1
|
Porter SN, Levine RM, Pruett-Miller SM. A Practical Guide to Genome Editing Using Targeted Nuclease Technologies. Compr Physiol 2019; 9:665-714. [PMID: 30873595 DOI: 10.1002/cphy.c180022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genome engineering using programmable nucleases is a rapidly evolving technique that enables precise genetic manipulations within complex genomes. Although this technology first surfaced with the creation of meganucleases, zinc finger nucleases, and transcription activator-like effector nucleases, CRISPR-Cas9 has been the most widely adopted platform because of its ease of use. This comprehensive review presents a basic overview of genome engineering and discusses the major technological advances in the field. In addition to nucleases, we discuss CRISPR-derived base editors and epigenetic modifiers. We also delve into practical applications of these tools, including creating custom-edited cell and animal models as well as performing genetic screens. Finally, we discuss the potential for therapeutic applications and ethical considerations related to employing this technology in humans. © 2019 American Physiological Society. Compr Physiol 9:665-714, 2019.
Collapse
Affiliation(s)
- Shaina N Porter
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rachel M Levine
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shondra M Pruett-Miller
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
2
|
Akki SU, Werth CJ. Critical Review: DNA Aptasensors, Are They Ready for Monitoring Organic Pollutants in Natural and Treated Water Sources? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8989-9007. [PMID: 30016080 DOI: 10.1021/acs.est.8b00558] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
There is a growing need to monitor anthropogenic organic contaminants detected in water sources. DNA aptamers are synthetic single-stranded oligonucleotides, selected to bind to target contaminants with favorable selectivity and sensitivity. These aptamers can be functionalized and are used with a variety of sensing platforms to develop sensors, or aptasensors. In this critical review, we (1) identify the state-of-the-art in DNA aptamer selection, (2) evaluate target and aptamer properties that make for sensitive and selective binding and sensing, (3) determine strengths and weaknesses of alternative sensing platforms, and (4) assess the potential for aptasensors to quantify environmentally relevant concentrations of organic contaminants in water. Among a suite of target and aptamer properties, binding affinity is either directly (e.g., organic carbon partition coefficient) or inversely (e.g., polar surface area) correlated to properties that indicate greater target hydrophobicity results in the strongest binding aptamers, and binding affinity is correlated to aptasensor limits of detection. Electrochemical-based aptasensors show the greatest sensitivity, which is similar to ELISA-based methods. Only a handful of aptasensors can detect organic pollutants at environmentally relevant concentrations, and interference from structurally similar analogs commonly present in natural waters is a yet-to-be overcome challenge. These findings lead to recommendations to improve aptasensor performance.
Collapse
Affiliation(s)
- Spurti U Akki
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , 205 North Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Charles J Werth
- Department of Civil, Architecture, and Environmental Engineering , University of Texas at Austin , 301 East Dean Keeton Street , Austin , Texas 78712 , United States
| |
Collapse
|
3
|
Evolution of I-SceI homing endonucleases with increased DNA recognition site specificity. J Mol Biol 2010; 405:185-200. [PMID: 21029741 DOI: 10.1016/j.jmb.2010.10.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/14/2010] [Accepted: 10/18/2010] [Indexed: 12/22/2022]
Abstract
Elucidating how homing endonucleases undergo changes in recognition site specificity will facilitate efforts to engineer proteins for gene therapy applications. I-SceI is a monomeric homing endonuclease that recognizes and cleaves within an 18-bp target. It tolerates limited degeneracy in its target sequence, including substitution of a C:G(+4) base pair for the wild-type A:T(+4) base pair. Libraries encoding randomized amino acids at I-SceI residue positions that contact or are proximal to A:T(+4) were used in conjunction with a bacterial one-hybrid system to select I-SceI derivatives that bind to recognition sites containing either the A:T(+4) or the C:G(+4) base pairs. As expected, isolates encoding wild-type residues at the randomized positions were selected using either target sequence. All I-SceI proteins isolated using the C:G(+4) recognition site included small side-chain substitutions at G100 and either contained (K86R/G100T, K86R/G100S and K86R/G100C) or lacked (G100A, G100T) a K86R substitution. Interestingly, the binding affinities of the selected variants for the wild-type A:T(+4) target are 4- to 11-fold lower than that of wild-type I-SceI, whereas those for the C:G(+4) target are similar. The increased specificity of the mutant proteins is also evident in binding experiments in vivo. These differences in binding affinities account for the observed ∼36-fold difference in target preference between the K86R/G100T and wild-type proteins in DNA cleavage assays. An X-ray crystal structure of the K86R/G100T mutant protein bound to a DNA duplex containing the C:G(+4) substitution suggests how sequence specificity of a homing enzyme can increase. This biochemical and structural analysis defines one pathway by which site specificity is augmented for a homing endonuclease.
Collapse
|
4
|
Singh P, Tripathi P, Muniyappa K. Mutational analysis of active-site residues in the Mycobacterium leprae RecA intein, a LAGLIDADG homing endonuclease: Asp(122) and Asp(193) are crucial to the double-stranded DNA cleavage activity whereas Asp(218) is not. Protein Sci 2010; 19:111-23. [PMID: 19937653 DOI: 10.1002/pro.292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mycobacterium leprae recA harbors an in-frame insertion sequence that encodes an intein homing endonuclease (PI-MleI). Most inteins (intein endonucleases) possess two conserved LAGLIDADG (DOD) motifs at their active center. A common feature of LAGLIDADG-type homing endonucleases is that they recognize and cleave the same or very similar DNA sequences. However, PI-MleI is distinctive from other members of the family of LAGLIDADG-type HEases for its modular structure with functionally separable domains for DNA-binding and cleavage, each with distinct sequence preferences. Sequence alignment analyses of PI-MleI revealed three putative LAGLIDADG motifs; however, there is conflicting bioinformatics data in regard to their identity and specific location within the intein polypeptide. To resolve this conflict and to determine the active-site residues essential for DNA target site recognition and double-stranded DNA cleavage, we performed site-directed mutagenesis of presumptive catalytic residues in the LAGLIDADG motifs. Analysis of target DNA recognition and kinetic parameters of the wild-type PI-MleI and its variants disclosed that the two amino acid residues, Asp(122) (in Block C) and Asp(193) (in functional Block E), are crucial to the double-stranded DNA endonuclease activity, whereas Asp(218) (in pseudo-Block E) is not. However, despite the reduced catalytic activity, the PI-MleI variants, like the wild-type PI-MleI, generated a footprint of the same length around the insertion site. The D122T variant showed significantly reduced catalytic activity, and D122A and D193A mutations although failed to affect their DNA-binding affinities, but abolished the double-stranded DNA cleavage activity. On the other hand, D122C variant showed approximately twofold higher double-stranded DNA cleavage activity, compared with the wild-type PI-MleI. These results provide compelling evidence that Asp(122) and Asp(193) in DOD motif I and II, respectively, are bona fide active-site residues essential for DNA cleavage activity. The implications of these results are discussed in this report.
Collapse
Affiliation(s)
- Pawan Singh
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | | | | |
Collapse
|
5
|
Rankin SA, Hasebe T, Zorn AM, Buchholz DR. Improved cre reporter transgenic Xenopus. Dev Dyn 2009; 238:2401-8. [PMID: 19653309 DOI: 10.1002/dvdy.22043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We have produced and characterized improved transgenic reporter lines for detection of Cre recombinase activity during Xenopus development. Improvements include choice of fluorophores, which make these Cre reporter lines generally suitable for lineage tracing studies. We also include data for several new parameters affecting survival and transgenesis efficiency using the recently developed meganuclease method of frog transgenesis. These transgenic frogs express cyan fluorescent protein (CFP) under control of the ubiquitous promoter CMV, where CFP is replaced by DsRed2 (a red fluorescent protein) in the presence of Cre. Three independent, high expression, Cre-sensitive lines have been identified that maintain robust fluorophore expression across generations and lack DsRed2 expression in the absence of Cre. A novel use of these lines is to indelibly mark embryonic blastomeres by Cre mRNA injection for permanent fate mapping. Similarly, transgenically expressed Cre under control of tissue-specific promoters will allow detailed analysis of cell lineage relationships throughout embryogenesis, metamorphosis, and adulthood.
Collapse
Affiliation(s)
- Scott A Rankin
- Division of Developmental Biology, Cincinnati Children's Research Foundation and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | | | | | | |
Collapse
|
6
|
Singh P, Tripathi P, Silva GH, Pingoud A, Muniyappa K. Characterization of Mycobacterium leprae RecA intein, a LAGLIDADG homing endonuclease, reveals a unique mode of DNA binding, helical distortion, and cleavage compared with a canonical LAGLIDADG homing endonuclease. J Biol Chem 2009; 284:25912-28. [PMID: 19605345 PMCID: PMC2757992 DOI: 10.1074/jbc.m109.042861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium leprae, which has undergone reductive evolution leaving behind a minimal set of essential genes, has retained intervening sequences in four of its genes implicating a vital role for them in the survival of the leprosy bacillus. A single in-frame intervening sequence has been found embedded within its recA gene. Comparison of the M. leprae recA intervening sequence with the known intervening sequences indicated that it has the consensus amino acid sequence necessary for being a LAGLIDADG-type homing endonuclease. In light of massive gene decay and function loss in the leprosy bacillus, we sought to investigate whether its recA intervening sequence encodes a catalytically active homing endonuclease. Here we show that the purified M. leprae RecA intein (PI-MleI) binds to cognate DNA and displays endonuclease activity in the presence of alternative divalent cations, Mg2+ or Mn2+. A combination of approaches, including four complementary footprinting assays such as DNase I, copper-phenanthroline, methylation protection, and KMnO4, enhancement of 2-aminopurine fluorescence, and mapping of the cleavage site revealed that PI-MleI binds to cognate DNA flanking its insertion site, induces helical distortion at the cleavage site, and generates two staggered double strand breaks. Taken together, these results implicate that PI-MleI possesses a modular structure with separate domains for DNA target recognition and cleavage, each with distinct sequence preferences. From a biological standpoint, it is tempting to speculate that our findings have implications for understanding the evolution of the LAGLIDADG family of homing endonucleases.
Collapse
Affiliation(s)
- Pawan Singh
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India and
| | - Pankaj Tripathi
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India and
| | - George H. Silva
- the Institut fur Biochemie, Justus-Liebig-Universitat, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | - Alfred Pingoud
- the Institut fur Biochemie, Justus-Liebig-Universitat, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | - K. Muniyappa
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India and
| |
Collapse
|
7
|
Niu Y, Tenney K, Li H, Gimble FS. Engineering variants of the I-SceI homing endonuclease with strand-specific and site-specific DNA-nicking activity. J Mol Biol 2008; 382:188-202. [PMID: 18644379 PMCID: PMC2700736 DOI: 10.1016/j.jmb.2008.07.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 07/03/2008] [Accepted: 07/04/2008] [Indexed: 10/21/2022]
Abstract
The number of strand-specific nicking endonucleases that are currently available for laboratory procedures and applications in vivo is limited, and none is sufficiently specific to nick single target sites within complex genomes. The extreme target specificity of homing endonucleases makes them attractive candidates for engineering high-specificity nicking endonucleases. I-SceI is a monomeric homing enzyme that recognizes an 18 bp asymmetric target sequence, and cleaves both DNA strands to leave 3'-overhangs of 4 bp. In single turnover experiments using plasmid substrates, I-SceI generates transient open circle intermediates during the conversion of supercoiled to linear DNA, indicating that the enzyme cleaves the two DNA strands sequentially. A novel hairpin substrate was used to demonstrate that although wild-type I-SceI cleaves either the top or bottom DNA strand first to generate two nicked DNA intermediates, the enzyme has a preference for cleaving the bottom strand. The kinetics data are consistent with a parallel sequential reaction mechanism. Substitution of two pseudo-symmetric residues, Lys122 and Lys223, markedly reduces top and bottom-strand cleavage, respectively, to generate enzymes with significant strand- and sequence-specific nicking activity. The two active sites are partially interdependent, since alterations to one site affect the second. The kinetics analysis is consistent with X-ray crystal structures of I-SceI/DNA complexes that reveal a role for the lysines in establishing important solvent networks that include nucleophilic water molecules thought to attack the scissile phosphodiester bonds.
Collapse
Affiliation(s)
- Yan Niu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
8
|
Abstract
From among a plethora of various gene delivery methods, the researcher must choose the right one according to availability for a given species and the precise application the transgenic animal is intended for. Here we review the progress in meganuclease and Sleeping Beauty transposon mediated transgenesis over recent years with a focus on medaka and zebrafish. We present a side-by-side comparison of these two approaches based on their biologic properties and provide interesting perspectives for future experiments and applications, which are different for the two techniques because of their distinct modes of action.
Collapse
Affiliation(s)
- Clemens Grabher
- Pediatric Oncology, Dana-Farber Cancer Institute, Binney St, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
9
|
Strand-specific Contacts and Divalent Metal Ion Regulate Double-strand Break Formation by the GIY-YIG Homing Endonuclease I-BmoI. J Mol Biol 2007; 374:306-21. [DOI: 10.1016/j.jmb.2007.09.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 09/04/2007] [Accepted: 09/10/2007] [Indexed: 11/22/2022]
|
10
|
Doyon JB, Pattanayak V, Meyer CB, Liu DR. Directed evolution and substrate specificity profile of homing endonuclease I-SceI. J Am Chem Soc 2006; 128:2477-84. [PMID: 16478204 DOI: 10.1021/ja057519l] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The laboratory evolution of enzymes with tailor-made DNA cleavage specificities would represent new tools for manipulating genomes and may enhance our understanding of sequence-specific DNA recognition by nucleases. Below we describe the development and successful application of an efficient in vivo positive and negative selection system that applies evolutionary pressure either to favor the cleavage of a desired target sequence or to disfavor the cleavage of nontarget sequences. We also applied a previously described in vitro selection method to reveal the comprehensive substrate specificity profile of the wild-type I-SceI homing endonuclease. Together these tools were used to successfully evolve mutant I-SceI homing endonucleases with altered DNA cleavage specificities. The most highly evolved enzyme cleaves the target mutant DNA sequence with a selectivity that is comparable to wild-type I-SceI's preference for its cognate substrate.
Collapse
Affiliation(s)
- Jeffrey B Doyon
- Howard Hughes Medical Institute and the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
11
|
de Piédoue G, Maurisse R, Kuzniak I, Lopez B, Perrin A, Nègre O, Leboulch P, Feugeas JP. Improving gene replacement by intracellular formation of linear homologous DNA. J Gene Med 2005; 7:649-56. [PMID: 15641108 DOI: 10.1002/jgm.706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Gene targeting is a potential tool for gene therapy but is limited by the low rate of homologous recombination. Using highly homologous linear DNA improves gene targeting frequency but requires microinjection into nuclear cells to be effective. Because transfection of circular DNA is more efficient than transfection of linear DNA and adaptable to viral vectors, we developed a system for the intracellular release of linear fragments from circular plasmids. METHODS Only one cutting site inside the "donor" DNA was not convenient because it led to integration of exogenous sequences into the target. So we constructed several "donor" plasmids containing the homologous sequences flanked by two I-Sce I recognition sites. Expression of I-Sce I allowed intracellular delivery of "ends-out" (replacement) vectors. We compared the efficiency of different constructions to correct a mutated gfp target. RESULTS Co-transfection of "donor" plasmids and an I-Sce I expression vector into CHO cells enhanced the correction of an extrachromosomal mutated gfp target by at least 10 times. Maximum correction was observed with the greatest homology size and maximum effect of I-Sce I was obtained when the long hemi-sites of the duplicated I-Sce I sites were contiguous to the homologous sequence. Unexpectedly, the reverse orientation of I-Sce I sites provided little or no effect, probably due to the asymmetrical activity of the I-Sce I meganuclease. CONCLUSIONS Releasing homologous DNA fragments with I-Sce I enhances gene replacement. This work provides the basis for the future design of viral vectors for gene replacement.
Collapse
Affiliation(s)
- G de Piédoue
- INSERM emi 0111, laboratoire de Thérapie Génique Hématopoïétique, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, 1 Av. C. Vellefaux, 75010 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Angelov D, Beylot B, Spassky A. Origin of the heterogeneous distribution of the yield of guanyl radical in UV laser photolyzed DNA. Biophys J 2004; 88:2766-78. [PMID: 15613625 PMCID: PMC1305372 DOI: 10.1529/biophysj.104.049015] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oxidative guanine lesions were analyzed, at the nucleotide level, within DNA exposed to nanosecond ultraviolet (266 nm) laser pulses of variable intensity (0.002-0.1 J/cm(2)). Experiments were carried out, at room temperature, in TE buffer (20 mM Tris-HCl, pH 7.5; 1 mM EDTA) containing 35 mM NaCl, on 5'-end radioactively labeled double-stranded and single-stranded oligomer DNA at a size of 33-37 nucleobases. Lesions were analyzed on polyacrylamide gel electrophoresis by taking advantage of the specific removal of 8-oxodG from DNA by the formamidopyrimidine DNA glycosylase (Fpg protein) and of the differential sensitivity of 8-oxodG and oxazolone to piperidine. The quantum yields of lesions at individual sites, determined from the normalized intensities of bands, were plotted against the irradiation energy levels. Simplified model fitting of the experimental data enabled to evaluate the spectroscopic parameters characterizing excitation and photoionization processes. Results show that the distribution of guanine residues, excited to the lowest triplet state or photoionized, is heterogeneous and depends on the primary and secondary DNA structure. These findings are generalized in terms of excitation energy and charge-migration mediated biphotonic ionization. On the basis of the changes in the yield of the guanyl radical resulting from local helical perturbations in the DNA pi-stack, it can be assessed that the distance range of migration is <6-8 bp.
Collapse
Affiliation(s)
- Dimitar Angelov
- UMR 8113 French National Center for Scientific Research, Institut Gustave Roussy, 94805 Villejuif, France
| | | | | |
Collapse
|
13
|
Gruen M, Chang K, Serbanescu I, Liu DR. An in vivo selection system for homing endonuclease activity. Nucleic Acids Res 2002; 30:e29. [PMID: 11917035 PMCID: PMC101853 DOI: 10.1093/nar/30.7.e29] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2001] [Revised: 01/08/2002] [Accepted: 01/25/2002] [Indexed: 11/12/2022] Open
Abstract
Homing endonucleases are enzymes that catalyze the highly sequence-specific cleavage of DNA. We have developed an in vivo selection in Escherichia coli that links cell survival with homing endonuclease-mediated DNA cleavage activity and sequence specificity. Using this selection, wild-type and mutant variants of three homing endonucleases were characterized without requiring protein purification and in vitro analysis. This selection system may facilitate the study of sequence-specific DNA cleaving enzymes, and selections based on this work may enable the evolution of homing endonucleases with novel activities or specificities.
Collapse
Affiliation(s)
- Mathias Gruen
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|