1
|
Vihervaara A, Mahat DB, Himanen SV, Blom MAH, Lis JT, Sistonen L. Stress-induced transcriptional memory accelerates promoter-proximal pause release and decelerates termination over mitotic divisions. Mol Cell 2021; 81:1715-1731.e6. [PMID: 33784494 DOI: 10.1016/j.molcel.2021.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/14/2020] [Accepted: 03/04/2021] [Indexed: 12/25/2022]
Abstract
Heat shock instantly reprograms transcription. Whether gene and enhancer transcription fully recover from stress and whether stress establishes a memory by provoking transcription regulation that persists through mitosis remained unknown. Here, we measured nascent transcription and chromatin accessibility in unconditioned cells and in the daughters of stress-exposed cells. Tracking transcription genome-wide at nucleotide-resolution revealed that cells precisely restored RNA polymerase II (Pol II) distribution at gene bodies and enhancers upon recovery from stress. However, a single heat exposure in embryonic fibroblasts primed a faster gene induction in their daughter cells by increasing promoter-proximal Pol II pausing and by accelerating the pause release. In K562 erythroleukemia cells, repeated stress refined basal and heat-induced transcription over mitotic division and decelerated termination-coupled pre-mRNA processing. The slower termination retained transcripts on the chromatin and reduced recycling of Pol II. These results demonstrate that heat-induced transcriptional memory acts through promoter-proximal pause release and pre-mRNA processing at transcription termination.
Collapse
Affiliation(s)
- Anniina Vihervaara
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; Department of Gene Technology, Science for Life Laboratory, KTH Royal Institute of Technology, 17165 Stockholm, Sweden.
| | - Dig Bijay Mahat
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Samu V Himanen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Malin A H Blom
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland.
| |
Collapse
|
2
|
Wang Y, Zhao S, Chen Y, Wang T, Dong C, Wo X, Zhang J, Dong Y, Xu W, Feng X, Qu C, Wang Y, Zhong Z, Zhao W. The Capsid Protein VP1 of Coxsackievirus B Induces Cell Cycle Arrest by Up-Regulating Heat Shock Protein 70. Front Microbiol 2019; 10:1633. [PMID: 31379784 PMCID: PMC6653663 DOI: 10.3389/fmicb.2019.01633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/02/2019] [Indexed: 01/04/2023] Open
Abstract
Manipulating cell cycle is one of the common strategies used by viruses to generate favorable cellular environment to facilitate viral replication. Coxsackievirus B (CVB) is one of the major viral pathogens of human myocarditis and cardiomyopathy. Because of its small genome, CVB depends on cellular machineries for productive replication. However, how the structural and non-structural components of CVB would manipulate cell cycle is not clearly understood. In this study, we demonstrated that the capsid protein VP1 of CVB type 3 (CVB3) induced cell cycle arrest at G1 phase. G1 arrest was the result of the decrease level of cyclin E and the accumulation of p27Kip1. Study on the gene expression profile of the cells expressing VP1 showed that the expression of both heat shock protein 70-1 (Hsp70-1) and Hsp70-2 was significantly up-regulated. Knockdown of Hsp70 resulted in the increased level of cyclin E and the reduction of p27Kip1. We further demonstrated that the phosphorylation of the heat shock factor 1, which directly promotes the expression of Hsp70, was also increased in the cell expressing VP1. Moreover, we show that CVB3 infection also induced G1 arrest, likely due to dysregulating Hsp70, cyclin E, and p27, while knockdown of Hsp70 dramatically inhibited viral replication. Cell cycle arrest at G1 phase facilitated CVB3 infection, since viral replication in the cells synchronized at G1 phase dramatically increased. Taken together, this study demonstrates that the VP1 of CVB3 induces cell cycle arrest at G1 phase through up-regulating Hsp70. Our findings suggest that the capsid protein VP1 of CVB is capable of manipulating cellular activities during viral infection.
Collapse
Affiliation(s)
- Yao Wang
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Shuoxuan Zhao
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Yang Chen
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Tianying Wang
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Chaorun Dong
- Northern Translational Medicine Research Center, Harbin Medical University, Harbin, China
| | - Xiaoman Wo
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Jian Zhang
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Yanyan Dong
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Weizhen Xu
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Xiaofeng Feng
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Cong Qu
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Boyko AA, Azhikina TL, Streltsova MA, Sapozhnikov AM, Kovalenko EI. HSP70 in human polymorphonuclear and mononuclear leukocytes: comparison of the protein content and transcriptional activity of HSPA genes. Cell Stress Chaperones 2017; 22:67-76. [PMID: 27783273 PMCID: PMC5225062 DOI: 10.1007/s12192-016-0744-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023] Open
Abstract
Cell-type specific variations are typical for the expression of different members of the HSP70 family. In circulating immune cells, HSP70 proteins interact with units of signaling pathways involved in the immune responses and may promote cell survival in sites of inflammation. In this work, we compared basal HSP70 expression and stress-induced HSP70 response in polymorphonuclear and mononuclear human leukocytes. The intracellular content of inducible and constitutive forms of HSP70 was analyzed in relation to the transcriptional activity of HSPA genes. Hyperthermia was used as the stress model for induction of HSP70 synthesis in the cells. Our results demonstrated that granulocytes (mainly neutrophils) and mononuclear cells differ significantly by both basal HSP70 expression and levels of HSP70 induction under hyperthermia. The differences were observed at the levels of HSPA gene transcription and intracellular HSP70 content. The expression of constitutive Hsс70 protein was much higher in mononuclear cells consisting of monocytes and lymphocytes than in granulocytes. At the same time, intact neutrophils showed increased expression of inducible Hsp70 protein compared to mononuclear cells. Heat treatment induced additional expression of HSPA genes in leukocytes. The most pronounced increase in the expression was observed in polymorphonuclear and mononuclear leukocytes for HSPA1A/B. However, in granulocytes, the induction of the transcription of the HSPA8 gene encoding the Hsc70 protein was significantly higher than in mononuclear cells. These variations in transcriptional activity of HSPA genes and intracellular HSP70 content in different populations of leukocytes may reflect specified requirements for the chaperone activity in the cells with a distinct functional role in the immune system.
Collapse
Affiliation(s)
- Anna A Boyko
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow, Russian Federation, 117997
| | - Tatyana L Azhikina
- Laboratory of Human Genes Structure and Functions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow, Russian Federation, 117997
| | - Maria A Streltsova
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow, Russian Federation, 117997
| | - Alexander M Sapozhnikov
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow, Russian Federation, 117997
| | - Elena I Kovalenko
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow, Russian Federation, 117997.
| |
Collapse
|
4
|
Varasteh S, Braber S, Garssen J, Fink-Gremmels J. Galacto-oligosaccharides exert a protective effect against heat stress in a Caco-2 cell model. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.04.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
5
|
Ramirez VP, Stamatis M, Shmukler A, Aneskievich BJ. Basal and stress-inducible expression of HSPA6 in human keratinocytes is regulated by negative and positive promoter regions. Cell Stress Chaperones 2015; 20:95-107. [PMID: 25073946 PMCID: PMC4255259 DOI: 10.1007/s12192-014-0529-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 01/08/2023] Open
Abstract
Epidermal keratinocytes serve as the primary barrier between the body and environmental stressors. They are subjected to numerous stress events and are likely to respond with a repertoire of heat shock proteins (HSPs). HSPA6 (HSP70B') is described in other cell types with characteristically low to undetectable basal expression, but is highly stress induced. Despite this response in other cells, little is known about its control in keratinocytes. We examined endogenous human keratinocyte HSPA6 expression and localized some responsible transcription factor sites in a cloned HSPA6 3 kb promoter. Using promoter 5' truncations and deletions, negative and positive regulatory regions were found throughout the 3 kb promoter. A region between -346 and -217 bp was found to be crucial to HSPA6 basal expression and stress inducibility. Site-specific mutations and DNA-binding studies show that a previously uncharacterized AP1 site contributes to the basal expression and maximal stress induction of HSPA6. Additionally, a new heat shock element (HSE) within this region was defined. While this element mediates increased transcriptional response in thermally stressed HaCaT keratinocytes, it preferentially binds a stress-inducible factor other than heat shock factor (HSF)1 or HSF2. Intriguingly, this newly characterized HSPA6 HSE competes HSF1 binding a consensus HSE and binds both HSF1 and HSF2 from other epithelial cells. Taken together, our results demonstrate that the HSPA6 promoter contains essential negative and positive promoter regions and newly identified transcription factor targets, which are key to the basal and stress-inducible expression of HSPA6. Furthermore, these results suggest that an HSF-like factor may preferentially bind this newly identified HSPA6 HSE in HaCaT cells.
Collapse
Affiliation(s)
- Vincent P. Ramirez
- />Graduate Program in Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092 USA
| | - Michael Stamatis
- />Doctor of Pharmacy Program, School of Pharmacy, University of Connecticut, Storrs, CT 06269-3092 USA
| | - Anastasia Shmukler
- />Doctor of Pharmacy Program, School of Pharmacy, University of Connecticut, Storrs, CT 06269-3092 USA
| | - Brian J. Aneskievich
- />Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, U-3092, 69 North Eagleville Road, Storrs, CT 06269-3092 USA
- />University of Connecticut Stem Cell Institute, Storrs, CT 06269-3092 USA
| |
Collapse
|
6
|
Donfack P, Multhoff G, Materny A. Label-free nondestructive discrimination of colon carcinoma sublines and biomolecular insights into their differential Hsp70 expression: DNA/RNA nucleobase specific changes. Chembiochem 2011; 12:1922-36. [PMID: 21739554 DOI: 10.1002/cbic.201000653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/19/2011] [Indexed: 11/11/2022]
Abstract
Hsp70 is biologically relevant for its chaperon functions. The CX(-) and CX(+) sublines, which derive from the parental colon carcinoma CX2 cell line, are accordingly very similar. They have been reported to be specifically different only in Hsp70 membrane expression, which is associated with immunostimulatory effects. CX(-) /CX(+) have been phenotypically characterized by immunofluorescence studies and Raman spectroscopy combined with robust clustering and multivariate analysis. With the latter we address the potential of overall characterization for CX(-) /CX(+) discrimination and gain molecular insights into Hsp70 differential expression. Due to their strong resemblance, CX(-) and CX(+) show similar mean Raman spectra, which look indiscernible at first. Interestingly, their rather protein-dominated Raman spectra reveal, besides changes in protein and amino acids, very specific changes in DNA/RNA nucleotides involving pyrimidine ring Raman hypochromic effects. Therefore, discriminating CX(-) from CX(+) is ultimately achieved based on principal component scores. Because CX(-) /CX(+) are associated with the same lipid marker, changes in proteins support lipid interactions with regulatory proteins. More importantly, changes observed in nucleobases, which are indicative of DNA/RNA-protein binding interactions, suggest transcription deregulations as participating precursor onsets of different transport mechanisms that lead to Hsp70 differential expression and associated phenotypic variation. Besides immunofluorescence, we have used Raman spectroscopy combined with multivariate analysis within an autologous tumor system for label-free nondestructive cell-subline discrimination, and demonstrate, to our knowledge, the first overall phenotypic monitoring with insights into Hsp70 differential expression. This might well prove to be useful for Raman label-free cell-sorting of the CX(-) /CX(+) sublines.
Collapse
Affiliation(s)
- Patrice Donfack
- Department of Physics, Molecular Life Science Center, Jacobs University, Campus Ring 1, 28759 Bremenm, Germany
| | | | | |
Collapse
|
7
|
Maugeri N, Radhakrishnan J, Knight JC. Genetic determinants of HSP70 gene expression following heat shock. Hum Mol Genet 2010; 19:4939-47. [PMID: 20876613 PMCID: PMC2989893 DOI: 10.1093/hmg/ddq418] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The regulation of heat shock protein expression is of significant physiological and pathophysiological significance. Here we show that genetic diversity is an important determinant of heat shock protein 70 expression involving local, likely cis-acting, polymorphisms. We define DNA sequence variation for the highly homologous HSPA1A and HSPA1B genes in the major histocompatibility complex on chromosome 6p21 and establish quantitative and specific assays for determining transcript abundance. We show for lymphoblastoid cell lines established from individuals of African ancestry that following heat shock, expression of HSPA1B is associated with rs400547 (P 3.88 × 10−8) and linked single nucleotide polymorphisms (SNPs) located 62–93 kb telomeric to HSPA1B. This association was found to explain 31 and 29% of the variance in HSPA1B expression following heat shock or in resting cells, respectively. The associated SNPs show marked variation in minor allele frequency among populations, being more common in individuals of African ancestry, and are located in a region showing population-specific haplotypic block structure. The work illustrates how analysis of a heritable induced expression phenotype can be highly informative in defining functionally important genetic variation.
Collapse
Affiliation(s)
- Narelle Maugeri
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
8
|
Nath N, Chattopadhyay M, Kodela R, Tian S, Vlismas P, Boring D, Crowell JA, Kashfi K. Modulation of stress genes expression profile by nitric oxide-releasing aspirin in Jurkat T leukemia cells. Biochem Pharmacol 2010; 79:1759-71. [PMID: 20188076 DOI: 10.1016/j.bcp.2010.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Accepted: 02/16/2010] [Indexed: 12/31/2022]
Abstract
NO-donating aspirin (NO-ASA, para isomer) has been reported to exhibit strong growth inhibitory effect in Jurkat T-acute lymphoblastic leukemia (T-ALL) cells mediated in part by beta-catenin degradation and caspase activation, but the mechanism(s) still remains unclear. In this study, DNA oligoarrays with 263 genes were used to examine the gene expression profiles relating to stress and drug metabolism, and characterize the stress responses at IC(50) and subIC(50) concentrations of p-NO-ASA (20 and 10microM, respectively) in Jurkat T cells. A total of 22 genes related to heat shock response, apoptosis signaling, detoxifiers and Phase II enzymes, and regulators of cell growth were altered in expression by array analysis based on the expression fold change criteria of > or =1.5-fold or < or =0.65-fold. Real time quantitative RT-PCR confirmed that 20microM p-NO-ASA strongly upregulated the mRNA levels of two heat shock genes HSPA1A (41.5+/-7.01-fold) and HSPA6 (100.4+/-8.11-fold), and FOS (16.2+/-3.2-fold), moderately upregulated HSPH1 (1.71+/-0.43-fold), FMO4 (4.5+/-1.67-fold), CASP9 (1.77+/-0.03-fold), DDIT3 (5.6+/-0.51-fold), and downregulated NF-kappaB1 (0.54+/-0.01-fold) and CCND1 (0.69+/-0.06-fold). Protein levels of Hsp70, the product of HSPA1A, and fos were increased in p-NO-ASA-treated Jurkat T and HT-29 colon cancer cells in a dose-dependent manner. Silencing of Hsp70 enhanced the growth inhibitory effect of p-NO-ASA at low concentrations. The altered gene expression patterns by NO-ASA in Jurkat T cells suggest mechanisms for carcinogen metabolism, anti-proliferative activity and possible chemoprotective activity in T-ALL.
Collapse
Affiliation(s)
- Niharika Nath
- Department of Life Sciences, New York Institute of Technology, New York, NY 10023, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Franzellitti S, Valbonesi P, Contin A, Biondi C, Fabbri E. HSP70 expression in human trophoblast cells exposed to different 1.8 Ghz mobile phone signals. Radiat Res 2009; 170:488-97. [PMID: 19024656 DOI: 10.1667/rr1405.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The heat-shock proteins (HSPs) are important cellular stress markers and have been proposed as candidates to infer biological effects of high-frequency electromagnetic fields (EMFs). In the current study, HSP70 gene and protein expression were evaluated in cells of the human trophoblast cell line HTR-8/SVneo after prolonged exposure (4 to 24 h) to 1.8 GHz continuous-wave (CW) and different GSM signals (GSM-217Hz and GSM-Talk) to assess the possible effects of time and modulation schemes on cell responses. Inducible HSP70 protein expression was not modified by high-frequency EMFs under any condition tested. The inducible HSP70A, HSP70B and the constitutive HSC70 transcripts did not change in cells exposed to high-frequency EMFs with the different modulation schemes. Instead, levels of the inducible HSP70C transcript were significantly enhanced after 24 h exposure to GSM-217Hz signals and reduced after 4 and 16 h exposure to GSM-Talk signals. As in other cell systems, in HTR-8/SVneo cells the response to high-frequency EMFs was detected at the mRNA level after exposure to amplitude-modulated GSM signals. The present results suggest that the expression analysis for multiple transcripts, though encoding the same or similar protein products, can be highly informative and may account for subtle changes not detected at the protein level.
Collapse
Affiliation(s)
- Silvia Franzellitti
- Interdepartmental Centre for Environmental Science Research, University of Bologna, 48100 Ravenna, Italy
| | | | | | | | | |
Collapse
|
10
|
Gottwald E, Sontag W, Lahni B, Weibezahn KF. Expression of HSP72 after ELF-EMF exposure in three cell lines. Bioelectromagnetics 2007; 28:509-18. [PMID: 17508393 DOI: 10.1002/bem.20327] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It has been reported that magnetic fields with flux densities ranging from microT to mT are able to induce heat shock factor, HSP72 mRNA or heat shock proteins in various cells. In this study we investigated changes in the HSP72 mRNA transcription level in three cell lines (HL-60, H9c2, and Girardi heart cells) and in the intracellular HSP72 protein content in two cell lines (HL-60 and Girardi heart cells) after treatment schemes using electromagnetic fields with a flux density of 2 microT to 4 mT, a frequency of 50 Hz and exposure times from 15 to 30 min. None of the treatments or modalities showed any significant effect on the HSP72 protein level, although HSP72 mRNA could be induced, at least to some extent, with one of the parameter combinations in all cell lines tested. Obviously, HSP72 mRNA transcription and translation are not necessarily coupled in certain cells. This leads to the conclusion that electromagnetic field effects on HSP72 mRNA levels are not indicative for downstream effects unless increased mRNA levels can be correlated with increased HSP72 protein levels as well.
Collapse
Affiliation(s)
- Eric Gottwald
- Forschungszentrum Karlsruhe, Institut für Biologische Grenzflächen, Eggenstein-Leopoldshafen, Germany.
| | | | | | | |
Collapse
|
11
|
Jin X, Xiao C, Tanguay RM, Yang L, Wang F, Chen M, Fu X, Wang R, Deng J, Deng Z, Zheng Y, Wei Q, Wu T. Correlation of lymphocyte heat shock protein 70 levels with neurologic deficits in elderly patients with cerebral infarction. Am J Med 2004; 117:406-11. [PMID: 15380497 DOI: 10.1016/j.amjmed.2004.03.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Revised: 03/25/2004] [Accepted: 03/25/2004] [Indexed: 11/18/2022]
Abstract
PURPOSE To assess the association between heat shock protein 70 (HSP70) levels and the severity of ischemic stroke in elderly patients. METHODS We conducted a case-control study to investigate the changes in lymphocyte HSP70 levels by immunoblot in 65 elderly patients with mild (n = 22), intermediate (n = 21), or severe (n = 22) stroke, and in 34 healthy controls. We analyzed correlations between HSP70 levels and neurologic deficit scores on days 1, 15, and 30 after the onset of stroke. RESULTS Mean (+/- SD) HSP70 levels were higher in all stroke patients compared with controls (mild stroke: 709 +/- 194 units; intermediate: 585 +/- 165 units; severe: 421 +/- 124 units; controls: 86 +/- 34 units on day 1). Patients with mild stroke had higher levels at day 1 and 15 than did patients with severe stroke. HSP70 levels decreased rapidly from days 1 to 30 in all patients, except in patients with severe stroke, in whom levels decreased slowly between days 15 and 30. There were significant negative correlations between HSP70 levels and neurologic deficit scores in patients on days 1 (r = -0.53, P < 0.001) and 15 (r = -0.54, P < 0.001), but a positive correlation on day 30 (r = 0.49, P < 0.001). CONCLUSION These data suggest that HSP70 may be a marker for neuroprotection in the early stage of ischemic stroke and a marker for a crisis in the later stages of severe cerebral infarction. Further studies on the use of lymphocyte HSP70 levels in predicting clinical outcomes and underlying mechanisms in cerebral infarction are warranted.
Collapse
Affiliation(s)
- Xingfang Jin
- Institute of Occupational Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Cavallaro S, D'Agata V, Alessi E, Coffa S, Alkon DL, Manickam P, Ciotti MT, Possenti R, Bonini P, Marlier L, Calissano P. Gene expression profiles of apoptotic neurons. Genomics 2004; 84:485-96. [PMID: 15498456 DOI: 10.1016/j.ygeno.2004.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Accepted: 04/11/2004] [Indexed: 10/26/2022]
Abstract
The multigenic program underlying neuronal apoptosis is mostly unknown. To study the program, we used genome-scale screening by oligonucleotide microarrays during serum and potassium deprivation-induced apoptosis of cerebellar granule neurons. From the 8740 genes interrogated by the arrays, 423 genes were found to be regulated at both the transcriptional and the posttranscriptional level and segregated into distinct clusters. Semantic clustering based on gene ontologies showed coordinated expression of genes with common biological functions and metabolic pathways. Among the genes implicated in apoptotic cerebellar granule neurons, 70 were in common with those differentially expressed in cortical neurons exposed to amyloid beta-protein, indicating the existence of common mechanisms responsible for neuronal cell death. Our results offer a genomic view of the changes that accompany neuronal apoptosis and yield new insights into the underlying molecular basis.
Collapse
Affiliation(s)
- Sebastiano Cavallaro
- Institute of Neurological Sciences, Italian National Research Council, 95123 Catania, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yamashita M, Hirayoshi K, Nagata K. Characterization of multiple members of the HSP70 family in platyfish culture cells: molecular evolution of stress protein HSP70 in vertebrates. Gene 2004; 336:207-18. [PMID: 15246532 DOI: 10.1016/j.gene.2004.04.023] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Revised: 04/05/2004] [Accepted: 04/26/2004] [Indexed: 11/17/2022]
Abstract
A shift from 28 to 37 degrees C in the incubation temperature of a culture of the platyfish fibroblast cell line, EHS cells (platyfish fibroblast cell line), induced a set of stress proteins. A two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) analysis showed that the cells expressed three genetically distinct forms of heat-shock protein 70 (HSP70) family proteins: heat-inducible forms of HSP70, the constitutively expressed heat-shock cognate protein 70 (HSC70) and its phosphorylated isoform, and the glucose-regulated protein 78 (GRP78). Three different clones encoding two major isoforms of heat-inducible HSP70, platyfish HSP70-1 and HSP70-2, and of the HSC70 were isolated from a platyfish cDNA library. We compared the deduced amino acid sequences of the platyfish HSP70 and HSC70 proteins with those of other vertebrates. Phylogenetic analysis showed that vertebrate HSP70 could be classified into four cluster groups: (a) fish HSP70, with two isoforms of heat-inducible HSP70 in fish, fish HSP70-1 and HSP70-2; (b) the mammalian testis-specific HSP70-related protein HST70; (c) the mammalian heat-inducible HSP70B'; and (d) the mammalian major histocompatibility complex (MHC)-linked HSP70, including the MHC-linked heat-inducible HSP70 and the testis-specific HSP70-related protein. These findings suggest that vertebrate HSP70 was derived from a single ancestral HSP70 gene during vertebrate evolution and that multiple copies of heat-inducible HSP70 were probably evolved during genetic divergence in fish and higher vertebrates.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Azetidines/pharmacology
- Blotting, Northern
- Cadmium/pharmacology
- Cells, Cultured
- Cloning, Molecular
- Cyprinodontiformes/genetics
- Cyprinodontiformes/metabolism
- Cytosol/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Electrophoresis, Gel, Two-Dimensional
- Evolution, Molecular
- Fish Proteins/genetics
- Fish Proteins/metabolism
- Gene Expression Regulation/drug effects
- HSC70 Heat-Shock Proteins
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/metabolism
- Hot Temperature
- Immunohistochemistry
- Molecular Sequence Data
- Phylogeny
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tunicamycin/pharmacology
- Vertebrates/genetics
Collapse
Affiliation(s)
- Michiaki Yamashita
- Institute for Frontier Medical Science, Kyoto University, Kyoto 606-8507, Japan.
| | | | | |
Collapse
|
14
|
Tokalov SV, Gutzeit HO. Weak electromagnetic fields (50 Hz) elicit a stress response in human cells. ENVIRONMENTAL RESEARCH 2004; 94:145-151. [PMID: 14757377 DOI: 10.1016/s0013-9351(03)00088-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The aim of this study was to demonstrate the expression of heat shock (HS) genes in human cells in response to extremely low-frequency electromagnetic fields (ELF-EMF) alone and in combination with thermal stress. After exposing human myeloid leukemia (HL-60) cells to the stressor(s) for 30 min we quantified the expression of the HS genes HSP27, HSP60, HSP70 (A, B, and C), HSC70, HSP75, HSP78, and HSP90 (alpha and beta) by RT-PCR. The results clearly show that HS genes, in particular the three HSP70 genes (A, B, and C), are induced by ELF-EMF, a reaction that is enhanced by simultaneous HS (43 degrees C for 30 min). The results show similarities and some significant differences to previous experiments in which transgenic nematodes were used to monitor the induction of the HSP70 gene under similar stress conditions. We also studied the effect of different flux densities on gene expression in the range of 10-140 microT. Even the lowest dose tested (10 microT) resulted in a significant induction of the genes HSP70A, HSP70B, and HSP70C. The reaction to ELF-EMF shows a maximum at a flux density of 60-80 microT. The unusual dose-response relation reveals an interesting difference to other stressors that elicit the HS response.
Collapse
Affiliation(s)
- Sergey V Tokalov
- Institut für Zoologie, Technische Universität Dresden, Mommsenstr. 13, D-01062 Dresden, Germany
| | | |
Collapse
|
15
|
Fiszer-Kierzkowska A, Wysocka A, Jarzab M, Lisowska K, Krawczyk Z. Structure of gene flanking regions and functional analysis of sequences upstream of the rat hsp70.1 stress gene. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1625:77-87. [PMID: 12527428 DOI: 10.1016/s0167-4781(02)00592-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We present structural and comparative analysis of the flanking regions of the rat hsp70.1 stress gene. Several repetitive sequences, microsatellites and short interspersed repetitive elements (SINEs) were found, as well as a significant gap in the 3' UTR, as compared to the orthologous mouse gene. We also show that the complex microsatellite region composed of partially overlapping inverted repeat and long homopurine-homopyrimidine sequence, which is localized 1.8 kbp upstream of the transcription start site, is capable to adopt non-B DNA structures (an H-DNA and a cruciform structure) in vitro. Functional analysis performed with the use of various fragments of the 5'end flanking regions ligated to the chloramphenicol acetyltransferase (CAT) reporter gene revealed a crucial role of cooperation between heat shock element (HSE) regulatory sequences, while none of the three HSEs alone is able to drive efficient heat induced transcription of the reporter gene. We also found that the microsatellite region does not influence transcription by itself, however, it abolishes the effect of the adjacent putative silencing element. To our knowledge, this is a first extensive structural and functional analysis of the promoter region of the mammalian heat inducible hsp70i gene localized distally to the hsp70-related spermatid-specific gene in the major histocompatibility complex III.
Collapse
Affiliation(s)
- Anna Fiszer-Kierzkowska
- Department of Tumor Biology, Center of Oncology, Maria Skłodowska Curie Memorial Institute, Gliwice, Poland
| | | | | | | | | |
Collapse
|
16
|
Shim EH, Kim JI, Bang ES, Heo JS, Lee JS, Kim EY, Lee JE, Park WY, Kim SH, Kim HS, Smithies O, Jang JJ, Jin DI, Seo JS. Targeted disruption of hsp70.1 sensitizes to osmotic stress. EMBO Rep 2002; 3:857-61. [PMID: 12189176 PMCID: PMC1084228 DOI: 10.1093/embo-reports/kvf175] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The 70 kDa heat shock protein (Hsp70) plays a critical role in cell survival and thermotolerance in response to various stress stimuli. Two nearly identical genes, hsp70.1 and hsp70.3, in response to environmental stress, rapidly induce Hsp70. However, it remains unclear whether these two genes are differentially regulated by various stresses. To address the physiological role of the hsp70.1 and hsp70.3 genes in the stress response, we generated mice that specifically lack hsp70.1. In contrast to heat shock, which rapidly induced both hsp70.1 and hsp70.3 mRNA, osmotic stress selectively induced transcription of hsp70.1. In hsp70.1-deficient embryonic fibroblasts, osmotic stress markedly reduced cell viability. Furthermore, when osmotic stress was applied in vivo, hsp70.1-deficient mice exhibited increased apoptosis in the renal medulla. Taken together, our results demonstrate that differential expression of hsp70 genes contributes to the stress response and that the hsp70.1 gene plays a critical role in osmotolerance.
Collapse
Affiliation(s)
- Eun-Hee Shim
- Department of Biochemistry and ILCHUN Molecular Medicine Institute MRC, Seoul National University College of Medicine, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kaarniranta K, Oksala N, Karjalainen HM, Suuronen T, Sistonen L, Helminen HJ, Salminen A, Lammi MJ. Neuronal cells show regulatory differences in the hsp70 gene response. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 101:136-40. [PMID: 12007842 DOI: 10.1016/s0169-328x(02)00179-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The synthesis of heat shock proteins (Hsps), encoded by heat shock genes, is increased in response to various stress stimuli. Hsps function as molecular chaperones, they dissociate cytotoxic stress-induced protein aggregates within cells and ensure improved survival. Induction of heat shock genes is mainly regulated at the transcriptional level. The stress responsive transcription factor, heat shock factor 1 (HSF1), is involved in the transcriptional induction of the heat shock genes. Our objective was to examine how hsp70 genes are regulated in different transformed and primary neurons upon exposure to elevated temperature. Our findings reveal that the Hsp70 response is regulated at the translational level in Neuro-2a neuroblastoma cells, while the IMR-32 neuroblastoma cells respond to stress by the classical HSF1-driven transcriptional regulatory mechanism. Primary rat hippocampal neurons show a lack of HSF1 and induction of the hsp70 gene. These observations suggest that neuronal cells display different hsp70 gene expression patterns which range from undetected response to transcriptional and posttranscriptional regulation during heat stress.
Collapse
Affiliation(s)
- K Kaarniranta
- Department of Anatomy, University of Kuopio, P.O. Box 1627, 70211 Kuopio, Finland.
| | | | | | | | | | | | | | | |
Collapse
|