1
|
Khodak YA. Heterologous Expression of Recombinant Proteins and Their Derivatives Used as Carriers for Conjugate Vaccines. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1248-1266. [PMID: 37770392 DOI: 10.1134/s0006297923090055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 07/25/2023] [Indexed: 09/30/2023]
Abstract
Carrier proteins that provide an effective and long-term immune response to weak antigens has become a real breakthrough in the disease prevention, making it available to a wider range of patients and making it possible to obtain reliable vaccines against a variety of pathogens. Currently, research is continuing both to identify new peptides, proteins, and their complexes potentially suitable for use as carriers, and to develop new methods for isolation, purification, and conjugation of already known and well-established proteins. The use of recombinant proteins has a number of advantages over isolation from natural sources, such as simpler cultivation of the host organism, the possibility of modifying genetic constructs, use of numerous promoter variants, signal sequences, and other regulatory elements. This review is devoted to the methods of obtaining both traditional and new recombinant proteins and their derivatives already being used or potentially suitable for use as carrier proteins in conjugate vaccines.
Collapse
Affiliation(s)
- Yuliya A Khodak
- Institute of Bioengineering, Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, 117312, Russia.
| |
Collapse
|
2
|
Cai S, Kumar R, Singh BR. Clostridial Neurotoxins: Structure, Function and Implications to Other Bacterial Toxins. Microorganisms 2021; 9:2206. [PMID: 34835332 PMCID: PMC8618262 DOI: 10.3390/microorganisms9112206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 01/20/2023] Open
Abstract
Gram-positive bacteria are ancient organisms. Many bacteria, including Gram-positive bacteria, produce toxins to manipulate the host, leading to various diseases. While the targets of Gram-positive bacterial toxins are diverse, many of those toxins use a similar mechanism to invade host cells and exert their functions. Clostridial neurotoxins produced by Clostridial tetani and Clostridial botulinum provide a classical example to illustrate the structure-function relationship of bacterial toxins. Here, we critically review the recent progress of the structure-function relationship of clostridial neurotoxins, including the diversity of the clostridial neurotoxins, the mode of actions, and the flexible structures required for the activation of toxins. The mechanism clostridial neurotoxins use for triggering their activity is shared with many other Gram-positive bacterial toxins, especially molten globule-type structures. This review also summarizes the implications of the molten globule-type flexible structures to other Gram-positive bacterial toxins. Understanding these highly dynamic flexible structures in solution and their role in the function of bacterial toxins not only fills in the missing link of the high-resolution structures from X-ray crystallography but also provides vital information for better designing antidotes against those toxins.
Collapse
Affiliation(s)
- Shuowei Cai
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | - Raj Kumar
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA; (R.K.); (B.R.S.)
| | - Bal Ram Singh
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA; (R.K.); (B.R.S.)
| |
Collapse
|
3
|
Neurobiology and therapeutic applications of neurotoxins targeting transmitter release. Pharmacol Ther 2019; 193:135-155. [DOI: 10.1016/j.pharmthera.2018.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Li YC, Kavalali ET. Synaptic Vesicle-Recycling Machinery Components as Potential Therapeutic Targets. Pharmacol Rev 2017; 69:141-160. [PMID: 28265000 DOI: 10.1124/pr.116.013342] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Presynaptic nerve terminals are highly specialized vesicle-trafficking machines. Neurotransmitter release from these terminals is sustained by constant local recycling of synaptic vesicles independent from the neuronal cell body. This independence places significant constraints on maintenance of synaptic protein complexes and scaffolds. Key events during the synaptic vesicle cycle-such as exocytosis and endocytosis-require formation and disassembly of protein complexes. This extremely dynamic environment poses unique challenges for proteostasis at synaptic terminals. Therefore, it is not surprising that subtle alterations in synaptic vesicle cycle-associated proteins directly or indirectly contribute to pathophysiology seen in several neurologic and psychiatric diseases. In contrast to the increasing number of examples in which presynaptic dysfunction causes neurologic symptoms or cognitive deficits associated with multiple brain disorders, synaptic vesicle-recycling machinery remains an underexplored drug target. In addition, irrespective of the involvement of presynaptic function in the disease process, presynaptic machinery may also prove to be a viable therapeutic target because subtle alterations in the neurotransmitter release may counter disease mechanisms, correct, or compensate for synaptic communication deficits without the need to interfere with postsynaptic receptor signaling. In this article, we will overview critical properties of presynaptic release machinery to help elucidate novel presynaptic avenues for the development of therapeutic strategies against neurologic and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ying C Li
- Departments of Neuroscience (Y.C.L., E.T.K.) and Physiology (E.T.K.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ege T Kavalali
- Departments of Neuroscience (Y.C.L., E.T.K.) and Physiology (E.T.K.), University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
5
|
Connan C, Popoff MR. Uptake of Clostridial Neurotoxins into Cells and Dissemination. Curr Top Microbiol Immunol 2017; 406:39-78. [PMID: 28879524 DOI: 10.1007/82_2017_50] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clostridial neurotoxins, botulinum neurotoxins (BoNT) and tetanus neurotoxin (TeNT), are potent toxins, which are responsible for severe neurological diseases in man and animals. BoNTs induce a flaccid paralysis (botulism) by inhibiting acetylcholine release at the neuromuscular junctions, whereas TeNT causes a spastic paralysis (tetanus) by blocking the neurotransmitter release (glycine, GABA) in inhibitory interneurons within the central nervous system. Clostridial neurotoxins recognize specific receptor(s) on the target neuronal cells and enter via a receptor-mediated endocytosis. They transit through an acidic compartment which allows the translocation of the catalytic chain into the cytosol, a prerequisite step for the intracellular activity of the neurotoxins. TeNT migrates to the central nervous system by using a motor neuron as transport cell. TeNT enters a neutral pH compartment and undergoes a retrograde axonal transport to the spinal cord or brain, where the whole undissociated toxin is delivered and interacts with target neurons. Botulism most often results from ingestion of food contaminated with BoNT. Thus, BoNT passes through the intestinal epithelial barrier mainly via a transcytotic mechanism and then diffuses or is transported to the neuromuscular junctions by the lymph or blood circulation. Indeed, clostridial neurotoxins are specific neurotoxins which transit through a transport cell to gain access to the target neuron, and use distinct trafficking pathways in both cell types.
Collapse
Affiliation(s)
- Chloé Connan
- Unité Des Bactéries Anaérobies et Toxines, Institut Pasteur, 25 Rue Du Dr Roux, 75724, Paris Cedex 15, France
| | - Michel R Popoff
- Unité Des Bactéries Anaérobies et Toxines, Institut Pasteur, 25 Rue Du Dr Roux, 75724, Paris Cedex 15, France.
| |
Collapse
|
6
|
Ovsepian SV, O'Leary VB, Ntziachristos V, Dolly JO. Circumventing Brain Barriers: Nanovehicles for Retroaxonal Therapeutic Delivery. Trends Mol Med 2016; 22:983-993. [PMID: 27720365 DOI: 10.1016/j.molmed.2016.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 02/06/2023]
Abstract
In addition to safeguarding the central nervous system (CNS) from the vast majority of pathogens and toxins, transvascular barriers impose immense challenges to the delivery of beneficial cargo. A few toxins and neurotropic viruses capable of penetrating the brain have proved to be potentially valuable for neuron targeting and enhanced transfer of restorative medicine and therapeutic genes. Here we review molecular concepts and implications of the highly neurotropic tetanus toxin (TeTx) and botulinum neurotoxins (BoNTs) and their ability to infiltrate and migrate throughout neurons. We discuss recent applications of their detoxified variants as versatile nanovehicles for retroaxonal delivery of therapeutics to motor neurons and synapses. Continued advances in research on these remarkable agents in preclinical trials might facilitate their future use for medical benefit.
Collapse
Affiliation(s)
- Saak V Ovsepian
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Munich School of Bioengineering, Technical University Munich, 81675 Munich, Germany; International Centre for Neurotherapeutics, Dublin City University, Dublin 9, Ireland.
| | - Valerie B O'Leary
- Institute of Radiation Biology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Munich School of Bioengineering, Technical University Munich, 81675 Munich, Germany
| | - J Oliver Dolly
- International Centre for Neurotherapeutics, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
7
|
Ovsepian SV, Ovespian SV, Bodeker M, O'Leary VB, Lawrence GW, Oliver Dolly J. Internalization and retrograde axonal trafficking of tetanus toxin in motor neurons and trans-synaptic propagation at central synapses exceed those of its C-terminal-binding fragments. Brain Struct Funct 2015; 220:1825-38. [PMID: 25665801 DOI: 10.1007/s00429-015-1004-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 02/04/2015] [Indexed: 12/22/2022]
Abstract
The prominent tropism of tetanus toxin (TeTx) towards peripheral nerves with retrograde transport and transfer to central neurons render it an invaluable probe for exploring fundamental neuronal processes such as endocytosis, retrograde trafficking and trans-synaptic transport to central neurons. While the specificity of TeTx to nerve cells has been attributed to its binding domains (HC and HCC), molecular determinants of the long-range trafficking that ensure its central delivery and induction of spastic paralysis remain elusive. Here, we report that a protease-inactive TeTx mutant (TeTIM) fused to core streptavidin (CS) proved superior to CS-HC and CS-HCC fragments in antagonizing the internalization of the active toxin in cultured spinal cord neurons. Also, in comparison to CS-HC and CS-HCC, CS-TeTIM undergoes faster clearance from motor nerve terminals after peripheral injection, and is detected in a greater number of neurons in the spinal cord and brain stem ipsi-lateral to the administration site. Consistent with trans-synaptic transfer from motor neurons to inter-neurons, CS-TeTIM infiltrated non-cholinergic cells in the spinal cord; in contrast, the retrograde spread of CS-HC was largely restricted to neurons stained for choline acetyltransferase. Peripheral injection of CS-TeTIM conjugated to a lentivirus encoding mutated SNAP-25, resistant to cleavage by botulinum neurotoxin A, E and C1, rendered spontaneous excitatory postsynaptic currents in motor neurons resilient to challenge by type A toxin in vitro, whereas the same virus conjugated to CS-HC proved ineffective. These findings indicate that full-length inactive TeTx greatly exceeds HC and HCC in targeting and invading motor nerve terminals at the periphery and exploits more efficiently the retrograde transport and trans-synaptic transfer mechanisms of motor neurons to arrive at central neurons. Such qualities render TeTIM a more suitable research probe and neuron-targeting vehicle for retro-axonal delivery of viral vectors to the CNS.
Collapse
Affiliation(s)
| | - Saak V Ovespian
- International Centre for Neurotherapeutics, Dublin City University, Dublin 9, Ireland,
| | | | | | | | | |
Collapse
|
8
|
O'Leary VB, Ovsepian SV, Bodeker M, Dolly JO. Improved lentiviral transduction of ALS motoneurons in vivo via dual targeting. Mol Pharm 2013; 10:4195-206. [PMID: 24066863 DOI: 10.1021/mp400247t] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Treatment of amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease, is hampered by its complex etiology and lack of efficient means for targeted transfer of therapeutics into motoneurons. The objective of this research was engineering of a versatile motoneuron targeting adapter--a full-length atoxic tetanus toxin fused to core-streptavidin (CS-TeTIM)--for retro-axonal transduction of viral vectors; validation of the targeting efficiency of CS-TeTIM in vivo, by expression of green fluorescence protein (GFP) reporter in motoneurons of presymptomatic and symptomatic ALS-like SOD1(G93A) mice, and comparison with age-matched controls; and appraisal of lentiviral transduction with CS-TeTIM relative to (1) a HC binding fragment of tetanus toxin CS-TeTx(HC), (2) rabies glycoprotein (RG), and (3) a CS-TeTIM-RG dual targeting approach. CS-TeTIM and CS-TeTx(HC) were engineered using recombinant technology and site-directed mutagenesis. Biotinylated vectors, pseudotyped with vesicular stomatitis virus glycoprotein (VSV-G) or RG, were linked to these adaptors and injected intraperitoneally (ip) into presymptomatic (12 weeks old), symptomatic SOD1(G93A) (22 weeks old) or wild type control mice, followed by monitoring of GFP expression in the spinal cord and supraspinal motor structures with quantitative PCR and immuno-histochemistry. Transcripts were detected in the spinal cord and supraspinal motor structures of all mice 2 weeks after receiving a single ip injection, although in symptomatic SOD1(G93A) animals reporter RNA levels were lower compared to presymptomatic and wild-type controls irrespective of the targeting approach. GFP transduction with CS-TeTIM proved more efficient than CS-TeTx(HC) across all groups while CS-TeTIM-RG dual-targeted vectors yielded the highest transcript numbers. Importantly, in both wild-type and presymptomatic SOD1(G93A) mice strong colabeling of choline-acetyltransferase (ChAT) and GFP was visualized in neurons of the brain stem and spinal cord. CS-TeTIM, a versatile adaptor protein for targeted lentiviral transduction of motoneurons, has been engineered and its competence assessed relative to CS-TeTx(HC) and RG. Evidence has been provided that highlights the potential usefulness of this novel recombinant tool for basic research with implications for improved transfer of therapeutic candidates into motoneurons for the amelioration of ALS and related diseases.
Collapse
Affiliation(s)
- Valerie B O'Leary
- International Centre for Neurotherapeutics, Dublin City University , Dublin 9, Ireland
| | | | | | | |
Collapse
|
9
|
Wang J, Zurawski TH, Meng J, Lawrence GW, Aoki KR, Wheeler L, Dolly JO. Novel chimeras of botulinum and tetanus neurotoxins yield insights into their distinct sites of neuroparalysis. FASEB J 2012; 26:5035-48. [PMID: 22942075 DOI: 10.1096/fj.12-210112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Botulinum neurotoxin (BoNT) A or E and tetanus toxin (TeTx) bind to motor-nerve endings and undergo distinct trafficking; their light-chain (LC) proteases cleave soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) peripherally or centrally and cause flaccid or spastic paralysis, respectively. To seek protein domains responsible for local blockade of transmitter release (BoNTs) rather than retroaxonal transport to spinal neurons (TeTx), their acceptor-binding moieties (H(C))--or in one case, heavy chain (HC)--were exchanged by gene recombination. Each chimera, expressed and purified from Escherichia coli, entered rat cerebellar neurons to cleave their substrates, blocked in vitro nerve-induced muscle contractions, and produced only flaccid paralysis in mice. Thus, the local cytosolic delivery of BoNT/A or BoNT/E proteases and the contrasting retrograde transport of TeTx are not specified solely by their HC or H(C); BoNT/A LC translocated locally irrespective of being targeted by either of the latter TeTx domains. In contrast, BoNT/E protease fused to a TeTx enzymatically inactive mutant (TeTIM) caused spastic paralysis and cleaved SNAP-25 in spinal cord but not the injected muscle. Apparently, TeTIM precludes cytosolic release of BoNT/E protease at motor nerve endings. It is deduced that the LCs of the toxins, acting in conjunction with HC domains, dictate their local or distant destinations.
Collapse
Affiliation(s)
- Jiafu Wang
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | | | | | | | | | | | | |
Collapse
|
10
|
Innocuous full-length botulinum neurotoxin targets and promotes the expression of lentiviral vectors in central and autonomic neurons. Gene Ther 2011; 18:656-65. [DOI: 10.1038/gt.2011.8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Popoff MR, Poulain B. Bacterial toxins and the nervous system: neurotoxins and multipotential toxins interacting with neuronal cells. Toxins (Basel) 2010; 2:683-737. [PMID: 22069606 PMCID: PMC3153206 DOI: 10.3390/toxins2040683] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 03/18/2010] [Accepted: 04/07/2010] [Indexed: 12/13/2022] Open
Abstract
Toxins are potent molecules used by various bacteria to interact with a host organism. Some of them specifically act on neuronal cells (clostridial neurotoxins) leading to characteristics neurological affections. But many other toxins are multifunctional and recognize a wider range of cell types including neuronal cells. Various enterotoxins interact with the enteric nervous system, for example by stimulating afferent neurons or inducing neurotransmitter release from enterochromaffin cells which result either in vomiting, in amplification of the diarrhea, or in intestinal inflammation process. Other toxins can pass the blood brain barrier and directly act on specific neurons.
Collapse
Affiliation(s)
- Michel R. Popoff
- Neurotransmission et Sécrétion Neuroendocrine, CNRS UPR 2356 IFR 37 - Neurosciences, Centre de Neurochimie, 5, rue Blaise Pascal, F-67084 STRASBOURG cedex, France;
- Author to whom correspondence should be addressed;
| | | |
Collapse
|
12
|
Abstract
Clostridia produce the highest number of toxins of any type of bacteria and are involved in severe diseases in humans and other animals. Most of the clostridial toxins are pore-forming toxins responsible for gangrenes and gastrointestinal diseases. Among them, perfringolysin has been extensively studied and it is the paradigm of the cholesterol-dependent cytolysins, whereas Clostridium perfringens epsilon-toxin and Clostridium septicum alpha-toxin, which are related to aerolysin, are the prototypes of clostridial toxins that form small pores. Other toxins active on the cell surface possess an enzymatic activity, such as phospholipase C and collagenase, and are involved in the degradation of specific cell-membrane or extracellular-matrix components. Three groups of clostridial toxins have the ability to enter cells: large clostridial glucosylating toxins, binary toxins and neurotoxins. The binary and large clostridial glucosylating toxins alter the actin cytoskeleton by enzymatically modifying the actin monomers and the regulatory proteins from the Rho family, respectively. Clostridial neurotoxins proteolyse key components of neuroexocytosis. Botulinum neurotoxins inhibit neurotransmission at neuromuscular junctions, whereas tetanus toxin targets the inhibitory interneurons of the CNS. The high potency of clostridial toxins results from their specific targets, which have an essential cellular function, and from the type of modification that they induce. In addition, clostridial toxins are useful pharmacological and biological tools.
Collapse
Affiliation(s)
- Michel R Popoff
- Institut Pasteur, Bactéries Anaérobies et Toxines, 75724 Paris cedex 15, France.
| | | |
Collapse
|
13
|
Band PA, Blais S, Neubert TA, Cardozo TJ, Ichtchenko K. Recombinant derivatives of botulinum neurotoxin A engineered for trafficking studies and neuronal delivery. Protein Expr Purif 2010; 71:62-73. [PMID: 20045734 DOI: 10.1016/j.pep.2009.12.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 12/04/2009] [Accepted: 12/28/2009] [Indexed: 10/20/2022]
Abstract
Work from multiple laboratories has clarified how the structural domains of botulinum neurotoxin A (BoNT/A) disable neuronal exocytosis, but important questions remain unanswered. Because BoNT/A intoxication disables its own uptake, light chain (LC) does not accumulate in neurons at detectable levels. We have therefore designed, expressed and purified a series of BoNT/A atoxic derivatives (ad) that retain the wild type features required for native trafficking. BoNT/A1ad(ek) and BoNT/A1ad(tev) are full length derivatives rendered atoxic through double point mutations in the LC protease (E(224)>A; Y(366)>A). DeltaLC-peptide-BoNT/A(tev) and DeltaLC-GFP-BoNT/A(tev) are derivatives wherein the catalytic portion of the LC is replaced with a short peptide or with GFP plus the peptide. In all four derivatives, we have fused the S6 peptide sequence GDSLSWLLRLLN to the N-terminus of the proteins to enable site-specific attachment of cargo using Sfp phosphopantetheinyl transferase. Cargo can be attached in a manner that provides a homogeneous derivative population rather than a polydisperse mixture of singly and multiply-labeled molecular species. All four derivatives contain an introduced cleavage site for conversion into disulfide-bonded heterodimers. These constructs were expressed in a baculovirus system and the proteins were secreted into culture medium and purified to homogeneity in yields ranging from 1 to 30 mg per liter. These derivatives provide unique tools to study toxin trafficking in vivo, and to assess how the structure of cargo linked to the heavy chain (HC) influences delivery to the neuronal cytosol. Moreover, they create the potential to engineer BoNT-based molecular vehicles that can target therapeutic agents to the neuronal cytoplasm.
Collapse
Affiliation(s)
- Philip A Band
- Department of Pharmacology, New York University School of Medicine, New York, NY 10016, United States
| | | | | | | | | |
Collapse
|
14
|
Engineered toxins: new therapeutics. Toxicon 2009; 54:587-92. [PMID: 19264086 DOI: 10.1016/j.toxicon.2009.01.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 12/22/2008] [Accepted: 01/06/2009] [Indexed: 12/13/2022]
Abstract
Clostridial neurotoxins possess discrete structural domains with distinct pharmacological properties. Aspects of neurotoxin function with therapeutic potential include specific neuronal binding, intracellular (cytosolic) delivery of biologically active protein and inhibition of SNARE-mediated secretion. Understanding the structure function relationship of the neurotoxin protein enables the creation of recombinant proteins incorporating select domains of the neurotoxins to produce novel proteins with therapeutic potential in a range of clinical applications.
Collapse
|
15
|
Lawrence G, Wang J, Chion CKNK, Aoki KR, Dolly JO. Two protein trafficking processes at motor nerve endings unveiled by botulinum neurotoxin E. J Pharmacol Exp Ther 2006; 320:410-8. [PMID: 17050783 DOI: 10.1124/jpet.106.108829] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The unique ability of a family of botulinum neurotoxins to block neuroexocytosis specifically-by selective interaction with peripheral cholinergic nerve endings, endocytotic uptake, translocation to the cytosol, and enzymic cleavage of essential proteins-underlies their increasing therapeutic applications. Although clinical use of type A is most widespread due to its prolonged inactivation of the synaptosomal-associated protein of 25 kDa, botulinum neurotoxin E cleaves this same target but at a different bond and exhibits faster onset of neuromuscular paralysis. Herein, insights were gained into the different dynamics of action of types A and E toxins, which could help in designing variants with new pharmacological profiles. Natural and recombinant type E dichain forms showed similar proteolytic and neuromuscular paralytic activities. The neuroparalysis induced by type E toxin was accelerated between 21 and 35 degrees C and attenuated by bafilomycin A1. Temperature elevation also revealed an unanticipated bipartite dose response indicative of two distinct internalization processes, one being independent of temperature and the other dependent. Although elevating the temperature also hastened intoxication by type A, a second uptake mechanism was not evident. Increasing the frequency of nerve stimulation raised the uptake of type E via both processes, but the enhanced trafficking through the temperature-dependent pathway was only seen at 35 degrees C. These novel observations reveal that two membrane retrieval mechanisms are operative at motor nerve terminals which type E toxin exploits to gain entry via an acidification-dependent step, whereas A uses only one.
Collapse
Affiliation(s)
- Gary Lawrence
- International Centre for Neurotherapeutics, Dublin City University, Dublin 9, Ireland
| | | | | | | | | |
Collapse
|
16
|
Gaillard PJ, Brink A, de Boer AG. Diphtheria toxin receptor-targeted brain drug delivery. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.ics.2005.02.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Bade S, Rummel A, Reisinger C, Karnath T, Ahnert-Hilger G, Bigalke H, Binz T. Botulinum neurotoxin type D enables cytosolic delivery of enzymatically active cargo proteins to neurones via unfolded translocation intermediates. J Neurochem 2005; 91:1461-72. [PMID: 15584922 DOI: 10.1111/j.1471-4159.2004.02844.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Multi-domain bacterial protein toxins are being explored as potential carriers for targeted delivery of biomolecules. Previous approaches employing isolated receptor binding subunits disallow entry into the cytosol. Strategies in which catalytic domains are replaced with cargo molecules are presumably inefficient due to co-operation of domains during the endosomal translocation step. Here, we characterize a novel transport vehicle in which cargo proteins are attached to the amino terminus of the full-length botulinum neurotoxin type D (BoNT/D). The intrinsic enzymatic activity of the neurotoxin allowed quantification of the efficacy of cargo delivery to the cytosol. Dihydrofolate reductase and BoNT type A (BoNT/A) light chain (LC) were efficiently conveyed into the cytosol, whereas attachment of firefly luciferase or green fluorescent protein drastically reduced the toxicity. Luciferase and BoNT/A LC retained their catalytic activity as evidenced by luciferin conversion or SNAP-25 hydrolysis in the cytosol of synaptosomes, respectively. Conformationally stabilized dihydrofolate reductase as cargo considerably decreased the toxicity indicative for the requirement of partial unfolding of cargo protein and catalytic domain as prerequisite for efficient translocation across the endosomal membrane. Thus, enzymatically inactive clostridial neurotoxins may serve as effective, safe carriers for delivering proteins in functionally active form to the cytosol of neurones.
Collapse
Affiliation(s)
- Steffen Bade
- Institute für Biochemie, Medizinische Hochschule Hannover, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Lalli G, Bohnert S, Deinhardt K, Verastegui C, Schiavo G. The journey of tetanus and botulinum neurotoxins in neurons. Trends Microbiol 2003; 11:431-7. [PMID: 13678859 DOI: 10.1016/s0966-842x(03)00210-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Anaerobic bacteria of the genus Clostridia are a major threat to human and animal health, being responsible for pathologies ranging from food poisoning to gas gangrene. In each of these, the production of sophisticated exotoxins is the main cause of disease. The most powerful clostridial toxins are tetanus and botulinum neurotoxins, the causative agents of tetanus and botulism. They are structurally organized into three domains endowed with distinct functions: high affinity binding to neurons, membrane translocation and specific cleavage of proteins controlling neuroexocytosis. Recent discoveries regarding the mechanism of membrane recruitment and sorting of these neurotoxins within neurons make them ideal tools to uncover essential aspects of neuronal physiology in health and disease.
Collapse
Affiliation(s)
- Giovanna Lalli
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | | | |
Collapse
|
19
|
Abstract
A large number of protein toxins having enzymatically active A- and B-moieties that bind to cell surface receptors must be endocytosed before the A-moiety is translocated into the cytosol where it exerts its cytotoxic action. The accumulated information about the most well-studied toxins has provided a detailed picture of how they exploit the membrane trafficking systems of cells, and studies of toxin trafficking have revealed the existence of new pathways. The complexity of different endocytic mechanisms, as well as the multiple routes between endosomes and the Golgi apparatus and retrogradely to the endoplasmic reticulum (ER), are being unravelled by investigations of how toxins gain access to their targets. With increasing information about the internalization and intracellular trafficking of these opportunistic toxins, new avenues have been opened for their application in areas of medicine such as drug delivery and therapy.
Collapse
Affiliation(s)
- Kirsten Sandvig
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway.
| | | |
Collapse
|
20
|
von Bartheld CS. Axonal transport and neuronal transcytosis of trophic factors, tracers, and pathogens. ACTA ACUST UNITED AC 2003; 58:295-314. [PMID: 14704960 DOI: 10.1002/neu.10315] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neurons can specifically internalize macromolecules, such as trophic factors, lectins, toxins, and other pathogens. Upon internalization in terminals, proteins can move retrogradely along axons, or, upon internalization at somatodendritic domains, they can move into an anterograde axonal transport pathway. Release of internalized proteins from neurons after either retrograde or anterograde axonal transport results in transcytosis and trafficking of proteins across multiple synapses. Recent studies of binding properties of several such proteins suggest that pathogens and lectins may utilize existing transport machineries designed for trafficking of trophic factors. Specific pathways may protect trophic factors, pathogens, and toxins from degradation after internalization and may target the trophic or pathogenic cargo for transcytosis after either retrograde or anterograde transport along axons. Elucidating the molecular mechanisms of sorting steps and transport pathways will further our understanding of trophic signaling and could be relevant for an understanding and possible treatment of neurological diseases such as rabies, Alzheimer's disease, and prion encephalopathies. At present, our knowledge is remarkably sparse about the types of receptors used by pathogens for trafficking, the signals that sort trophins or pathogens into recycling or degradation pathways, and the mechanisms that regulate their release from somatodendritic domains or axon terminals. This review intends to draw attention to potential convergences and parallels in trafficking of trophic and pathogenic proteins. It discusses axonal transport/trafficking mechanisms that may help to understand and eventually treat neurological diseases by targeted drug delivery.
Collapse
Affiliation(s)
- Christopher S von Bartheld
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA.
| |
Collapse
|
21
|
Verastegui C, Lalli G, Bohnert S, Meunier FA, Schiavo G. CLOSTRIDIAL NEUROTOXINS. ACTA ACUST UNITED AC 2002. [DOI: 10.1081/txr-120014404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Metzler DE, Metzler CM, Sauke DJ. Chemical Communication Between Cells. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50033-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|