1
|
Skowicki M, Tarvirdipour S, Kraus M, Schoenenberger CA, Palivan CG. Nanoassemblies designed for efficient nuclear targeting. Adv Drug Deliv Rev 2024; 211:115354. [PMID: 38857762 DOI: 10.1016/j.addr.2024.115354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
One of the key aspects of coping efficiently with complex pathological conditions is delivering the desired therapeutic compounds with precision in both space and time. Therefore, the focus on nuclear-targeted delivery systems has emerged as a promising strategy with high potential, particularly in gene therapy and cancer treatment. Here, we explore the design of supramolecular nanoassemblies as vehicles to deliver specific compounds to the nucleus, with the special focus on polymer and peptide-based carriers that expose nuclear localization signals. Such nanoassemblies aim at maximizing the concentration of genetic and therapeutic agents within the nucleus, thereby optimizing treatment outcomes while minimizing off-target effects. A complex scenario of conditions, including cellular uptake, endosomal escape, and nuclear translocation, requires fine tuning of the nanocarriers' properties. First, we introduce the principles of nuclear import and the role of nuclear pore complexes that reveal strategies for targeting nanosystems to the nucleus. Then, we provide an overview of cargoes that rely on nuclear localization for optimal activity as their integrity and accumulation are crucial parameters to consider when designing a suitable delivery system. Considering that they are in their early stages of research, we present various cargo-loaded peptide- and polymer nanoassemblies that promote nuclear targeting, emphasizing their potential to enhance therapeutic response. Finally, we briefly discuss further advancements for more precise and effective nuclear delivery.
Collapse
Affiliation(s)
- Michal Skowicki
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, 4058 Basel, Switzerland; NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, 4058 Basel, Switzerland
| | - Manuel Kraus
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, 4058 Basel, Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, 4058 Basel, Switzerland; NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland.
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, 4058 Basel, Switzerland; NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland.
| |
Collapse
|
2
|
Yang Y, Guo L, Chen L, Gong B, Jia D, Sun Q. Nuclear transport proteins: structure, function, and disease relevance. Signal Transduct Target Ther 2023; 8:425. [PMID: 37945593 PMCID: PMC10636164 DOI: 10.1038/s41392-023-01649-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023] Open
Abstract
Proper subcellular localization is crucial for the functioning of biomacromolecules, including proteins and RNAs. Nuclear transport is a fundamental cellular process that regulates the localization of many macromolecules within the nuclear or cytoplasmic compartments. In humans, approximately 60 proteins are involved in nuclear transport, including nucleoporins that form membrane-embedded nuclear pore complexes, karyopherins that transport cargoes through these complexes, and Ran system proteins that ensure directed and rapid transport. Many of these nuclear transport proteins play additional and essential roles in mitosis, biomolecular condensation, and gene transcription. Dysregulation of nuclear transport is linked to major human diseases such as cancer, neurodegenerative diseases, and viral infections. Selinexor (KPT-330), an inhibitor targeting the nuclear export factor XPO1 (also known as CRM1), was approved in 2019 to treat two types of blood cancers, and dozens of clinical trials of are ongoing. This review summarizes approximately three decades of research data in this field but focuses on the structure and function of individual nuclear transport proteins from recent studies, providing a cutting-edge and holistic view on the role of nuclear transport proteins in health and disease. In-depth knowledge of this rapidly evolving field has the potential to bring new insights into fundamental biology, pathogenic mechanisms, and therapeutic approaches.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Guo
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Chen
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Gong
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
| | - Qingxiang Sun
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu, China.
| |
Collapse
|
3
|
Empitu MA, Kikyo M, Shirata N, Yamada H, Makino SI, Kadariswantiningsih IN, Aizawa M, Patrakka J, Nishimori K, Asanuma K. Inhibition of Importin- α -Mediated Nuclear Localization of Dendrin Attenuates Podocyte Loss and Glomerulosclerosis. J Am Soc Nephrol 2023; 34:1222-1239. [PMID: 37134307 PMCID: PMC10356163 DOI: 10.1681/asn.0000000000000150] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
SIGNIFICANCE STATEMENT Nuclear translocation of dendrin is observed in injured podocytes, but the mechanism and its consequence are unknown. In nephropathy mouse models, dendrin ablation attenuates proteinuria, podocyte loss, and glomerulosclerosis. The nuclear translocation of dendrin promotes c-Jun N -terminal kinase phosphorylation in podocytes, altering focal adhesion and enhancing cell detachment-induced apoptosis. We identified mediation of dendrin nuclear translocation by nuclear localization signal 1 (NLS1) sequence and adaptor protein importin- α . Inhibition of importin- α prevents nuclear translocation of dendrin, decreases podocyte loss, and attenuates glomerulosclerosis in nephropathy models. Thus, inhibiting importin- α -mediated nuclear translocation of dendrin is a potential strategy to halt podocyte loss and glomerulosclerosis. BACKGROUND Nuclear translocation of dendrin is observed in the glomeruli in numerous human renal diseases, but the mechanism remains unknown. This study investigated that mechanism and its consequence in podocytes. METHODS The effect of dendrin deficiency was studied in adriamycin (ADR) nephropathy model and membrane-associated guanylate kinase inverted 2 ( MAGI2 ) podocyte-specific knockout ( MAGI2 podKO) mice. The mechanism and the effect of nuclear translocation of dendrin were studied in podocytes overexpressing full-length dendrin and nuclear localization signal 1-deleted dendrin. Ivermectin was used to inhibit importin- α . RESULTS Dendrin ablation reduced albuminuria, podocyte loss, and glomerulosclerosis in ADR-induced nephropathy and MAGI2 podKO mice. Dendrin deficiency also prolonged the lifespan of MAGI2 podKO mice. Nuclear dendrin promoted c-Jun N -terminal kinase phosphorylation that subsequently altered focal adhesion, reducing cell attachment and enhancing apoptosis in cultured podocytes. Classical bipartite nuclear localization signal sequence and importin- α mediate nuclear translocation of dendrin. The inhibition of importin- α / β reduced dendrin nuclear translocation and apoptosis in vitro as well as albuminuria, podocyte loss, and glomerulosclerosis in ADR-induced nephropathy and MAGI2 podKO mice. Importin- α 3 colocalized with nuclear dendrin in the glomeruli of FSGS and IgA nephropathy patients. CONCLUSIONS Nuclear translocation of dendrin promotes cell detachment-induced apoptosis in podocytes. Therefore, inhibiting importin- α -mediated dendrin nuclear translocation is a potential strategy to prevent podocyte loss and glomerulosclerosis.
Collapse
Affiliation(s)
- Maulana A. Empitu
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Mitsuhiro Kikyo
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharmaceutical Corporation, Kanagawa, Japan
- Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naritoshi Shirata
- Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharmaceutical Corporation, Kanagawa, Japan
- Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Yamada
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Nephrology, Kyoto University Hospital, Kyoto, Japan
| | - Shin-ichi Makino
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Nephrology, Kyoto University Hospital, Kyoto, Japan
| | - Ika N. Kadariswantiningsih
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Masashi Aizawa
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jaakko Patrakka
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden
- Division of Pathology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Katsuhiko Nishimori
- Department of Bioregulation and Pharmacological Medicine and Department of Obesity and Internal Inflammation, Fukushima Medical University, Fukushima, Japan
| | - Katsuhiko Asanuma
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Lin C, Feng S, DeOliveira CC, Crane BR. Cryptochrome-Timeless structure reveals circadian clock timing mechanisms. Nature 2023; 617:194-199. [PMID: 37100907 PMCID: PMC11034853 DOI: 10.1038/s41586-023-06009-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/23/2023] [Indexed: 04/28/2023]
Abstract
Circadian rhythms influence many behaviours and diseases1,2. They arise from oscillations in gene expression caused by repressor proteins that directly inhibit transcription of their own genes. The fly circadian clock offers a valuable model for studying these processes, wherein Timeless (Tim) plays a critical role in mediating nuclear entry of the transcriptional repressor Period (Per) and the photoreceptor Cryptochrome (Cry) entrains the clock by triggering Tim degradation in light2,3. Here, through cryogenic electron microscopy of the Cry-Tim complex, we show how a light-sensing cryptochrome recognizes its target. Cry engages a continuous core of amino-terminal Tim armadillo repeats, resembling how photolyases recognize damaged DNA, and binds a C-terminal Tim helix, reminiscent of the interactions between light-insensitive cryptochromes and their partners in mammals. The structure highlights how the Cry flavin cofactor undergoes conformational changes that couple to large-scale rearrangements at the molecular interface, and how a phosphorylated segment in Tim may impact clock period by regulating the binding of Importin-α and the nuclear import of Tim-Per4,5. Moreover, the structure reveals that the N terminus of Tim inserts into the restructured Cry pocket to replace the autoinhibitory C-terminal tail released by light, thereby providing a possible explanation for how the long-short Tim polymorphism adapts flies to different climates6,7.
Collapse
Affiliation(s)
- Changfan Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Shi Feng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | | | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
5
|
Wang L, Paudel BB, McKnight RA, Janes KA. Nucleocytoplasmic transport of active HER2 causes fractional escape from the DCIS-like state. Nat Commun 2023; 14:2110. [PMID: 37055441 PMCID: PMC10102026 DOI: 10.1038/s41467-023-37914-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/05/2023] [Indexed: 04/15/2023] Open
Abstract
Activation of HER2/ErbB2 coincides with escape from ductal carcinoma in situ (DCIS) premalignancy and disrupts 3D organization of cultured breast-epithelial spheroids. The 3D phenotype is infrequent, however, and mechanisms for its incomplete penetrance have been elusive. Using inducible HER2/ErbB2-EGFR/ErbB1 heterodimers, we match phenotype penetrance to the frequency of co-occurring transcriptomic changes and uncover a reconfiguration in the karyopherin network regulating ErbB nucleocytoplasmic transport. Induction of the exportin CSE1L inhibits nuclear accumulation of ErbBs, whereas nuclear ErbBs silence the importin KPNA1 by inducing miR-205. When these negative feedbacks are incorporated into a validated systems model of nucleocytoplasmic transport, steady-state localization of ErbB cargo becomes ultrasensitive to initial CSE1L abundance. Erbb2-driven carcinomas with Cse1l deficiency outgrow less irregularly from mammary ducts, and NLS-attenuating mutants or variants of HER2 favor escape in 3D culture. We conclude here that adaptive nucleocytoplasmic relocalization of HER2 creates a systems-level molecular switch at the premalignant-to-malignant transition.
Collapse
Affiliation(s)
- Lixin Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - B Bishal Paudel
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - R Anthony McKnight
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- Olympus Veran Technologies, St. Louis, MO, USA
| | - Kevin A Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
6
|
Jibiki K, Kodama TS, Yasuhara N. Importin alpha family NAAT/IBB domain: Functions of a pleiotropic long chameleon sequence. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:175-209. [PMID: 36858734 DOI: 10.1016/bs.apcsb.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nuclear transport is essential for eukaryotic cell survival and regulates the movement of functional molecules in and out of the nucleus via the nuclear pore. Transport is facilitated by protein-protein interactions between cargo and transport receptors, which contribute to the expression and regulation of downstream genetic information. This chapter focuses on the molecular basis of the multifunctional nature of the importin α family, the representative transport receptors that bring proteins into the nucleus. Importin α performs multiple functions during the nuclear transport cycle through interactions with multiple molecules by a single domain called the IBB domain. This domain is a long chameleon sequence, which can change its conformation and binding mode depending on the interaction partners. By considering the evolutionarily conserved biochemical/physicochemical propensities of the amino acids constituting the functional complex interfaces, together with their structural properties, the mechanisms of switching between multiple complexes formed via IBB and the regulation of downstream functions are examined in detail. The mechanism of regulation by IBB indicates that the time has come for a paradigm shift in the way we view the molecular mechanisms by which proteins regulate downstream functions through their interactions with other molecules.
Collapse
Affiliation(s)
- Kazuya Jibiki
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| | - Takashi S Kodama
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, Osaka, Japan.
| | - Noriko Yasuhara
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan.
| |
Collapse
|
7
|
Bioinformatics and Functional Analysis of a New Nuclear Localization Sequence of the Influenza A Virus Nucleoprotein. Cells 2022; 11:cells11192957. [PMID: 36230922 PMCID: PMC9563117 DOI: 10.3390/cells11192957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Influenza viruses deliver their genome into the nucleus of infected cells for replication. This process is mediated by the viral nucleoprotein (NP), which contains two nuclear localization sequences (NLSs): NLS1 at the N-terminus and a recently identified NLS2 (212GRKTR216). Through mutagenesis and functional studies, we demonstrated that NP must have both NLSs for an efficient nuclear import. As with other NLSs, there may be variations in the basic residues of NLS2 in different strains of the virus, which may affect the nuclear import of the viral genome. Although all NLS2 variants fused to the GFP mediated nuclear import of GFP, bioinformatics showed that 98.8% of reported NP sequences contained either the wild-type sequence 212GRKTR216 or 212GRRTR216. Bioinformatics analyses used to study the presence of NLS2 variants in other viral and nuclear proteins resulted in very low hits, with only 0.4% of human nuclear proteins containing putative NLS2. From these, we studied the nucleolar protein 14 (NOP14) and found that NLS2 does not play a role in the nuclear import of this protein but in its nucleolar localization. We also discovered a functional NLS at the C-terminus of NOP14. Our findings indicate that NLS2 is a highly conserved influenza A NP sequence.
Collapse
|
8
|
Wing CE, Fung HYJ, Chook YM. Karyopherin-mediated nucleocytoplasmic transport. Nat Rev Mol Cell Biol 2022; 23:307-328. [PMID: 35058649 PMCID: PMC10101760 DOI: 10.1038/s41580-021-00446-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 12/25/2022]
Abstract
Efficient and regulated nucleocytoplasmic trafficking of macromolecules to the correct subcellular compartment is critical for proper functions of the eukaryotic cell. The majority of the macromolecular traffic across the nuclear pores is mediated by the Karyopherin-β (or Kap) family of nuclear transport receptors. Work over more than two decades has shed considerable light on how the different Kap family members bring their respective cargoes into the nucleus or the cytoplasm in efficient and highly regulated manners. In this Review, we overview the main features and established functions of Kap family members, describe how Kaps recognize their cargoes and discuss the different ways in which these Kap-cargo interactions can be regulated, highlighting new findings and open questions. We also describe current knowledge of the import and export of the components of three large gene expression machines - the core replisome, RNA polymerase II and the ribosome - pointing out the questions that persist about how such large macromolecular complexes are trafficked to serve their function in a designated subcellular location.
Collapse
|
9
|
Jibiki K, Kodama TS, Suenaga A, Kawase Y, Shibazaki N, Nomoto S, Nagasawa S, Nagashima M, Shimodan S, Kikuchi R, Okayasu M, Takashita R, Mehmood R, Saitoh N, Yoneda Y, Akagi KI, Yasuhara N. Importin α2 association with chromatin: Direct DNA binding via a novel DNA-binding domain. Genes Cells 2021; 26:945-966. [PMID: 34519142 DOI: 10.1111/gtc.12896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 12/18/2022]
Abstract
The nuclear transport of proteins is important for facilitating appropriate nuclear functions. The importin α family proteins play key roles in nuclear transport as transport receptors for copious nuclear proteins. Additionally, these proteins possess other functions, including chromatin association and gene regulation. However, these nontransport functions of importin α are not yet fully understood, especially their molecular-level mechanisms and consequences for functioning with chromatin. Here, we report the novel molecular characteristics of importin α binding to diverse DNA sequences in chromatin. We newly identified and characterized a DNA-binding domain-the Nucleic Acid Associating Trolley pole domain (NAAT domain)-in the N-terminal region of importin α within the conventional importin β binding (IBB) domain that is necessary for nuclear transport of cargo proteins. Furthermore, we found that the DNA binding of importin α synergistically coupled the recruitment of its cargo protein to DNA. This is the first study to delineate the interaction between importin α and chromatin DNA via the NAAT domain, indicating the bifunctionality of the importin α N-terminal region for nuclear transport and chromatin association.
Collapse
Affiliation(s)
- Kazuya Jibiki
- Graduate School of Integrated Basic Sciences, Nihon University, Tokyo, Japan
| | - Takashi S Kodama
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Atsushi Suenaga
- Graduate School of Integrated Basic Sciences, Nihon University, Tokyo, Japan.,Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | - Yota Kawase
- Graduate School of Integrated Basic Sciences, Nihon University, Tokyo, Japan
| | - Noriko Shibazaki
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | - Shin Nomoto
- Graduate School of Integrated Basic Sciences, Nihon University, Tokyo, Japan
| | - Seiya Nagasawa
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | - Misaki Nagashima
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | - Shieri Shimodan
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | - Renan Kikuchi
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | - Mina Okayasu
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | - Ruka Takashita
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | - Rashid Mehmood
- Department of Life Sciences, College of Science and General Studies, Alfaisal University, Riyadh, Saudi Arabia
| | - Noriko Saitoh
- Division of Cancer Biology, The Cancer Institute of JFCR, Tokyo, Japan
| | - Yoshihiro Yoneda
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Ken-Ichi Akagi
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Environmental Metabolic Analysis Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Noriko Yasuhara
- Graduate School of Integrated Basic Sciences, Nihon University, Tokyo, Japan.,Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| |
Collapse
|
10
|
Safari MS, King MR, Brangwynne CP, Petry S. Interaction of spindle assembly factor TPX2 with importins-α/β inhibits protein phase separation. J Biol Chem 2021; 297:100998. [PMID: 34302807 PMCID: PMC8390506 DOI: 10.1016/j.jbc.2021.100998] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 12/30/2022] Open
Abstract
The microtubule-based mitotic spindle is responsible for equally partitioning the genome during each cell division, and its assembly is executed via several microtubule nucleation pathways. Targeting Protein for XKlp2 (TPX2) stimulates the branching microtubule nucleation pathway, where new microtubules are nucleated from preexisting ones within mitotic or meiotic spindles. TPX2, like other spindle assembly factors, is sequestered by binding to nuclear importins-α/β until the onset of mitosis, yet the molecular nature of this regulation remains unclear. Here we demonstrate that TPX2 interacts with importins-α/β with nanomolar affinity in a 1:1:1 monodispersed trimer. We also identify a new nuclear localization sequence in TPX2 that contributes to its high-affinity interaction with importin-α. In addition, we establish that TPX2 interacts with importin-β via dispersed, weak interactions. We show that interactions of both importin-α and -β with TPX2 inhibit its ability to undergo phase separation, which was recently shown to enhance the kinetics of branching microtubule nucleation. In summary, our study informs how importins regulate TPX2 to facilitate spindle assembly, and provides novel insight into the functional regulation of protein phase separation.
Collapse
Affiliation(s)
- Mohammad S Safari
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Matthew R King
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA; Howard Hughes Medical Institute, Princeton University, Princeton, New Jersey, USA
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.
| |
Collapse
|
11
|
Chang CC, Hsia KC. More than a zip code: global modulation of cellular function by nuclear localization signals. FEBS J 2020; 288:5569-5585. [PMID: 33296547 DOI: 10.1111/febs.15659] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/27/2022]
Abstract
Extensive structural and functional studies have been carried out in the field of nucleocytoplasmic transport. Nuclear transport factors, such as Importin-α/-β, recognize nuclear localization signals (NLSs) on cargo, and together with the small GTPase Ran, facilitate their nuclear localization. However, it is now emerging that binding of nuclear transport factors to NLSs not only mediates nuclear transport but also contributes to a variety of cellular functions in eukaryotes. Here, we describe recent advances that reveal how NLSs facilitate diverse cellular functions beyond nuclear transport activity. We review separately NLS-mediated regulatory mechanisms at different levels of biological organization, including (a) assembly of higher-order structures; (b) cellular organelle dynamics; and (c) modulation of cellular stress responses and viral infections. Finally, we provide mechanistic insights into how NLSs can regulate such a broad range of functions via their structural and biochemical properties.
Collapse
Affiliation(s)
- Chih-Chia Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Kuo-Chiang Hsia
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
12
|
Ems-McClung SC, Emch M, Zhang S, Mahnoor S, Weaver LN, Walczak CE. RanGTP induces an effector gradient of XCTK2 and importin α/β for spindle microtubule cross-linking. J Cell Biol 2020; 219:133528. [PMID: 31865374 PMCID: PMC7041689 DOI: 10.1083/jcb.201906045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/21/2019] [Accepted: 11/08/2019] [Indexed: 01/04/2023] Open
Abstract
High RanGTP around chromatin is important for governing spindle assembly during meiosis and mitosis by releasing the inhibitory effects of importin α/β. Here we examine how the Ran gradient regulates Kinesin-14 function to control spindle organization. We show that Xenopus Kinesin-14, XCTK2, and importin α/β form an effector gradient that is highest at the poles and diminishes toward the chromatin, which is opposite the RanGTP gradient. Importin α and β preferentially inhibit XCTK2 antiparallel microtubule cross-linking and sliding by decreasing the microtubule affinity of the XCTK2 tail domain. This change in microtubule affinity enables RanGTP to target endogenous XCTK2 to the spindle. We propose that these combined actions of the Ran pathway are critical to promote Kinesin-14 parallel microtubule cross-linking to help focus spindle poles for efficient bipolar spindle assembly. Furthermore, our work illustrates that RanGTP regulation in the spindle is not simply a switch, but rather generates effector gradients where importins α and β gradually tune the activities of spindle assembly factors.
Collapse
Affiliation(s)
| | - Mackenzie Emch
- Department of Biology, Indiana University, Bloomington, IN
| | | | - Serena Mahnoor
- Indiana University International Summer Undergraduate Research Program, Bloomington, IN
| | | | | |
Collapse
|
13
|
Characterization of the Importin-β binding domain in nuclear import receptor KPNA7. Biochem J 2020; 476:3413-3434. [PMID: 31642884 DOI: 10.1042/bcj20190717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022]
Abstract
The KPNA family of mammalian nuclear import receptors are encoded by seven genes that generate isoforms with 42-86% identity. KPNA isoforms have the same protein architecture and share the functional property of nuclear localization signal (NLS) recognition, however, the tissue and developmental expression patterns of these receptors raise the question of whether subtle differences in KPNA isoforms might be important in specific biological contexts. Here, we show that KPNA7, an isoform with expression mostly limited to early development, can bind Importin-β (Imp-β) in the absence of NLS cargo. This result contrasts with Imp-β interactions with other KPNA family members, where affinity is regulated by NLS cargo as part of a cooperative binding mechanism. The Imp-β binding (IBB) domain, which is highly conserved in all KPNA family members, generally serves to occlude the NLS binding groove and maintain the receptor in an auto-inhibited 'closed' state prior to NLS contact. Cooperative binding of NLS cargo and Imp-β to KPNA results in an 'open'state. Characterization of KPNA2-KPNA7 chimeric proteins suggests that features of both the IBB domain and the core structure of the receptor contribute to the extent of IBB domain accessibility for Imp-β binding, which likely reflects an 'open' state. We also provide evidence that KPNA7 maintains an open-state in the nucleus. We speculate that KPNA7 could function within the nucleus by interacting with NLS-containing proteins.
Collapse
|
14
|
Barbato S, Kapinos LE, Rencurel C, Lim RYH. Karyopherin enrichment at the nuclear pore complex attenuates Ran permeability. J Cell Sci 2020; 133:jcs238121. [PMID: 31932502 DOI: 10.1242/jcs.238121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/13/2019] [Indexed: 12/25/2022] Open
Abstract
Ran is a small GTPase whose nucleotide-bound forms cycle through nuclear pore complexes (NPCs) to direct nucleocytoplasmic transport (NCT). Generally, Ran guanosine triphosphate (RanGTP) binds cargo-carrying karyopherin receptors (Kaps) in the nucleus and releases them into the cytoplasm following hydrolysis to Ran guanosine diphosphate (RanGDP). This generates a remarkably steep Ran gradient across the nuclear envelope that sustains compartment-specific cargo delivery and accumulation. However, because NPCs are permeable to small molecules of comparable size, it is unclear how an uncontrolled mixing of RanGTP and RanGDP is prevented. Here, we find that an NPC-enriched pool of karyopherin subunit beta 1 (KPNB1, hereafter referred to as Kapβ1) selectively mediates Ran diffusion across the pore but not passive molecules of similar size (e.g. GFP). This is due to RanGTP having a stronger binding interaction with Kapβ1 than RanGDP. For this reason, the RanGDP importer, nuclear transport factor 2, facilitates the return of RanGDP into the nucleus following GTP hydrolysis. Accordingly, the enrichment of Kapβ1 at NPCs may function as a retention mechanism that preserves the sharp transition of RanGTP and RanGDP in the nucleus and cytoplasm, respectively.
Collapse
Affiliation(s)
- Suncica Barbato
- Biozentrum & The Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Larisa E Kapinos
- Biozentrum & The Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Chantal Rencurel
- Biozentrum & The Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Roderick Y H Lim
- Biozentrum & The Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
15
|
Zelmer C, Zweifel LP, Kapinos LE, Craciun I, Güven ZP, Palivan CG, Lim RYH. Organelle-specific targeting of polymersomes into the cell nucleus. Proc Natl Acad Sci U S A 2020; 117:2770-2778. [PMID: 31988132 PMCID: PMC7022206 DOI: 10.1073/pnas.1916395117] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Organelle-specific nanocarriers (NCs) are highly sought after for delivering therapeutic agents into the cell nucleus. This necessitates nucleocytoplasmic transport (NCT) to bypass nuclear pore complexes (NPCs). However, little is known as to how comparably large NCs infiltrate this vital intracellular barrier to enter the nuclear interior. Here, we developed nuclear localization signal (NLS)-conjugated polymersome nanocarriers (NLS-NCs) and studied the NCT mechanism underlying their selective nuclear uptake. Detailed chemical, biophysical, and cellular analyses show that karyopherin receptors are required to authenticate, bind, and escort NLS-NCs through NPCs while Ran guanosine triphosphate (RanGTP) promotes their release from NPCs into the nuclear interior. Ultrastructural analysis by regressive staining transmission electron microscopy further resolves the NLS-NCs on transit in NPCs and inside the nucleus. By elucidating their ability to utilize NCT, these findings demonstrate the efficacy of polymersomes to deliver encapsulated payloads directly into cell nuclei.
Collapse
Affiliation(s)
- Christina Zelmer
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, CH-4056 Basel, Switzerland
- Department of Chemistry, University of Basel, CH-4002 Basel, Switzerland
| | - Ludovit P Zweifel
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, CH-4056 Basel, Switzerland
| | - Larisa E Kapinos
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, CH-4056 Basel, Switzerland
| | - Ioana Craciun
- Department of Chemistry, University of Basel, CH-4002 Basel, Switzerland
| | - Zekiye P Güven
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, CH-4002 Basel, Switzerland;
| | - Roderick Y H Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, CH-4056 Basel, Switzerland;
| |
Collapse
|
16
|
Faustino AF, Martins AS, Karguth N, Artilheiro V, Enguita FJ, Ricardo JC, Santos NC, Martins IC. Structural and Functional Properties of the Capsid Protein of Dengue and Related Flavivirus. Int J Mol Sci 2019; 20:E3870. [PMID: 31398956 PMCID: PMC6720645 DOI: 10.3390/ijms20163870] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
Dengue, West Nile and Zika, closely related viruses of the Flaviviridae family, are an increasing global threat, due to the expansion of their mosquito vectors. They present a very similar viral particle with an outer lipid bilayer containing two viral proteins and, within it, the nucleocapsid core. This core is composed by the viral RNA complexed with multiple copies of the capsid protein, a crucial structural protein that mediates not only viral assembly, but also encapsidation, by interacting with host lipid systems. The capsid is a homodimeric protein that contains a disordered N-terminal region, an intermediate flexible fold section and a very stable conserved fold region. Since a better understanding of its structure can give light into its biological activity, here, first, we compared and analyzed relevant mosquito-borne Flavivirus capsid protein sequences and their predicted structures. Then, we studied the alternative conformations enabled by the N-terminal region. Finally, using dengue virus capsid protein as main model, we correlated the protein size, thermal stability and function with its structure/dynamics features. The findings suggest that the capsid protein interaction with host lipid systems leads to minor allosteric changes that may modulate the specific binding of the protein to the viral RNA. Such mechanism can be targeted in future drug development strategies, namely by using improved versions of pep14-23, a dengue virus capsid protein peptide inhibitor, previously developed by us. Such knowledge can yield promising advances against Zika, dengue and closely related Flavivirus.
Collapse
Affiliation(s)
- André F Faustino
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Ana S Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Nina Karguth
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Vanessa Artilheiro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Francisco J Enguita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Joana C Ricardo
- Centro de Química-Física Molecular, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal.
| | - Ivo C Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal.
| |
Collapse
|
17
|
Tang YS, Lo CY, Mok CKP, Chan PKS, Shaw PC. The Extended C-Terminal Region of Influenza C Virus Nucleoprotein Is Important for Nuclear Import and Ribonucleoprotein Activity. J Virol 2019; 93:e02048-18. [PMID: 30814281 PMCID: PMC6475786 DOI: 10.1128/jvi.02048-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 02/15/2019] [Indexed: 02/06/2023] Open
Abstract
The influenza C virus (ICV) is a human-pathogenic agent, and the infections are frequently identified in children. Compared to influenza A and B viruses, the nucleoprotein of ICV (NPC) has an extended C-terminal region of which the functional significance is ill defined. We observed that the nuclear localization signals (NLSs) found on the nucleoproteins of influenza A and B virus subtypes are absent at corresponding positions on ICV. Instead, we found that a long bipartite nuclear localization signal resides at the extended C-terminal region, spanning from R513 to K549. Our experimental data determined that the KKMK motif within this region plays important roles in both nuclear import and polymerase activity. Similar to the influenza A viruses, NPC also binds to multiple human importin α isoforms. Taken together, our results enhance the understanding of the virus-host interaction of the influenza C virus.IMPORTANCE As a member of the Orthomyxoviridae family, the polymerase complex of the influenza C virus structurally resembles its influenza A and influenza B virus counterparts, but the nucleoprotein differs by possessing an extra C-terminal region. We have characterized this region in view of nuclear import and interaction with the importin α protein family. Our results demonstrate the functional significance of a previously uncharacterized region on Orthomyxoviridae nucleoprotein (NP). Based on this work, we propose that importin α binding to influenza C virus NP is regulated by a long bipartite nuclear localization signal. Since the sequence of influenza D virus NP shares high homology to that of the influenza C virus, this work will also shed light on how influenza D virus NP functions.
Collapse
Affiliation(s)
- Yun-Sang Tang
- School of Life Sciences and Centre for Protein Science and Crystallography, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun-Yeung Lo
- School of Life Sciences and Centre for Protein Science and Crystallography, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chris Ka-Pun Mok
- HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Paul Kay-Sheung Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pang-Chui Shaw
- School of Life Sciences and Centre for Protein Science and Crystallography, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
18
|
Matsuura Y. Structural and biochemical characterization of the recognition of the 53BP1 nuclear localization signal by importin-α. Biochem Biophys Res Commun 2019; 510:236-241. [PMID: 30685087 DOI: 10.1016/j.bbrc.2019.01.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 01/16/2019] [Indexed: 12/12/2022]
Abstract
53BP1 (TP53-binding protein 1) plays a key role in DNA double-strand break repair by promoting non-homologous end joining (NHEJ) especially during G1 phase of the cell cycle. Nuclear import of 53BP1 is required for proper localization of 53BP1 and maintenance of genome integrity. 53BP1 has a classical bipartite nuclear localization signal (NLS) of sequence 1666-GKRKLITSEEERSPAKRGRKS-1686. Ser1678 within the 53BP1 NLS can be phosphorylated by CDK1/cyclin B, and a phosphomimetic substitution of Ser1678 with aspartate has been shown to negatively regulate nuclear import of 53BP1. Here, the X-ray crystal structures of the nuclear import adaptor importin-α1 bound to the wild-type 53BP1 NLS and the S1678D mutant of 53BP1 NLS are reported at resolutions of 1.9 and 1.7 Å, respectively. In the wild-type structure, not only the two basic clusters of the 53BP1 NLS but also the linker region between the basic clusters made extensive interactions with importin-α1. In the mutant structure, the linker region between the basic clusters in the 53BP1 NLS made fewer interactions with importin-α1 than those observed in the wild-type structure. However, biochemical binding assays using purified proteins showed that the 53BP1 mutation S1678D reduces the binding affinity to importin-α1 only to a modest extent. Implications of these findings for regulatory mechanism of 53BP1 nuclear import are discussed.
Collapse
Affiliation(s)
- Yoshiyuki Matsuura
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan; Structural Biology Research Center, Graduate School of Science, Nagoya University, Japan.
| |
Collapse
|
19
|
de Barros AC, Takeda AAS, Dreyer TR, Velazquez-Campoy A, Kobe B, Fontes MRM. DNA mismatch repair proteins MLH1 and PMS2 can be imported to the nucleus by a classical nuclear import pathway. Biochimie 2017; 146:87-96. [PMID: 29175432 DOI: 10.1016/j.biochi.2017.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/22/2017] [Indexed: 01/11/2023]
Abstract
MLH1 and PMS2 proteins form the MutLα heterodimer, which plays a major role in DNA mismatch repair (MMR) in humans. Mutations in MMR-related proteins are associated with cancer, especially with colon cancer. The N-terminal region of MutLα comprises the N-termini of PMS2 and MLH1 and, similarly, the C-terminal region of MutLα is composed by the C-termini of PMS2 and MLH1, and the two are connected by linker region. The nuclear localization sequences (NLSs) necessary for the nuclear transport of the two proteins are found in this linker region. However, the exact NLS sequences have been controversial, with different sequences reported, particularly for MLH1. The individual components are not imported efficiently, presumably due to their C-termini masking their NLSs. In order to gain insights into the nuclear transport of these proteins, we solved the crystal structures of importin-α bound to peptides corresponding to the supposed NLSs of MLH1 and PMS2 and performed isothermal titration calorimetry to study their binding affinities. Both putative MLH1 and PMS2 NLSs can bind to importin-α as monopartite NLSs, which is in agreement with some previous studies. However, MLH1-NLS has the highest affinity measured by a natural NLS peptide, suggesting a major role of MLH1 protein in nuclear import compared to PMS2. Finally, the role of MLH1 and PMS2 in the nuclear transport of the MutLα heterodimer is discussed.
Collapse
Affiliation(s)
- Andrea C de Barros
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Agnes A S Takeda
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Thiago R Dreyer
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint-Unit IQFR-CSIC-BIFI, University of Zaragoza, Zaragoza, Spain; Dep. of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain; Fundacion ARAID, Government of Aragon, Zaragoza, Spain
| | - Boštjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Marcos R M Fontes
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil.
| |
Collapse
|
20
|
Zheng W, Wang R, Liu X, Tian S, Yao B, Chen A, Jin S, Li Y. Structural insights into the nuclear import of the histone acetyltransferase males-absent-on-the-first by importin α1. Traffic 2017; 19:19-28. [PMID: 28991411 DOI: 10.1111/tra.12534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022]
Abstract
The histone acetyltransferase males-absent-on-the-first (MOF) acetylates the histone H4, a modification important for many biological processes, including chromatin organization, transcriptional regulation, DNA replication, recombination and repair, as well as autophagy. Depletion of MOF induces serious consequences because of the reduction of histone acetylation, such as nuclear morphological defects and cancer. Despite the critical roles of MOF in the nucleus, the structural or functional mechanisms of the nucleocytoplasmic transport of MOF remain elusive. Here, we identified novel importin α1-specific nuclear localization signals (NLSs) in the N-terminal of human MOF. The crystal structure of MOF NLSs in complex with importin α1 further revealed a unique binding mode of MOF, with two independent NLSs binding to importin α1 major and minor sites, respectively. The second NLS of MOF displays an unexpected α-helical conformation in the C-terminus, with more extensive contacts with importin α1 not limited in the minor site. Mutations of the key residues on MOF and importin α1 lead to the reduction of their interaction as well as the nuclear import of MOF, revealing an essential role of NLS2 of MOF in interacting with importin α1 minor site. Taken together, we provide structural mechanisms underlying the nucleocytoplasmic transport of MOF, which will be of great importance in understanding the functional regulation of MOF in various biological processes.
Collapse
Affiliation(s)
- Weili Zheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Rui Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Xi Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Siyu Tian
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Benqiang Yao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Ang Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Shikai Jin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Yong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| |
Collapse
|
21
|
Wu W, Sankhala RS, Florio TJ, Zhou L, Nguyen NLT, Lokareddy RK, Cingolani G, Panté N. Synergy of two low-affinity NLSs determines the high avidity of influenza A virus nucleoprotein NP for human importin α isoforms. Sci Rep 2017; 7:11381. [PMID: 28900157 PMCID: PMC5595889 DOI: 10.1038/s41598-017-11018-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/17/2017] [Indexed: 11/26/2022] Open
Abstract
The influenza A virus nucleoprotein (NP) is an essential multifunctional protein that encapsidates the viral genome and functions as an adapter between the virus and the host cell machinery. NPs from all strains of influenza A viruses contain two nuclear localization signals (NLSs): a well-studied monopartite NLS1 and a less-characterized NLS2, thought to be bipartite. Through site-directed mutagenesis and functional analysis, we found that NLS2 is also monopartite and is indispensable for viral infection. Atomic structures of importin α bound to two variants of NLS2 revealed NLS2 primarily binds the major-NLS binding site of importin α, unlike NLS1 that associates with the minor NLS-pocket. Though peptides corresponding to NLS1 and NLS2 bind weakly to importin α, the two NLSs synergize in the context of the full length NP to confer high avidity for importin α7, explaining why the virus efficiently replicates in the respiratory tract that exhibits high levels of this isoform. This study, the first to functionally characterize NLS2, demonstrates NLS2 plays an important and unexpected role in influenza A virus infection. We propose NLS1 and NLS2 form a bipartite NLS in trans, which ensures high avidity for importin α7 while preventing non-specific binding to viral RNA.
Collapse
Affiliation(s)
- Wei Wu
- University of British Columbia, Department of Zoology, Vancouver, British Columbia, V6T1Z4, Canada
| | - Rajeshwer S Sankhala
- Thomas Jefferson University, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Tyler J Florio
- Thomas Jefferson University, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Lixin Zhou
- University of British Columbia, Department of Zoology, Vancouver, British Columbia, V6T1Z4, Canada
| | - Nhan L T Nguyen
- University of British Columbia, Department of Zoology, Vancouver, British Columbia, V6T1Z4, Canada
| | - Ravi K Lokareddy
- Thomas Jefferson University, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Gino Cingolani
- Thomas Jefferson University, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA. .,Institute of Biomembranes and Bioenergetics, National Research Council, Via Amendola 165/A, 70126, Bari, Italy.
| | - Nelly Panté
- University of British Columbia, Department of Zoology, Vancouver, British Columbia, V6T1Z4, Canada.
| |
Collapse
|
22
|
Koyama M, Matsuura Y. Crystal structure of importin-α3 bound to the nuclear localization signal of Ran-binding protein 3. Biochem Biophys Res Commun 2017; 491:609-613. [DOI: 10.1016/j.bbrc.2017.07.155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 07/27/2017] [Indexed: 12/12/2022]
|
23
|
Kapinos LE, Huang B, Rencurel C, Lim RYH. Karyopherins regulate nuclear pore complex barrier and transport function. J Cell Biol 2017; 216:3609-3624. [PMID: 28864541 PMCID: PMC5674887 DOI: 10.1083/jcb.201702092] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/16/2017] [Accepted: 08/08/2017] [Indexed: 01/01/2023] Open
Abstract
Kapinos et al. show that nuclear pore complex permeability and cargo release functionalities are concomitantly regulated by karyopherin occupancy and turnover in a systematic continuum. This highlights increasingly important roles for the soluble nucleocytoplasmic transport machinery that depart from established views of the nuclear pore complex selectivity mechanism. Nucleocytoplasmic transport is sustained by karyopherins (Kaps) and a Ran guanosine triphosphate (RanGTP) gradient that imports nuclear localization signal (NLS)–specific cargoes (NLS-cargoes) into the nucleus. However, how nuclear pore complex (NPC) barrier selectivity, Kap traffic, and NLS-cargo release are systematically linked and simultaneously regulated remains incoherent. In this study, we show that Kapα facilitates Kapβ1 turnover and occupancy at the NPC in a RanGTP-dependent manner that is directly coupled to NLS-cargo release and NPC barrier function. This is underpinned by the binding affinity of Kapβ1 to phenylalanine–glycine nucleoporins (FG Nups), which is comparable with RanGTP·Kapβ1, but stronger for Kapα·Kapβ1. On this basis, RanGTP is ineffective at releasing standalone Kapβ1 from NPCs. Depleting Kapα·Kapβ1 by RanGTP further abrogates NPC barrier function, whereas adding back Kapβ1 rescues it while Kapβ1 turnover softens it. Therefore, the FG Nups are necessary but insufficient for NPC barrier function. We conclude that Kaps constitute integral constituents of the NPC whose barrier, transport, and cargo release functionalities establish a continuum under a mechanism of Kap-centric control.
Collapse
Affiliation(s)
- Larisa E Kapinos
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Binlu Huang
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Chantal Rencurel
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Roderick Y H Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
24
|
Chen K, Li J, Wang C, Wei Z, Zhang M. Autoinhibition of ankyrin-B/G membrane target bindings by intrinsically disordered segments from the tail regions. eLife 2017; 6:29150. [PMID: 28841137 PMCID: PMC5779224 DOI: 10.7554/elife.29150] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/24/2017] [Indexed: 01/07/2023] Open
Abstract
Ankyrins together with their spectrin partners are the master organizers of micron-scale membrane domains in diverse tissues. The 24 ankyrin (ANK) repeats of ankyrins bind to numerous membrane proteins, linking them to spectrin-based cytoskeletons at specific membrane microdomains. The accessibility of the target binding groove of ANK repeats must be regulated to achieve spatially defined functions of ankyrins/target complexes in different tissues, though little is known in this regard. Here we systemically investigated the autoinhibition mechanism of ankyrin-B/G by combined biochemical, biophysical and structural biology approaches. We discovered that the entire ANK repeats are inhibited by combinatorial and quasi-independent bindings of multiple disordered segments located in the ankyrin-B/G linkers and tails, suggesting a mechanistic basis for differential regulations of membrane target bindings by ankyrins. In addition to elucidating the autoinhibition mechanisms of ankyrins, our study may also shed light on regulations on target bindings by other long repeat-containing proteins.
Collapse
Affiliation(s)
- Keyu Chen
- Division of Life Science, State Key Laboratory of Molecular NeuroscienceHong Kong University of Science and TechnologyHong KongChina
| | - Jianchao Li
- Division of Life Science, State Key Laboratory of Molecular NeuroscienceHong Kong University of Science and TechnologyHong KongChina
| | - Chao Wang
- Division of Life Science, State Key Laboratory of Molecular NeuroscienceHong Kong University of Science and TechnologyHong KongChina,School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui, China
| | - Zhiyi Wei
- Division of Life Science, State Key Laboratory of Molecular NeuroscienceHong Kong University of Science and TechnologyHong KongChina,Department of BiologySouth University of Science and Technology of ChinaShenzhenChina
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular NeuroscienceHong Kong University of Science and TechnologyHong KongChina,Center of Systems Biology and Human Health, Institute for Advanced StudyHong Kong University of Science and TechnologyHong KongChina
| |
Collapse
|
25
|
Reichen C, Hansen S, Forzani C, Honegger A, Fleishman SJ, Zhou T, Parmeggiani F, Ernst P, Madhurantakam C, Ewald C, Mittl PR, Zerbe O, Baker D, Caflisch A, Plückthun A. Computationally Designed Armadillo Repeat Proteins for Modular Peptide Recognition. J Mol Biol 2016; 428:4467-4489. [DOI: 10.1016/j.jmb.2016.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 10/21/2022]
|
26
|
Tay MYF, Smith K, Ng IHW, Chan KWK, Zhao Y, Ooi EE, Lescar J, Luo D, Jans DA, Forwood JK, Vasudevan SG. The C-terminal 18 Amino Acid Region of Dengue Virus NS5 Regulates its Subcellular Localization and Contains a Conserved Arginine Residue Essential for Infectious Virus Production. PLoS Pathog 2016; 12:e1005886. [PMID: 27622521 PMCID: PMC5021334 DOI: 10.1371/journal.ppat.1005886] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 08/22/2016] [Indexed: 11/24/2022] Open
Abstract
Dengue virus NS5 is the most highly conserved amongst the viral non-structural proteins and is responsible for capping, methylation and replication of the flavivirus RNA genome. Interactions of NS5 with host proteins also modulate host immune responses. Although replication occurs in the cytoplasm, an unusual characteristic of DENV2 NS5 is that it localizes to the nucleus during infection with no clear role in replication or pathogenesis. We examined NS5 of DENV1 and 2, which exhibit the most prominent difference in nuclear localization, employing a combination of functional and structural analyses. Extensive gene swapping between DENV1 and 2 NS5 identified that the C-terminal 18 residues (Cter18) alone was sufficient to direct the protein to the cytoplasm or nucleus, respectively. The low micromolar binding affinity between NS5 Cter18 and the nuclear import receptor importin-alpha (Impα), allowed their molecular complex to be purified, crystallised and visualized at 2.2 Å resolution using x-ray crystallography. Structure-guided mutational analysis of this region in GFP-NS5 clones of DENV1 or 2 and in a DENV2 infectious clone reveal residues important for NS5 subcellular localization. Notably, the trans conformation adopted by Pro-884 allows proper presentation for binding Impα and mutating this proline to Thr, as present in DENV1 NS5, results in mislocalizaion of NS5 to the cytoplasm without compromising virus fitness. In contrast, a single mutation to alanine at NS5 position R888, a residue conserved in all flaviviruses, resulted in a completely non-viable virus, and the R888K mutation led to a severely attenuated phentoype, even though NS5 was located in the nucleus. R888 forms a hydrogen bond with Y838 that is also conserved in all flaviviruses. Our data suggests an evolutionarily conserved function for NS5 Cter18, possibly in RNA interactions that are critical for replication, that is independent of its role in subcellular localization. DENV NS5 is critical for virus RNA replication and an important drug target based on its high sequence conservation across serotypes, and the successful development of potent drugs that target the homologous NS5B of hepatitis C virus. NS5 also mediates other functions that are important for innate and adaptive immune responses by the infected host. Extensive gene swapping and functional analyses between NS5 of DENV serotypes 1 and 2, that are the two most disparate in terms of nuclear vs cytoplasmic localization of NS5 identified the last 18 amino acid residues of the ~900 amino-acid residues long protein to be responsible for subcellular localization. Because this region is very flexible and not easily seen in crystal structures of DENV NS5, co-crystals of the newly discovered peptide region with importin α were obtained. Structure-based mutations introduced into a DENV2 infectious clone showed that the proline to threonine at position 884 resulted in NS5 being mostly cytoplasmic without affecting virus replication. However mutation of arginine 888, which is conserved in all flaviviruses, to alanine resulted in a completely non-viable virus, suggesting that the C-terminal region is essential for NS5 function irrespective of its role in subcellular location.
Collapse
Affiliation(s)
- Moon Y. F. Tay
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Kate Smith
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Ivan H. W. Ng
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Kitti W. K. Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yongqian Zhao
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, Singapore
- UPMC UMRS CR7—CNRS ERL 8255-INSERM U1135 Centre d’Immunologie et des Maladies Infectieuses. Centre Hospitalier Universitaire Pitié-Salpêtrière, Faculté de Médecine Pierre et Marie Curie, Paris, France
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - David A. Jans
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Jade K. Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Subhash G. Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- * E-mail:
| |
Collapse
|
27
|
Pantoja-Uceda D, Neira JL, Saelices L, Robles-Rengel R, Florencio FJ, Muro-Pastor MI, Santoro J. Dissecting the Binding between Glutamine Synthetase and Its Two Natively Unfolded Protein Inhibitors. Biochemistry 2016; 55:3370-82. [DOI: 10.1021/acs.biochem.6b00072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - José L. Neira
- Instituto
de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain
- Instituto
de Biocomputación y Física de Sistemas Complejos (BIFI),
Unidad Asociada IQFR-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Lorena Saelices
- Instituto
de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, 41092 Seville, Spain
| | - Rocío Robles-Rengel
- Instituto
de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, 41092 Seville, Spain
| | - Francisco J. Florencio
- Instituto
de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, 41092 Seville, Spain
| | - M. Isabel Muro-Pastor
- Instituto
de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, 41092 Seville, Spain
| | - Jorge Santoro
- Instituto
de Química Física Rocasolano (IQFR), CSIC, 28006 Madrid, Spain
| |
Collapse
|
28
|
Sankhala RS, Lokareddy RK, Cingolani G. Divergent Evolution of Nuclear Localization Signal Sequences in Herpesvirus Terminase Subunits. J Biol Chem 2016; 291:11420-33. [PMID: 27033706 DOI: 10.1074/jbc.m116.724393] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Indexed: 11/06/2022] Open
Abstract
The tripartite terminase complex of herpesviruses assembles in the cytoplasm of infected cells and exploits the host nuclear import machinery to gain access to the nucleus, where capsid assembly and genome-packaging occur. Here we analyzed the structure and conservation of nuclear localization signal (NLS) sequences previously identified in herpes simplex virus 1 (HSV-1) large terminase and human cytomegalovirus (HCMV) small terminase. We found a monopartite NLS at the N terminus of large terminase, flanking the ATPase domain, that is conserved only in α-herpesviruses. In contrast, small terminase exposes a classical NLS at the far C terminus of its helical structure that is conserved only in two genera of the β-subfamily and absent in α- and γ-herpesviruses. In addition, we predicted a classical NLS in the third terminase subunit that is partially conserved among herpesviruses. Bioinformatic analysis revealed that both location and potency of NLSs in terminase subunits evolved more rapidly than the rest of the amino acid sequence despite the selective pressure to keep terminase gene products active and localized in the nucleus. We propose that swapping NLSs among terminase subunits is a regulatory mechanism that allows different herpesviruses to regulate the kinetics of terminase nuclear import, reflecting a mechanism of virus:host adaptation.
Collapse
Affiliation(s)
- Rajeshwer S Sankhala
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| | - Ravi K Lokareddy
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and
| | - Gino Cingolani
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and Institute of Biomembranes and Bioenergetics, National Research Council, Via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
29
|
Structure of importin-α bound to a non-classical nuclear localization signal of the influenza A virus nucleoprotein. Sci Rep 2015; 5:15055. [PMID: 26456934 PMCID: PMC4601014 DOI: 10.1038/srep15055] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/16/2015] [Indexed: 02/08/2023] Open
Abstract
A non-classical nuclear localization signal (ncNLS) of influenza A virus nucleoprotein (NP) is critical for nuclear import of viral genomic RNAs that transcribe and replicate in the nucleus of infected cells. Here we report a 2.3 Å resolution crystal structure of mouse importin-α1 in complex with NP ncNLS. The structure reveals that NP ncNLS binds specifically and exclusively to the minor NLS-binding site of importin-α. Structural and functional analyses identify key binding pockets on importin-α as potential targets for antiviral drug development. Unlike many other NLSs, NP ncNLS binds to the NLS-binding domain of importin-α weakly with micromolar affinity. These results suggest that a modest inhibitor with low affinity to importin-α could have anti-influenza activity with minimal cytotoxicity.
Collapse
|
30
|
Abstract
The Karyopherin-β family of proteins mediates nuclear transport of macromolecules. Nuclear versus cytoplasmic localization of proteins is often suggested by the presence of NLSs (nuclear localization signals) or NESs (nuclear export signals). Import-Karyopherin-βs or Importins bind to NLSs in their protein cargos to transport them through nuclear pore complexes into the nucleus. Until recently, only two classes of NLS had been biochemically and structurally characterized: the classical NLS, which is recognized by the Importin-α/β heterodimer and the PY-NLS (proline-tyrosine NLS), which is recognized by Karyopherin-β2 or Transportin-1. Structures of two other Karyopherin-βs, Kap121 and Transportin-SR2, in complex with their respective cargos were reported for the first time recently, revealing two new distinct classes of NLSs. The present paper briefly describes the classical NLS, reviews recent literature on the PY-NLS and provides in-depth reviews of the two newly discovered classes of NLSs that bind Kap121p and Transportin-SR respectively.
Collapse
|
31
|
Nuclear Localization of the DNA Repair Scaffold XRCC1: Uncovering the Functional Role of a Bipartite NLS. Sci Rep 2015; 5:13405. [PMID: 26304019 PMCID: PMC4548243 DOI: 10.1038/srep13405] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/17/2015] [Indexed: 12/23/2022] Open
Abstract
We have characterized the nuclear localization signal (NLS) of XRCC1 structurally using X-ray crystallography and functionally using fluorescence imaging. Crystallography and binding studies confirm the bipartite nature of the XRCC1 NLS interaction with Importin α (Impα) in which the major and minor binding motifs are separated by >20 residues, and resolve previous inconsistent determinations. Binding studies of peptides corresponding to the bipartite NLS, as well as its major and minor binding motifs, to both wild-type and mutated forms of Impα reveal pronounced cooperative binding behavior that is generated by the proximity effect of the tethered major and minor motifs of the NLS. The cooperativity stems from the increased local concentration of the second motif near its cognate binding site that is a consequence of the stepwise binding behavior of the bipartite NLS. We predict that the stepwise dissociation of the NLS from Impα facilitates unloading by providing a partially complexed intermediate that is available for competitive binding by Nup50 or the Importin β binding domain. This behavior provides a basis for meeting the intrinsically conflicting high affinity and high flux requirements of an efficient nuclear transport system.
Collapse
|
32
|
Is the Cell Nucleus a Necessary Component in Precise Temporal Patterning? PLoS One 2015; 10:e0134239. [PMID: 26226505 PMCID: PMC4520485 DOI: 10.1371/journal.pone.0134239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 07/07/2015] [Indexed: 11/30/2022] Open
Abstract
One of the functions of the cell nucleus is to help regulate gene expression by controlling molecular traffic across the nuclear envelope. Here we investigate, via stochastic simulation, what effects, if any, does segregation of a system into the nuclear and cytoplasmic compartments have on the stochastic properties of a motif with a negative feedback. One of the effects of the nuclear barrier is to delay the nuclear protein concentration, allowing it to behave in a switch-like manner. We found that this delay, defined as the time for the nuclear protein concentration to reach a certain threshold, has an extremely narrow distribution. To show this, we considered two models. In the first one, the proteins could diffuse freely from cytoplasm to nucleus (simple model); and in the second one, the proteins required assistance from a special class of proteins called importins. For each model, we generated fifty parameter sets, chosen such that the temporal profiles they effectuated were very similar, and whose average threshold time was approximately 150 minutes. The standard deviation of the threshold times computed over one hundred realizations were found to be between 1.8 and 7.16 minutes across both models. To see whether a genetic motif in a prokaryotic cell can achieve this degree of precision, we also simulated five variations on the coherent feed-forward motif (CFFM), three of which contained a negative feedback. We found that the performance of these motifs was nowhere near as impressive as the one found in the eukaryotic cell; the best standard deviation was 6.6 minutes. We argue that the significance of these results, the fact and necessity of spatio-temporal precision in the developmental stages of eukaryotes, and the absence of such a precision in prokaryotes, all suggest that the nucleus has evolved, in part, under the selective pressure to achieve highly predictable phenotypes.
Collapse
|
33
|
Bernardes NE, Takeda AAS, Dreyer TR, Freitas FZ, Bertolini MC, Fontes MRM. Structure of Importin-α from a Filamentous Fungus in Complex with a Classical Nuclear Localization Signal. PLoS One 2015; 10:e0128687. [PMID: 26091498 PMCID: PMC4474859 DOI: 10.1371/journal.pone.0128687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/29/2015] [Indexed: 01/07/2023] Open
Abstract
Neurospora crassa is a filamentous fungus that has been extensively studied as a model organism for eukaryotic biology, providing fundamental insights into cellular processes such as cell signaling, growth and differentiation. To advance in the study of this multicellular organism, an understanding of the specific mechanisms for protein transport into the cell nucleus is essential. Importin-α (Imp-α) is the receptor for cargo proteins that contain specific nuclear localization signals (NLSs) that play a key role in the classical nuclear import pathway. Structures of Imp-α from different organisms (yeast, rice, mouse, and human) have been determined, revealing that this receptor possesses a conserved structural scaffold. However, recent studies have demonstrated that the Impα mechanism of action may vary significantly for different organisms or for different isoforms from the same organism. Therefore, structural, functional, and biophysical characterization of different Impα proteins is necessary to understand the selectivity of nuclear transport. Here, we determined the first crystal structure of an Impα from a filamentous fungus which is also the highest resolution Impα structure already solved to date (1.75 Å). In addition, we performed calorimetric analysis to determine the affinity and thermodynamic parameters of the interaction between Imp-α and the classical SV40 NLS peptide. The comparison of these data with previous studies on Impα proteins led us to demonstrate that N. crassa Imp-α possess specific features that are distinct from mammalian Imp-α but exhibit important similarities to rice Imp-α, particularly at the minor NLS binding site.
Collapse
Affiliation(s)
- Natalia E. Bernardes
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Botucatu, SP, Brazil
| | - Agnes A. S. Takeda
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Botucatu, SP, Brazil
| | - Thiago R. Dreyer
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Botucatu, SP, Brazil
| | - Fernanda Z. Freitas
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, UNESP, Araraquara, SP, Brazil
| | - Maria Célia Bertolini
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, UNESP, Araraquara, SP, Brazil
| | - Marcos R. M. Fontes
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Botucatu, SP, Brazil
- * E-mail:
| |
Collapse
|
34
|
A Combined NMR and Computational Approach to Investigate Peptide Binding to a Designed Armadillo Repeat Protein. J Mol Biol 2015; 427:1916-33. [DOI: 10.1016/j.jmb.2015.02.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/18/2015] [Accepted: 02/23/2015] [Indexed: 11/19/2022]
|
35
|
Faustino AF, Guerra GM, Huber RG, Hollmann A, Domingues MM, Barbosa GM, Enguita FJ, Bond PJ, Castanho MARB, Da Poian AT, Almeida FCL, Santos NC, Martins IC. Understanding dengue virus capsid protein disordered N-Terminus and pep14-23-based inhibition. ACS Chem Biol 2015; 10:517-26. [PMID: 25412346 DOI: 10.1021/cb500640t] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dengue virus (DENV) infection affects millions of people and is becoming a major global disease for which there is no specific available treatment. pep14-23 is a recently designed peptide, based on a conserved segment of DENV capsid (C) protein. It inhibits the interaction of DENV C with host intracellular lipid droplets (LDs), which is crucial for viral replication. Combining bioinformatics and biophysics, here, we analyzed pep14-23 structure and ability to bind different phospholipids, relating that information with the full-length DENV C. We show that pep14-23 acquires α-helical conformation upon binding to negatively charged phospholipid membranes, displaying an asymmetric charge distribution structural arrangement. Structure prediction for the N-terminal segment reveals four viable homodimer orientations that alternatively shield or expose the DENV C hydrophobic pocket. Taken together, these findings suggest a new biological role for the disordered N-terminal region, which may function as an autoinhibitory domain mediating DENV C interaction with its biological targets. The results fit with our current understanding of DENV C and pep14-23 structure and function, paving the way for similar approaches to understanding disordered proteins and improved peptidomimetics drug development strategies against DENV and similar Flavivirus infections.
Collapse
Affiliation(s)
- André F. Faustino
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Gabriela M. Guerra
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Roland G. Huber
- Bioinformatics
Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis
Street, #07-01 Matrix, 138671 Singapore, Singapore
| | - Axel Hollmann
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Marco M. Domingues
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Glauce M. Barbosa
- Instituto
de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Francisco J. Enguita
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Peter J. Bond
- Bioinformatics
Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis
Street, #07-01 Matrix, 138671 Singapore, Singapore
- Department
of Biological Sciences, National University of Singapore, 14 Science
Drive 4, 117543 Singapore, Singapore
| | - Miguel A. R. B. Castanho
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Andrea T. Da Poian
- Instituto
de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Fabio C. L. Almeida
- Instituto
de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
- Centro
Nacional de Ressonância Magnética Nuclear, Universidade Federal do Rio de Janeiro and National Institute of Structural Biology and Bioimage, Rio de Janeiro, RJ 21941-902, Brazil
| | - Nuno C. Santos
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Ivo C. Martins
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| |
Collapse
|
36
|
Jang AR, Moravcevic K, Saez L, Young MW, Sehgal A. Drosophila TIM binds importin α1, and acts as an adapter to transport PER to the nucleus. PLoS Genet 2015; 11:e1004974. [PMID: 25674790 PMCID: PMC4335507 DOI: 10.1371/journal.pgen.1004974] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 12/23/2014] [Indexed: 02/07/2023] Open
Abstract
Regulated nuclear entry of clock proteins is a conserved feature of eukaryotic circadian clocks and serves to separate the phase of mRNA activation from mRNA repression in the molecular feedback loop. In Drosophila, nuclear entry of the clock proteins, PERIOD (PER) and TIMELESS (TIM), is tightly controlled, and impairments of this process produce profound behavioral phenotypes. We report here that nuclear entry of PER-TIM in clock cells, and consequently behavioral rhythms, require a specific member of a classic nuclear import pathway, Importin α1 (IMPα1). In addition to IMPα1, rhythmic behavior and nuclear expression of PER-TIM require a specific nuclear pore protein, Nup153, and Ran-GTPase. IMPα1 can also drive rapid and efficient nuclear expression of TIM and PER in cultured cells, although the effect on PER is mediated by TIM. Mapping of interaction domains between IMPα1 and TIM/PER suggests that TIM is the primary cargo for the importin machinery. This is supported by attenuated interaction of IMPα1 with TIM carrying a mutation previously shown to prevent nuclear entry of TIM and PER. TIM is detected at the nuclear envelope, and computational modeling suggests that it contains HEAT-ARM repeats typically found in karyopherins, consistent with its role as a co-transporter for PER. These findings suggest that although PER is the major timekeeper of the clock, TIM is the primary target of nuclear import mechanisms. Thus, the circadian clock uses specific components of the importin pathway with a novel twist in that TIM serves a karyopherin-like role for PER. In Drosophila, circadian rhythms are driven by a negative feedback loop that includes the key regulators, period (per) and timeless (tim). To generate this feedback loop, PER and TIM proteins first accumulate in the cytoplasm and then translocate to the nucleus where PER represses transcription. Thus, the nuclear import of PER-TIM proteins is a critical step to separate the phases of activation and repression of mRNA synthesis. In this study, we discovered that a member of the nuclear import machinery, importin α1 is an essential component of this feedback loop. Flies lacking importin α1 (IMPα1) display arrhythmic behavior and cytoplasmic expression of both PER and TIM at all times. In cultured S2 cells, IMPα1 expression directly facilitates nuclear import of TIM, but the effect on PER appears to be indirect. TIM expression is detected at the nuclear envelope and it interacts with other components of the nuclear transport machinery, which we show are also required for nuclear expression of TIM-PER and for behavioral rhythms. Our results thus suggest that TIM functions to link PER to the nuclear import machinery through IMPα1. Altogether, this study provides the mechanistic basis of a crucial step in the circadian clock mechanism.
Collapse
Affiliation(s)
- A. Reum Jang
- Howard Hughes Medical Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katarina Moravcevic
- Howard Hughes Medical Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Lino Saez
- Laboratory of Genetics, The Rockefeller University, New York, New York, United States of America
| | - Michael W. Young
- Laboratory of Genetics, The Rockefeller University, New York, New York, United States of America
| | - Amita Sehgal
- Howard Hughes Medical Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
37
|
Molecular determinants for nuclear import of influenza A PB2 by importin α isoforms 3 and 7. Structure 2015; 23:374-84. [PMID: 25599645 DOI: 10.1016/j.str.2014.11.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/14/2014] [Accepted: 11/18/2014] [Indexed: 11/23/2022]
Abstract
Influenza A virus polymerase subunit PB2 is a major virulence determinant implicated in pathogenicity and host adaptation. During cross-species virus transfer from avian to mammalian cells, PB2 switches specificity from importin α3 to α7. This specificity is not recapitulated in vitro, where PB2 binds all importin α isoforms with comparably high affinity. In this study, we investigated the structure, conformational dynamics, and autoinhibition of importin α isoforms 1, 3, and 7 in complex with PB2. Our data suggest that association of PB2 with α3 and α7 is favored by reduced autoinhibition of these isoforms and by the unique structure of the nuclear localization signal (NLS) domain of PB2. We propose that by recruiting importin α3 or α7 in the absence of importin β, PB2 reduces the complexity of adaptor-mediated import to a pseudo-bimolecular reaction, thereby acquiring a kinetic advantage over classical NLS cargos, which form an import complex only when importin α and β are simultaneously available.
Collapse
|
38
|
Lu M, Zak J, Chen S, Sanchez-Pulido L, Severson DT, Endicott J, Ponting CP, Schofield CJ, Lu X. A code for RanGDP binding in ankyrin repeats defines a nuclear import pathway. Cell 2014; 157:1130-45. [PMID: 24855949 DOI: 10.1016/j.cell.2014.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 01/22/2014] [Accepted: 03/13/2014] [Indexed: 01/23/2023]
Abstract
Regulation of nuclear import is fundamental to eukaryotic biology. The majority of nuclear import pathways are mediated by importin-cargo interactions. Yet not all nuclear proteins interact with importins, necessitating the identification of a general importin-independent nuclear import pathway. Here, we identify a code that determines importin-independent nuclear import of ankyrin repeats (ARs), a structural motif found in over 250 human proteins with diverse functions. AR-containing proteins (ARPs) with a hydrophobic residue at the 13th position of two consecutive ARs bind RanGDP efficiently, and consequently enter the nucleus. This code, experimentally tested in 17 ARPs, predicts the nuclear-cytoplasmic localization of over 150 annotated human ARPs with high accuracy and is acquired by the most common familial melanoma-associated CDKN2A mutation, leading to nuclear accumulation of mutant p16ink4a. The RaDAR (RanGDP/AR) pathway represents a general importin-independent nuclear import pathway and is frequently used by AR-containing transcriptional regulators, especially those regulating NF-κB/p53.
Collapse
Affiliation(s)
- Min Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Jaroslav Zak
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Shuo Chen
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Luis Sanchez-Pulido
- MRC Functional Genomics Unit, Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - David T Severson
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Jane Endicott
- Northern Institute for Cancer Research, University of Newcastle, Newcastle, NE2 4HH, UK
| | - Chris P Ponting
- MRC Functional Genomics Unit, Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
39
|
Lieu KG, Shim EH, Wang J, Lokareddy RK, Tao T, Cingolani G, Zambetti GP, Jans DA. The p53-induced factor Ei24 inhibits nuclear import through an importin β-binding-like domain. ACTA ACUST UNITED AC 2014; 205:301-12. [PMID: 24821838 PMCID: PMC4018778 DOI: 10.1083/jcb.201304055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The etoposide-induced protein Ei24 was initially identified as a p53-responsive, proapoptotic factor, but no clear function has been described. Here, we use a nonbiased proteomics approach to identify members of the importin (IMP) family of nuclear transporters as interactors of Ei24 and characterize an IMPβ-binding-like (IBBL) domain within Ei24. We show that Ei24 can bind specifically to IMPβ1 and IMPα2, but not other IMPs, and use a mutated IMPβ1 derivative to show that Ei24 binds to the same site on IMPβ1 as the IMPα IBB. Ectopic expression of Ei24 reduced the extent of IMPβ1- or IMPα/β1-dependent nuclear protein import specifically, whereas specific alanine substitutions within the IBBL abrogated this activity. Induction of endogenous Ei24 expression through etoposide treatment similarly inhibited nuclear import in a mouse embryonic fibroblast model. Thus, Ei24 can bind specifically to IMPβ1 and IMPα2 to impede their normal role in nuclear import, shedding new light on the cellular functions of Ei24 and its tumor suppressor role.
Collapse
Affiliation(s)
- Kim G Lieu
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Design rules for selective binding of nuclear localization signals to minor site of importin α. PLoS One 2014; 9:e91025. [PMID: 24609064 PMCID: PMC3946659 DOI: 10.1371/journal.pone.0091025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 02/06/2014] [Indexed: 11/19/2022] Open
Abstract
Selectivity is a critical issue in molecular recognition. However, design rules that underlie selectivity are often not well understood. Here, we studied five classical nuclear localization signals (NLSs) that contain the motif KRx(W/F/Y)xxAF and selectively bind to the minor site of importin α. The selectivity for the minor site is dissected by building structural models for the NLS-importin α complexes and analyzing the positive design and negative design in the NLSs. In our models, the KR residues of the motif occupy the P1’ and P2’ pockets of importin α, respectively, forming hydrogen-bonding and cation-π interactions. The aromatic residue at the P4’ position plays dual roles in the selectivity for the minor site: by forming π-stacking with W357 of importin α to reinforce the minor-site binding; and by clashing with the P5 pocket in the major binding site. The F residue at the P8’ position occupies a deep pocket, providing additional stabilization. The P7’ position sits on a saddle next to the P8’ pocket and hence requires a small residue; the A residue fulfills this requirement. The principal ideas behind these blind predictions turn out to be correct in an evaluation against subsequently available X-ray structures for the NLS-importin α complexes, but some details are incorrect. These results illustrate that the selectivity for the minor site can be achieved via a variety of design rules.
Collapse
|
41
|
Modular peptide binding: From a comparison of natural binders to designed armadillo repeat proteins. J Struct Biol 2014; 185:147-62. [DOI: 10.1016/j.jsb.2013.07.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 07/26/2013] [Accepted: 07/27/2013] [Indexed: 11/23/2022]
|
42
|
Zienkiewicz J, Armitage A, Hawiger J. Targeting nuclear import shuttles, importins/karyopherins alpha by a peptide mimicking the NFκB1/p50 nuclear localization sequence. J Am Heart Assoc 2013; 2:e000386. [PMID: 24042087 PMCID: PMC3835248 DOI: 10.1161/jaha.113.000386] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background We recently reported that a bifunctional nuclear transport modifier (NTM), cSN50.1 peptide, reduced atherosclerosis, plasma cholesterol, triglycerides, and glucose along with liver fat and inflammatory markers, in a murine model of familial hypercholesterolemia. We determined that cSN50.1 improved lipid homeostasis by modulating nuclear transport of sterol regulatory element‐binding proteins through interaction with importin β. Previous studies established that cSN50.1 and related NTMs also modulate nuclear transport of proinflammatory transcription factors mediated by binding of their nuclear localization sequences (NLSs) to importins/karyopherins α. However, selectivity and specificity of NTMs for importins/karyopherins α were undetermined. Methods and Results We analyzed interaction of the NTM hydrophilic module, N50 peptide, derived from the NLS of NFκB1/p50, with endogenous human importins/karyopherins α to determine the mechanism of NTM modulation of importin α‐mediated nuclear transport. We show that N50 peptide forms stable complexes with multiple importins/karyopherins α. However, only interaction with importin α5 (Imp α5) displayed specific, high‐affinity binding. The 2:1 stoichiometry of the N50‐Imp α5 interaction (KD1=73 nmol/L, KD2=140 nmol/L) indicated occupancy of both major and minor NLS binding pockets. Utilizing in silico 3‐dimensional (3‐D) docking models and comparative structural analysis, we identified a structural component of the Imp α5 major NLS binding pocket that may stabilize N50 binding. Imp α5 also displayed rapid stimulus‐induced turnover, which could influence its availability for nuclear transport during the inflammatory response. Conclusions These results provide direct evidence that N50 peptide selectively targets Imp α5, encouraging further refinement of NLS‐derived peptides as new tools to modulate inflammatory disorders.
Collapse
Affiliation(s)
- Jozef Zienkiewicz
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, 37232, TN
| | | | | |
Collapse
|
43
|
Chang CW, Couñago RM, Williams SJ, Bodén M, Kobe B. Distinctive conformation of minor site-specific nuclear localization signals bound to importin-α. Traffic 2013; 14:1144-54. [PMID: 23910026 DOI: 10.1111/tra.12098] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 11/30/2022]
Abstract
Nuclear localization signals (NLSs) contain one or two clusters of basic residues and are recognized by the import receptor importin-α. There are two NLS-binding sites (major and minor) on importin-α and the major NLS-binding site is considered to be the primary binding site. Here, we used crystallographic and biochemical methods to investigate the binding between importin-α and predicted 'minor site-specific' NLSs: four peptide library-derived peptides, and the NLS from mouse RNA helicase II/Guα. The crystal structures reveal that these atypical NLSs indeed preferentially bind to the minor NLS-binding site. Unlike previously characterized NLSs, the C-terminal residues of these NLSs form an α-helical turn, stabilized by internal H-bond and cation-π interactions between the aromatic residues from the NLSs and the positively charged residues from importin-α. This helical turn sterically hinders binding at the major NLS-binding site, explaining the minor-site preference. Our data suggest the sequence RXXKR[K/X][F/Y/W]XXAF as the optimal minor NLS-binding site-specific motif, which may help identify novel proteins with atypical NLSs.
Collapse
Affiliation(s)
- Chiung-Wen Chang
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, University of Queensland, Brisbane, Qld, 4072, Australia; Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Qld, 4072, Australia
| | | | | | | | | |
Collapse
|
44
|
Choreography of importin-α/CAS complex assembly and disassembly at nuclear pores. Proc Natl Acad Sci U S A 2013; 110:E1584-93. [PMID: 23569239 DOI: 10.1073/pnas.1220610110] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nuclear pore complexes (NPCs) mediate the exchange of macromolecules between the cytoplasm and the nucleoplasm. Soluble nuclear transport receptors bind signal-dependent cargos to form transport complexes that diffuse through the NPC and are then disassembled. Although transport receptors enable the NPC's permeability barrier to be overcome, directionality is established by complex assembly and disassembly. Here, we delineate the choreography of importin-α/CAS complex assembly and disassembly in permeabilized cells, using single-molecule fluorescence resonance energy transfer and particle tracking. Monitoring interaction sequences in intact NPCs ensures spatiotemporal preservation of structures and interactions critical for activity in vivo. We show that key interactions between components are reversible, multiple outcomes are often possible, and the assembly and disassembly of complexes are precisely controlled to occur at the appropriate place and time. Importin-α mutants that impair interactions during nuclear import were used together with cytoplasmic Ran GTPase-activating factors to demonstrate that importin-α/CAS complexes form in the nuclear basket region, at the termination of protein import, and disassembly of importin-α/CAS complexes after export occurs in the cytoplasmic filament region of the NPC. Mathematical models derived from our data emphasize the intimate connection between transport and the coordinated assembly and disassembly of importin-α/CAS complexes for generating productive transport cycles.
Collapse
|
45
|
Kobayashi J, Matsuura Y. Structural basis for cell-cycle-dependent nuclear import mediated by the karyopherin Kap121p. J Mol Biol 2013; 425:1852-1868. [PMID: 23541588 DOI: 10.1016/j.jmb.2013.02.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/17/2013] [Accepted: 02/20/2013] [Indexed: 10/27/2022]
Abstract
Kap121p (also known as Pse1p) is an essential karyopherin that mediates nuclear import of a plethora of cargoes including cell cycle regulators, transcription factors, and ribosomal proteins in Saccharomyces cerevisiae. It has been proposed that the spindle assembly checkpoint signaling triggers molecular rearrangements of nuclear pore complexes and thereby arrests Kap121p-mediated nuclear import at metaphase, while leaving import mediated by other karyopherins unaffected. The Kap121p-specific import inhibition is required for normal progression through mitosis. To understand the structural basis for Kap121p-mediated nuclear import and its unique regulatory mechanism during mitosis, we determined crystal structures of Kap121p in isolation and also in complex with either its import cargoes or nucleoporin Nup53p or RanGTP. Kap121p has a superhelical structure composed of 24 HEAT repeats. The structures of Kap121p-cargo complexes define a non-conventional nuclear localization signal (NLS) that has a consensus sequence of KV/IxKx1-2K/H/R. The structure of Kap121p-Nup53p complex shows that cargo and Nup53p compete for the same high-affinity binding site, explaining how Nup53p binding forces cargo release when the Kap121p-binding site of Nup53p is exposed during mitosis. Comparison of the NLS and RanGTP complexes reveals that RanGTP binding not only occludes the cargo-binding site but also forces Kap121p into a conformation that is incompatible with NLS recognition.
Collapse
Affiliation(s)
- Junya Kobayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan
| | - Yoshiyuki Matsuura
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan; Structural Biology Research Center, Graduate School of Science, Nagoya University, Japan.
| |
Collapse
|
46
|
Azar WJ, Zivkovic S, Werther GA, Russo VC. IGFBP-2 nuclear translocation is mediated by a functional NLS sequence and is essential for its pro-tumorigenic actions in cancer cells. Oncogene 2013; 33:578-88. [PMID: 23435424 DOI: 10.1038/onc.2012.630] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 11/11/2012] [Accepted: 12/05/2012] [Indexed: 12/29/2022]
Abstract
IGFBP-2 is highly expressed in both the serum and tumor tissues of most cancers, and is considered one of the most significant genes in the signature of major cancers. IGFBP-2 mainly modulates IGF actions in the pericellular space; however, there is considerable evidence to suggest that IGFBP-2 may also act independently of the IGFs. These IGF-independent actions of IGFBP-2 are exerted either via interactions at the cell surface or intracellularly, via interaction with cytoplasmic or nuclear-binding partners. The precise mechanism underlying the intracellular/intranuclear localization of IGFBP-2 remains unclear. In this study, we investigated IGFBP-2 nuclear localization in several common cancer cells with the aim of dissecting the mechanism of its nuclear trafficking. IGFBP-2 is detected in the nuclei of common cancer cells, including breast, prostate and several neuroblastoma cell lines, using cell fractionation and confocal microscopy. Via nuclear import assays, we show that nuclear entry of IGFBP-2 is mediated by the classical nuclear import mechanisms, primarily through importin-α, as demonstrated by the use of blocking, competition and co-immunoprecipitation assays. Bioinformatics analysis of the IGFBP-2 protein sequence with PSORT II identified a classical nuclear localization signal (cNLS) sequence at 179PKKLRPP185, within the IGFBP-2 linker domain, mutagenesis of which abolishes IGFBP-2 nuclear import. Accordingly, the NLSmutIGFBP-2 fails to activate the VEGF promoter, which would otherwise occur in the presence of wild-type IGFBP-2. As a consequence, no activation of angiogenic processes were observed in NLSmutIGFBP-2 expressing SHEP cells when implanted onto our in vivo quail chorio-allantoic membrane model. Taken together, these data show for the first time that IGFBP-2 possesses a functional NLS sequence and that IGFBP-2 actively translocates into the nucleus by a classical nuclear import mechanism, involving formation of IGFBP-2 complexes with importin-α. Nuclear IGFBP-2 is required for the activation of VEGF expression and consequent angiogenesis.
Collapse
Affiliation(s)
- W J Azar
- 1] Hormone Research, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia [2] Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - S Zivkovic
- Hormone Research, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - G A Werther
- 1] Hormone Research, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia [2] Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - V C Russo
- 1] Hormone Research, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia [2] Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
47
|
Structure and intrinsic disorder in protein autoinhibition. Structure 2013; 21:332-41. [PMID: 23375259 DOI: 10.1016/j.str.2012.12.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/10/2012] [Accepted: 12/24/2012] [Indexed: 12/13/2022]
Abstract
Autoinhibition plays a significant role in the regulation of many proteins. By analyzing autoinhibited proteins, we demonstrate that these proteins are enriched in intrinsic disorder because of the properties of their inhibitory modules (IMs). A comparison of autoinhibited proteins with structured and intrinsically disordered IMs revealed that in the latter group (1) multiple phosphorylation sites are highly abundant; (2) splice variants occur in greater number than in their structured cousins; and (3) activation is often associated with changes in secondary structure in the IM. Analyses of families of autoinhibited proteins revealed that the levels of disorder in IMs can vary significantly throughout homologous proteins, whereas residues located at the interfaces between the IMs and inhibited domains are conserved. Our findings suggest that intrinsically disordered IMs provide advantages over structured ones that are likely to be exploited in the fine-tuning of the equilibrium between active and inactive states of autoinhibited proteins.
Collapse
|
48
|
Chang CW, Couñago RLM, Williams SJ, Bodén M, Kobe B. Crystal structure of rice importin-α and structural basis of its interaction with plant-specific nuclear localization signals. THE PLANT CELL 2012; 24:5074-88. [PMID: 23250448 PMCID: PMC3556976 DOI: 10.1105/tpc.112.104422] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/22/2012] [Accepted: 11/26/2012] [Indexed: 05/22/2023]
Abstract
In the classical nucleocytoplasmic import pathway, nuclear localization signals (NLSs) in cargo proteins are recognized by the import receptor importin-α. Importin-α has two separate NLS binding sites (the major and the minor site), both of which recognize positively charged amino acid clusters in NLSs. Little is known about the molecular basis of the unique features of the classical nuclear import pathway in plants. We determined the crystal structure of rice (Oryza sativa) importin-α1a at 2-Å resolution. The structure reveals that the autoinhibitory mechanism mediated by the importin-β binding domain of importin-α operates in plants, with NLS-mimicking sequences binding to both minor and major NLS binding sites. Consistent with yeast and mammalian proteins, rice importin-α binds the prototypical NLS from simian virus 40 large T-antigen preferentially at the major NLS binding site. We show that two NLSs, previously described as plant specific, bind to and are functional with plant, mammalian, and yeast importin-α proteins but interact with rice importin-α more strongly. The crystal structures of their complexes with rice importin-α show that they bind to the minor NLS binding site. By contrast, the crystal structures of their complexes with mouse (Mus musculus) importin-α show preferential binding to the major NLS binding site. Our results reveal the molecular basis of a number of features of the classical nuclear transport pathway specific to plants.
Collapse
Affiliation(s)
- Chiung-Wen Chang
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, University of Queensland, Brisbane Qld 4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane Qld 4072, Australia
| | - Rafael Lemos Miguez Couñago
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, University of Queensland, Brisbane Qld 4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane Qld 4072, Australia
| | - Simon J. Williams
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, University of Queensland, Brisbane Qld 4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane Qld 4072, Australia
| | - Mikael Bodén
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, University of Queensland, Brisbane Qld 4072, Australia
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane Qld 4072, Australia
| | - Boštjan Kobe
- School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, University of Queensland, Brisbane Qld 4072, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane Qld 4072, Australia
- Address correspondence to
| |
Collapse
|
49
|
Shammas S, Rogers J, Hill S, Clarke J. Slow, reversible, coupled folding and binding of the spectrin tetramerization domain. Biophys J 2012; 103:2203-14. [PMID: 23200054 PMCID: PMC3512043 DOI: 10.1016/j.bpj.2012.10.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/02/2012] [Accepted: 10/10/2012] [Indexed: 11/16/2022] Open
Abstract
Many intrinsically disordered proteins (IDPs) are significantly unstructured under physiological conditions. A number of these IDPs have been shown to undergo coupled folding and binding reactions whereby they can gain structure upon association with an appropriate partner protein. In general, these systems display weaker binding affinities than do systems with association between completely structured domains, with micromolar K(d) values appearing typical. One such system is the association between α- and β-spectrin, where two partially structured, incomplete domains associate to form a fully structured, three-helix bundle, the spectrin tetramerization domain. Here, we use this model system to demonstrate a method for fitting association and dissociation kinetic traces where, using typical biophysical concentrations, the association reactions are expected to be highly reversible. We elucidate the unusually slow, two-state kinetics of spectrin assembly in solution. The advantages of studying kinetics in this regime include the potential for gaining equilibrium constants as well as rate constants, and for performing experiments with low protein concentrations. We suggest that this approach would be particularly appropriate for high-throughput mutational analysis of two-state reversible binding processes.
Collapse
Affiliation(s)
| | | | | | - J. Clarke
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
50
|
Miyamoto Y, Baker MA, Whiley PA, Arjomand A, Ludeman J, Wong C, Jans DA, Loveland KL. Towards delineation of a developmental α-importome in the mammalian male germline. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:731-42. [PMID: 23159777 DOI: 10.1016/j.bbamcr.2012.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/03/2012] [Accepted: 11/06/2012] [Indexed: 12/28/2022]
Abstract
Nucleocytoplasmic transport mediated by importin proteins is central to many developmental processes, such as precisely regulated germ cell differentiation during spermatogenesis. Here we examine for the first time the dynamic association of importins with cargo during two successive spermatogenic stages: meiotic pachytene spermatocytes and haploid round spermatids of the adult rat testis. Immunoprecipitation followed by mass spectrometry yielded the first non-biased identification of proteins selectively interacting with importin α2, α3 and α4 in each of these cell types. Amongst the 22 novel importin binding proteins identified, 11 contain a predicted classical nuclear localization signal (cNLS) for importin α binding using a new algorithm (Kosugi et al. [22]), although only 6 of these have known nuclear functions. An importin α2-immunoprecipitated protein with a key nuclear role in meiosis, structural maintenance of chromosomes 6 (SMC6), contained a predicted bipartite NLS that was shown to be preferentially recognized by importin α together with importin β1. In contrast, the predicted cNLS of synovial sarcoma, X breakpoint 2 interacting protein (SSX2IP) was found not to confer either nuclear accumulation or direct binding to importin αs, implying that NLS prediction algorithms may identify cryptic importin binding sites or require additional refinement to increase their accuracy. Unbiased identification of importin α binding proteins in cellular differentiation represents a powerful tool to help identify the functional roles of importin αs.
Collapse
Affiliation(s)
- Yoichi Miyamoto
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia
| | | | | | | | | | | | | | | |
Collapse
|