000, Lille, France
| | - Frédéric Gottrand
- Inserm, Univ. Lille, CHU Lille, LIRIC UMR 995, F-59000, Lille, France
| | - Tetsuharu Narita
- CNRS, PSL Research University, UPMC Univ. Paris 06, ESPCI Paris, UMR 7615, Laboratoire Sciences et Ingénierie de la Matière Molle, 10 rue Vauquelin, 75231, Paris, Cedex 05, France.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Jean-Luc Desseyn
- Inserm, Univ. Lille, CHU Lille, LIRIC UMR 995, F-59000, Lille, France.
| |
Collapse
|
7
|
Ferrández-Roldán A, Martí-Solans J, Cañestro C, Albalat R. Oikopleura dioica: An Emergent Chordate Model to Study the Impact of Gene Loss on the Evolution of the Mechanisms of Development. Results Probl Cell Differ 2019; 68:63-105. [PMID: 31598853 DOI: 10.1007/978-3-030-23459-1_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The urochordate Oikopleura dioica is emerging as a nonclassical animal model in the field of evolutionary developmental biology (a.k.a. evo-devo) especially attractive for investigating the impact of gene loss on the evolution of mechanisms of development. This is because this organism fulfills the requirements of an animal model (i.e., has a simple and accessible morphology, a short generation time and life span, and affordable culture in the laboratory and amenable experimental manipulation), but also because O. dioica occupies a key phylogenetic position to understand the diversification and origin of our own phylum, the chordates. During its evolution, O. dioica genome has suffered a drastic process of compaction, becoming the smallest known chordate genome, a process that has been accompanied by exacerbating amount of gene losses. Interestingly, however, despite the extensive gene losses, including entire regulatory pathways essential for the embryonic development of other chordates, O. dioica retains the typical chordate body plan. This unexpected situation led to the formulation of the so-called inverse paradox of evo-devo, that is, when a genetic diversity is able to maintain a phenotypic unity. This chapter reviews the biological features of O. dioica as a model animal, along with the current data on the evolution of its genes and genome. We pay special attention to the numerous examples of gene losses that have taken place during the evolution of this unique animal model, which is helping us to understand to which the limits of evo-devo can be pushed off.
Collapse
Affiliation(s)
- Alfonso Ferrández-Roldán
- Facultat de Biologia, Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Josep Martí-Solans
- Facultat de Biologia, Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Cristian Cañestro
- Facultat de Biologia, Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Ricard Albalat
- Facultat de Biologia, Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
8
|
Mikhaleva Y, Skinnes R, Sumic S, Thompson EM, Chourrout D. Development of the house secreting epithelium, a major innovation of tunicate larvaceans, involves multiple homeodomain transcription factors. Dev Biol 2018; 443:117-126. [DOI: 10.1016/j.ydbio.2018.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/27/2018] [Accepted: 09/05/2018] [Indexed: 01/24/2023]
|
9
|
Gouyer V, Demouveaux B, Lacroix G, Valque H, Gottrand F, Desseyn JL. Non-C-mannosylable mucin CYS domains hindered proper folding and secretion of mucin. Biochem Biophys Res Commun 2018; 506:812-818. [PMID: 30389136 DOI: 10.1016/j.bbrc.2018.10.138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/22/2018] [Indexed: 01/12/2023]
Abstract
The CYS domain occurs in multiple copies in many gel-forming mucins. It is believed that CYS domains can interact with each other in a reversible manner, suggesting a key role of the domain in gel formation. This domain always contains in its amino-terminal sequence the C-mannosylation motif WXXW, but whether the CYS domain is C-mannosylated is debated, and the putative role of C-mannosylation of the domain is unclear. We prepared recombinant CYS domains of the human mucin MUC5B with (WXXW→AXXW) and without a single amino acid mutation and mini-5B mucins made of a large Ser/Thr/Pro region flanked by two CYS domains with the WXXW motif or with the mutated AXXW motif on the first, second or both CYS domains. We found that the single CYS domain and the two CYS domains of mini-5B mucin must be C-mannosylable for the efficient maturation and secretion of the recombinant molecules; otherwise, they are retained in the cell and co-localized with a resident enzyme of the endoplasmic reticulum.
Collapse
Affiliation(s)
- Valérie Gouyer
- Inserm, Université de Lille, CHU Lille, LIRIC UMR 995, Lille, France
| | | | - Guillaume Lacroix
- Inserm, Université de Lille, CHU Lille, LIRIC UMR 995, Lille, France
| | - Hélène Valque
- Inserm, Université de Lille, CHU Lille, LIRIC UMR 995, Lille, France
| | - Frédéric Gottrand
- Inserm, Université de Lille, CHU Lille, LIRIC UMR 995, Lille, France
| | - Jean-Luc Desseyn
- Inserm, Université de Lille, CHU Lille, LIRIC UMR 995, Lille, France.
| |
Collapse
|
10
|
Alex A, Antunes A. Genus-wide comparison of Pseudovibrio bacterial genomes reveal diverse adaptations to different marine invertebrate hosts. PLoS One 2018; 13:e0194368. [PMID: 29775460 PMCID: PMC5959193 DOI: 10.1371/journal.pone.0194368] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 03/01/2018] [Indexed: 11/18/2022] Open
Abstract
Bacteria belonging to the genus Pseudovibrio have been frequently found in association with a wide variety of marine eukaryotic invertebrate hosts, indicative of their versatile and symbiotic lifestyle. A recent comparison of the sponge-associated Pseudovibrio genomes has shed light on the mechanisms influencing a successful symbiotic association with sponges. In contrast, the genomic architecture of Pseudovibrio bacteria associated with other marine hosts has received less attention. Here, we performed genus-wide comparative analyses of 18 Pseudovibrio isolated from sponges, coral, tunicates, flatworm, and seawater. The analyses revealed a certain degree of commonality among the majority of sponge- and coral-associated bacteria. Isolates from other marine invertebrate host, tunicates, exhibited a genetic repertoire for cold adaptation and specific metabolic abilities including mucin degradation in the Antarctic tunicate-associated bacterium Pseudovibrio sp. Tun.PHSC04_5.I4. Reductive genome evolution was simultaneously detected in the flatworm-associated bacteria and the sponge-associated bacterium P. axinellae AD2, through the loss of major secretion systems (type III/VI) and virulence/symbioses factors such as proteins involved in adhesion and attachment to the host. Our study also unraveled the presence of a CRISPR-Cas system in P. stylochi UST20140214-052 a flatworm-associated bacterium possibly suggesting the role of CRISPR-based adaptive immune system against the invading virus particles. Detection of mobile elements and genomic islands (GIs) in all bacterial members highlighted the role of horizontal gene transfer for the acquisition of novel genetic features, likely enhancing the bacterial ecological fitness. These findings are insightful to understand the role of genome diversity in Pseudovibrio as an evolutionary strategy to increase their colonizing success across a wide range of marine eukaryotic hosts.
Collapse
Affiliation(s)
- Anoop Alex
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- * E-mail: (AA); (AA)
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- * E-mail: (AA); (AA)
| |
Collapse
|
11
|
Demouveaux B, Gouyer V, Gottrand F, Narita T, Desseyn JL. Gel-forming mucin interactome drives mucus viscoelasticity. Adv Colloid Interface Sci 2018; 252:69-82. [PMID: 29329667 DOI: 10.1016/j.cis.2017.12.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 12/31/2022]
Abstract
Mucus is a hydrogel that constitutes the first innate defense in all mammals. The main organic component of mucus, gel-forming mucins, forms a complex network through both reversible and irreversible interactions that drive mucus gel formation. Significant advances in the understanding of irreversible gel-forming mucins assembly have been made using recombinant protein approaches. However, little is known about the reversible interactions that may finely modulate mucus viscoelasticity, which can be characterized using rheology. This approach can be used to investigate both the nature of gel-forming mucins interactions and factors that influence hydrogel formation. This knowledge is directly relevant to the development of new drugs to modulate mucus viscoelasticity and to restore normal mucus functions in diseases such as in cystic fibrosis. The aim of the present review is to summarize the current knowledge about the relationship between the mucus protein matrix and its functions, with emphasis on mucus viscoelasticity.
Collapse
Affiliation(s)
| | - Valérie Gouyer
- Univ. Lille, Inserm, CHU Lille, LIRIC UMR 995, F-59000 Lille, France
| | - Frédéric Gottrand
- Univ. Lille, Inserm, CHU Lille, LIRIC UMR 995, F-59000 Lille, France
| | - Tetsuharu Narita
- Laboratoire Sciences et Ingénierie de la Matière Molle, PSL Research University, UPMC Univ Paris 06, ESPCI Paris, CNRS, 10 rue Vauquelin, 75231 Paris Cedex 05, France; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Jean-Luc Desseyn
- Univ. Lille, Inserm, CHU Lille, LIRIC UMR 995, F-59000 Lille, France.
| |
Collapse
|
12
|
Kishi K, Hayashi M, Onuma TA, Nishida H. Patterning and morphogenesis of the intricate but stereotyped oikoplastic epidermis of the appendicularian, Oikopleura dioica. Dev Biol 2017; 428:245-257. [DOI: 10.1016/j.ydbio.2017.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 11/29/2022]
|
13
|
Delivery of a mucin domain enriched in cysteine residues strengthens the intestinal mucous barrier. Sci Rep 2015; 5:9577. [PMID: 25974250 PMCID: PMC4431476 DOI: 10.1038/srep09577] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/26/2015] [Indexed: 12/22/2022] Open
Abstract
A weakening of the gut mucous barrier permits an increase in the access of intestinal luminal contents to the epithelial cells, which will trigger the inflammatory response. In inflammatory bowel diseases, there is an inappropriate and ongoing activation of the immune system, possibly because the intestinal mucus is less protective against the endogenous microflora. General strategies aimed at improving the protection of the intestinal epithelium are still missing. We generated a transgenic mouse that secreted a molecule consisting of 12 consecutive copies of a mucin domain into its intestinal mucus, which is believed to modify the mucus layer by establishing reversible interactions. We showed that the mucus gel was more robust and that mucin O-glycosylation was altered. Notably, the gut epithelium of transgenic mice housed a greater abundance of beneficial Lactobacillus spp. These modifications were associated with a reduced susceptibility of transgenic mice to chemically induced colitis. Furthermore, transgenic mice cleared faster Citrobacter rodentium bacteria which were orally given and mice were more protected against bacterial translocation induced by gavage with adherent–invasive Escherichia coli. Our data show that delivering the mucin CYS domain into the gut lumen strengthens the intestinal mucus blanket which is impaired in inflammatory bowel diseases.
Collapse
|
14
|
Guo X, Zheng S, Dang H, Pace RG, Stonebraker JR, Jones CD, Boellmann F, Yuan G, Haridass P, Fedrigo O, Corcoran DL, Seibold MA, Ranade SS, Knowles MR, O'Neal WK, Voynow JA. Genome reference and sequence variation in the large repetitive central exon of human MUC5AC. Am J Respir Cell Mol Biol 2014; 50:223-32. [PMID: 24010879 DOI: 10.1165/rcmb.2013-0235oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Despite modern sequencing efforts, the difficulty in assembly of highly repetitive sequences has prevented resolution of human genome gaps, including some in the coding regions of genes with important biological functions. One such gene, MUC5AC, encodes a large, secreted mucin, which is one of the two major secreted mucins in human airways. The MUC5AC region contains a gap in the human genome reference (hg19) across the large, highly repetitive, and complex central exon. This exon is predicted to contain imperfect tandem repeat sequences and multiple conserved cysteine-rich (CysD) domains. To resolve the MUC5AC genomic gap, we used high-fidelity long PCR followed by single molecule real-time (SMRT) sequencing. This technology yielded long sequence reads and robust coverage that allowed for de novo sequence assembly spanning the entire repetitive region. Furthermore, we used SMRT sequencing of PCR amplicons covering the central exon to identify genetic variation in four individuals. The results demonstrated the presence of segmental duplications of CysD domains, insertions/deletions (indels) of tandem repeats, and single nucleotide variants. Additional studies demonstrated that one of the identified tandem repeat insertions is tagged by nonexonic single nucleotide polymorphisms. Taken together, these data illustrate the successful utility of SMRT sequencing long reads for de novo assembly of large repetitive sequences to fill the gaps in the human genome. Characterization of the MUC5AC gene and the sequence variation in the central exon will facilitate genetic and functional studies for this critical airway mucin.
Collapse
Affiliation(s)
- Xueliang Guo
- 1 Cystic Fibrosis/Pulmonary Research and Treatment Center, and
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Danks G, Campsteijn C, Parida M, Butcher S, Doddapaneni H, Fu B, Petrin R, Metpally R, Lenhard B, Wincker P, Chourrout D, Thompson EM, Manak JR. OikoBase: a genomics and developmental transcriptomics resource for the urochordate Oikopleura dioica. Nucleic Acids Res 2012. [PMID: 23185044 PMCID: PMC3531137 DOI: 10.1093/nar/gks1159] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We report the development of OikoBase (http://oikoarrays.biology.uiowa.edu/Oiko/), a tiling array-based genome browser resource for Oikopleura dioica, a metazoan belonging to the urochordates, the closest extant group to vertebrates. OikoBase facilitates retrieval and mining of a variety of useful genomics information. First, it includes a genome browser which interrogates 1260 genomic sequence scaffolds and features gene, transcript and CDS annotation tracks. Second, we annotated gene models with gene ontology (GO) terms and InterPro domains which are directly accessible in the browser with links to their entries in the GO (http://www.geneontology.org/) and InterPro (http://www.ebi.ac.uk/interpro/) databases, and we provide transcript and peptide links for sequence downloads. Third, we introduce the transcriptomics of a comprehensive set of developmental stages of O. dioica at high resolution and provide downloadable gene expression data for all developmental stages. Fourth, we incorporate a BLAST tool to identify homologs of genes and proteins. Finally, we include a tutorial that describes how to use OikoBase as well as a link to detailed methods, explaining the data generation and analysis pipeline. OikoBase will provide a valuable resource for research in chordate development, genome evolution and plasticity and the molecular ecology of this important marine planktonic organism.
Collapse
Affiliation(s)
- Gemma Danks
- Computational Biology Unit, University of Bergen, Bergen, N-5008, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hosp J, Sagane Y, Danks G, Thompson EM. The evolving proteome of a complex extracellular matrix, the Oikopleura house. PLoS One 2012; 7:e40172. [PMID: 22792236 PMCID: PMC3390340 DOI: 10.1371/journal.pone.0040172] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/01/2012] [Indexed: 11/20/2022] Open
Abstract
Extracellular matrices regulate biological processes at the level of cells, tissues, and in some cases, entire multicellular organisms. The subphylum Urochordata exemplifies the latter case, where animals are partially or completely enclosed in “houses” or “tunics”. Despite this common strategy, we show that the house proteome of the appendicularian, Oikopleura, has very little in common with the proteome of the sister class, ascidian, Ciona. Of 80 identified house proteins (oikosins), ∼half lack domain modules or similarity to known proteins, suggesting de novo appearance in appendicularians. Gene duplication has been important in generating almost 1/3 of the current oikosin complement, with serial duplications up to 8 paralogs in one family. Expression pattern analyses revealed that individual oikosins are produced from specific fields of cells within the secretory epithelium, but in some cases, migrate up to at least 20 cell diameters in extracellular space to combine in defined house structures. Interestingly, peroxidasin and secretory phospholipase A2 domains, implicated in innate immune defence are secreted from the anlage associated with the food-concentrating filter, suggesting that this extra-organismal structure may play, in part, such a role in Oikopleura. We also show that sulfation of proteoglycans is required for the hydration and inflation of pre-house rudiments into functional houses. Though correct proportioning in the production of oikosins would seem important in repetitive assembly of the complex house structure, the genomic organization of oikosin loci appears incompatible with common enhancers or locus control regions exerting such a coordinate regulatory role. Thus, though all tunicates employ extracellular matrices based on a cellulose scaffold as a defining feature of the subphylum, they have evolved radically different protein compositions associated with this common underlying structural theme.
Collapse
Affiliation(s)
- Julia Hosp
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Yoshimasa Sagane
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Gemma Danks
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| | - Eric M. Thompson
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Department of Biology, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
17
|
Yadetie F, Butcher S, Førde HE, Campsteijn C, Bouquet JM, Karlsen OA, Denoeud F, Metpally R, Thompson EM, Manak JR, Goksøyr A, Chourrout D. Conservation and divergence of chemical defense system in the tunicate Oikopleura dioica revealed by genome wide response to two xenobiotics. BMC Genomics 2012; 13:55. [PMID: 22300585 PMCID: PMC3292500 DOI: 10.1186/1471-2164-13-55] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 02/02/2012] [Indexed: 12/15/2022] Open
Abstract
Background Animals have developed extensive mechanisms of response to xenobiotic chemical attacks. Although recent genome surveys have suggested a broad conservation of the chemical defensome across metazoans, global gene expression responses to xenobiotics have not been well investigated in most invertebrates. Here, we performed genome survey for key defensome genes in Oikopleura dioica genome, and explored genome-wide gene expression using high density tiling arrays with over 2 million probes, in response to two model xenobiotic chemicals - the carcinogenic polycyclic aromatic hydrocarbon benzo[a]pyrene (BaP) the pharmaceutical compound Clofibrate (Clo). Results Oikopleura genome surveys for key genes of the chemical defensome suggested a reduced repertoire. Not more than 23 cytochrome P450 (CYP) genes could be identified, and neither CYP1 family genes nor their transcriptional activator AhR was detected. These two genes were present in deuterostome ancestors. As in vertebrates, the genotoxic compound BaP induced xenobiotic biotransformation and oxidative stress responsive genes. Notable exceptions were genes of the aryl hydrocarbon receptor (AhR) signaling pathway. Clo also affected the expression of many biotransformation genes and markedly repressed genes involved in energy metabolism and muscle contraction pathways. Conclusions Oikopleura has the smallest number of CYP genes among sequenced animal genomes and lacks the AhR signaling pathway. However it appears to have basic xenobiotic inducible biotransformation genes such as a conserved genotoxic stress response gene set. Our genome survey and expression study does not support a role of AhR signaling pathway in the chemical defense of metazoans prior to the emergence of vertebrates.
Collapse
Affiliation(s)
- Fekadu Yadetie
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The colonic human MUC2 mucin forms a polymeric gel by covalent disulfide bonds in its N- and C-termini. The middle part of MUC2 is largely composed of two highly O-glycosylated mucin domains that are interrupted by a CysD domain of unknown function. We studied its function as recombinant proteins fused to a removable immunoglobulin Fc domain. Analysis of affinity-purified fusion proteins by native gel electrophoresis and gel filtration showed that they formed oligomeric complexes. Analysis of the individual isolated CysD parts showed that they formed dimers both when flanked by two MUC2 tandem repeats and without these. Cleavages of the two non-reduced CysD fusion proteins and analysis by MS revealed the localization of all five CysD disulfide bonds and that the predicted C-mannosylated site was not glycosylated. All disulfide bonds were within individual peptides showing that the domain was stabilized by intramolecular disulfide bonds and that CysD dimers were of non-covalent nature. These observations suggest that CysD domains act as non-covalent cross-links in the MUC2 gel, thereby determining the pore sizes of the mucus.
Collapse
|
19
|
Chavali S, Morais DADL, Gough J, Babu MM. Evolution of eukaryotic genome architecture: Insights from the study of a rapidly evolving metazoan, Oikopleura dioica. Bioessays 2011; 33:592-601. [DOI: 10.1002/bies.201100034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Cytoskeleton-mediated templating of complex cellulose-scaffolded extracellular structure and its association with oikosins in the urochordate Oikopleura. Cell Mol Life Sci 2010; 68:1611-22. [PMID: 20953655 PMCID: PMC3071929 DOI: 10.1007/s00018-010-0547-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 08/31/2010] [Accepted: 09/15/2010] [Indexed: 12/23/2022]
Abstract
Oriented cellulose deposition is critical to plant patterning and models suggest microtubules constrain cellulose synthase movements through the plasma membrane. Though widespread in plants, urochordates are the only animals that synthesize cellulose. We characterized the distinctive cellulose microfibril scaffold of the larvacean house and its interaction with house structural proteins (oikosins). Targeted disruption of cytoskeletal elements, secretory pathways, and plasma membrane organization, suggested a working model for templating extracellular cellulose microfibrils from animal cells that shows both convergence and differences to plant models. Specialized cortical F-actin arrays template microfibril orientation and glycosylphosphatidylinositol-anchored proteins in lipid rafts may act as scaffolding proteins in microfibril elongation. Microtubules deliver and maintain cellulose synthase complexes to specific cell membrane sites rather than orienting their movement through the membrane. Oikosins are incorporated into house compartments directly above their corresponding cellular field of expression and interact with the cellulose scaffold to a variable extent.
Collapse
|
21
|
Sagane Y, Zech K, Bouquet JM, Schmid M, Bal U, Thompson EM. Functional specialization of cellulose synthase genes of prokaryotic origin in chordate larvaceans. Development 2010; 137:1483-92. [PMID: 20335363 DOI: 10.1242/dev.044503] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Extracellular matrices play important, but poorly investigated, roles in morphogenesis. Extracellular cellulose is central to regulation of pattern formation in plants, but among metazoans only tunicates are capable of cellulose biosynthesis. Cellulose synthase (CesA) gene products are present in filter-feeding structures of all tunicates and also regulate metamorphosis in the ascidian Ciona. Ciona CesA is proposed to have been acquired by lateral gene transfer from a prokaryote. We identified two CesA genes in the sister-class larvacean Oikopleura dioica. Each has a mosaic structure of a glycoslyltransferase 2 domain upstream of a glycosyl hydrolase family 6 cellulase-like domain, a signature thus far unique to tunicates. Spatial-temporal expression analysis revealed that Od-CesA1 produces long cellulose fibrils along the larval tail, whereas Od-CesA2 is responsible for the cellulose scaffold of the post-metamorphic filter-feeding house. Knockdown of Od-CesA1 inhibited cellulose production in the extracellular matrix of the larval tail. Notochord cells either failed to align or were misaligned, the tail did not elongate properly and tailbud embryos also exhibited a failure to hatch. Knockdown of Od-CesA2 did not elicit any of these phenotypes and instead caused a mild delay in pre-house formation. Phylogenetic analyses including Od-CesAs indicate that a single lateral gene transfer event from a prokaryote at the base of the lineage conferred biosynthetic capacity in all tunicates. Ascidians possess one CesA gene, whereas duplicated larvacean genes have evolved distinct temporal and functional specializations. Extracellular cellulose microfibrils produced by the pre-metamorphic Od-CesA1 duplicate have a role in notochord and tail morphogenesis.
Collapse
Affiliation(s)
- Yoshimasa Sagane
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Karin Zech
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Jean-Marie Bouquet
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Martina Schmid
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Ugur Bal
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Eric M. Thompson
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
- Department of Biology, University of Bergen, PO Box 7800, N-5020 Bergen, Norway
| |
Collapse
|
22
|
Mucin CYS domains are ancient and highly conserved modules that evolved in concert. Mol Phylogenet Evol 2009; 52:284-92. [DOI: 10.1016/j.ympev.2009.03.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 03/17/2009] [Accepted: 03/27/2009] [Indexed: 11/22/2022]
|
23
|
Bouquet JM, Spriet E, Troedsson C, Otterå H, Chourrout D, Thompson EM. Culture optimization for the emergent zooplanktonic model organism Oikopleura dioica. JOURNAL OF PLANKTON RESEARCH 2009; 31:359-370. [PMID: 19461862 PMCID: PMC2651036 DOI: 10.1093/plankt/fbn132] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 12/09/2008] [Indexed: 05/16/2023]
Abstract
The pan-global marine appendicularian, Oikopleura dioica, shows considerable promise as a candidate model organism for cross-disciplinary research ranging from chordate genetics and evolution to molecular ecology research. This urochordate, has a simplified anatomical organization, remains transparent throughout an exceptionally short life cycle of less than 1 week and exhibits high fecundity. At 70 Mb, the compact, sequenced genome ranks among the smallest known metazoan genomes, with both gene regulatory and intronic regions highly reduced in size. The organism occupies an important trophic role in marine ecosystems and is a significant contributor to global vertical carbon flux. Among the short list of bona fide biological model organisms, all share the property that they are amenable to long-term maintenance in laboratory cultures. Here, we tested diet regimes, spawn densities and dilutions and seawater treatment, leading to optimization of a detailed culture protocol that permits sustainable long-term maintenance of O. dioica, allowing continuous, uninterrupted production of source material for experimentation. The culture protocol can be quickly adapted in both coastal and inland laboratories and should promote rapid development of the many original research perspectives the animal offers.
Collapse
Affiliation(s)
- Jean-Marie Bouquet
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Endy Spriet
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
- corresponding author:
| | - Christofer Troedsson
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
- Department of Biology, University of Bergen, N-5020 Bergen, Norway
| | - Helen Otterå
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Daniel Chourrout
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
| | - Eric M. Thompson
- Sars International Centre for Marine Molecular Biology, Thormøhlensgate 55, N-5008 Bergen, Norway
- corresponding author:
| |
Collapse
|
24
|
Fu X, Adamski M, Thompson EM. Altered miRNA repertoire in the simplified chordate, Oikopleura dioica. Mol Biol Evol 2008; 25:1067-80. [PMID: 18339653 DOI: 10.1093/molbev/msn060] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent studies reveal correlation between microRNA (miRNA) innovation and increased developmental complexity. This is exemplified by dramatic expansion of the miRNA inventory in vertebrates, a lineage where genome duplication has played a significant evolutionary role. Urochordates, the closest extant group to the vertebrates, exhibit an opposite trend to genome and morphological simplification. We show that the urochordate, larvacean, Oikopleura dioica, possesses the requisite miRNA biogenic machinery. The miRNAs isolated by small RNA cloning were expressed throughout the short life cycle, a number of which were stocked as maternal determinants prior to rapid embryonic development. We identify sex-specific miRNAs that appeared as male/female gonad differentiation became apparent and were maintained throughout spermatogenesis. Whereas 80% of mammalian miRNAs are hosted in introns of protein-coding genes, the majority of O. dioica miRNA loci were located in antisense orientations to such genes. Including sister group ascidians in analysis of the urochordate miRNA repertoire, we find that 11 highly conserved bilaterian miRNA families have been lost or derived to the point they are not recognizable in urochordates and a further 4 of these families are absent in larvaceans. Subsequent to this loss/derivation, at least 29 novel miRNA families have been acquired in larvaceans. This suggests a profound reorganization of the miRNA repertoire integral to evolution in the urochordate lineage.
Collapse
Affiliation(s)
- Xianghui Fu
- Sars Centre for Marine Molecular Biology, Bergen High Technology Centre, University of Bergen, Bergen, Norway
| | | | | |
Collapse
|
25
|
Lang T, Hansson GC, Samuelsson T. Gel-forming mucins appeared early in metazoan evolution. Proc Natl Acad Sci U S A 2007; 104:16209-14. [PMID: 17911254 PMCID: PMC2042186 DOI: 10.1073/pnas.0705984104] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mucins are proteins that cover and protect epithelial cells and are characterized by domains rich in proline, threonine, and serine that are heavily glycosylated (PTS or mucin domains). Because of their sequence polymorphism, these domains cannot be used for evolutionary analysis. Instead, we have made use of the von Willebrand D (VWD) and SEA domains, typical for mucins. A number of animal genomes were examined for these domains to identify mucin homologues, and domains of the resulting proteins were used in phylogenetic studies. The frog Xenopus tropicalis stands out because the number of gel-forming mucins has markedly increased to at least 25 as compared with 5 for higher animals. Furthermore, the frog Muc2 homologues contain unique PTS domains where cysteines are abundant. This animal also has a unique family of secreted mucin-like proteins with alternating PTS and SEA domains, a type of protein also identified in the fishes. The evolution of the Muc4 mucin seems to have occurred by recruitment of a PTS domain to AMOP, NIDO, and VWD domains from a sushi domain-containing family of proteins present in lower animals, and Xenopus is the most deeply branching animal where a protein similar to the mammalian Muc4 was identified. All transmembrane mucins seem to have appeared in the vertebrate lineage, and the MUC1 mucin is restricted to mammals. In contrast, proteins with properties of the gel-forming mucins were identified also in the starlet sea anemone Nematostella vectensis, demonstrating an early origin of this group of mucins.
Collapse
Affiliation(s)
- Tiange Lang
- Department of Medical Biochemistry, Institute of Biomedicine, Göteborg University, Box 440, SE-405 30 Göteborg, Sweden
| | - Gunnar C. Hansson
- Department of Medical Biochemistry, Institute of Biomedicine, Göteborg University, Box 440, SE-405 30 Göteborg, Sweden
| | - Tore Samuelsson
- Department of Medical Biochemistry, Institute of Biomedicine, Göteborg University, Box 440, SE-405 30 Göteborg, Sweden
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
26
|
Spada F, Koch J, Sadoni N, Mitchell N, Ganot P, De Boni U, Zink D, Thompson EM. Conserved patterns of nuclear compartmentalization are not observed in the chordate Oikopleura. Biol Cell 2007; 99:273-87. [PMID: 17288541 DOI: 10.1042/bc20060124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND INFORMATION Recent results from a limited number of eukaryotic model organisms suggest that major principles governing spatial organization of the genome in functionally distinct nuclear compartments are conserved through evolution. RESULTS We examined the in situ spatial organization of major nuclear components and nuclear patterns of gene loci with strictly defined expression patterns in endocycling cells of the transparent urochordate Oikopleura dioica, a complex metazoan with a very compact genome. Endocycling cells with different functions and similar DNA content displayed distinct topologies of nuclear components. However, the generation of the diverse nuclear architectures did not involve specific local organization of active genes or their preferential amplification. Interestingly, endocycling cells lacked nuclear-envelope-associated heterochromatin and prominent splicing-factor domains, which in mammalian cells associate with transcriptionally silent and active loci respectively. In addition, no correlation was found between transcriptional activity of a locus and its association with chromatin domains rich in specific histone modifications. CONCLUSIONS Together, these findings and the absence of typical eukaryotic replication patterns reveal a surprisingly limited functional compartmentalization of O. dioica endocycling nuclei. This indicates that robust cell-type-specific gene expression does not necessarily require high levels of spatial genome organization.
Collapse
Affiliation(s)
- Fabio Spada
- Sars Centre for Marine Molecular Biology, Bergen High Technology Centre, University of Bergen, Thormøhlensgt 55, Bergen, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Tröße C, Ravneberg H, Stern B, Pryme IF. Vectors Encoding Seven Oikosin Signal Peptides Transfected into CHO Cells Differ Greatly in Mediating Gaussia luciferase and Human Endostatin Production although mRNA Levels are Largely Unaffected. GENE REGULATION AND SYSTEMS BIOLOGY 2007. [DOI: 10.1177/117762500700100021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The signal peptide of the luciferase secreted by the marine copepod Gaussia princeps has been shown to promote high-level protein synthesis/secretion of recombinant proteins, being far superior to mammalian counterparts. The main aim of the present study was to investigate the effects of seven selected signal peptides derived from oikosins, house proteins of the marine organism Oikopleura dioica, on synthesis/secretion of recombinant proteins. Vector constructs were made in which the coding regions of two naturally secreted proteins, Gaussia luciferase and human endostatin (hEndostatin), were “seamlessly” fused to the signal peptide coding sequences of interest. CHO cells were transfected with the plasmids and populations of stably transfected cells established. The amounts of reporter proteins in cell extract and medium samples were determined and the results compared to those obtained from cells stably transfected with a reference vector construct. In addition, the amounts of luciferase or hEndostatin encoding mRNAs in the cells were determined and related to the protein levels obtained. The levels of reporter protein produced varied greatly among the seven oikosin signal peptides tested. Whereas the oikosin 1 signal peptide resulted in about 40% production of Gaussia luciferase compared to the reference construct, oikosins 2–7 were extremely ineffective (<1%). mRNA levels were not dramatically affected such that inadequate availability of transcript for translation was not the underlying reason for the observations. The oikosin 1 signal peptide was also the most effective regarding synthesis/secretion of hEndostatin. No secreted product was observed using the oikosin 3 signal peptide. Interestingly, the molecular weight of hEndostatin in cell extracts prepared from cells transfected with oikosin 2 and 3 constructs was higher than that using the oikosin 1 signal peptide. The overall findings indicate that the signal peptide affects the efficiency of protein synthesis and secretion through a mechanism operating at the post-transcriptional level. The results described here provide substantial support to our previous observations which suggested that the choice of the signal peptide is imperative when aiming to achieve optimal synthesis and secretion of a recombinant protein using transfected mammalian cells.
Collapse
Affiliation(s)
- Christiane Tröße
- UniTargetingResearch AS, Thormøhlensgt. 51, N-5006 Bergen, Norway
| | - Hanne Ravneberg
- UniTargetingResearch AS, Thormøhlensgt. 51, N-5006 Bergen, Norway
| | - Beate Stern
- UniTargetingResearch AS, Thormøhlensgt. 51, N-5006 Bergen, Norway
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - Ian F. Pryme
- UniTargetingResearch AS, Thormøhlensgt. 51, N-5006 Bergen, Norway
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| |
Collapse
|
28
|
Cupit PM, Lennard ML, Hikima JI, Warr GW, Cunningham C. Characterization of two POU transcription factor family members from the urochordate Oikopleura dioica. Gene 2006; 383:1-11. [PMID: 16989962 DOI: 10.1016/j.gene.2006.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2006] [Revised: 05/05/2006] [Accepted: 05/13/2006] [Indexed: 11/21/2022]
Abstract
Three POU domain containing transcription factors have been cloned from the urochordate Oikopleura dioica. Phylogenetic analysis showed that two of these (OctA1 and OctA2) are closely related members of the class II POU domain family, and one (OctB) is a member of the class III POU domain family. All three transcription factors contained a highly conserved bipartite DNA-binding POU domain with POU specific and POU homeodomains, separated by a linker region. All three proteins were shown to bind specifically to the canonical octamer motif, ATGCAAAT. The ability of these factors to drive transcription from an octamer-containing reporter construct was assessed in vertebrate B lymphocyte cell lines. Both OctA1 and OctA2 drove transcription in murine and catfish B cell lines, however, OctB did not increase the level of transcription above background levels. It is concluded that Oct transcription factors capable of functioning in a similar fashion to vertebrate Oct1/2 were present at the phylogenetic level of the urochordates.
Collapse
Affiliation(s)
- Pauline M Cupit
- Sars International Centre for Marine Molecular Biology, Bergen, Norway
| | | | | | | | | |
Collapse
|
29
|
Ganot P, Bouquet JM, Thompson EM. Comparative organization of follicle, accessory cells and spawning anlagen in dynamic semelparous clutch manipulators, the urochordate Oikopleuridae. Biol Cell 2006; 98:389-401. [PMID: 16478443 DOI: 10.1042/bc20060005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION The urochordate appendicularians play a key trophic role in marine ecosystems and are the second largest component of zooplankton after copepods. Part of their success is due to their ability to undergo rapid population blooms in response to changes in primary productivity. Nonetheless, the reproductive biology of this important group remains poorly understood. RESULTS In the present study, we investigated the organization of male and female germ and accessory somatic cells in the Oikopleuridae. We found that the structure of the ovary had been previously misconstrued as consisting of germ and accessory 'cells' interspersed together, whereas, in fact, the germline exists as a giant transparent syncytium. Somatic follicle cells, integral to regulation of the temporal progression of gametogenesis, could be classified into three types in females and two in males, and we characterized functional gap junctions between follicle cells and the germline syncytium in both sexes. The number of follicle cells per oocyte produced was much reduced in comparison with many commonly studied model organisms. We further identified a novel anlagen that permits spawning of the animal via rupture of the gonad wall, which is obligatory for the release of oocytes, but optional for the release of sperm that usually occurs via the spermiduct. CONCLUSIONS The organization of the female germline in the Oikopleuridae shares some features of meroistic oogenesis with the arthropod Drosophila, but the process of synchronous oogenesis in these semelparous organisms remains quite distinctive with respect to that previously characterized in the animal kingdom and certainly within the chordate phylum.
Collapse
Affiliation(s)
- Philippe Ganot
- Sars International Centre for Marine Molecular Biology, Bergen High Technology Centre, Thormøhlensgate 55, N-5008 Bergen, Norway
| | | | | |
Collapse
|
30
|
Abstract
Many eukaryotic proteins share a sequence designated as the zona pellucida (ZP) domain. This structural element, present in extracellular proteins from a wide variety of organisms, from nematodes to mammals, consists of approximately 260 amino acids with eight conserved cysteine (Cys) residues and is located close to the C terminus of the polypeptide. ZP domain proteins are often glycosylated, modular structures consisting of multiple types of domains. Predictions can be made about some of the structural features of the ZP domain and ZP domain proteins. The functions of ZP domain proteins vary tremendously, from serving as structural components of egg coats, appendicularian mucous houses, and nematode dauer larvae, to serving as mechanotransducers in flies and receptors in mammals and nonmammals. Generally, ZP domain proteins are present in filaments and/or matrices, which is consistent with the role of the domain in protein polymerization. A general mechanism for assembly of ZP domain proteins has been presented. It is likely that the ZP domain plays a common role despite its presence in proteins of widely diverse functions.
Collapse
Affiliation(s)
- Luca Jovine
- Brookdale Department of Molecular, Cell, and Developmental Biology, Mount Sinai School of Medicine, New York, New York 10029-6574, USA.
| | | | | | | |
Collapse
|
31
|
Spada F, Vincent M, Thompson EM. Plasticity of histone modifications across the invertebrate to vertebrate transition: histone H3 lysine 4 trimethylation in heterochromatin. Chromosome Res 2005; 13:57-72. [PMID: 15791412 DOI: 10.1007/s10577-005-6845-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 11/15/2004] [Accepted: 11/15/2004] [Indexed: 11/28/2022]
Abstract
Histone posttranslational modifications mediate establishment of structurally and functionally distinct chromatin compartments of eukaryotic nuclei. The association of different histone modifications with euchromatic and heterochromatic compartments is relatively conserved in highly divergent model organisms such as Drosophila and mammals. However, some differences between these model systems have been uncovered while limited data are available from organisms nearer the invertebrate-vertebrate transition. We identified a chromatin compartment in both diploid and endocycling cells of the urochordate, Oikopleura dioica, enriched in heterochromatic histone modifications and DNA methylation. Surprisingly, this compartment also contained high levels of histone H3 trimethylated at lysine 4 (H3 Me(3)K4), a modification thus far associated with actively transcribed sequences. Although in Drosophila and mouse cells, H3 Me(3)K4 was prevalently associated with euchromatin, we also detected it in their pericentromeric heterochromatin. We further showed that H3 Me(3)K4 abundance was not necessarily proportional to local levels of transcriptional activity in either euchromatin or heterochromatin. Our data indicate greater plasticity across evolution in the association of histone lysine methylation with functionally distinct chromatin domains than previously thought and suggest that H3 Me(3)K4 participates in additional processes beyond marking transcriptionally active chromatin.
Collapse
Affiliation(s)
- Fabio Spada
- Sars International Centre for Marine Molecular Biology, Bergen High Technology Centre, Thormøhlensgt, 55, N-5008 Bergen, Norway
| | | | | |
Collapse
|
32
|
Søviknes AM, Chourrout D, Glover JC. Development of putative GABAergic neurons in the appendicularian urochordateOikopleura dioica. J Comp Neurol 2005; 490:12-28. [PMID: 16041716 DOI: 10.1002/cne.20629] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Studying the developing brain of urochordates can increase our understanding of brain evolution in the chordate lineage. To begin addressing regional patterns of neuronal differentiation in appendicularian urochordates, we examined the development of putative GABAergic neurons in Oikopleura dioica using GABA immunohistochemistry and in situ hybridization for the GABA-synthesizing enzyme GAD. First, we assessed the developmental dynamics of neuron number and organization in the cerebral and caudal ganglia. We then identified and mapped the positions of putative GABAergic neurons using confocal microscopy. We found GAD mRNA-positive and GABA-immunopositive neurons in the first brain nerves and the cerebral and caudal ganglia, but not in the caudal nerve cord. In both ganglia GAD mRNA-positive and GABA-immunopositive neurons are found in the same characteristic intraganglionic locations. The differentiation of these GABAergic markers occurs first in the first brain nerves and the cerebral ganglion and then with a several-hour delay in the caudal ganglion. In all three structures GAD mRNA expression appears 2-3 hours prior to GABA expression. In general, GABA is expressed by the same number of neurons as express GAD. Several discrepancies suggest differential regulation of the GABAergic phenotype in different neurons, however. Our results show that the GABAergic phenotype has a stereotyped pattern of expression along the anteroposterior axis of the CNS. Given recent genome sequencing and developmental patterning gene studies in this species, the GABAergic neurons in O. dioica provide a good model for assessing, at the invertebrate-vertebrate transition, the molecular mechanisms that specify the GABAergic phenotype.
Collapse
Affiliation(s)
- Anne Mette Søviknes
- Sars International Centre for Marine Molecular Biology, Bergen High Technology Centre, N-5008 Bergen, Norway
| | | | | |
Collapse
|
33
|
Edvardsen RB, Lerat E, Maeland AD, Flåt M, Tewari R, Jensen MF, Lehrach H, Reinhardt R, Seo HC, Chourrout D. Hypervariable and Highly Divergent Intron?Exon Organizations in the Chordate Oikopleura dioica. J Mol Evol 2004; 59:448-57. [PMID: 15638456 DOI: 10.1007/s00239-004-2636-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Oikopleura dioica is a pelagic tunicate with a very small genome and a very short life cycle. In order to investigate the intron-exon organizations in Oikopleura, we have isolated and characterized ribosomal protein EF-1alpha, Hox, and alpha-tubulin genes. Their intron positions have been compared with those of the same genes from various invertebrates and vertebrates, including four species with entirely sequenced genomes. Oikopleura genes, like Caenorhabditis genes, have introns at a large number of nonconserved positions, which must originate from late insertions or intron sliding of ancient insertions. Both species exhibit hypervariable intron-exon organization within their alpha-tubulin gene family. This is due to localization of most nonconserved intron positions in single members of this gene family. The hypervariability and divergence of intron positions in Oikopleura and Caenorhabditis may be related to the predominance of short introns, the processing of which is not very dependent upon the exonic environment compared to large introns. Also, both species have an undermethylated genome, and the control of methylation-induced point mutations imposes a control on exon size, at least in vertebrate genes. That introns placed at such variable positions in Oikopleura or C. elegans may serve a specific purpose is not easy to infer from our current knowledge and hypotheses on intron functions. We propose that new introns are retained in species with very short life cycles, because illegitimate exchanges including gene conversion are repressed. We also speculate that introns placed at gene-specific positions may contribute to suppressing these exchanges and thereby favor their own persistence.
Collapse
Affiliation(s)
- Rolf B Edvardsen
- Sars Centre for Marine Molecular Biology, Bergen High Technology Centre, Thormoehlensgt 55, 5020 Bergen, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Seo HC, Edvardsen RB, Maeland AD, Bjordal M, Jensen MF, Hansen A, Flaat M, Weissenbach J, Lehrach H, Wincker P, Reinhardt R, Chourrout D. Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica. Nature 2004; 431:67-71. [PMID: 15343333 DOI: 10.1038/nature02709] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2004] [Accepted: 06/03/2004] [Indexed: 11/09/2022]
Abstract
Tunicate embryos and larvae have small cell numbers and simple anatomical features in comparison with other chordates, including vertebrates. Although they branch near the base of chordate phylogenetic trees, their degree of divergence from the common chordate ancestor remains difficult to evaluate. Here we show that the tunicate Oikopleura dioica has a complement of nine Hox genes in which all central genes are lacking but a full vertebrate-like set of posterior genes is present. In contrast to all bilaterians studied so far, Hox genes are not clustered in the Oikopleura genome. Their expression occurs mostly in the tail, with some tissue preference, and a strong partition of expression domains in the nerve cord, in the notochord and in the muscle. In each tissue of the tail, the anteroposterior order of Hox gene expression evokes spatial collinearity, with several alterations. We propose a relationship between the Hox cluster breakdown, the separation of Hox expression domains, and a transition to a determinative mode of development.
Collapse
Affiliation(s)
- Hee-Chan Seo
- Sars Centre for Marine Molecular Biology, Bergen High Technology Centre, Thormøhlensgaten 55, 5008 Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chioda M, Spada F, Eskeland R, Thompson EM. Histone mRNAs do not accumulate during S phase of either mitotic or endoreduplicative cycles in the chordate Oikopleura dioica. Mol Cell Biol 2004; 24:5391-403. [PMID: 15169902 PMCID: PMC419869 DOI: 10.1128/mcb.24.12.5391-5403.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metazoan histones are generally classified as replication-dependent or replacement variants. Replication-dependent histone genes contain cell cycle-responsive promoter elements, their transcripts terminate in an unpolyadenylated conserved stem-loop, and their mRNAs accumulate sharply during S phase. Replacement variant genes lack cell cycle-responsive promoter elements, their polyadenylated transcripts lack the stem-loop, and they are expressed at low levels throughout the cell cycle. During early development of some organisms with rapid cleavage cycles, replication-dependent mRNAs are not fully S phase restricted until complete cell cycle regulation is achieved. The accumulation of polyadenylated transcripts during this period has been considered incompatible with metazoan development. We show here that histone metabolism in the urochordate Oikopleura dioica does not accord with some key tenets of the replication-dependent/replacement variant paradigm. During the premetamorphic mitotic phase of development, expressed variants shared characteristics of replication-dependent histones, including the 3' stem-loop, but, in contrast, were extensively polyadenylated. After metamorphosis, when cells in many tissues enter endocycles, there was a global downregulation of histone transcript levels, with most variant transcripts processed at the stem-loop. Contrary to the 30-fold S-phase upregulation of histone transcripts described in common metazoan model organisms, we observed essentially constant histone transcript levels throughout both mitotic and endoreduplicative cell cycles.
Collapse
Affiliation(s)
- Mariacristina Chioda
- Sars International Centre for Marine Molecular Biology, Bergen High Technology Centre, N-5008 Bergen, Norway
| | | | | | | |
Collapse
|
36
|
Cupit PM, Hansen JD, McCarty AS, White G, Chioda M, Spada F, Smale ST, Cunningham C. Ikaros family members from the agnathan Myxine glutinosa and the urochordate Oikopleura dioica: emergence of an essential transcription factor for adaptive immunity. THE JOURNAL OF IMMUNOLOGY 2004; 171:6006-13. [PMID: 14634112 DOI: 10.4049/jimmunol.171.11.6006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Ikaros multigene family encodes a number of zinc finger transcription factors that play key roles in vertebrate hemopoietic stem cell differentiation and the generation of B, T, and NK cell lineages. In this study, we describe the identification and characterization of an Ikaros family-like (IFL) protein from the agnathan hagfish Myxine glutinosa and the marine urochordate Oikopleura dioica, both of which lie on the evolutionary boundary between the vertebrates and invertebrates. The IFL molecules identified in these animals displayed high conservation in the zinc finger motifs critical for DNA binding and dimerization in comparison with those of jawed vertebrates. Expression of the IFL gene in hagfish was strongest in blood, intestine, and gills. In O. dioica, transcription from the IFL gene was initiated at or around the time of hatching and maintained throughout the life span of the animal. In situ hybridization localized O. dioica IFL expression to the Fol cells, which are responsible for generating the food filter of the house. Biochemical analysis of the DNA binding and dimerization domains from M. glutinosa and O. dioici IFLs showed that M. glutinosa behaves as a true Ikaros family member. Taken together, these results indicate that the properties associated with the Ikaros family preceded the emergence of the jawed vertebrates and thus adaptive immunity.
Collapse
Affiliation(s)
- Pauline M Cupit
- Sars International Centre for Marine Molecular Biology, High Technology Centre, Bergen, Norway
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Ganot P, Thompson EM. Patterning through differential endoreduplication in epithelial organogenesis of the chordate, Oikopleura dioica. Dev Biol 2002; 252:59-71. [PMID: 12453460 DOI: 10.1006/dbio.2002.0834] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The contributions that control of cell proliferation and cell growth make to developmental regulation of organ and body size remain poorly explored, particularly with respect to endocycles in polyploid tissues. The epithelium of the marine chordate Oikopleura dioica is composed of a fixed number of cells grouped in territories according to gene-specific expression and nuclear sizes and shapes. As the animal grows 10-fold during the life cycle, epithelial cells increase in size differentially as a function of their spatial position. We show that this cellular pattern reflected differences in ploidy levels ranging from 34 to 1,300 C. The diverse ploidy levels in defined cellular fields resulted both from different timing of entry into endocycles and from cell-specific regulation of endocycle lengths. Throughout the life cycle, differential cell size and ploidy increases were accompanied by field-specific profiles of progressive reductions in G-phase duration. Endocycles were asynchronous among cells of a given epithelial territory, but at the resolution of individual cells, both DNA replication timing and ploidy levels were bilaterally symmetric. The transparent, accessible, oikoplastic epithelium is a model of choice for the study of endoreduplication in the context of pattern formation and growth.
Collapse
Affiliation(s)
- Philippe Ganot
- Sars International Centre for Marine Molecular Biology, Bergen High Technology Centre, Thormøhlensgt. 55, N-5008 Bergen, Norway
| | | |
Collapse
|
38
|
Chioda M, Eskeland R, Thompson EM. Histone gene complement, variant expression, and mRNA processing in a urochordate Oikopleura dioica that undergoes extensive polyploidization. Mol Biol Evol 2002; 19:2247-60. [PMID: 12446815 DOI: 10.1093/oxfordjournals.molbev.a004048] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Considerable data exist on coding sequences of histones in a wide variety of organisms. Much more restricted information is available on total histone gene complement, gene organization, transcriptional regulation, and histone mRNA processing. In particular, there is a significant phylogenetic gap in information for the urochordates, a subphylum near the invertebrate-vertebrate transition. In this study, we show that the appendicularian Oikopleura dioica has a histone gene complement that is similar to that of humans, though its genome size is 40- to 50-fold smaller. At a total length of 3.5 kb, the H3, H4, H1, H2A, and H2B quintet cluster is the most compact described thus far, but despite very rapid early developmental cleavage cycles, no extensive tandem repeats of the cluster were present. The high degree of variation within each of the complements of O. dioica H2A and H2B subtypes resembled that found in plants as opposed to more closely related vertebrate and invertebrate species, and developmental stage-specific expression of different subtypes was observed. The linker histone H1 was present in relatively few copies per haploid genome and contained short N- and C-terminal tails, a feature similar to that of copepods but different from many standard model organisms. The 3'UTRs of the histone genes contained both the consensus stem-loop sequence and the polyadenylation signals but lacked the consensus histone downstream element that is involved in the processing of histone mRNAs in echinoderms and vertebrates. Two types of transcripts were found, i.e., those containing both the stem-loop and a polyA tail as well as those cleaved at the normal site just 3' of the stem-loop. The O. dioica data are an important addition to the limited number of eukaryotes for which sufficiently extensive information on histone gene complements is available. Increasingly, it appears that understanding the evolution of histone gene organization, transcriptional regulation, and mRNA processing will depend at least as much on comparative analysis of constraints imposed by certain life history features and cell biological characteristics as on projections based on simple phylogenetic relationships.
Collapse
Affiliation(s)
- Mariacristina Chioda
- Sars International Centre for Marine Molecular Biology, Bergen High Technology Centre, Thormøhlensgt. 55, N-5008 Bergen, Norway
| | | | | |
Collapse
|
39
|
Abstract
The elucidation of genetic components of human diseases at the molecular level provides crucial information for developing future causal therapeutic intervention. High-throughput genome sequencing and systematic experimental approaches are fuelling strategic programs designed to investigate gene function at the biochemical, cellular and organism levels. Bioinformatics is one important tool in functional genomics, although showing clear limitations in predicting ab initio gene structures, gene function and protein folds from raw sequence data. Systematic large-scale data-set generation, using the same type of experiments that are used to decipher the function of single genes, are being applied on entire genomes. Comparative genomics, establishment of gene catalogues, and investigation of cellular and tissue molecular profiles are providing essential tools for understanding gene function in complex biological networks.
Collapse
Affiliation(s)
- M L Yaspo
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195, Berlin, Germany.
| |
Collapse
|
40
|
Thompson EM, Kallesøe T, Spada F. Diverse genes expressed in distinct regions of the trunk epithelium define a monolayer cellular template for construction of the oikopleurid house. Dev Biol 2001; 238:260-73. [PMID: 11784009 DOI: 10.1006/dbio.2001.0414] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The filter-feeding house secreted by urochordate Appendicularians is among the most complex extracellular structures constructed by any organism. This structure allows the Appendicularia to exploit a wide range of food particle sizes, including nanoplankton and submicrometer colloids, establishing them as an important and abundant component of marine zooplankton communities throughout the world. The oikoplastic epithelium, a monolayer of cells covering the trunk of the animal, is responsible for secretion of the house. The epithelium has a fixed number of cells, organized in distinct fields, characterized by defined cell shapes and nuclear morphologies. Certain structures in the house appear to be spatially linked to these different fields of cells. Using cDNA representation difference analysis (cDNA RDA) on whole animals at two different developmental stages separated by the metamorphic tailshift event, we isolated four families of genes (oikosins) that are expressed only from specific subregions of the oikoplastic epithelium. The molecular patterns defined by oikosin gene expression establish the epithelium as an ideal and easily accessible monolayer cellular template for exploring coordinate regulation of gene expression, cell-cell interactions involved in pattern formation, gene/genome amplification, and the role of temporal changes in nuclear architecture in regulating gene expression.
Collapse
Affiliation(s)
- E M Thompson
- Sars International Centre for Marine Molecular Biology, Bergen High Technology Centre, Thormøhlensgt. 55, Bergen, N-5008, Norway.
| | | | | |
Collapse
|