1
|
Stolle DS, Osterhoff L, Treimer P, Lambertz J, Karstens M, Keller JM, Gerlach I, Bischoff A, Dünschede B, Rödiger A, Herrmann C, Baginsky S, Hofmann E, Zoschke R, Armbruster U, Nowaczyk MM, Schünemann D. STIC2 selectively binds ribosome-nascent chain complexes in the cotranslational sorting of Arabidopsis thylakoid proteins. EMBO J 2024; 43:4699-4719. [PMID: 39192033 PMCID: PMC11480477 DOI: 10.1038/s44318-024-00211-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Chloroplast-encoded multi-span thylakoid membrane proteins are crucial for photosynthetic complexes, yet the coordination of their biogenesis remains poorly understood. To identify factors that specifically support the cotranslational biogenesis of the reaction center protein D1 of photosystem (PS) II, we generated and affinity-purified stalled ribosome-nascent chain complexes (RNCs) bearing D1 nascent chains. Stalled RNCs translating the soluble ribosomal subunit uS2c were used for comparison. Quantitative tandem-mass spectrometry of the purified RNCs identified around 140 proteins specifically associated with D1 RNCs, mainly involved in protein and cofactor biogenesis, including chlorophyll biosynthesis, and other metabolic pathways. Functional analysis of STIC2, a newly identified D1 RNC interactor, revealed its cooperation with chloroplast protein SRP54 in the de novo biogenesis and repair of D1, and potentially other cotranslationally-targeted reaction center subunits of PSII and PSI. The primary binding interface between STIC2 and the thylakoid insertase Alb3 and its homolog Alb4 was mapped to STIC2's β-sheet region, and the conserved Motif III in the C-terminal regions of Alb3/4.
Collapse
Affiliation(s)
- Dominique S Stolle
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Lena Osterhoff
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Paul Treimer
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Jan Lambertz
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Marie Karstens
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | | | - Ines Gerlach
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Potsdam, Germany
| | - Annika Bischoff
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Anja Rödiger
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Christian Herrmann
- Physical Chemistry I, Faculty for Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Sacha Baginsky
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Eckhard Hofmann
- Protein Crystallography, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Potsdam, Germany
| | - Ute Armbruster
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Potsdam, Germany
- Molecular Photosynthesis, Faculty of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marc M Nowaczyk
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
2
|
Bischoff A, Ortelt J, Dünschede B, Zegarra V, Bedrunka P, Bange G, Schünemann D. The role of chloroplast SRP54 domains and its C-terminal tail region in post- and co-translational protein transport in vivo. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5734-5749. [PMID: 38989593 PMCID: PMC11427828 DOI: 10.1093/jxb/erae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
In the chloroplast, the 54 kDa subunit of the signal recognition particle (cpSRP54) is involved in the post-translational transport of the light-harvesting chlorophyll a/b-binding proteins (LHCPs) and the co-translational transport of plastid-encoded subunits of the photosynthetic complexes to the thylakoid membrane. It forms a high-affinity complex with plastid-specific cpSRP43 for post-translational transport, while a ribosome-associated pool coordinates its co-translational function. CpSRP54 constitutes a conserved multidomain protein, comprising a GTPase (NG) and a methionine-rich (M) domain linked by a flexible region. It is further characterized by a plastid-specific C-terminal tail region containing the cpSRP43-binding motif. To characterize the physiological role of the various regions of cpSRP54 in thylakoid membrane protein transport, we generated Arabidopsis cpSRP54 knockout (ffc1-2) lines producing truncated cpSRP54 variants or a GTPase point mutation variant. Phenotypic characterization of the complementation lines demonstrated that the C-terminal tail region of cpSRP54 plays an important role exclusively in post-translational LHCP transport. Furthermore, we show that the GTPase activity of cpSRP54 plays an essential role in the transport pathways for both nuclear as well as plastid-encoded proteins. In addition, our data revealed that plants expressing cpSRP54 without the C-terminal region exhibit a strongly increased accumulation of a photosystem I assembly intermediate.
Collapse
Affiliation(s)
- Annika Bischoff
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Bochum, Germany
| | - Jennifer Ortelt
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Bochum, Germany
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Bochum, Germany
| | - Victor Zegarra
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, University of Marburg, Marburg, Germany
| | - Patricia Bedrunka
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, University of Marburg, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, University of Marburg, Marburg, Germany
- Max-Planck-Institute for terrestrial Microbiology, Marburg, Germany
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
3
|
Co-Translational Protein Folding and Sorting in Chloroplasts. PLANTS 2020; 9:plants9020214. [PMID: 32045984 PMCID: PMC7076657 DOI: 10.3390/plants9020214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 01/22/2023]
Abstract
Cells depend on the continuous renewal of their proteome composition during the cell cycle and in order to replace aberrant proteins or to react to changing environmental conditions. In higher eukaryotes, protein synthesis is achieved by up to five million ribosomes per cell. With the fast kinetics of translation, the large number of newly made proteins generates a substantial burden for protein homeostasis and requires a highly orchestrated cascade of factors promoting folding, sorting and final maturation. Several of the involved factors directly bind to translating ribosomes for the early processing of emerging nascent polypeptides and the translocation of ribosome nascent chain complexes to target membranes. In plant cells, protein synthesis also occurs in chloroplasts serving the expression of a relatively small set of 60–100 protein-coding genes. However, most of these proteins, together with nucleus-derived subunits, form central complexes majorly involved in the essential processes of photosynthetic light reaction, carbon fixation, metabolism and gene expression. Biogenesis of these heterogenic complexes adds an additional level of complexity for protein biogenesis. In this review, we summarize the current knowledge about co-translationally binding factors in chloroplasts and discuss their role in protein folding and ribosome translocation to thylakoid membranes.
Collapse
|
4
|
Fernandez DE. Two paths diverged in the stroma: targeting to dual SEC translocase systems in chloroplasts. PHOTOSYNTHESIS RESEARCH 2018; 138:277-287. [PMID: 29951837 DOI: 10.1007/s11120-018-0541-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Chloroplasts inherited systems and strategies for protein targeting, translocation, and integration from their cyanobacterial ancestor. Unlike cyanobacteria however, chloroplasts in green algae and plants contain two distinct SEC translocase/integrase systems: the SEC1 system in the thylakoid membrane and the SEC2 system in the inner envelope membrane. This review summarizes the mode of action of SEC translocases, identification of components of the SEC2 system, evolutionary history of SCY and SECA genes, and previous work on the co- and post-translational targeting of lumenal and thylakoid membrane proteins to the SEC1 system. Recent work identifying substrates for the SEC2 system and potential features that may contribute to inner envelope targeting are also discussed.
Collapse
Affiliation(s)
- Donna E Fernandez
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI, 53706, USA.
| |
Collapse
|
5
|
Walter B, Hristou A, Nowaczyk MM, Schünemann D. In vitro reconstitution of co-translational D1 insertion reveals a role of the cpSec-Alb3 translocase and Vipp1 in photosystem II biogenesis. Biochem J 2015; 468:315-24. [PMID: 25803492 DOI: 10.1042/bj20141425] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Photosystem II (PS II) is a multi-subunit complex localized in the thylakoid membrane that performs the light-dependent photosynthetic charge separation. The PS II reaction centre comprises, among others, the D1 protein. De novo synthesis and repair of PS II require efficient mechanisms for transport and insertion of plastid encoded D1 into the thylakoid membrane. To elucidate the process of D1 insertion, we used an in vitro translation system derived from pea chloroplasts to reconstitute the D1 insertion. Thereby, truncated D1 encoding psbA mRNAs lacking a stop codon were translated in the presence of thylakoid membranes and the translation was stalled by addition of chloramphenicol. The generated ribosome nascent chain complexes (RNCs) were tightly associated with the thylakoids. Subsequently, these D1 insertion intermediates were enriched from solubilized thylakoids by sucrose cushion centrifugation. Immunological analyses demonstrated the presence of the cpSec translocase, Alb3, cpFtsY, cpSRP54 and Vipp1 (vesicle-inducing protein in plastids 1) in the enriched D1 insertion intermediates. A complex formation between cpSecY, Alb3, cpFtsY and Vipp1 in thylakoid membranes was shown by gel filtration chromatography, BN (Blue Native)/SDS-PAGE and co-immunoprecipitation experiments. Furthermore, a stimulating effect of recombinant Vipp1 on the formation of a D1 insertion intermediate was observed in vitro. These results suggest a co-operative function of these proteins in D1 insertion.
Collapse
Affiliation(s)
- Björn Walter
- *Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Athina Hristou
- *Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Marc M Nowaczyk
- †Plant Biochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Danja Schünemann
- *Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780 Bochum, Germany
| |
Collapse
|
6
|
Piskozub M, Króliczewska B, Króliczewski J. Ribosome nascent chain complexes of the chloroplast-encoded cytochrome b6 thylakoid membrane protein interact with cpSRP54 but not with cpSecY. J Bioenerg Biomembr 2015; 47:265-78. [PMID: 25561393 PMCID: PMC4555342 DOI: 10.1007/s10863-014-9598-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 12/19/2014] [Indexed: 11/24/2022]
Abstract
We analysed the interplay between the cpSecY, cpSRP54 and the chloroplast-encoded cytochrome b6 via isolation of chloroplast ribosome nascent chain complexes and the use of cross-linking factors, antibodies and mass spectroscopy analyses. We showed that the cytochrome b6 nascent polypeptide complex is tightly associated with ribosomes and that the translation of cytochrome b6 was discontinuous. The causes of ribosome pausing and the functional significance of this phenomenon may be related to proper protein folding, insertion into thylakoid membranes and the association of cofactors during this process. It was also found that cpSecY was not in the vicinity of cytochrome b6 intermediates during the elongation process and does not act with mature cytochrome b6 after translation. Using the approach of cross-linking during elongation of the cytochrome b6 protein, we showed that cpSRP54 interacts strongly with the elongating nascent chain.
Collapse
Affiliation(s)
- Małgorzata Piskozub
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Bożena Króliczewska
- Department of Animal Physiology and Biostructure, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Jarosław Króliczewski
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland
| |
Collapse
|
7
|
Schöttler MA, Tóth SZ, Boulouis A, Kahlau S. Photosynthetic complex stoichiometry dynamics in higher plants: biogenesis, function, and turnover of ATP synthase and the cytochrome b6f complex. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2373-400. [PMID: 25540437 DOI: 10.1093/jxb/eru495] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
During plant development and in response to fluctuating environmental conditions, large changes in leaf assimilation capacity and in the metabolic consumption of ATP and NADPH produced by the photosynthetic apparatus can occur. To minimize cytotoxic side reactions, such as the production of reactive oxygen species, photosynthetic electron transport needs to be adjusted to the metabolic demand. The cytochrome b6f complex and chloroplast ATP synthase form the predominant sites of photosynthetic flux control. Accordingly, both respond strongly to changing environmental conditions and metabolic states. Usually, their contents are strictly co-regulated. Thereby, the capacity for proton influx into the lumen, which is controlled by electron flux through the cytochrome b6f complex, is balanced with proton efflux through ATP synthase, which drives ATP synthesis. We discuss the environmental, systemic, and metabolic signals triggering the stoichiometry adjustments of ATP synthase and the cytochrome b6f complex. The contribution of transcriptional and post-transcriptional regulation of subunit synthesis, and the importance of auxiliary proteins required for complex assembly in achieving the stoichiometry adjustments is described. Finally, current knowledge on the stability and turnover of both complexes is summarized.
Collapse
Affiliation(s)
- Mark Aurel Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Szilvia Z Tóth
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Alix Boulouis
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Sabine Kahlau
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
8
|
Walter B, Pieta T, Schünemann D. Arabidopsis thaliana mutants lacking cpFtsY or cpSRP54 exhibit different defects in photosystem II repair. FRONTIERS IN PLANT SCIENCE 2015; 6:250. [PMID: 25918516 PMCID: PMC4394663 DOI: 10.3389/fpls.2015.00250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/27/2015] [Indexed: 05/24/2023]
Abstract
Photosystem II (PS II) is a multi subunit protein complex embedded in the thylakoid membrane of cyanobacteria and chloroplasts. As the PS II reaction center protein D1 is prone to a light induced damage that inhibits PS II function especially at elevated light intensities, a highly ordered repair process including synthesis, targeting and insertion of D1 has evolved. To elucidate the function of the chloroplast signal recognition particle subunits, cpSRP43 and cpSRP54, and the cpSRP-receptor cpFtsY in D1 biogenesis we investigated the efficiency of the PS II repair cycle in the corresponding mutants of Arabidopsis thaliana. Immunological analyses, PAM measurements and in vivo labeling experiments demonstrate an impaired replacement of damaged D1 in the cpftsy mutant, while the chaos and the ffc mutant lacking cpSRP43 and cpSRP54, respectively, were not or hardly affected. The defect in cpftsy was neither caused by an impaired psbA transcript accumulation, D1 translation initiation nor by an enhanced D1 degradation. Further experiments revealed a decreased amount of salt stable, thylakoid membrane-associated translating ribosomes in the cpftsy mutant, while the amount of membrane-associated translating ribosomes is unaltered in the chaos and the ffc mutants. Therefore, our data indicate that the lack of cpFtsY leads to an inefficient PS II repair cycle caused by an impaired binding of translating ribosomes to the thylakoid membrane.
Collapse
Affiliation(s)
- Björn Walter
- Molecular Biology of Plant Organelles, Ruhr-University BochumBochum, Germany
| | - Thomas Pieta
- Plant Cell Physiology and Molecular Biology, Ruhr-University BochumBochum, Germany
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Ruhr-University BochumBochum, Germany
| |
Collapse
|
9
|
Genome-wide analysis of thylakoid-bound ribosomes in maize reveals principles of cotranslational targeting to the thylakoid membrane. Proc Natl Acad Sci U S A 2015; 112:E1678-87. [PMID: 25775549 DOI: 10.1073/pnas.1424655112] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chloroplast genomes encode ∼ 37 proteins that integrate into the thylakoid membrane. The mechanisms that target these proteins to the membrane are largely unexplored. We used ribosome profiling to provide a comprehensive, high-resolution map of ribosome positions on chloroplast mRNAs in separated membrane and soluble fractions in maize seedlings. The results show that translation invariably initiates off the thylakoid membrane and that ribosomes synthesizing a subset of membrane proteins subsequently become attached to the membrane in a nuclease-resistant fashion. The transition from soluble to membrane-attached ribosomes occurs shortly after the first transmembrane segment in the nascent peptide has emerged from the ribosome. Membrane proteins whose translation terminates before emergence of a transmembrane segment are translated in the stroma and targeted to the membrane posttranslationally. These results indicate that the first transmembrane segment generally comprises the signal that links ribosomes to thylakoid membranes for cotranslational integration. The sole exception is cytochrome f, whose cleavable N-terminal cpSecA-dependent signal sequence engages the thylakoid membrane cotranslationally. The distinct behavior of ribosomes synthesizing the inner envelope protein CemA indicates that sorting signals for the thylakoid and envelope membranes are distinguished cotranslationally. In addition, the fractionation behavior of ribosomes in polycistronic transcription units encoding both membrane and soluble proteins adds to the evidence that the removal of upstream ORFs by RNA processing is not typically required for the translation of internal genes in polycistronic chloroplast mRNAs.
Collapse
|
10
|
Yang H, Liu J, Wen X, Lu C. Molecular mechanism of photosystem I assembly in oxygenic organisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:838-48. [PMID: 25582571 DOI: 10.1016/j.bbabio.2014.12.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/27/2014] [Accepted: 12/30/2014] [Indexed: 11/26/2022]
Abstract
Photosystem I, an integral membrane and multi-subunit complex, catalyzes the oxidation of plastocyanin and the reduction of ferredoxin by absorbed light energy. Photosystem I participates in photosynthetic acclimation processes by being involved in cyclic electron transfer and state transitions for sustaining efficient photosynthesis. The photosystem I complex is highly conserved from cyanobacteria to higher plants and contains the light-harvesting complex and the reaction center complex. The assembly of the photosystem I complex is highly complicated and involves the concerted assembly of multiple subunits and hundreds of cofactors. A suite of regulatory factors for the assembly of photosystem I subunits and cofactors have been identified that constitute an integrative network regulating PSI accumulation. This review aims to discuss recent findings in the field relating to how the photosystem I complex is assembled in oxygenic organisms. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Huixia Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jun Liu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Xiaogang Wen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Congming Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
11
|
Weis BL, Schleiff E, Zerges W. Protein targeting to subcellular organelles via MRNA localization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:260-73. [PMID: 23457718 DOI: 10.1016/j.bbamcr.2012.04.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cells have complex membranous organelles for the compartmentalization and the regulation of most intracellular processes. Organelle biogenesis and maintenance requires newly synthesized proteins, each of which needs to go from the ribosome translating its mRNA to the correct membrane for insertion or transclocation to an a organellar subcompartment. Decades of research have revealed how proteins are targeted to the correct organelle and translocated across one or more organelle membranes ro the compartment where they function. The paradigm examples involve interactions between a peptide sequence in the protein, localization factors, and various membrane embedded translocation machineries. Membrane translocation is either cotranslational or posttranslational depending on the protein and target organelle. Meanwhile research in embryos, neurons and yeast revealed an alternative targeting mechanism in which the mRNA is localized and only then translated to synthesize the protein in the correct location. In these cases, the targeting information is coded by the cis-acting sequences in the mRNA ("Zipcodes") that interact with localization factors and, in many cases, are transported by the molecular motors on the cytoskeletal filaments. Recently, evidence has been found for this "mRNA based" mechanism in organelle protein targeting to endoplasmic reticulum, mitochondria, and the photosynthetic membranes within chloroplasts. Here we review known and potential roles of mRNA localization in protein targeting to and within organelles. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Benjamin L Weis
- Goether University, Cluster of Excellence Macromolecular Complexes, Institute for Molecular Biosciences, Max-von-Laue Str. 9, D-60438 Frankfort, Germany
| | | | | |
Collapse
|
12
|
Lyska D, Meierhoff K, Westhoff P. How to build functional thylakoid membranes: from plastid transcription to protein complex assembly. PLANTA 2013; 237:413-28. [PMID: 22976450 PMCID: PMC3555230 DOI: 10.1007/s00425-012-1752-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/10/2012] [Indexed: 05/06/2023]
Abstract
Chloroplasts are the endosymbiotic descendants of cyanobacterium-like prokaryotes. Present genomes of plant and green algae chloroplasts (plastomes) contain ~100 genes mainly encoding for their transcription-/translation-machinery, subunits of the thylakoid membrane complexes (photosystems II and I, cytochrome b (6) f, ATP synthase), and the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Nevertheless, proteomic studies have identified several thousand proteins in chloroplasts indicating that the majority of the plastid proteome is not encoded by the plastome. Indeed, plastid and host cell genomes have been massively rearranged in the course of their co-evolution, mainly through gene loss, horizontal gene transfer from the cyanobacterium/chloroplast to the nucleus of the host cell, and the emergence of new nuclear genes. Besides structural components of thylakoid membrane complexes and other (enzymatic) complexes, the nucleus provides essential factors that are involved in a variety of processes inside the chloroplast, like gene expression (transcription, RNA-maturation and translation), complex assembly, and protein import. Here, we provide an overview on regulatory factors that have been described and characterized in the past years, putting emphasis on mechanisms regulating the expression and assembly of the photosynthetic thylakoid membrane complexes.
Collapse
Affiliation(s)
- Dagmar Lyska
- Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany.
| | | | | |
Collapse
|
13
|
Component interactions, regulation and mechanisms of chloroplast signal recognition particle-dependent protein transport. Eur J Cell Biol 2010; 89:965-73. [PMID: 20709425 DOI: 10.1016/j.ejcb.2010.06.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The chloroplast proteome comprises nuclear- and plastome-encoded proteins. In order to function correctly these proteins must be transported, either cotranslationally or posttranslationally, to their final destination in the chloroplast. Here the chloroplast signal recognition particle (cpSRP) which is present in two different stromal pools plays an essential role. On the one hand, the conserved 54kDa subunit (cpSRP54) is associated with 70S ribosomes to function in the cotranslational transport of the plastid-encoded thylakoid membrane protein D1. On the other hand, the cpSRP consists of cpSRP54 and a unique 43kDa subunit (cpSRP43) and facilitates the transport of nuclear-encoded light-harvesting chlorophyll-binding proteins (LHCPs), the most abundant membrane proteins of the thylakoids. In addition to cpSRP, the cpSRP receptor cpFtsY and the thylakoid membrane protein Alb3 are required for posttranslational LHCP integration in a GTP-dependent manner. In contrast to the universally conserved cytosolic SRP, the chloroplast SRP of higher plants lacks an SRP-RNA component. Interestingly, cpSRP-RNA genes have been identified in the plastome of lower plants, indicating that their cpSRP structure resembles the cytosolic SRP.
Collapse
|
14
|
Friso G, Majeran W, Huang M, Sun Q, van Wijk KJ. Reconstruction of metabolic pathways, protein expression, and homeostasis machineries across maize bundle sheath and mesophyll chloroplasts: large-scale quantitative proteomics using the first maize genome assembly. PLANT PHYSIOLOGY 2010; 152:1219-50. [PMID: 20089766 PMCID: PMC2832236 DOI: 10.1104/pp.109.152694] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 01/17/2010] [Indexed: 05/17/2023]
Abstract
Chloroplasts in differentiated bundle sheath (BS) and mesophyll (M) cells of maize (Zea mays) leaves are specialized to accommodate C(4) photosynthesis. This study provides a reconstruction of how metabolic pathways, protein expression, and homeostasis functions are quantitatively distributed across BS and M chloroplasts. This yielded new insights into cellular specialization. The experimental analysis was based on high-accuracy mass spectrometry, protein quantification by spectral counting, and the first maize genome assembly. A bioinformatics workflow was developed to deal with gene models, protein families, and gene duplications related to the polyploidy of maize; this avoided overidentification of proteins and resulted in more accurate protein quantification. A total of 1,105 proteins were assigned as potential chloroplast proteins, annotated for function, and quantified. Nearly complete coverage of primary carbon, starch, and tetrapyrole metabolism, as well as excellent coverage for fatty acid synthesis, isoprenoid, sulfur, nitrogen, and amino acid metabolism, was obtained. This showed, for example, quantitative and qualitative cell type-specific specialization in starch biosynthesis, arginine synthesis, nitrogen assimilation, and initial steps in sulfur assimilation. An extensive overview of BS and M chloroplast protein expression and homeostasis machineries (more than 200 proteins) demonstrated qualitative and quantitative differences between M and BS chloroplasts and BS-enhanced levels of the specialized chaperones ClpB3 and HSP90 that suggest active remodeling of the BS proteome. The reconstructed pathways are presented as detailed flow diagrams including annotation, relative protein abundance, and cell-specific expression pattern. Protein annotation and identification data, and projection of matched peptides on the protein models, are available online through the Plant Proteome Database.
Collapse
|
15
|
Rutschow H, Ytterberg AJ, Friso G, Nilsson R, van Wijk KJ. Quantitative proteomics of a chloroplast SRP54 sorting mutant and its genetic interactions with CLPC1 in Arabidopsis. PLANT PHYSIOLOGY 2008; 148:156-75. [PMID: 18633119 PMCID: PMC2528104 DOI: 10.1104/pp.108.124545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
cpSRP54 (for chloroplast SIGNAL RECOGNITION PARTICLE54) is involved in cotranslational and posttranslational sorting of thylakoid proteins. The Arabidopsis (Arabidopsis thaliana) cpSRP54 null mutant, ffc1-2, is pale green with delayed development. Western-blot analysis of individual leaves showed that the SRP sorting pathway, but not the SecY/E translocon, was strongly down-regulated with progressive leaf development in both wild-type and ffc1-2 plants. To further understand the impact of cpSRP54 deletion, a quantitative comparison of ffc2-1 was carried out for total leaf proteomes of young seedlings and for chloroplast proteomes of fully developed leaves using stable isotope labeling (isobaric stable isotope labeling and isotope-coded affinity tags) and two-dimensional gels. This showed that cpSRP54 deletion led to a change in light-harvesting complex composition, an increase of PsbS, and a decreased photosystem I/II ratio. Moreover, the cpSRP54 deletion led in young leaves to up-regulation of thylakoid proteases and stromal chaperones, including ClpC. In contrast, the stromal protein homeostasis machinery returned to wild-type levels in mature leaves, consistent with the developmental down-regulation of the SRP pathway. A differential response between young and mature leaves was also found in carbon metabolism, with an up-regulation of the Calvin cycle and the photorespiratory pathway in peroxisomes and mitochondria in young leaves but not in old leaves. The Calvin cycle was down-regulated in mature leaves to adjust to the reduced capacity of the light reaction, while reactive oxygen species defense proteins were up-regulated. The significance of ClpC up-regulation was confirmed through the generation of an ffc2-1 clpc1 double mutant. This mutant was seedling lethal under autotrophic conditions but could be partially rescued under heterotrophic conditions.
Collapse
Affiliation(s)
- Heidi Rutschow
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
16
|
Kwon KC, Cho MH. Deletion of the chloroplast-localized AtTerC gene product in Arabidopsis thaliana leads to loss of the thylakoid membrane and to seedling lethality. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:428-42. [PMID: 18429937 DOI: 10.1111/j.1365-313x.2008.03523.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Early seedling development in plants depends on the biogenesis of chloroplasts from proplastids, accompanied by the formation of thylakoid membranes. An Arabidopsis thaliana gene, AtTerC, whose gene product shares sequence similarity with bacterial tellurite resistance C (TerC), is shown to be involved in a critical step required for the normal organization of prothylakoids and transition into mature thylakoid stacks. The AtTerC gene encodes an integral membrane protein, which contains eight putative transmembrane helices, localized in the thylakoid of the chloroplast, as shown by localization of an AtTerC-GFP fusion product in protoplasts and by immunoblot analysis of subfractions of chloroplasts. T-DNA insertional mutation of AtTerC resulted in a pigment-deficient and seedling-lethal phenotype under normal light conditions. Transmission electron microscopic analysis revealed that mutant etioplasts had normal prolamellar bodies (PLBs), although the prothylakoids had ring-like shapes surrounding the PLBs. In addition, the ultrastructures of mutant chloroplasts lacked thylakoids, did not have grana stacks, and showed numerous globular structures of varying sizes. Also, the accumulation of thylakoid membrane proteins was severely defective in this mutant. These results suggest that the AtTerC protein plays a crucial role in prothylakoid membrane biogenesis and thylakoid formation in early chloroplast development.
Collapse
Affiliation(s)
- Kwang-Chul Kwon
- Department of Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | | |
Collapse
|
17
|
Abstract
The thylakoid membrane of chloroplasts contains the major photosynthetic complexes, which consist of several either nuclear or chloroplast encoded subunits. The biogenesis of these thylakoid membrane complexes requires coordinated transport and subsequent assembly of the subunits into functional complexes. Nuclear-encoded thylakoid proteins are first imported into the chloroplast and then directed to the thylakoid using different sorting mechanisms. The cpSec pathway and the cpTat pathway are mainly involved in the transport of lumenal proteins, whereas the spontaneous pathway and the cpSRP pathway are used for the insertion of integral membrane proteins into the thylakoid membrane. While cpSec-, cpTat- and cpSRP-mediated targeting can be classified as 'assisted' mechanisms involving numerous components, 'unassisted' spontaneous insertion does not require additional targeting factors. However, even the assisted pathways differ fundamentally with respect to stromal targeting factors, the composition of the translocase and energy requirements.
Collapse
Affiliation(s)
- Danja Schünemann
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, D-44780 Bochum, Germany.
| |
Collapse
|
18
|
Yukawa M, Kuroda H, Sugiura M. A new in vitro translation system for non-radioactive assay from tobacco chloroplasts: effect of pre-mRNA processing on translation in vitro. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:367-76. [PMID: 17156414 DOI: 10.1111/j.1365-313x.2006.02948.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We previously developed an in vitro translation system derived from tobacco chloroplasts. Here, we report a significantly improved in vitro translation system. By modifying preparation procedures for chloroplast extracts and reaction conditions, we achieved 100-fold higher translation activity than the previous system. The new system does not require the supplement of Escherichia coli tRNAs due to the omission of micrococcal nuclease treatment, thus the tRNA population reflects the intrinsic tRNA population in tobacco chloroplasts. The rate of translation initiation from a variety of chloroplast mRNAs may be measured by monitoring the fluorescence intensity of synthesized green fluorescent protein, which is a non-radioactive detection method. Incorporation of an amino acid linked to a fluorescent dye also allows detection of the translation products in vitro. Using our new system, we found that mRNAs carrying unprocessed or processed atpH and rbcL 5'-UTRs were efficiently translated at similar rates, whereas translation of mRNAs with processed atpB and psbB 5'-UTRs was more efficient than those with unprocessed 5'-UTRs. These results suggest that the role of 5'-UTR processing in the regulation of chloroplast gene expression differs between mRNAs. The new in vitro translation system will be a powerful tool to investigate the mechanism of chloroplast mRNA translation.
Collapse
Affiliation(s)
- Maki Yukawa
- Graduate School of Natural Sciences, Nagoya City University, Yamanohata, Mizuho, Nagoya 467-8501, Japan
| | | | | |
Collapse
|
19
|
Cline K, Theg SM. The Sec and Tat Protein Translocation Pathways in Chloroplasts. MOLECULAR MACHINES INVOLVED IN PROTEIN TRANSPORT ACROSS CELLULAR MEMBRANES 2007. [DOI: 10.1016/s1874-6047(07)25018-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Gutensohn M, Fan E, Frielingsdorf S, Hanner P, Hou B, Hust B, Klösgen RB. Toc, Tic, Tat et al.: structure and function of protein transport machineries in chloroplasts. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:333-47. [PMID: 16386331 DOI: 10.1016/j.jplph.2005.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 11/13/2005] [Indexed: 05/05/2023]
Abstract
The chloroplast is an organelle of prokaryotic origin that is situated in an eukaryotic cellular environment. As a result of this formerly endosymbiotic situation, the chloroplast houses a unique set of protein transport machineries. Among those are evolutionarily young transport pathways which are responsible for the import of the nuclear-encoded proteins into the organelle as well as ancient pathways operating in the 'export' of proteins from the stroma (the former cyanobacterial cytosol) across the thylakoid membrane into the thylakoid lumen. In this review, we have tried to address the main features of these various transport pathways.
Collapse
Affiliation(s)
- Michael Gutensohn
- Institut für Pflanzenphysiologie, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, D-06120 Halle (Saale), Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Jeong SY, Rose A, Meier I. MFP1 is a thylakoid-associated, nucleoid-binding protein with a coiled-coil structure. Nucleic Acids Res 2003; 31:5175-85. [PMID: 12930969 PMCID: PMC212795 DOI: 10.1093/nar/gkg693] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Plastid DNA, like bacterial and mitochondrial DNA, is organized into protein-DNA complexes called nucleoids. Plastid nucleoids are believed to be associated with the inner envelope in developing plastids and the thylakoid membranes in mature chloroplasts, but the mechanism for this re-localization is unknown. Here, we present the further characterization of the coiled-coil DNA-binding protein MFP1 as a protein associated with nucleoids and with the thylakoid membranes in mature chloroplasts. MFP1 is located in plastids in both suspension culture cells and leaves and is attached to the thylakoid membranes with its C-terminal DNA-binding domain oriented towards the stroma. It has a major DNA-binding activity in mature Arabidopsis chloroplasts and binds to all tested chloroplast DNA fragments without detectable sequence specificity. Its expression is tightly correlated with the accumulation of thylakoid membranes. Importantly, it is associated in vivo with nucleoids, suggesting a function for MFP1 at the interface between chloroplast nucleoids and the developing thylakoid membrane system.
Collapse
Affiliation(s)
- Sun Yong Jeong
- Department of Plant Biology and Plant Biotechnology Center, Ohio State University, 244 Rightmire Hall, 1060 Carmack Road, Columbus, OH 43210, USA
| | | | | |
Collapse
|
22
|
Nilsson R, van Wijk KJ. Transient interaction of cpSRP54 with elongating nascent chains of the chloroplast-encoded D1 protein; 'cpSRP54 caught in the act'. FEBS Lett 2002; 524:127-33. [PMID: 12135754 DOI: 10.1016/s0014-5793(02)03016-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The signal recognition particle (SRP) in bacteria and endoplasmic reticulum is involved in co-translational targeting. Plastids contain cpSRP54 and cpSRP43, unique to plants, but lack a SRP RNA molecule. A role for cpSRP in biogenesis of plastid-encoded membrane proteins has not been firmly established yet. In this study, a transient interaction between cpSRP54 and elongating D1 protein was observed using a homologous chloroplast translation system. Using the novel approach of cross-linking at different time points during elongation of full-length D1 protein, we showed that cpSRP54 interacts strongly with the elongating nascent chain forming two distinct cross-linked products. However, this interaction did not lead to an elongation arrest and cpSRP54 was released from the nascent chains, once they were longer than approximately 14 kDa. Detailed mutant analysis showed that the cpSRP54 interaction occurred via the first transmembrane domain, which could be replaced by other hydrophobic domains of more than 10 amino acids.
Collapse
Affiliation(s)
- Robert Nilsson
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
23
|
Zito F, Vinh J, Popot JL, Finazzi G. Chimeric fusions of subunit IV and PetL in the b6f complex of Chlamydomonas reinhardtii: structural implications and consequences on state transitions. J Biol Chem 2002; 277:12446-55. [PMID: 11796719 DOI: 10.1074/jbc.m110914200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The cytochrome b(6)f complex of Chlamydomonas reinhardtii contains four large subunits and at least three small ones, PetG, PetL, and PetM, whose role and location are unknown. Chimeric proteins have been constructed, in which the C terminus of subunit IV is fused to either one or the other of the two putative N termini of PetL. Biochemical and functional analysis of the chimeras together with mass spectrometry analysis of the wild-type (WT) complex led to the following conclusions: (i) neither a free subunit IV C terminus nor a free PetL N terminus is required for assembly of the b(6)f complex; (ii) the first AUG codon in the sequence of the gene petL is used for initiation; (iii) the N terminus of WT PetL lies in the lumen; (iv) in the WT complex, the N terminus of PetL and the C terminus of subunit IV are within reach of each other; (v) the purified b(6)f complex from C. reinhardtii contains an eighth, hitherto unrecognized subunit, PetN; and (vi) the ability to perform state transitions is lost in the chimeric mutants, although (vii) the Q-cycle is unaffected. A structural hypothesis is presented to account for this peculiar phenotype.
Collapse
Affiliation(s)
- Francesca Zito
- UMR 7099, CNRS and Université Paris-7, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, Paris F-75005, France.
| | | | | | | |
Collapse
|