1
|
Cristallini C, Rossin D, Vanni R, Barbani N, Bulgheresi C, Labardi M, Perveen S, Burchielli S, Terlizzi D, Kusmic C, Del Ry S, Cabiati M, Trouki C, Rossino D, Sergi F, Villano A, Aquaro GD, Scarpellino G, Ruffinatti FA, Amorim S, Pires RA, Reis RL, Rastaldo R, Giachino C. A biodegradable, microstructured, electroconductive and nano-integrated drug eluting patch (MENDEP) for myocardial tissue engineering. Bioact Mater 2025; 50:246-272. [PMID: 40270551 PMCID: PMC12017858 DOI: 10.1016/j.bioactmat.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/24/2025] [Accepted: 04/05/2025] [Indexed: 04/25/2025] Open
Abstract
We produced a microstructured, electroconductive and nano-functionalized drug eluting cardiac patch (MENDEP) designed to attract endogenous precursor cells, favor their differentiation and counteract adverse ventricular remodeling in situ. MENDEP showed mechanical anisotropy and biaxial strength comparable to porcine myocardium, reduced impedance, controlled biodegradability, molecular recognition ability and controlled drug release activity. In vitro, cytocompatibility and cardioinductivity were demonstrated. Migration tests showed the chemoattractive capacity of the patches and conductivity assays showed unaltered cell-cell interactions and cell beating synchronicity. MENDEP was then epicardially implanted in a rat model of ischemia/reperfusion (I/R). Histological, immunofluorescence and biomarker analysis indicated that implantation did not cause damage to the healthy myocardium. After I/R, MENDEP recruited precursor cells into the damaged myocardium and triggered their differentiation towards the vascular lineage. Under the patch, the myocardial tissue appeared well preserved and cardiac gap junctions were correctly distributed at the level of the intercalated discs. The fibrotic area measured in the I/R group was partially reduced in the patch group. Overall, these results demonstrate that MENDEP was fully retained on the epicardial surface of the left ventricle over 4-week implantation period, underwent progressive vascularization, did not perturb the healthy myocardium and showed great potential in repairing the infarcted area.
Collapse
Affiliation(s)
- Caterina Cristallini
- Institute for Chemical and Physical Processes, CNR-IPCF, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
- Department of Civil and Industrial Engineering, DICI, University of Pisa, Largo Lucio Lazzarino, 56126, Pisa, Italy
| | - Daniela Rossin
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Roberto Vanni
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Niccoletta Barbani
- Institute for Chemical and Physical Processes, CNR-IPCF, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
- Department of Civil and Industrial Engineering, DICI, University of Pisa, Largo Lucio Lazzarino, 56126, Pisa, Italy
| | - Chiara Bulgheresi
- Department of Civil and Industrial Engineering, DICI, University of Pisa, Largo Lucio Lazzarino, 56126, Pisa, Italy
| | - Massimiliano Labardi
- Institute for Chemical and Physical Processes, CNR-IPCF, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| | - Sadia Perveen
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy
| | | | | | - Claudia Kusmic
- Clinical Physiology Institute, CNR-IFC, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| | - Silvia Del Ry
- Clinical Physiology Institute, CNR-IFC, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| | - Manuela Cabiati
- Clinical Physiology Institute, CNR-IFC, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| | - Cheherazade Trouki
- Institute for Chemical and Physical Processes, CNR-IPCF, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Dawid Rossino
- Institute for Chemical and Physical Processes, CNR-IPCF, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
- Department of Civil and Industrial Engineering, DICI, University of Pisa, Largo Lucio Lazzarino, 56126, Pisa, Italy
| | - Francesca Sergi
- Department of Civil and Industrial Engineering, DICI, University of Pisa, Largo Lucio Lazzarino, 56126, Pisa, Italy
| | - Anthea Villano
- Institute for Chemical and Physical Processes, CNR-IPCF, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| | - Giovanni D. Aquaro
- Academic Radiology Unit, Department of Surgical, Medical and Molecular Pathology and of the Critical Area, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - Giorgia Scarpellino
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Via Adolfo Ferrata 9, 27100, Pavia, Italy
| | - Federico A. Ruffinatti
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Sara Amorim
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Ricardo A. Pires
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy
| |
Collapse
|
2
|
Pan A, Shi A, Chen H, Jiang L, Zhang Q, Feng J, He J, Liu J, Wang J, Hu L. Targeting GATA6 with pedunculoside inhibits fetal gene expression to attenuate pathological cardiac hypertrophy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156603. [PMID: 40054179 DOI: 10.1016/j.phymed.2025.156603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/23/2025] [Accepted: 03/01/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Pathological cardiac hypertrophy is a characteristic feature of numerous cardiovascular diseases and significantly impacts human health. However, effective treatment options for cardiac hypertrophy are still significantly unmet. Pedunculoside, a pentacyclic triterpenoid saponin from the traditional Chinese herb Ilex rotunda Thunb., exhibits various pharmacological properties such as anti-inflammatory and cardiovascular therapeutic effects, but its anti-hypertrophy efficacy and mechanisms have not yet been reported. PURPOSE This study aimed to confirm the ameliorating effect of pedunculoside on cardiac hypertrophy and elucidate its underlying mechanism. METHODS To investigate the effect of pedunculoside on cardiac hypertrophy, we used transverse aortic constriction (TAC) and isoproterenol hydrochloride (ISO) infusion to induce cardiac hypertrophy model in mice. Angiotensin II (Ang II) was used to mimic hypertrophy model in myocardial cells. Then, we utilized a biotin-tagged carabrone chemical probe and validation experiments to pinpoint pedunculoside's key targets. Further, molecular docking study and sites mutation were used to predict and identify the binding modes of pedunculoside to target. Finally, structural optimization was carried out to find new pedunculoside derivatives with stronger anti-hypertrophy activity and binding affinity to the target. RESULTS Our findings revealed for the first time that pedunculoside treatment significantly attenuated hypertrophic phenotypes in response to TAC and ISO. It also effectively reduced hypertrophy and fibrosis in myocardial cells exposed to Ang II stimulation. Mechanically, we identified transcription factor GATA-6 (GATA6) as a key target of pedunculoside for treating cardiac hypertrophy. Further studies demonstrated that pedunculoside blocks cardiac hypertrophy progression by inhibiting the transcriptional activation of GATA6 on promoting fetal gene expression. More importantly, a new pedunculoside derivative PE-3 with stronger anti-hypertrophy activity and affinity for GATA6 was discovered. CONCLUSION Our findings suggest that pedunculoside and PE-3 could be developed as promising drug candidates for cardiac hypertrophy treatment.
Collapse
Affiliation(s)
- An Pan
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Anqi Shi
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Huanhuan Chen
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Lina Jiang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Qiang Zhang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jiayi Feng
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jinting He
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jian Liu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Junwei Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
3
|
Koopmans T, van Rooij E. Molecular gatekeepers of endogenous adult mammalian cardiomyocyte proliferation. Nat Rev Cardiol 2025:10.1038/s41569-025-01145-y. [PMID: 40195566 DOI: 10.1038/s41569-025-01145-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 04/09/2025]
Abstract
Irreversible cardiac fibrosis, cardiomyocyte death and chronic cardiac dysfunction after myocardial infarction pose a substantial global health-care challenge, with no curative treatments available. To regenerate the injured heart, cardiomyocytes must proliferate to replace lost myocardial tissue - a capability that adult mammals have largely forfeited to adapt to the demanding conditions of life. Using various preclinical models, our understanding of cardiomyocyte proliferation has progressed remarkably, leading to the successful reactivation of cell cycle induction in adult animals, with functional recovery after cardiac injury. Central to this success is the targeting of key pathways and structures that drive cardiomyocyte maturation after birth - nucleation and ploidy, sarcomere structure, developmental signalling, chromatin and epigenetic regulation, the microenvironment and metabolic maturation - forming a complex regulatory framework that allows efficient cellular contraction but restricts cardiomyocyte proliferation. In this Review, we explore the molecular pathways underlying these core mechanisms and how their manipulation can reactivate the cell cycle in cardiomyocytes, potentially contributing to cardiac repair.
Collapse
Affiliation(s)
- Tim Koopmans
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands.
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
4
|
Bevere M, Morabito C, Verucci D, Di Sinno N, Mariggiò MA, Guarnieri S. Growth-Associated Protein-43 Loss Promotes Ca 2+ and ROS Imbalance in Cardiomyocytes. Antioxidants (Basel) 2025; 14:361. [PMID: 40227418 PMCID: PMC11939155 DOI: 10.3390/antiox14030361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
Growth-Associated Protein-43 (GAP-43) is a calmodulin-binding protein, originally found in neurons, that in skeletal muscle regulates the handling of intracellular Ca2+ dynamics. According to its role in Ca2+ regulation, myotubes from GAP-43 knockout (GAP-43-/-) mice display alterations in spontaneous Ca2+ oscillations and increased Ca2+ release. The emerging hypothesis is that GAP-43 regulates CaM interactions with RyR and DHPR Ca2+ channels. The loss of GAP-43 promotes cardiac hypertrophy in newborn GAP-43-/- mice, extending the physiological role of GAP-43 in cardiac muscle. We investigated the role of GAP-43 in cardiomyocytes derived from the hearts of GAP-43-/- mice, evaluating intracellular Ca2+ variations and the correlation with the levels of reactive oxygen species (ROS), considering their importance in cardiovascular physiology. In GAP-43-/- cardiomyocytes, we found the increased expression of markers of cardiac hypertrophy, Ca2+ alterations, and high mitochondria ROS levels (O2•-) together with increased oxidized functional proteins. Treatment with a CaM inhibitor (W7) restored Ca2+ and ROS alterations, possibly due to high mitochondrial Ca2+ entry by a mitochondrial Ca2+ uniporter. Indeed, Ru360 was able to abolish O2•- mitochondrial production. Our results suggest that GAP-43 has a key role in the regulation of Ca2+ and ROS homeostasis, alterations to which could trigger heart disease.
Collapse
Affiliation(s)
- Michele Bevere
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.B.); (C.M.); (D.V.); (N.D.S.); (M.A.M.)
- ARC-Net Applied Research on Cancer Centre, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Caterina Morabito
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.B.); (C.M.); (D.V.); (N.D.S.); (M.A.M.)
| | - Delia Verucci
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.B.); (C.M.); (D.V.); (N.D.S.); (M.A.M.)
| | - Noemi Di Sinno
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.B.); (C.M.); (D.V.); (N.D.S.); (M.A.M.)
| | - Maria A. Mariggiò
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.B.); (C.M.); (D.V.); (N.D.S.); (M.A.M.)
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.B.); (C.M.); (D.V.); (N.D.S.); (M.A.M.)
| |
Collapse
|
5
|
Lakshmikanthan A, Kay M, Oomen PJ. Modeling the Interplay of Sex Hormones in Cardiac Hypertrophic Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639810. [PMID: 40060665 PMCID: PMC11888296 DOI: 10.1101/2025.02.24.639810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Biological sex plays a crucial role in the outcomes of cardiac health and therapies. Sex hormones are known to strongly influence cardiac remodeling through intracellular signaling pathways, yet their underlying mechanisms remain unclear. To address this need, we developed and validated a logic-based systems biology model of cardiomyocyte hypertrophy that, for the first time, incorporates the effects of both estradiol (E2) and testosterone (T) alongside well-established hypertrophic stimuli (Strain, angiotensin II (AngII), and endothelin-1 (ET-1)). We qualitatively validated the model to literature data with 84% agreement. Quantitative validation was done by simulating the impact of the inputs (E2, T, Strain, AngII, and ET-1) on cardiac hypertrophy, captured as change in CellArea. We perturbed the validated model to examine the differential response to hypertrophy and identify changes in influential and sensitive downstream nodes for a male, pre-menopausal female, and post-menopausal female condition. Our results suggest that T has a greater impact on hypertrophy than E2. This model increases our understanding of the mechanisms through which sex hormones influence cardiac hypertrophy and can aid with developing more effective cardiac therapies for all patients.
Collapse
Affiliation(s)
- Adhithi Lakshmikanthan
- Department of Biomedical Engineering, University of California, Irvine, USA
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California, Irvine, USA
| | - Minnie Kay
- Department of Biomedical Engineering, University of California, Irvine, USA
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California, Irvine, USA
| | - Pim J.A. Oomen
- Department of Biomedical Engineering, University of California, Irvine, USA
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California, Irvine, USA
- Center for Complex Biological Systems, University of California, Irvine, USA
| |
Collapse
|
6
|
Yoon JJ, Tai AL, Kim HY, Han BH, Shin S, Lee HS, Kang DG. TongGuanWan Alleviates Doxorubicin- and Isoproterenol-Induced Cardiac Hypertrophy and Fibrosis by Modulating Apoptotic and Fibrotic Pathways. Int J Mol Sci 2024; 25:10573. [PMID: 39408900 PMCID: PMC11476530 DOI: 10.3390/ijms251910573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Heart failure, a major public health issue, often stems from prolonged stress or damage to the heart muscle, leading to cardiac hypertrophy. This can progress to heart failure and other cardiovascular problems. Doxorubicin (DOX), a common chemotherapy drug, and isoproterenol (ISO), a β-adrenergic agonist, both induce cardiac hypertrophy through different mechanisms. This study investigates TongGuanWan (TGW,), a traditional herbal remedy, for its effects on cardiac hypertrophy and fibrosis in DOX-induced H9c2 cells and ISO-induced mouse models. TGW was found to counteract DOX-induced increases in H9c2 cell surface area (n = 8, p < 0.01) and improve biomarkers like ANP (n = 3, p < 0.01)) and BNP (n = 3, p < 0.01). It inhibited the MAPK pathway (n = 4, p < 0.01) and GATA-4/calcineurin/NFAT-3 signaling, reduced inflammation by decreasing NF-κB p65 translocation, and enhanced apoptosis-related factors such as caspase-3 (n = 3, p < 0.01), caspase-9 (n = 3, p < 0.01), Bax (n = 3, p < 0.01), and Bcl-2 (n = 3, p < 0.01). Flow cytometry showed TGW reduced apoptotic cell populations. In vivo, TGW reduced heart (n = 8~10, p < 0.01), and left ventricle weights (n = 6~7), cardiac hypertrophy markers (n = 3, p < 0.01), and perivascular fibrosis in ISO-induced mice, with Western blot analysis confirming decreased levels of fibrosis-related factors like fibronectin, α-SMA (n = 3, p < 0.05), and collagen type I (n = 3, p < 0.05). These findings suggest TGW has potential as a therapeutic option for cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Jung-Joo Yoon
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan 54538, Republic of Korea; (J.-J.Y.); (A.-L.T.); (H.-Y.K.); (B.-H.H.)
| | - Ai-Lin Tai
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan 54538, Republic of Korea; (J.-J.Y.); (A.-L.T.); (H.-Y.K.); (B.-H.H.)
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan 54538, Republic of Korea
| | - Hye-Yoom Kim
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan 54538, Republic of Korea; (J.-J.Y.); (A.-L.T.); (H.-Y.K.); (B.-H.H.)
| | - Byung-Hyuk Han
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan 54538, Republic of Korea; (J.-J.Y.); (A.-L.T.); (H.-Y.K.); (B.-H.H.)
| | - Sarah Shin
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672, Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea;
| | - Ho-Sub Lee
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan 54538, Republic of Korea; (J.-J.Y.); (A.-L.T.); (H.-Y.K.); (B.-H.H.)
| | - Dae-Gill Kang
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan 54538, Republic of Korea; (J.-J.Y.); (A.-L.T.); (H.-Y.K.); (B.-H.H.)
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan 54538, Republic of Korea
| |
Collapse
|
7
|
Du J, Shui H, Chen R, Dong Y, Xiao C, Hu Y, Wong NK. Neuraminidase-1 (NEU1): Biological Roles and Therapeutic Relevance in Human Disease. Curr Issues Mol Biol 2024; 46:8031-8052. [PMID: 39194692 DOI: 10.3390/cimb46080475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Neuraminidases catalyze the desialylation of cell-surface glycoconjugates and play crucial roles in the development and function of tissues and organs. In both physiological and pathophysiological contexts, neuraminidases mediate diverse biological activities via the catalytic hydrolysis of terminal neuraminic, or sialic acid residues in glycolipid and glycoprotein substrates. The selective modulation of neuraminidase activity constitutes a promising strategy for treating a broad spectrum of human pathologies, including sialidosis and galactosialidosis, neurodegenerative disorders, cancer, cardiovascular diseases, diabetes, and pulmonary disorders. Structurally distinct as a large family of mammalian proteins, neuraminidases (NEU1 through NEU4) possess dissimilar yet overlapping profiles of tissue expression, cellular/subcellular localization, and substrate specificity. NEU1 is well characterized for its lysosomal catabolic functions, with ubiquitous and abundant expression across such tissues as the kidney, pancreas, skeletal muscle, liver, lungs, placenta, and brain. NEU1 also exhibits a broad substrate range on the cell surface, where it plays hitherto underappreciated roles in modulating the structure and function of cellular receptors, providing a basis for it to be a potential drug target in various human diseases. This review seeks to summarize the recent progress in the research on NEU1-associated diseases and highlight the mechanistic implications of NEU1 in disease pathogenesis. An improved understanding of NEU1-associated diseases should help accelerate translational initiatives to develop novel or better therapeutics.
Collapse
Affiliation(s)
- Jingxia Du
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Hanqi Shui
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Rongjun Chen
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Yibo Dong
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Chengyao Xiao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Yue Hu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Nai-Kei Wong
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
8
|
Sun H, Liu Y, Wu C, Ma LQ, Guan D, Hong H, Yu H, Lin H, Huang X, Gao P. Dihalogenated nitrophenols in drinking water: Prevalence, resistance to household treatment, and cardiotoxic impact on zebrafish embryo. ECO-ENVIRONMENT & HEALTH 2024; 3:183-191. [PMID: 38646095 PMCID: PMC11031730 DOI: 10.1016/j.eehl.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/27/2024] [Accepted: 02/03/2024] [Indexed: 04/23/2024]
Abstract
Dihalogenated nitrophenols (2,6-DHNPs), an emerging group of aromatic disinfection byproducts (DBPs) detected in drinking water, have limited available information regarding their persistence and toxicological risks. The present study found that 2,6-DHNPs are resistant to major drinking water treatment processes (sedimentation and filtration) and households methods (boiling, filtration, microwave irradiation, and ultrasonic cleaning). To further assess their health risks, we conducted a series of toxicology studies using zebrafish embryos as the model organism. Our findings reveal that these emerging 2,6-DHNPs showed lethal toxicity 248 times greater than that of the regulated DBP, dichloroacetic acid. Specifically, at sublethal concentrations, exposure to 2,6-DHNPs generated reactive oxygen species (ROS), caused apoptosis, inhibited cardiac looping, and induced cardiac failure in zebrafish. Remarkably, the use of a ROS scavenger, N-acetyl-l-cysteine, considerably mitigated these adverse effects, emphasizing the essential role of ROS in 2,6-DHNP-induced cardiotoxicity. Our findings highlight the cardiotoxic potential of 2,6-DHNPs in drinking water even at low concentrations of 19 μg/L and the beneficial effect of N-acetyl-l-cysteine in alleviating the 2,6-DHNP-induced cardiotoxicity. This study underscores the urgent need for increased scrutiny of these emerging compounds in public health discussions.
Collapse
Affiliation(s)
- Hongjie Sun
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yingying Liu
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Chunxiu Wu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Lena Q. Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dongxing Guan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huachang Hong
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Haiying Yu
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xianfeng Huang
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Peng Gao
- Department of Environmental and Occupational Health, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, United States
| |
Collapse
|
9
|
He K, Wang X, Li T, Li Y, Ma L. Chlorogenic Acid Attenuates Isoproterenol Hydrochloride-Induced Cardiac Hypertrophy in AC16 Cells by Inhibiting the Wnt/β-Catenin Signaling Pathway. Molecules 2024; 29:760. [PMID: 38398512 PMCID: PMC10892528 DOI: 10.3390/molecules29040760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Cardiac hypertrophy (CH) is an important characteristic in heart failure development. Chlorogenic acid (CGA), a crucial bioactive compound from honeysuckle, is reported to protect against CH. However, its underlying mechanism of action remains incompletely elucidated. Therefore, this study aimed to explore the mechanism underlying the protective effect of CGA on CH. This study established a CH model by stimulating AC16 cells with isoproterenol (Iso). The observed significant decrease in cell surface area, evaluated through fluorescence staining, along with the downregulation of CH-related markers, including atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and β-myosin heavy chain (β-MHC) at both mRNA and protein levels, provide compelling evidence of the protective effect of CGA against isoproterenol-induced CH. Mechanistically, CGA induced the expression of glycogen synthase kinase 3β (GSK-3β) while concurrently attenuating the expression of the core protein β-catenin in the Wnt/β-catenin signaling pathway. Furthermore, the experiment utilized the Wnt signaling activator IM-12 to observe its ability to modulate the impact of CGA pretreatment on the development of CH. Using the Gene Expression Omnibus (GEO) database combined with online platforms and tools, this study identified Wnt-related genes influenced by CGA in hypertrophic cardiomyopathy (HCM) and further validated the correlation between CGA and the Wnt/β-catenin signaling pathway in CH. This result provides new insights into the molecular mechanisms underlying the protective effect of CGA against CH, indicating CGA as a promising candidate for the prevention and treatment of heart diseases.
Collapse
Affiliation(s)
- Kai He
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.H.); (X.W.)
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Xiaoying Wang
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.H.); (X.W.)
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Tingting Li
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Yanfei Li
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.H.); (X.W.)
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Linlin Ma
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.H.); (X.W.)
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| |
Collapse
|
10
|
Liu L, Du RY, Jia RL, Wang JX, Chen CZ, Li P, Kong LM, Li ZH. Micro(nano)plastics in marine medaka: Entry pathways and cardiotoxicity with triphenyltin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123079. [PMID: 38061435 DOI: 10.1016/j.envpol.2023.123079] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
The simultaneous presence of micro(nano)plastics (MNPs) and pollutants represents a prevalent environmental challenge that necessitates understanding their combined impact on toxicity. This study examined the distribution of 5 μm (PS-MP5) and 50 nm (PS-NP50) polystyrene plastic particles during the early developmental stages of marine medaka (Oryzias melastigma) and assessed their combined toxicity with triphenyltin (TPT). Results showed that 2 mg/L PS-MP5 and PS-NP50 could adhere to the embryo surface. PS-NP50 can passively enter the larvae and accumulate predominantly in the intestine and head, while PS-MP5 cannot. Nonetheless, both types can be actively ingested by the larvae and distributed in the intestine. 2 mg/L PS-MNPs enhance the acute toxicity of TPT. Interestingly, high concentrations of PS-NP50 (20 mg/L) diminish the acute toxicity of TPT due to their sedimentation properties and interactions with TPT. 200 μg/L PS-MNPs and 200 ng/L TPT affect complement and coagulation cascade pathways and cardiac development of medaka larvae. PS-MNPs exacerbate TPT-induced cardiotoxicity, with PS-NP50 exhibiting stronger effects than PS-MP5, which may be related to the higher adsorption capacity of NPs to TPT and their ability to enter the embryos before hatching. This study elucidates the distribution of MNPs during the early developmental stages of marine medaka and their effects on TPT toxicity, offering a theoretical foundation for the ecological risk assessment of MNPs.
Collapse
Affiliation(s)
- Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ren-Yan Du
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ruo-Lan Jia
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Jin-Xin Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Cheng-Zhuang Chen
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ling-Ming Kong
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
11
|
Li XP, Huang GY, Qiu SQ, Lei DQ, Wang CS, Xie L, Ying GG. Identification of Additives in Disposable Face Masks and Evaluation of Their Toxicity Using Marine Medaka ( Oryzias melastigma). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:121-131. [PMID: 38118121 DOI: 10.1021/acs.est.3c06216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The COVID-19 pandemic has resulted in huge amounts of face masks worldwide. However, there is a lack of awareness on the additives and their potential risk to aquatic ecosystems of face masks. To address this issue, the additives and their toxicity in 13 face masks (e.g., polypropylene, polyethylene, and polylactic acid) were determined using nontarget analysis and bioassays. A total of 826 organic additives including intermediates (14.8%), surfactants (9.3%), plasticizers (8.2%), and antioxidants (6.1%) were tentatively identified, with 213 compounds being assigned confidence levels of 1 and 2. Interestingly, polylactic acid masks contained more additives than most polypropylene or polyethylene masks. Among these additives, the concentration of tris(2-ethylhexyl) phosphate in masks was 9.4-978.2 ng/g with a 100% detection frequency. Furthermore, 13 metals such as zinc (up to 202.0 μg/g), copper (32.5 μg/g), and chromium (up to 5.7 μg/g) were detected in the face masks. The methanol extracts of the masks showed the developmental toxicity, swimming behavior, and/or endocrine disruption in embryos/larvae of Oryzias melastigma. The findings demonstrate that face masks contain various toxic additives to marine medaka, which deserves close attention to pollution by face masks.
Collapse
Affiliation(s)
- Xiao-Pei Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guo-Yong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Shu-Qing Qiu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dong-Qiao Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Chen-Si Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
12
|
Momeni Z, Danesh S, Ahmadpour M, Eshraghi R, Farkhondeh T, Pourhanifeh MH, Samarghandian S. Protective Roles and Therapeutic Effects of Gallic Acid in the Treatment of Cardiovascular Diseases: Current Trends and Future Directions. Curr Med Chem 2024; 31:3733-3751. [PMID: 37815180 DOI: 10.2174/0109298673259299230921150030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/19/2023] [Accepted: 08/18/2023] [Indexed: 10/11/2023]
Abstract
Cardiovascular diseases (CVDs) are serious life-threatening illnesses and significant problematic issues for public health having a heavy economic burden on all society worldwide. The high incidence of these diseases as well as high mortality rates make them the leading causes of death and disability. Therefore, finding novel and more effective therapeutic methods is urgently required. Gallic acid, an herbal medicine with numerous biological properties, has been utilized in the treatment of various diseases for thousands of years. It has been demonstrated that gallic acid possesses pharmacological potential in regulating several molecular and cellular processes such as apoptosis and autophagy. Moreover, gallic acid has been investigated in the treatment of CVDs both in vivo and in vitro. Herein, we aimed to review the available evidence on the therapeutic application of gallic acid for CVDs including myocardial ischemia-reperfusion injury and infarction, drug-induced cardiotoxicity, hypertension, cardiac fibrosis, and heart failure, with a focus on underlying mechanisms.
Collapse
Affiliation(s)
- Zahra Momeni
- Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sepideh Danesh
- Research Hub Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Ahmadpour
- Research Hub Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Eshraghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Hub Institute, Tehran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Saeed Samarghandian
- University of Neyshabur Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
13
|
Son CO, Hong MH, Kim HY, Han BH, Seo CS, Lee HS, Yoon JJ, Kang DG. Sibjotang Protects against Cardiac Hypertrophy In Vitro and In Vivo. Life (Basel) 2023; 13:2307. [PMID: 38137908 PMCID: PMC10744393 DOI: 10.3390/life13122307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 12/24/2023] Open
Abstract
Cardiac hypertrophy is developed by various diseases such as myocardial infarction, valve diseases, hypertension, and aortic stenosis. Sibjotang (, Shizaotang, SJT), a classic formula in Korean traditional medicine, has been shown to modulate the equilibrium of body fluids and blood pressure. This research study sought to explore the impact and underlying process of Sibjotang on cardiotoxicity induced by DOX in H9c2 cells. In vitro, H9c2 cells were induced by DOX (1 μM) in the presence or absence of SJT (1-5 μg/mL) and incubated for 24 h. In vivo, SJT was administrated to isoproterenol (ISO)-induced cardiac hypertrophy mice (n = 8) at 100 mg/kg/day concentrations. Immunofluorescence staining revealed that SJT mitigated the enlargement of H9c2 cells caused by DOX in a dose-dependent way. Using SJT as a pretreatment notably suppressed the rise in cardiac hypertrophic marker levels induced by DOX. SJT inhibited the DOX-induced ERK1/2 and p38 MAPK signaling pathways. In addition, SJT significantly decreased the expression of the hypertrophy-associated transcription factor GATA binding factor 4 (GATA 4) induced by DOX. SJT also decreased hypertrophy-associated calcineurin and NFAT protein levels. Pretreatment with SJT significantly attenuated DOX-induced apoptosis-associated proteins such as Bax, caspase-3, and caspase-9 without affecting cell viability. In addition, the results of the in vivo study indicated that SJT significantly reduced the left ventricle/body weight ratio level. Administration of SJT reduced the expression of hypertrophy markers, such as ANP and BNP. These results suggest that SJT attenuates cardiac hypertrophy and heart failure induced by DOX or ISO through the inhibition of the calcineurin/NFAT/GATA4 pathway. Therefore, SJT may be a potential treatment for the prevention and treatment of cardiac hypertrophy that leads to heart failure.
Collapse
Affiliation(s)
- Chan-Ok Son
- Department of Ophthalmology, Konkuk University School of Medicine, Gwangjin-gu, Seoul 05030, Republic of Korea;
| | - Mi-Hyeon Hong
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; (M.-H.H.); (H.-Y.K.); (B.-H.H.); (H.-S.L.)
| | - Hye-Yoom Kim
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; (M.-H.H.); (H.-Y.K.); (B.-H.H.); (H.-S.L.)
| | - Byung-Hyuk Han
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; (M.-H.H.); (H.-Y.K.); (B.-H.H.); (H.-S.L.)
| | - Chang-Seob Seo
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea;
| | - Ho-Sub Lee
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; (M.-H.H.); (H.-Y.K.); (B.-H.H.); (H.-S.L.)
| | - Jung-Joo Yoon
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; (M.-H.H.); (H.-Y.K.); (B.-H.H.); (H.-S.L.)
| | - Dae-Gill Kang
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea; (M.-H.H.); (H.-Y.K.); (B.-H.H.); (H.-S.L.)
- College of Oriental Medicine, Wonkwang University, 460, Iksan-daero, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
14
|
Hedaya OM, Venkata Subbaiah KC, Jiang F, Xie LH, Wu J, Khor ES, Zhu M, Mathews DH, Proschel C, Yao P. Secondary structures that regulate mRNA translation provide insights for ASO-mediated modulation of cardiac hypertrophy. Nat Commun 2023; 14:6166. [PMID: 37789015 PMCID: PMC10547706 DOI: 10.1038/s41467-023-41799-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Translation of upstream open reading frames (uORFs) typically abrogates translation of main (m)ORFs. The molecular mechanism of uORF regulation in cells is not well understood. Here, we data-mined human and mouse heart ribosome profiling analyses and identified a double-stranded RNA (dsRNA) structure within the GATA4 uORF that cooperates with the start codon to augment uORF translation and inhibits mORF translation. A trans-acting RNA helicase DDX3X inhibits the GATA4 uORF-dsRNA activity and modulates the translational balance of uORF and mORF. Antisense oligonucleotides (ASOs) that disrupt this dsRNA structure promote mORF translation, while ASOs that base-pair immediately downstream (i.e., forming a bimolecular double-stranded region) of either the uORF or mORF start codon enhance uORF or mORF translation, respectively. Human cardiomyocytes and mice treated with a uORF-enhancing ASO showed reduced cardiac GATA4 protein levels and increased resistance to cardiomyocyte hypertrophy. We further show the broad utility of uORF-dsRNA- or mORF-targeting ASO to regulate mORF translation for other mRNAs. This work demonstrates that the uORF-dsRNA element regulates the translation of multiple mRNAs as a generalizable translational control mechanism. Moreover, we develop a valuable strategy to alter protein expression and cellular phenotypes by targeting or generating dsRNA downstream of a uORF or mORF start codon.
Collapse
Affiliation(s)
- Omar M Hedaya
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Kadiam C Venkata Subbaiah
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Feng Jiang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Li Huitong Xie
- Department of Biomedical Genetics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Jiangbin Wu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Eng-Soon Khor
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Mingyi Zhu
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - David H Mathews
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
- The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Chris Proschel
- Department of Biomedical Genetics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA.
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA.
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA.
- The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA.
| |
Collapse
|
15
|
Golubeva VA, Dorn LE, Gilbert CJ, Rabolli CP, Das AS, Wanasinghe VS, Veress R, Terentyev D, Accornero F. Loss of YTHDF2 Alters the Expression of m 6A-Modified Myzap and Causes Adverse Cardiac Remodeling. JACC Basic Transl Sci 2023; 8:1180-1194. [PMID: 37791304 PMCID: PMC10543918 DOI: 10.1016/j.jacbts.2023.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 10/05/2023]
Abstract
How post-transcriptional regulation of gene expression, such as through N6-methyladenosine (m6A) messenger RNA methylation, impacts heart function is not well understood. We found that loss of the m6A binding protein YTHDF2 in cardiomyocytes of adult mice drove cardiac dysfunction. By proteomics, we found myocardial zonula adherens protein (MYZAP) within the top up-regulated proteins in knockout cardiomyocytes. We further demonstrated that YTHDF2 binds m6A-modified Myzap messenger RNA and controls its stability. Cardiac overexpression of MYZAP has been associated with cardiomyopathy. Thus, our findings provide an important new mechanism for the YTHDF2-dependent regulation of this target and therein its novel role in the maintenance of cardiac homeostasis.
Collapse
Affiliation(s)
- Volha A. Golubeva
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Lisa E. Dorn
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Christopher J. Gilbert
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Charles P. Rabolli
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Anindhya Sundar Das
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Vishmi S. Wanasinghe
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Roland Veress
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
16
|
Zhang Z, Shayani G, Xu Y, Kim A, Hong Y, Feng H, Zhu H. Induction of Senescence by Loss of Gata4 in Cardiac Fibroblasts. Cells 2023; 12:1652. [PMID: 37371122 PMCID: PMC10297635 DOI: 10.3390/cells12121652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Cardiac fibroblasts are a major source of cardiac fibrosis during heart repair processes in various heart diseases. Although it has been shown that cardiac fibroblasts become senescent in response to heart injury, it is unknown how the senescence of cardiac fibroblasts is regulated in vivo. Gata4, a cardiogenic transcription factor essential for heart development, is also expressed in cardiac fibroblasts. However, it remains elusive about the role of Gata4 in cardiac fibroblasts. To define the role of Gata4 in cardiac fibroblasts, we generated cardiac fibroblast-specific Gata4 knockout mice by cross-breeding Tcf21-MerCreMer mice with Gata4fl/fl mice. Using this mouse model, we could genetically ablate Gata4 in Tcf21 positive cardiac fibroblasts in an inducible manner upon tamoxifen administration. We found that cardiac fibroblast-specific deletion of Gata4 spontaneously induces senescence in cardiac fibroblasts in vivo and in vitro. We also found that Gata4 expression in both cardiomyocytes and non-myocytes significantly decreases in the aged heart. Interestingly, when αMHC-MerCreMer mice were bred with Gata4fl/fl mice to generate cardiomyocyte-specific Gata4 knockout mice, no senescent cells were detected in the hearts. Taken together, our results demonstrate that Gata4 deficiency in cardiac fibroblasts activates a program of cellular senescence, suggesting a novel molecular mechanism of cardiac fibroblast senescence.
Collapse
Affiliation(s)
- Zhentao Zhang
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Gabriella Shayani
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Yanping Xu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Ashley Kim
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Yurim Hong
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Haiyue Feng
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (G.S.); (A.K.); (Y.H.); (H.F.)
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| |
Collapse
|
17
|
Hedaya OM, Subbaiah KCV, Jiang F, Xie LH, Wu J, Khor E, Zhu M, Mathews DH, Proschel C, Yao P. Secondary structures that regulate mRNA translation provide insights for ASO-mediated modulation of cardiac hypertrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545153. [PMID: 37397986 PMCID: PMC10312771 DOI: 10.1101/2023.06.15.545153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Translation of upstream open reading frames (uORFs) typically abrogates translation of main (m)ORFs. The molecular mechanism of uORF regulation in cells is not well understood. Here, we identified a double-stranded RNA (dsRNA) structure residing within the GATA4 uORF that augments uORF translation and inhibits mORF translation. Antisense oligonucleotides (ASOs) that disrupt this dsRNA structure promote mORF translation, while ASOs that base-pair immediately downstream (i.e., forming a bimolecular double-stranded region) of either the uORF or mORF start codon enhance uORF or mORF translation, respectively. Human cardiomyocytes and mice treated with a uORF-enhancing ASO showed reduced cardiac GATA4 protein levels and increased resistance to cardiomyocyte hypertrophy. We further show the general utility of uORF-dsRNA- or mORF- targeting ASO to regulate mORF translation for other mRNAs. Our work demonstrates a regulatory paradigm that controls translational efficiency and a useful strategy to alter protein expression and cellular phenotypes by targeting or generating dsRNA downstream of a uORF or mORF start codon. Bullet points for discoveries dsRNA within GATA4 uORF activates uORF translation and inhibits mORF translation. ASOs that target the dsRNA can either inhibit or enhance GATA4 mORF translation. ASOs can be used to impede hypertrophy in human cardiomyocytes and mouse hearts.uORF- and mORF-targeting ASOs can be used to control translation of multiple mRNAs.
Collapse
Affiliation(s)
- Omar M. Hedaya
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - Kadiam C. Venkata Subbaiah
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - Feng Jiang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - Li Huitong Xie
- Department of Biomedical Genetics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - Jiangbin Wu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - EngSoon Khor
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - Mingyi Zhu
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - David H. Mathews
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - Chris Proschel
- Department of Biomedical Genetics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| |
Collapse
|
18
|
Zhao X, Lu J, Zhang C, Chen C, Zhang M, Zhang J, Du Q, Wang H. Methamphetamine induces cardiomyopathy through GATA4/NF-κB/SASP axis-mediated cellular senescence. Toxicol Appl Pharmacol 2023; 466:116457. [PMID: 36914120 DOI: 10.1016/j.taap.2023.116457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023]
Abstract
With the world pandemic of methamphetamine (METH), METH-associated cardiomyopathy (MAC) has become a widespread epidemic and is also recognized as a cause of heart failure in young people. The mechanism of occurrence and development of MAC is not clear. In this study, firstly, the animal model was evaluated by echocardiography and myocardial pathological staining. The results revealed that the animal model exhibited cardiac injury consistent with clinical alterations of MAC, and the mice developed cardiac hypertrophy and fibrosis remodeling, which led to systolic dysfunction and left ventricular ejection fraction (%LVEF) < 40%. The expression of cellular senescence marker proteins (p16 and p21) and senescence-associated secretory phenotype (SASP) was significantly increased in mouse myocardial tissue. Secondly, mRNA sequencing analysis of cardiac tissues revealed the key molecule GATA4, and Western blot, qPCR and immunofluorescence results showed that the expression level of GATA4 was significantly increased after METH exposure. Finally, knockdown of GATA4 expression in H9C2 cells in vitro significantly attenuated METH-induced cardiomyocyte senescence. Consequently, METH causes cardiomyopathy through cellular senescence mediated by the GATA4/NF-κB/SASP axis, which is a feasible target for the treatment of MAC.
Collapse
Affiliation(s)
- Xu Zhao
- Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528200, China
| | - Jiancong Lu
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Cui Zhang
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Chuanxiang Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Manting Zhang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jingyi Zhang
- Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528200, China
| | - Qingfeng Du
- Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528200, China; School of Traditional Chinese medicine, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China.
| | - Huijun Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
19
|
Xiong H, Hua F, Dong Y, Lin Y, Ying J, Liu J, Wang X, Zhang L, Zhang J. DNA damage response and GATA4 signaling in cellular senescence and aging-related pathology. Front Aging Neurosci 2022; 14:933015. [PMID: 36177479 PMCID: PMC9513149 DOI: 10.3389/fnagi.2022.933015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Aging is the continuous degradation of biological function and structure with time, and cellular senescence lies at its core. DNA damage response (DDR) can activate Ataxia telangiectasia-mutated serine/threonine kinase (ATM) and Rad3-related serine/threonine kinase (ATR), after which p53 activates p21, stopping the cell cycle and inducing cell senescence. GATA4 is a transcription factor that plays an important role in the development of many organs, such as the heart, testis, ovary, foregut, liver, and ventral pancreas. Studies have shown that GATA4 can also contribute to the DDR, leading to aging. Consistently, there is also evidence that the GATA4 signaling pathway is associated with aging-related diseases, including atherosclerosis and heart failure. This paper reviews the relationship between GATA4, DDR, and cellular senescence, as well as its effect on aging-related diseases.
Collapse
Affiliation(s)
- Hao Xiong
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Yao Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jie Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Xifeng Wang
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
- *Correspondence: Lieliang Zhang
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
20
|
Khazamipour A, Gholampour-Faroji N, Zeraati T, Vakilian F, Haddad-Mashadrizeh A, Ghayour Mobarhan M, Pasdar A. A novel causative functional mutation in GATA6 gene is responsible for familial dilated cardiomyopathy as supported by in silico functional analysis. Sci Rep 2022; 12:13752. [PMID: 35962153 PMCID: PMC9374661 DOI: 10.1038/s41598-022-13993-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
Dilated cardiomyopathy (DCM), one of the most common types of cardiomyopathies has a heterogeneous nature and can be seen in Mendelian forms. Next Generation Sequencing is a powerful tool for identifying novel variants in monogenic disorders. We used whole-exome sequencing (WES) and Sanger sequencing techniques to identify the causative mutation of DCM in an Iranian pedigree. We found a novel variant in the GATA6 gene, leading to substituting Histidine by Tyrosine at position 329, observed in all affected family members in the pedigree, whereas it was not established in any of the unaffected ones. We hypothesized that the H329Y mutation may be causative for the familial pattern of DCM in this family. The predicted models of GATA6 and H329Y showed the high quality according to PROCHECK and ERRAT. Nonetheless, simulation results revealed that the protein stability decreased after mutation, while the flexibility may have been increased. Hence, the mutation led to the increased compactness of GATA6. Overall, these data indicated that the mutation could affect the protein structure, which may be related to the functional impairment of GATA6 upon H329Y mutation, likewise their involvement in pathologies. Further functional investigations would help elucidating the exact mechanism.
Collapse
Affiliation(s)
- Afrouz Khazamipour
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nazanin Gholampour-Faroji
- Biotechnology Department, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Tina Zeraati
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farveh Vakilian
- Atherosclerosis Prevention Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aliakbar Haddad-Mashadrizeh
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Majid Ghayour Mobarhan
- Metabolic Syndrome Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Division of Applied Medicine, Medical School, University of Aberdeen, Foresterhill, Aberdeen, UK.
- Bioinformatics Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
21
|
Han X, Bai L, Kee HJ, Jeong MH. Syringic acid mitigates isoproterenol-induced cardiac hypertrophy and fibrosis by downregulating Ereg. J Cell Mol Med 2022; 26:4076-4086. [PMID: 35719043 PMCID: PMC9279583 DOI: 10.1111/jcmm.17449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 12/01/2022] Open
Abstract
Gallic acid has been reported to mitigate cardiac hypertrophy, fibrosis and arterial hypertension. The effects of syringic acid, a derivative of gallic acid, on cardiac hypertrophy and fibrosis have not been previously investigated. This study aimed to examine the effects of syringic acid on isoproterenol‐treated mice and cells. Syringic acid mitigated the isoproterenol‐induced upregulation of heart weight to bodyweight ratio, pathological cardiac remodelling and fibrosis in mice. Picrosirius red staining, quantitative real‐time polymerase chain reaction (qRT‐PCR) and Western blotting analyses revealed that syringic acid markedly downregulated collagen accumulation and fibrosis‐related factors, including Fn1. The results of RNA sequencing analysis of Ereg expression were verified using qRT‐PCR. Syringic acid or transfection with si‐Ereg mitigated the isoproterenol‐induced upregulation of Ereg, Myc and Ngfr. Ereg knockdown mitigated the isoproterenol‐induced upregulation of Nppb and Fn1 and enhancement of cell size. Mechanistically, syringic acid alleviated cardiac hypertrophy and fibrosis by downregulating Ereg. These results suggest that syringic acid is a potential therapeutic agent for cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Xiongyi Han
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Liyan Bai
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Hae Jin Kee
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Myung Ho Jeong
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea.,Department of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
22
|
Afouda BA. Towards Understanding the Gene-Specific Roles of GATA Factors in Heart Development: Does GATA4 Lead the Way? Int J Mol Sci 2022; 23:5255. [PMID: 35563646 PMCID: PMC9099915 DOI: 10.3390/ijms23095255] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
Transcription factors play crucial roles in the regulation of heart induction, formation, growth and morphogenesis. Zinc finger GATA transcription factors are among the critical regulators of these processes. GATA4, 5 and 6 genes are expressed in a partially overlapping manner in developing hearts, and GATA4 and 6 continue their expression in adult cardiac myocytes. Using different experimental models, GATA4, 5 and 6 were shown to work together not only to ensure specification of cardiac cells but also during subsequent heart development. The complex involvement of these related gene family members in those processes is demonstrated through the redundancy among them and crossregulation of each other. Our recent identification at the genome-wide level of genes specifically regulated by each of the three family members and our earlier discovery that gata4 and gata6 function upstream, while gata5 functions downstream of noncanonical Wnt signalling during cardiac differentiation, clearly demonstrate the functional differences among the cardiogenic GATA factors. Such suspected functional differences are worth exploring more widely. It appears that in the past few years, significant advances have indeed been made in providing a deeper understanding of the mechanisms by which each of these molecules function during heart development. In this review, I will therefore discuss current evidence of the role of individual cardiogenic GATA factors in the process of heart development and emphasize the emerging central role of GATA4.
Collapse
Affiliation(s)
- Boni A Afouda
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, UK
| |
Collapse
|
23
|
Zinc-dependent histone deacetylases: Potential therapeutic targets for arterial hypertension. Biochem Pharmacol 2022; 202:115111. [DOI: 10.1016/j.bcp.2022.115111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022]
|
24
|
Free fatty acid receptor 2 promotes cardiomyocyte hypertrophy by activating STAT3 and GATA4. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Xia B, Sui Q, Du Y, Wang L, Jing J, Zhu L, Zhao X, Sun X, Booth AM, Chen B, Qu K, Xing B. Secondary PVC microplastics are more toxic than primary PVC microplastics to Oryzias melastigma embryos. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127421. [PMID: 34653869 DOI: 10.1016/j.jhazmat.2021.127421] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Irregular-shaped and partially degraded secondary microplastics (SMP) account for the majority of MPs in marine environments, yet little is known about their effects on marine organisms. In this study, we investigated the embryotoxicity of polyvinyl chloride SMP and primary microplastics (PMP) to the marine medaka Oryzias melastigma. This study aimed to determine the physical impacts of MPs and, for the first time, elucidate the underlying mechanisms of physical toxicity. SMP shortened hatching time and induced higher teratogenic effects on larvae relative to PMP, indicating a higher toxicity from SMP. Physical damage from SMP to the chorion surface appears to be the main toxicity mechanism, caused by their irregular shape and reduced aggregation relative to PMP. In contrast, real-time changes in oxygen demonstrated that hypoxia caused by greater PMP adsorption to the chorion surface contributes to the toxicological responses of this material relative to SMP. Modulation of genes involved in hypoxia-response, cardiac development and hatching confirmed the toxicity mechanisms of PMP and SMP. The chemical contribution to observed toxicity was negligible, confirming impacts derived from physical toxicity. Our findings highlight the negative effects of environmentally relevant SMP on the marine ecosystems.
Collapse
Affiliation(s)
- Bin Xia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China.
| | - Qi Sui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yushan Du
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Liang Wang
- SINTEF Energy Research, Trondheim, 7034, Norway
| | - Jing Jing
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Lin Zhu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Xinguo Zhao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Xuemei Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Andy M Booth
- SINTEF Ocean, Department of Climate and Environment, Trondheim, 7465, Norway.
| | - Bijuan Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Keming Qu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
26
|
Hong JH, Zhang HG. Transcription Factors Involved in the Development and Prognosis of Cardiac Remodeling. Front Pharmacol 2022; 13:828549. [PMID: 35185581 PMCID: PMC8849252 DOI: 10.3389/fphar.2022.828549] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/14/2022] [Indexed: 01/09/2023] Open
Abstract
To compensate increasing workload, heart must work harder with structural changes, indicated by increasing size and changing shape, causing cardiac remodeling. However, pathological and unlimited compensated cardiac remodeling will ultimately lead to decompensation and heart failure. In the past decade, numerous studies have explored many signaling pathways involved in cardiac remodeling, but the complete mechanism of cardiac remodeling is still unrecognized, which hinders effective treatment and drug development. As gene transcriptional regulators, transcription factors control multiple cellular activities and play a critical role in cardiac remodeling. This review summarizes the regulation of fetal gene reprogramming, energy metabolism, apoptosis, autophagy in cardiomyocytes and myofibroblast activation of cardiac fibroblasts by transcription factors, with an emphasis on their potential roles in the development and prognosis of cardiac remodeling.
Collapse
|
27
|
Zhang X, Wang J, Li Y, Li X, Zheng Y, Arif M, Ru S. Environmental relevant herbicide prometryn induces developmental toxicity in the early life stages of marine medaka (Oryzias melastigma) and its potential mechanism. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 243:106079. [PMID: 35065453 DOI: 10.1016/j.aquatox.2022.106079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/21/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Triazine herbicides have been widely detected in marine environments because of their extensive usage in agriculture, but their impact on marine organisms is unclear. In this study, marine medaka (Oryzias melastigma) embryos were exposed to 0, 1, 10, 100, and 1000 μg/L prometryn, one of the most detected triazine herbicides, to investigate its potential effects. The results showed that 1, 10, 100, and 1000 µg/L prometryn not only induced yolk sac shrinkage and heart malformations, but also significantly delayed the hatching time and increased the heart rate and hatching failure rate of embryos. Moreover, 1, 10, 100, and 1000 μg/L prometryn caused obvious malformations and decreased the body length of the newly hatched larvae. After 21 d of exposure, increased larval death rate, decreased body length and width, and higher lipid accumulation were observed in the larvae from all prometryn groups. Furthermore, prometryn exposure upregulated the expression levels of cardiac development-related genes GATA, COX, ATPase, SmyD1, EPO, FGF8, NKX2, and BMP4 in the larvae. Transcriptome analysis revealed that 10 μg/L prometryn upregulated 604 genes, and the topmost pathways of differentially expressed genes were the complement and coagulation cascades and AMPK signaling pathways. qPCR results confirmed that prometryn exposure significantly increased the expression levels of the complement and coagulation cascade genes f2, f5, c3, and c5. This study demonstrated that environmentally relevant concentrations of prometryn induced significant toxicity in the early life stages of marine medaka. Therefore, the health risks of herbicides to marine organisms are of great concern.
Collapse
Affiliation(s)
- Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Yuejiao Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xuan Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yuqi Zheng
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Muhammad Arif
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
28
|
Pathophysiology of heart failure and an overview of therapies. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
29
|
Li S, Zhang Y, Xue H, Zhang Q, Chen N, Wan J, Sun L, Chen Q, Zong Y, Zhuang F, Gu P, Zhang A, Cui F, Tu Y. Integrative effects based on behavior, physiology and gene expression of tritiated water on zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112770. [PMID: 34536793 DOI: 10.1016/j.ecoenv.2021.112770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Tritium is a water-soluble hydrogen isotope that releases beta rays during decay. In nature, tritium primarily exists as tritiated water (HTO), and its main source is nuclear power/processing plants. In recent decades, with the development of nuclear power industry, it is necessary to evaluate the impact of tritium on organisms. In this study, fertilized zebrafish embryos are treated with different HTO concentrations (3.7 × 103 Bq/ml, 3.7 × 104 Bq/ml, 3.7 × 105 Bq/ml). After treatment with HTO, the zebrafish embryos developed without evident morphological changes. Nevertheless, the heart rate increased and locomotor activity decreased significantly. In addition, RNA-sequencing shows that HTO can affect gene expressions. The differentially expressed genes are enriched through many physiological processes and intracellular signaling pathways, including cardiac, cardiovascular, and nervous system development and the metabolism of xenobiotics by cytochrome P450. Moreover, the concentrations of thyroid hormones in the zebrafish decrease and the expression of thyroid hormone-related genes is disordered after HTO treatment. Our results suggest that exposure to HTO may affect the physiology and behaviors of zebrafish through physiological processes and intracellular signaling pathways and provide a theoretical basis for ecological risk assessment of tritium.
Collapse
Affiliation(s)
- Shengri Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, PR China
| | - Yefeng Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; School of Public Health, Soochow University, Suzhou 215123, PR China
| | - Huiyuan Xue
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, PR China
| | - Qixuan Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, PR China
| | - Na Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, PR China
| | - Jun Wan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, PR China
| | - Liang Sun
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, PR China
| | - Qiu Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, PR China
| | - Ying Zong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Fenghui Zhuang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Pengcheng Gu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Anqi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Fengmei Cui
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, PR China.
| | - Yu Tu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, PR China.
| |
Collapse
|
30
|
Song R, Lei H, Feng L, Cheng W, Li Y, Yao LL, Liu J. TFEB insufficiency promotes cardiac hypertrophy by blocking autophagic degradation of GATA4. J Biol Chem 2021; 297:101189. [PMID: 34517007 PMCID: PMC8498468 DOI: 10.1016/j.jbc.2021.101189] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 02/03/2023] Open
Abstract
Autophagosome-lysosome pathway (ALP) insufficiency has been suggested to play a critical role in the pathogenesis of cardiac hypertrophy. However, the mechanisms underlying ALP insufficiency remain largely unknown, and strategies to specifically manipulate ALP insufficiency for treating cardiac hypertrophy are lacking. Transcription factor EB (TFEB), as a master regulator of ALP, regulates the generation and function of autophagosomes and lysosomes. We found that TFEB was significantly decreased, whereas autophagosome markers were increased in phenylephrine (PE)-induced and transverse aortic constriction-induced cardiomyocyte hypertrophy and failing hearts from patients with dilated cardiomyopathy. Knocking down TFEB induced ALP insufficiency, as indicated by increased autophagosome markers, decreased light chain 3II flux, and cardiomyocyte hypertrophy manifested through increased levels of atrial natriuretic peptide and β-myosin heavy chain and enlarged cell size. The effects of TFEB knockdown were abolished by promoting autophagy. TFEB overexpression improved autophagic flux and attenuated PE-stimulated cardiomyocyte hypertrophy and transverse aortic constriction-induced hypertrophic remodeling, fibrosis, and cardiac dysfunction. Curcumin analog compound C1, a specific TFEB activator, similarly attenuated PE-induced ALP insufficiency and cardiomyocyte hypertrophy. TFEB knockdown increased the accumulation of GATA4, a transcription factor for several genes causing cardiac hypertrophy by blocking autophagic degradation of GATA4, whereas knocking down GATA4 attenuated TFEB downregulation-induced cardiomyocyte hypertrophy. Both TFEB overexpression and C1 promoted GATA4 autophagic degradation and alleviated PE-induced cardiomyocyte hypertrophy. In conclusion, TFEB downregulation plays a vital role in the development of pressure overload-induced cardiac hypertrophy by causing ALP insufficiency and blocking autophagic degradation. Activation of TFEB represents a potential therapeutic strategy for treating cardiac hypertrophy.
Collapse
Affiliation(s)
- Rui Song
- Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Han Lei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Li Feng
- Department of Cardiology, Zhongshan People's Hospital, Guangzhou, China
| | - Wanwen Cheng
- Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
| | - Ying Li
- Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
| | - Ling Ling Yao
- Department of Cardiology, First Affiliated Hospital, Guangdong College of Pharmacy, Guangzhou, China.
| | - Jie Liu
- Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China.
| |
Collapse
|
31
|
Wang W, Lu G, Liu H, Xiong Z, Leung H, Cao R, Pang AL, Su X, Law PWN, Zhao Z, Chen Z, Chan W. Pten Regulates Cardiomyocyte Differentiation by Modulating Non-CG Methylation via Dnmt3. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100849. [PMID: 34247447 PMCID: PMC8425920 DOI: 10.1002/advs.202100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/04/2021] [Indexed: 06/13/2023]
Abstract
The regulation of cardiomyocyte differentiation is a fundamental aspect of cardiac development and regenerative medicine. PTEN plays important roles during embryonic development. However, its role in cardiomyocyte differentiation remains unknown. In this study, a low-cost protocol for cardiomyocyte differentiation from mouse embryonic stem cells (ESCs) is presented and it is shown that Pten deletion potently suppresses cardiomyocyte differentiation. Transcriptome analysis shows that the expression of a series of cardiomyocyte marker genes is downregulated in Pten-/- cardiomyocytes. Pten ablation induces Dnmt3b expression via the AKT/FoxO3a pathway and regulates the expression of a series of imprinted genes, including Igf2. Double knockout of Dnmt3l and Dnmt3b rescues the deficiency of cardiomyocyte differentiation of Pten-/- ESCs. The DNA methylomes from wild-type and Pten-/- embryoid bodies and cardiomyocytes are analyzed by whole-genome bisulfite sequencing. Pten deletion significantly promotes the non-CG (CHG and CHH) methylation levels of genomic DNA during cardiomyocyte differentiation, and the non-CG methylation levels of cardiomyocyte genes and Igf2 are increased in Pten-/- cardiomyocytes. Igf2 or Igf1r deletion also suppresses cardiomyocyte differentiation through the MAPK/ERK signaling pathway, and IGF2 supplementation partially rescues the cardiomyocyte differentiation. Finally, Pten conditional knockout mice are generated and the role of PTEN in cardiomyocyte differentiation is verified in vivo.
Collapse
Affiliation(s)
- Wuming Wang
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsJinan250001China
| | - Gang Lu
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsJinan250001China
| | - Hong‐Bin Liu
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsJinan250001China
| | - Zhiqiang Xiong
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsJinan250001China
- SDIVF R&D Centre12W, Hong Kong Science ParkShatinHong KongChina
| | - Ho‐Duen Leung
- SDIVF R&D Centre12W, Hong Kong Science ParkShatinHong KongChina
| | - Ruican Cao
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsJinan250001China
| | - Alan Lap‐Yin Pang
- R&D DivisionTGD Life Company Limited15W, Hong Kong Science ParkShatinHong KongChina
| | - Xianwei Su
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsJinan250001China
- SDIVF R&D Centre12W, Hong Kong Science ParkShatinHong KongChina
| | - Patrick Wai Nok Law
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
| | - Zhiju Zhao
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
| | - Zi‐Jiang Chen
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsJinan250001China
| | - Wai‐Yee Chan
- CUHK‐SDU Joint Laboratory on Reproductive GeneticsSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsJinan250001China
| |
Collapse
|
32
|
Bai L, Kee HJ, Han X, Zhao T, Kee SJ, Jeong MH. Protocatechuic acid attenuates isoproterenol-induced cardiac hypertrophy via downregulation of ROCK1-Sp1-PKCγ axis. Sci Rep 2021; 11:17343. [PMID: 34462460 PMCID: PMC8405624 DOI: 10.1038/s41598-021-96761-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
Cardiac hypertrophy is an adaptive response of the myocardium to pressure overload or adrenergic agonists. Here, we investigated the protective effects and the regulatory mechanism of protocatechuic acid, a phenolic compound, using a mouse model of isoproterenol-induced cardiac hypertrophy. Our results demonstrated that protocatechuic acid treatment significantly downregulated the expression of cardiac hypertrophic markers (Nppa, Nppb, and Myh7), cardiomyocyte size, heart weight to body weight ratio, cross-sectional area, and thickness of left ventricular septum and posterior wall. This treatment also reduced the expression of isoproterenol-induced ROCK1, Sp1, and PKCγ both in vivo and in vitro. To investigate the mechanism, we performed knockdown and overexpression experiments. The knockdown of ROCK1, Sp1, or PKCγ decreased the isoproterenol-induced cell area and the expression of hypertrophic markers, while the overexpression of Sp1 or PKCγ increased the levels of hypertrophic markers. Protocatechuic acid treatment reversed these effects. Interestingly, the overexpression of Sp1 increased cell area and induced PKCγ expression. Furthermore, experiments using transcription inhibitor actinomycin D showed that ROCK1 and Sp1 suppression by protocatechuic acid was not regulated at the transcriptional level. Our results indicate that protocatechuic acid acts via the ROCK1/Sp1/PKCγ axis and therefore has promising therapeutic potential as a treatment for cardiac hypertrophy.
Collapse
Affiliation(s)
- Liyan Bai
- Heart Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 61469, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Hae Jin Kee
- Heart Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 61469, Republic of Korea.
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea.
| | - Xiongyi Han
- Heart Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 61469, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Tingwei Zhao
- Heart Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 61469, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University, Medical School and Hospital, Gwangju, 61469, Republic of Korea
| | - Myung Ho Jeong
- Heart Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 61469, Republic of Korea.
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea.
- Department of Cardiology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
| |
Collapse
|
33
|
Yang J, Chen Y, Li X, Xu D. New insights into the roles of glucocorticoid signaling dysregulation in pathological cardiac hypertrophy. Heart Fail Rev 2021; 27:1431-1441. [PMID: 34455516 DOI: 10.1007/s10741-021-10158-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 01/02/2023]
Abstract
Pathological cardiac hypertrophy is a process of abnormal remodeling of the myocardium in response to stress overload or ischemia that results in myocardial injury, which is an independent risk factor for the increased morbidity and mortality of heart failure. Elevated circulating glucocorticoids (GCs) levels are associated with an increased risk of pathological cardiac hypertrophy, but the exact role remains unclear. In the heart, GCs exerts physiological and pharmacological effects by binding the glucocorticoid receptor (GR, NR3C1). However, under the state of tissue damage or oxidative stress, GCs can also bind the closely related mineralocorticoid receptor (MR, NR3C2) to exert a detrimental effect on cardiac function. In addition, the bioavailability of GCs at the cellular level is mainly regulated by tissue-specific metabolic enzymes 11β-hydroxysteroid dehydrogenases (11β-HSDs), including 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and type 2 (11β-HSD2), which catalyze the interconversion of active GCs. In this paper, we provide an overview of GC signaling and its physiological roles in the heart and highlight the dynamic and diverse roles of GC signaling dysregulation, mediated by excessive ligand GCs levels, GR/MR deficiency or overexpression, and local GCs metabolic disorder by 11β-HSDs, in the pathology of cardiac hypertrophy. Our findings will provide new ideas and insights for the search for appropriate intervention targets for pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Jingmin Yang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Yanying Chen
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Xiao Li
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Danyan Xu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China.
| |
Collapse
|
34
|
Kaur K, Hadas Y, Kurian AA, Żak MM, Yoo J, Mahmood A, Girard H, Komargodski R, Io T, Santini MP, Sultana N, Kabir Sharkar MT, Magadum A, Fargnoli A, Yoon S, Chepurko E, Chepurko V, Eliyahu E, Pinto D, Lebeche D, Kovacic JC, Hajjar RJ, Rafii S, Zangi L. Direct Reprogramming Induces Vascular Regeneration Post Muscle Ischemic Injury. Mol Ther 2021; 29:3042-3058. [PMID: 34332145 PMCID: PMC8531157 DOI: 10.1016/j.ymthe.2021.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/02/2021] [Accepted: 07/21/2021] [Indexed: 11/24/2022] Open
Abstract
Reprogramming non-cardiomyocytes (non-CMs) into cardiomyocyte (CM)-like cells is a promising strategy for cardiac regeneration in conditions such as ischemic heart disease. Here, we used a modified mRNA (modRNA) gene delivery platform to deliver a cocktail, termed 7G-modRNA, of four cardiac-reprogramming genes—Gata4 (G), Mef2c (M), Tbx5 (T), and Hand2 (H)—together with three reprogramming-helper genes—dominant-negative (DN)-TGFβ, DN-Wnt8a, and acid ceramidase (AC)—to induce CM-like cells. We showed that 7G-modRNA reprogrammed 57% of CM-like cells in vitro. Through a lineage-tracing model, we determined that delivering the 7G-modRNA cocktail at the time of myocardial infarction reprogrammed ∼25% of CM-like cells in the scar area and significantly improved cardiac function, scar size, long-term survival, and capillary density. Mechanistically, we determined that while 7G-modRNA cannot create de novo beating CMs in vitro or in vivo, it can significantly upregulate pro-angiogenic mesenchymal stromal cells markers and transcription factors. We also demonstrated that our 7G-modRNA cocktail leads to neovascularization in ischemic-limb injury, indicating CM-like cells importance in other organs besides the heart. modRNA is currently being used around the globe for vaccination against COVID-19, and this study proves this is a safe, highly efficient gene delivery approach with therapeutic potential to treat ischemic diseases.
Collapse
Affiliation(s)
- Keerat Kaur
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Yoav Hadas
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Ann Anu Kurian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Magdalena M Żak
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Jimeen Yoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Asharee Mahmood
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Hanna Girard
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Rinat Komargodski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Toshiro Io
- Research Department, Ono Pharmaceutical Co. Ltd., Osaka, Japan, 103-0023
| | - Maria Paola Santini
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Nishat Sultana
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Mohammad Tofael Kabir Sharkar
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Ajit Magadum
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Anthony Fargnoli
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Seonghun Yoon
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Elena Chepurko
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Vadim Chepurko
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Efrat Eliyahu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Multiscale Biology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Dalila Pinto
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Djamel Lebeche
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Roger J Hajjar
- Phospholamban Foundation, Amsterdam, The Netherlands 1775 ZH
| | - Shahin Rafii
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029
| | - Lior Zangi
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10029.
| |
Collapse
|
35
|
Dumont AA, Dumont L, Zhou D, Giguère H, Pileggi C, Harper ME, Blondin DP, Scott MS, Auger-Messier M. Cardiomyocyte-specific Srsf3 deletion reveals a mitochondrial regulatory role. FASEB J 2021; 35:e21544. [PMID: 33819356 DOI: 10.1096/fj.202002293rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 11/11/2022]
Abstract
Serine-rich splicing factor 3 (SRSF3) was recently reported as being necessary to preserve RNA stability via an mTOR mechanism in a cardiac mouse model in adulthood. Here, we demonstrate the link between Srsf3 and mitochondrial integrity in an embryonic cardiomyocyte-specific Srsf3 conditional knockout (cKO) mouse model. Fifteen-day-old Srsf3 cKO mice showed dramatically reduced (below 50%) survival and reduced the left ventricular systolic performance, and histological analysis of these hearts revealed a significant increase in cardiomyocyte size, confirming the severe remodeling induced by Srsf3 deletion. RNA-seq analysis of the hearts of 5-day-old Srsf3 cKO mice revealed early changes in expression levels and alternative splicing of several transcripts related to mitochondrial integrity and oxidative phosphorylation. Likewise, the levels of several protein complexes of the electron transport chain decreased, and mitochondrial complex I-driven respiration of permeabilized cardiac muscle fibers from the left ventricle was impaired. Furthermore, transmission electron microscopy analysis showed disordered mitochondrial length and cristae structure. Together with its indispensable role in the physiological maintenance of mouse hearts, these results highlight the previously unrecognized function of Srsf3 in regulating the mitochondrial integrity.
Collapse
Affiliation(s)
- Audrey-Ann Dumont
- Département de Médecine - Service de Cardiologie, Faculté de Médecine et des Sciences de la Santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Lauralyne Dumont
- Département de Médecine - Service de Cardiologie, Faculté de Médecine et des Sciences de la Santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Delong Zhou
- Département de microbiologie et d'infectiologie, Faculté de Médecine et des Sciences de la Santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Hugo Giguère
- Département de Médecine - Service de Cardiologie, Faculté de Médecine et des Sciences de la Santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Chantal Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Denis P Blondin
- Département de Médecine - Service de Cardiologie, Faculté de Médecine et des Sciences de la Santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Michelle S Scott
- Département de Biochimie et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mannix Auger-Messier
- Département de Médecine - Service de Cardiologie, Faculté de Médecine et des Sciences de la Santé, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
36
|
Bai L, Zhao Y, Zhao L, Zhang M, Cai Z, Yung KKL, Dong C, Li R. Ambient air PM 2.5 exposure induces heart injury and cardiac hypertrophy in rats through regulation of miR-208a/b, α/β-MHC, and GATA4. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 85:103653. [PMID: 33812011 DOI: 10.1016/j.etap.2021.103653] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Ambient air fine particulate matter (PM2.5) may increase cardiovascular disease risks. In this study, we investigated the miR-208/GATA4/myosin heavy chain (MHC) regulation mechanisms on cardiac injury in rats after PM2.5 exposure via an animal inhalation device. The results showed that PM2.5 exposure for 2 months caused pathological heart injury, reduced nucleus-cytoplasm ratio, and increased the levels of CK-MB and cTnI, showing cardiac hypertrophy. Oxidative stress and inflammatory responses were also observed in rats' hearts exposed to PM2.5. Of note, PM2.5 exposure for 2-month significantly elevated GATA4 and β-MHC mRNA and protein expression compared with the corresponding controls, along with the high-expression of miR-208b. The ratios of β-MHC/α-MHC expression induced by PM2.5 were remarkably raised in comparison to their controls. It suggested that the up-regulation of miR-208b/β-MHC and GATA4 and the conversion from α-MHC to β-MHC may be the important causes of cardiac hypertrophy in rats incurred by PM2.5.
Collapse
Affiliation(s)
- Lirong Bai
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Yufei Zhao
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Lifang Zhao
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Mei Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Ken Kin Lam Yung
- Institute of Environmental Science, Shanxi University, Taiyuan, China; Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, China.
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, China.
| |
Collapse
|
37
|
Chen QQ, Ma G, Liu JF, Cai YY, Zhang JY, Wei TT, Pan A, Jiang S, Xiao Y, Xiao P, Song J, Li P, Zhang L, Qi LW. Neuraminidase 1 is a driver of experimental cardiac hypertrophy. Eur Heart J 2021; 42:3770-3782. [PMID: 34179969 DOI: 10.1093/eurheartj/ehab347] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/31/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
AIMS Despite considerable therapeutic advances, there is still a dearth of evidence on the molecular determinants of cardiac hypertrophy that culminate in heart failure. Neuraminidases are a family of enzymes that catalyze the cleavage of terminal sialic acids from glycoproteins or glycolipids. This study sought to characterize the role of neuraminidases in pathological cardiac hypertrophy and identify pharmacological inhibitors targeting mammalian neuraminidases. METHODS AND RESULTS Neuraminidase 1 (NEU1) was highly expressed in hypertrophic hearts of mice and rats, and this elevation was confirmed in patients with hypertrophic cardiomyopathy (n = 7) compared with healthy controls (n = 7). The increased NEU1 was mainly localized in cardiomyocytes by co-localization with cardiac troponin T. Cardiomyocyte-specific NEU1 deficiency alleviated hypertrophic phenotypes in response to transverse aortic constriction or isoproterenol hydrochloride infusion, while NEU1 overexpression exacerbated the development of cardiac hypertrophy. Mechanistically, co-immunoprecipitation coupled with mass spectrometry, chromatin immunoprecipitation, and luciferase assays demonstrated that NEU1 translocated into the nucleus and interacted with GATA4, leading to Foetal gene (Nppa and Nppb) expression. Virtual screening and experimental validation identified a novel compound C-09 from millions of compounds that showed favourable binding affinity to human NEU1 (KD = 0.38 μM) and effectively prevented the development of cardiac remodelling in cellular and animal models. Interestingly, anti-influenza drugs zanamivir and oseltamivir effectively inhibited mammalian NEU1 and showed new indications of cardio-protection. CONCLUSIONS This work identifies NEU1 as a critical driver of cardiac hypertrophy and inhibition of NEU1 opens up an entirely new field of treatment for cardiovascular diseases.
Collapse
Affiliation(s)
- Qian-Qian Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing 211198, China
| | - Gaoxiang Ma
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing 211198, China.,Clinical Metabolomics Center, China Pharmaceutical University, No. 639 Longmian Road, Nanjing 211198, China
| | - Jin-Feng Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Yuan-Yuan Cai
- Clinical Metabolomics Center, China Pharmaceutical University, No. 639 Longmian Road, Nanjing 211198, China
| | - Jun-Yuan Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ting-Ting Wei
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - An Pan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Shujun Jiang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing 211198, China
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Pingxi Xiao
- Department of Cardiology, The Sir Run Run Hospital, Nanjing Medical University, No. 109 Longmian Road, Nanjing 211166, China
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Beijing 100037, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Lei Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing 211198, China
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.,Clinical Metabolomics Center, China Pharmaceutical University, No. 639 Longmian Road, Nanjing 211198, China
| |
Collapse
|
38
|
Longenecker JZ, Gilbert CJ, Golubeva VA, Martens CR, Accornero F. Epitranscriptomics in the Heart: a Focus on m 6A. Curr Heart Fail Rep 2021; 17:205-212. [PMID: 32813261 DOI: 10.1007/s11897-020-00473-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Post-transcriptional modifications are key regulators of gene expression that allow the cell to respond to environmental stimuli. The most abundant internal mRNA modification is N6-methyladenosine (m6A), which has been shown to be involved in the regulation of RNA splicing, localization, translation, and decay. It has also been implicated in a wide range of diseases, and here, we review recent evidence of m6A's involvement in cardiac pathologies and processes. RECENT FINDINGS Studies have primarily relied on gain and loss of function models for the enzymes responsible for adding and removing the m6A modification. Results have revealed a multifaceted role for m6A in the heart's response to myocardial infarction, pressure overload, and ischemia/reperfusion injuries. Genome-wide analyses of mRNAs that are differentially methylated during cardiac stress have highlighted the importance of m6A in regulating the translation of specific categories of transcripts implicated in pathways such as calcium handling, cell growth, autophagy, and adrenergic signaling in cardiomyocytes. Regulation of gene expression by m6A is critical for cardiomyocyte homeostasis and stress responses, suggesting a key role for this modification in cardiac pathophysiology.
Collapse
Affiliation(s)
- Jacob Z Longenecker
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Columbus, OH, 43210, USA
| | - Christopher J Gilbert
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Columbus, OH, 43210, USA
| | - Volha A Golubeva
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Columbus, OH, 43210, USA
| | - Colton R Martens
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Columbus, OH, 43210, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 473 W 12th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
39
|
Tan Z, Wu L, Fang Y, Chen P, Wan R, Shen Y, Hu J, Jiang Z, Hong K. Systemic Bioinformatic Analyses of Nuclear-Encoded Mitochondrial Genes in Hypertrophic Cardiomyopathy. Front Genet 2021; 12:670787. [PMID: 34054926 PMCID: PMC8150003 DOI: 10.3389/fgene.2021.670787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an autosomal dominant disease and mitochondria plays a key role in the progression in HCM. Here, we analyzed the expression pattern of nuclear-encoded mitochondrial genes (NMGenes) in HCM and found that the expression of NMGenes was significantly changed. A total of 316 differentially expressed NMGenes (DE-NMGenes) were identified. Pathway enrichment analyses showed that energy metabolism-related pathways such as "pyruvate metabolism" and "fatty acid degradation" were dysregulated, which highlighted the importance of energy metabolism in HCM. Next, we constructed a protein-protein interaction network based on 316 DE-NMGenes and identified thirteen hubs. Then, a total of 17 TFs (transcription factors) were predicted to potentially regulate the expression of 316 DE-NMGenes according to iRegulon, among which 8 TFs were already found involved in pathological hypertrophy. The remaining TFs (like GATA1, GATA5, and NFYA) were good candidates for further experimental verification. Finally, a mouse model of transverse aortic constriction (TAC) was established to validate the genes and results showed that DDIT4, TKT, CLIC1, DDOST, and SNCA were all upregulated in TAC mice. The present study represents the first effort to evaluate the global expression pattern of NMGenes in HCM and provides innovative insight into the molecular mechanism of HCM.
Collapse
Affiliation(s)
- Zhaochong Tan
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Limeng Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan Fang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pingshan Chen
- Department of Science and Technology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rong Wan
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yang Shen
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianping Hu
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhenhong Jiang
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kui Hong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
40
|
Abstract
Cardiac development is a complex developmental process that is initiated soon after gastrulation, as two sets of precardiac mesodermal precursors are symmetrically located and subsequently fused at the embryonic midline forming the cardiac straight tube. Thereafter, the cardiac straight tube invariably bends to the right, configuring the first sign of morphological left–right asymmetry and soon thereafter the atrial and ventricular chambers are formed, expanded and progressively septated. As a consequence of all these morphogenetic processes, the fetal heart acquired a four-chambered structure having distinct inlet and outlet connections and a specialized conduction system capable of directing the electrical impulse within the fully formed heart. Over the last decades, our understanding of the morphogenetic, cellular, and molecular pathways involved in cardiac development has exponentially grown. Multiples aspects of the initial discoveries during heart formation has served as guiding tools to understand the etiology of cardiac congenital anomalies and adult cardiac pathology, as well as to enlighten novels approaches to heal the damaged heart. In this review we provide an overview of the complex cellular and molecular pathways driving heart morphogenesis and how those discoveries have provided new roads into the genetic, clinical and therapeutic management of the diseased hearts.
Collapse
|
41
|
Wang CH, Pandey S, Sivalingam K, Shibu MA, Kuo WW, Viswanadha VP, Lin YC, Liao SC, Huang CY. Leech extract: A candidate cardioprotective against hypertension-induced cardiac hypertrophy and fibrosis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113346. [PMID: 32896627 DOI: 10.1016/j.jep.2020.113346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The prevalence of cardiovascular diseases (CVDs) has been increasing worldwide. Despite significant improvements in therapeutics and on-going developments of novel targeted-treatment regimens, cardiac diseases lack effective preventive and curative therapies with minimal side effects. Therefore, there is an urgent need to identify and propagate alternative and complementary therapies against cardiovascular diseases. Some traditional Chinese medicines can contribute to the prevention and treatment of CVDs and other chronic diseases, with few side effects. Hirudo, a medicinal leech, has been acclaimed for improving blood circulation and overcoming blood stagnation; however, the precise molecular mechanisms of leech extract treatment against pathological cardiac remodeling remain elusive. In this study, we aimed to delineate the molecular mechanisms of medicinal leech extract in the treatment of cardiac hypertrophy and fibrosis, using both in vitro and in vivo assessments. MATERIALS AND METHODS We conducted in vitro and in vivo animal experiments, including cell-viability assays, fluorescence microscopy, immunoblotting, immunohistochemistry, and Masson's trichrome staining. RESULTS Pre-treatment with leech extract conferred a survival benefit to spontaneously-hypertensive rats (SHRs) and significantly reduced angiotensin II (ANG II)-induced cardiac hypertrophy and fibrosis. ANG II-stimulated cardiac hypertrophy markers were attenuated by leech extract treatment, versus controls. Translational expression of stress-associated mitogen-activated protein kinases (MAPKs) was also repressed. In vivo, leech extract treatment significantly ameliorated the cardiac hypertrophy phenotype in SHRs and diminished interstitial fibrosis, accompanied with reduced fibrosis markers. CONCLUSION Leech extract treatment under a hypertensive condition exerted significant cardio-protective benefits by reducing the expression of cardiac hypertrophy-related transcription factors, stress-associated MAPKs, and fibrosis mediators. Our findings imply that medicinal leach extract may be effective against hypertension-induced cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Chien-Hao Wang
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Sudhir Pandey
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan; Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Kalaiselvi Sivalingam
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | | | - Yuan-Chuan Lin
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Shih-Chieh Liao
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
42
|
Cappetta D, De Angelis A, Flamini S, Cozzolino A, Bereshchenko O, Ronchetti S, Cianflone E, Gagliardi A, Ricci E, Rafaniello C, Rossi F, Riccardi C, Berrino L, Bruscoli S, Urbanek K. Deficit of glucocorticoid-induced leucine zipper amplifies angiotensin-induced cardiomyocyte hypertrophy and diastolic dysfunction. J Cell Mol Med 2021; 25:217-228. [PMID: 33247627 PMCID: PMC7810940 DOI: 10.1111/jcmm.15913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/22/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022] Open
Abstract
Poor prognosis in heart failure and the lack of real breakthrough strategies validate targeting myocardial remodelling and the intracellular signalling involved in this process. So far, there are no effective strategies to counteract hypertrophy, an independent predictor of heart failure progression and death. Glucocorticoid-induced leucine zipper (GILZ) is involved in inflammatory signalling, but its role in cardiac biology is unknown. Using GILZ-knockout (KO) mice and an experimental model of hypertrophy and diastolic dysfunction, we addressed the role of GILZ in adverse myocardial remodelling. Infusion of angiotensin II (Ang II) resulted in myocardial dysfunction, inflammation, apoptosis, fibrosis, capillary rarefaction and hypertrophy. Interestingly, GILZ-KO showed more evident diastolic dysfunction and aggravated hypertrophic response compared with WT after Ang II administration. Both cardiomyocyte and left ventricular hypertrophy were more pronounced in GILZ-KO mice. On the other hand, Ang II-induced inflammatory and fibrotic phenomena, cell death and reduction in microvascular density, remained invariant between the WT and KO groups. The analysis of regulators of hypertrophic response, GATA4 and FoxP3, demonstrated an up-regulation in WT mice infused with Ang II; conversely, such an increase did not occur in GILZ-KO hearts. These data on myocardial response to Ang II in mice lacking GILZ indicate that this protein is a new element that can be mechanistically involved in cardiovascular pathology.
Collapse
Affiliation(s)
- Donato Cappetta
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Antonella De Angelis
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Sara Flamini
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Anna Cozzolino
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Oxana Bereshchenko
- Department of Philosophy, Social Sciences and EducationUniversity of PerugiaPerugiaItaly
| | - Simona Ronchetti
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Eleonora Cianflone
- Department of Medical and Surgical SciencesUniversity 'Magna Graecia' of CatanzaroCatanzaroItaly
| | - Andrea Gagliardi
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Erika Ricci
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Concetta Rafaniello
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Francesco Rossi
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Carlo Riccardi
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Liberato Berrino
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Stefano Bruscoli
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Konrad Urbanek
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
- Department of Experimental and Clinical MedicineUniversity 'Magna Graecia' of CatanzaroCatanzaroItaly
| |
Collapse
|
43
|
Hinger SA, Wei J, Dorn LE, Whitson BA, Janssen PML, He C, Accornero F. Remodeling of the m 6A landscape in the heart reveals few conserved post-transcriptional events underlying cardiomyocyte hypertrophy. J Mol Cell Cardiol 2020; 151:46-55. [PMID: 33188779 DOI: 10.1016/j.yjmcc.2020.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/19/2020] [Accepted: 11/06/2020] [Indexed: 11/30/2022]
Abstract
Regulation of gene expression plays a fundamental role in cardiac stress-responses. Modification of coding transcripts by adenosine methylation (m6A) has recently emerged as a critical post-transcriptional mechanism underlying heart disease. Thousands of mammalian mRNAs are known to be m6A-modified, suggesting that remodeling of the m6A landscape may play an important role in cardiac pathophysiology. Here we found an increase in m6A content in human heart failure samples. We then adopted genome-wide analysis to define all m6A-regulated sites in human failing compared to non-failing hearts and identified targeted transcripts involved in histone modification as enriched in heart failure. Further, we compared all m6A sites regulated in human hearts with the ones occurring in isolated rat hypertrophic cardiomyocytes to define cardiomyocyte-specific m6A events conserved across species. Our results identified 38 shared transcripts targeted by m6A during stress conditions, and 11 events that are unique to unstressed cardiomyocytes. Of these, further evaluation of select mRNA and protein abundances demonstrates the potential impact of m6A on post-transcriptional regulation of gene expression in the heart.
Collapse
Affiliation(s)
- Scott A Hinger
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Jiangbo Wei
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, IL, USA
| | - Lisa E Dorn
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Bryan A Whitson
- Department of Surgery, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Paul M L Janssen
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, IL, USA
| | - Federica Accornero
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
44
|
Duddu S, Chakrabarti R, Ghosh A, Shukla PC. Hematopoietic Stem Cell Transcription Factors in Cardiovascular Pathology. Front Genet 2020; 11:588602. [PMID: 33193725 PMCID: PMC7596349 DOI: 10.3389/fgene.2020.588602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Transcription factors as multifaceted modulators of gene expression that play a central role in cell proliferation, differentiation, lineage commitment, and disease progression. They interact among themselves and create complex spatiotemporal gene regulatory networks that modulate hematopoiesis, cardiogenesis, and conditional differentiation of hematopoietic stem cells into cells of cardiovascular lineage. Additionally, bone marrow-derived stem cells potentially contribute to the cardiovascular cell population and have shown potential as a therapeutic approach to treat cardiovascular diseases. However, the underlying regulatory mechanisms are currently debatable. This review focuses on some key transcription factors and associated epigenetic modifications that modulate the maintenance and differentiation of hematopoietic stem cells and cardiac progenitor cells. In addition to this, we aim to summarize different potential clinical therapeutic approaches in cardiac regeneration therapy and recent discoveries in stem cell-based transplantation.
Collapse
Affiliation(s)
| | | | | | - Praphulla Chandra Shukla
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
45
|
Li R, Zhao Y, Shi J, Zhao C, Xie P, Huang W, Yong T, Cai Z. Effects of PM 2.5 exposure in utero on heart injury, histone acetylation and GATA4 expression in offspring mice. CHEMOSPHERE 2020; 256:127133. [PMID: 32454355 DOI: 10.1016/j.chemosphere.2020.127133] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 03/24/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Atmospheric fine particulate matter exposure (PM2.5) can increase the incidence and mortality of heart disease, and raise the risk of fetal congenital heart defect, which have recently drawn much attention. In this study, C57BL/6 mice were exposed to PM2.5 (approximately equivalent to 174 μg/m3) by intratracheal instillation during the gestation. After birth, 10 weeks old offspring mice were divided into four groups: male exposed group (ME), female exposed group (FE), male control group (MC), female control group (FC). The pathological injury, pro-inflammatory cytokines, histone acetylation levels, and expressions of GATA-binding protein 4 (GATA4) and downstream genes were investigated. The results showed that exposure to PM2.5 in utero increased pathological damage and TNF-α and IL-6 levels in hearts of offspring mice, and effects in ME were more serious than FE. Notably, GATA4 protein levels in hearts in ME were significantly lower than that of MC, accompanied by down-regulation of histone acetyltransferase (HAT)-p300 and up-regulation of histone deacetylase-SIRT3. As GATA4 downstream genes, ratios of β-MHC gene expression to α-MHC significantly raised in ME relative to the MC. Results of chromatin immunoprecipitation (ChIP)-qPCR assay found that binding levels of acetylated histone 3 lysine 9 (H3K9ac) in GATA4 promoter region in the hearts of ME or FE were markedly decreased compared with their corresponding control groups. It suggested that maternal exposure to PM2.5 may cause cardiac injury in the offspring, heart damage of male mice was worse than female mice, in which process HAT-p300, H3K9ac, transcription factor GATA4 may play an important regulation role.
Collapse
Affiliation(s)
- Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China
| | - Yufei Zhao
- Institute of Environmental Science, Shanxi University, Taiyuan, PR China
| | - Jing Shi
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan, 030006, China
| | - Chao Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Peisi Xie
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Wei Huang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ting Yong
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
46
|
Crosstalk between cardiomyocytes and noncardiomyocytes is essential to prevent cardiomyocyte apoptosis induced by proteasome inhibition. Cell Death Dis 2020; 11:783. [PMID: 32951004 PMCID: PMC7502079 DOI: 10.1038/s41419-020-03005-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023]
Abstract
Heart is a multi-cellular organ made up of various cell types interacting with each other. Cardiomyocytes may benefit or suffer from crosstalk with noncardiomyocytes in response to diverse kinds of cardiac stresses. Proteasome dysfunction is a common cardiac stress which causes cardiac proteotoxicity and contributes to cardiac diseases such as heart failure and myocardial infarction. The role of crosstalk between cardiomyocytes and noncardiomyocytes in defense of cardiac proteotoxicity remains unknown. Here, we report a cardiomyocyte-specific survival upon proteasome inhibition in a heterogeneous culture consisting of cardiomyocytes and other three major cardiac cell types. Conversely, cardiomyocyte apoptosis is remarkably induced by proteasome inhibition in a homogeneous culture consisting of a majority of cardiomyocytes, demonstrating an indispensable role of noncardiomyocytes in the prevention of cardiomyocyte apoptosis resulting from proteasome inhibition. We further show that cardiomyocytes express brain natriuretic peptide (BNP) as an extracellular molecule in response to proteasome inhibition. Blockade of BNP receptor on noncardiomyocytes significantly exacerbated the cardiomyocyte apoptosis, indicating a paracrine function of cardiomyocyte-released extracellular BNP in activation of a protective feedback from noncardiomyocytes. Finally, we demonstrate that proteasome inhibition-activated transcriptional up-regulation of BNP in cardiomyocytes was associated with the dissociation of repressor element 1 silencing transcription factor (REST)/ histone deacetylase 1 (HDAC1) repressor complex from BNP gene promoter. Consistently, the induction of BNP could be further augmented by the treatment of HDAC inhibitors. We conclude that the crosstalk between cardiomyocytes and noncardiomyocytes plays a crucial role in the protection of cardiomyocytes from proteotoxicity stress, and identify cardiomyocyte-released BNP as a novel paracrine signaling molecule mediating this crosstalk. These findings provide new insights into the key regulators and cardioprotective mechanism in proteasome dysfunction-related cardiac diseases.
Collapse
|
47
|
Peng L, Qian M, Liu Z, Tang X, Sun J, Jiang Y, Sun S, Cao X, Pang Q, Liu B. Deacetylase-independent function of SIRT6 couples GATA4 transcription factor and epigenetic activation against cardiomyocyte apoptosis. Nucleic Acids Res 2020; 48:4992-5005. [PMID: 32239217 PMCID: PMC7229816 DOI: 10.1093/nar/gkaa214] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/21/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
SIRT6 deacetylase activity improves stress resistance via gene silencing and genome maintenance. Here, we reveal a deacetylase-independent function of SIRT6, which promotes anti-apoptotic gene expression via the transcription factor GATA4. SIRT6 recruits TIP60 acetyltransferase to acetylate GATA4 at K328/330, thus enhancing its chromatin binding capacity. In turn, GATA4 inhibits the deacetylase activity of SIRT6, thus ensuring the local chromatin accessibility via TIP60-promoted H3K9 acetylation. Significantly, the treatment of doxorubicin (DOX), an anti-cancer chemotherapeutic, impairs the SIRT6-TIP60-GATA4 trimeric complex, blocking GATA4 acetylation and causing cardiomyocyte apoptosis. While GATA4 hyperacetylation-mimic retains the protective effect against DOX, the hypoacetylation-mimic loses such ability. Thus, the data reveal a novel SIRT6-TIP60-GATA4 axis, which promotes the anti-apoptotic pathway to prevent DOX toxicity. Targeting the trimeric complex constitutes a new strategy to improve the safety of DOX chemotherapy in clinical application.
Collapse
Affiliation(s)
- Linyuan Peng
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University Health Science Center, Shenzhen 518055, China.,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Minxian Qian
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University Health Science Center, Shenzhen 518055, China.,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Zuojun Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University Health Science Center, Shenzhen 518055, China.,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Xiaolong Tang
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University Health Science Center, Shenzhen 518055, China.,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Jie Sun
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University Health Science Center, Shenzhen 518055, China.,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Yue Jiang
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University Health Science Center, Shenzhen 518055, China.,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Shimin Sun
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University Health Science Center, Shenzhen 518055, China.,Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Xinyue Cao
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University Health Science Center, Shenzhen 518055, China
| | - Qiuxiang Pang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255049, China
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Medical Research Center, Shenzhen University Health Science Center, Shenzhen 518055, China.,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China.,Carson International Cancer Center, Shenzhen University Health Science Center, Shenzhen 518055, China.,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
48
|
Inhibition of the ROS-EGFR Pathway Mediates the Protective Action of Nox1/4 Inhibitor GKT137831 against Hypertensive Cardiac Hypertrophy via Suppressing Cardiac Inflammation and Activation of Akt and ERK1/2. Mediators Inflamm 2020; 2020:1078365. [PMID: 32831633 PMCID: PMC7424508 DOI: 10.1155/2020/1078365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress, inflammation, and hypertension constitute a self-perpetuating vicious circle to exacerbate hypertension and subsequent hypertensive cardiac hypertrophy. NADPH oxidase (Nox) 1/4 inhibitor GKT137831 alleviates hypertensive cardiac hypertrophy in models of secondary hypertension; however, it remains unclear about its effect on hypertensive cardiac hypertrophy in models of essential hypertension. This study is aimed at determining the beneficial role of GKT137831 in hypertensive cardiac hypertrophy in spontaneously hypertensive rats (SHRs) and its mechanisms of action. Treating with GKT137831 prevented cardiac hypertrophy in SHRs. Likewise, decreasing production of reactive oxygen species (ROS) with GKT137831 reduced epidermal growth factor receptor (EGFR) activity in the left ventricle of SHRs. Additionally, EGFR inhibition also reduced ROS production in the left ventricle and blunted hypertensive cardiac hypertrophy in SHRs. Moreover, inhibition of the ROS-EGFR pathway with Nox1/4 inhibitor GKT137831 or selective EGFR inhibitor AG1478 reduced protein and mRNA levels of proinflammatory cytokines tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), and interleukin 1β (IL-1β), as well as the activities of Akt and extracellular signal-regulated kinase (ERK) 1/2 in the left ventricle of SHRs. In summary, GKT137831 prevents hypertensive cardiac hypertrophy in SHRs, Nox-deprived ROS regulated EGFR activation through positive feedback in the hypertrophic myocardium, and inhibition of the ROS-EGFR pathway mediates the protective role of GKT137831 in hypertensive cardiac hypertrophy via repressing cardiac inflammation and activation of Akt and ERK1/2. This research will provide additional details for GKT137831 to prevent hypertensive cardiac hypertrophy.
Collapse
|
49
|
Shimaoka T, Wang Y, Morishima M, Miyamoto S, Ono K. Magnesium Deficiency Causes Transcriptional Downregulation of Kir2.1 and Kv4.2 Channels in Cardiomyocytes Resulting in QT Interval Prolongation. Circ J 2020; 84:1244-1253. [PMID: 32554946 DOI: 10.1253/circj.cj-20-0310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
BACKGROUND Mechanisms for QT interval prolongation and cardiac arrhythmogenesis in hypomagnesemia are poorly understood. This study investigated the potential molecular mechanism for QT prolongation caused by magnesium (Mg) deficiency in rats by using the patch clamp technique and molecular biology. METHODS AND RESULTS Male Wistar rats were fed an Mg-free diet or a normal diet for up to 12 weeks. There was QT prolongation in the ECG of Mg-deficient rats, and cardiomyocytes from these rats showed prolongation of action potential duration. Electrophysiological studies showed that inward-rectifying K+current (IK1) and transient outward K+current (Ito) were decreased in Mg-deficient cardiomyocytes, and these findings were consistent with the downregulation of mRNA, as well as protein levels of Kir2.1 and Kv4.2. In Mg-deficient cardiomyocytes, transcription factors, GATA4 and NFAT, were upregulated, whereas CREB was downregulated. In contrast to Mg deficiency, cellular Mg2+overload in cultured cardiomyocytes resulted in the upregulation of Kir2.1 and Kv4.2, which was accompanied by the downregulation of GATA4 and NFATc4, and the upregulation of CREB. Activation of NFAT and inhibition of CREB reduced Kv4.2-Ito, whereas Kir2.1-IK1was reduced by CREB inhibition but not by NFTA activation. CONCLUSIONS Intracellular Mg deficiency downregulates IK1and Itoin cardiomyocytes, and this is mediated by the transcription factors, NFAT and CREB. These results provide a novel mechanism for the long-term QT interval prolongation in hypomagnesemia.
Collapse
MESH Headings
- Action Potentials
- Animals
- Arrhythmias, Cardiac/etiology
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Disease Models, Animal
- Down-Regulation
- Heart Rate
- Magnesium Deficiency/complications
- Male
- Myocytes, Cardiac/metabolism
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/metabolism
- Rats, Wistar
- Shal Potassium Channels/genetics
- Shal Potassium Channels/metabolism
- Signal Transduction
- Time Factors
- Transcription, Genetic
Collapse
Affiliation(s)
- Toru Shimaoka
- Department of Pathophysiology, Oita University School of Medicine
- Department of Cardiovascular Surgery, Oita University School of Medicine
| | - Yan Wang
- Department of Pathophysiology, Oita University School of Medicine
| | - Masaki Morishima
- Department of Pathophysiology, Oita University School of Medicine
| | - Shinji Miyamoto
- Department of Cardiovascular Surgery, Oita University School of Medicine
| | - Katsushige Ono
- Department of Pathophysiology, Oita University School of Medicine
| |
Collapse
|
50
|
Xu Y, Wu H, Wu L, Xu L, Li J, Wang Q, Pu X. Silencing of long non-coding RNA SOX21-AS1 inhibits lung adenocarcinoma invasion and migration by impairing TSPAN8 via transcription factor GATA6. Int J Biol Macromol 2020; 164:1294-1303. [PMID: 32698071 DOI: 10.1016/j.ijbiomac.2020.07.172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 06/24/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022]
Abstract
Here, we revealed the novel role of long non-coding RNAs (lncRNAs) SOX21 antisense RNA 1 (SOX21-AS1)/TSPAN8/GATA6 in progression of lung adenocarcinoma. SOX21-AS1 expression was quantified in lung adenocarcinoma tissues and cells by RT-qPCR. Then, gain- and loss-of-function experiments were conducted in lung adenocarcinoma cells. Expression of GATA6, TSPAN8 and extracellular signal-regulated kinase (ERK) signaling pathway-related genes was determined in lung adenocarcinoma cells by western blot analysis. The interaction and relationship among SOX21-AS1, GATA6 and TSPAN8 were predicted and verified respectively by RNA pull down, RIP, ChIP, and dual-luciferase reporter assays. Next, lung adenocarcinoma cell proliferation, colony formation, invasion and migration were assessed by 5-ethynyl-2'-deoxyuridine staining, colony formation assay and Transwell assay. Xenograft tumors were established in nude mice and the tumor growth was observed and recorded. SOX21-AS1 was observed to be highly expressed in lung adenocarcinoma tissues. The overexpression of SOX21-AS1, GATA6 or TSPAN8 obviously enhanced cell biological functions in lung adenocarcinoma. Meanwhile, SOX21-AS1 interacted with GATA6 which bound to TSPAN8 promoter and promoted TSPAN8 expression, which further enhanced cell colony formation, proliferation and invasion, and also activated ERK signaling pathway. Silencing of SOX21-AS1 and inhibiting its binding to GATA6 downregulate TSPAN8 and thereby exert anti-oncogenic effects in lung adenocarcinoma.
Collapse
Affiliation(s)
- Yan Xu
- Department of Thoracic Medicine Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Hongwei Wu
- Department of Orthopedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Lin Wu
- Department of Thoracic Medicine Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Li Xu
- Department of Thoracic Medicine Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Jia Li
- Department of Thoracic Medicine Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Qianzhi Wang
- Department of Thoracic Medicine Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Xingxiang Pu
- Department of Thoracic Medicine Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, PR China.
| |
Collapse
|