1
|
Tatsukawa K, Sakamoto R, Kawasoe Y, Kubota Y, Tsurimoto T, Takahashi T, Ohashi E. Resection of DNA double-strand breaks activates Mre11-Rad50-Nbs1- and Rad9-Hus1-Rad1-dependent mechanisms that redundantly promote ATR checkpoint activation and end processing in Xenopus egg extracts. Nucleic Acids Res 2024; 52:3146-3163. [PMID: 38349040 PMCID: PMC11014350 DOI: 10.1093/nar/gkae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 04/14/2024] Open
Abstract
Sensing and processing of DNA double-strand breaks (DSBs) are vital to genome stability. DSBs are primarily detected by the ATM checkpoint pathway, where the Mre11-Rad50-Nbs1 (MRN) complex serves as the DSB sensor. Subsequent DSB end resection activates the ATR checkpoint pathway, where replication protein A, MRN, and the Rad9-Hus1-Rad1 (9-1-1) clamp serve as the DNA structure sensors. ATR activation depends also on Topbp1, which is loaded onto DNA through multiple mechanisms. While different DNA structures elicit specific ATR-activation subpathways, the regulation and mechanisms of the ATR-activation subpathways are not fully understood. Using DNA substrates that mimic extensively resected DSBs, we show here that MRN and 9-1-1 redundantly stimulate Dna2-dependent long-range end resection and ATR activation in Xenopus egg extracts. MRN serves as the loading platform for ATM, which, in turn, stimulates Dna2- and Topbp1-loading. Nevertheless, MRN promotes Dna2-mediated end processing largely independently of ATM. 9-1-1 is dispensable for bulk Dna2 loading, and Topbp1 loading is interdependent with 9-1-1. ATR facilitates Mre11 phosphorylation and ATM dissociation. These data uncover that long-range end resection activates two redundant pathways that facilitate ATR checkpoint signaling and DNA processing in a vertebrate system.
Collapse
Affiliation(s)
- Kensuke Tatsukawa
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Reihi Sakamoto
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshitaka Kawasoe
- Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yumiko Kubota
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Toshiki Tsurimoto
- Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tatsuro S Takahashi
- Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Eiji Ohashi
- Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| |
Collapse
|
2
|
Sierant ML, Davey SK. Identification and characterization of a novel nuclear structure containing members of the homologous recombination and DNA damage response pathways. Cancer Genet 2018; 228-229:98-109. [DOI: 10.1016/j.cancergen.2018.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/06/2018] [Accepted: 10/12/2018] [Indexed: 12/22/2022]
|
3
|
Ohashi E, Tsurimoto T. Functions of Multiple Clamp and Clamp-Loader Complexes in Eukaryotic DNA Replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:135-162. [PMID: 29357057 DOI: 10.1007/978-981-10-6955-0_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Proliferating cell nuclear antigen (PCNA) and replication factor C (RFC) were identified in the late 1980s as essential factors for replication of simian virus 40 DNA in human cells, by reconstitution of the reaction in vitro. Initially, they were only thought to be involved in the elongation stage of DNA replication. Subsequent studies have demonstrated that PCNA functions as more than a replication factor, through its involvement in multiple protein-protein interactions. PCNA appears as a functional hub on replicating and replicated chromosomal DNA and has an essential role in the maintenance genome integrity in proliferating cells.Eukaryotes have multiple paralogues of sliding clamp, PCNA and its loader, RFC. The PCNA paralogues, RAD9, HUS1, and RAD1 form the heterotrimeric 9-1-1 ring that is similar to the PCNA homotrimeric ring, and the 9-1-1 clamp complex is loaded onto sites of DNA damage by its specific loader RAD17-RFC. This alternative clamp-loader system transmits DNA-damage signals in genomic DNA to the checkpoint-activation network and the DNA-repair apparatus.Another two alternative loader complexes, CTF18-RFC and ELG1-RFC, have roles that are distinguishable from the role of the canonical loader, RFC. CTF18-RFC interacts with one of the replicative DNA polymerases, Polε, and loads PCNA onto leading-strand DNA, and ELG1-RFC unloads PCNA after ligation of lagging-strand DNA. In the progression of S phase, these alternative PCNA loaders maintain appropriate amounts of PCNA on the replicating sister DNAs to ensure that specific enzymes are tethered at specific chromosomal locations.
Collapse
Affiliation(s)
- Eiji Ohashi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Toshiki Tsurimoto
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
4
|
Fukumoto Y, Ikeuchi M, Nakayama Y, Yamaguchi N. The KYxxL motif in Rad17 protein is essential for the interaction with the 9-1-1 complex. Biochem Biophys Res Commun 2016; 477:982-987. [PMID: 27387238 DOI: 10.1016/j.bbrc.2016.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/02/2016] [Indexed: 11/28/2022]
Abstract
ATR-dependent DNA damage checkpoint is the major DNA damage checkpoint against UV irradiation and DNA replication stress. The Rad17-RFC and Rad9-Rad1-Hus1 (9-1-1) complexes interact with each other to contribute to ATR signaling, however, the precise regulatory mechanism of the interaction has not been established. Here, we identified a conserved sequence motif, KYxxL, in the AAA+ domain of Rad17 protein, and demonstrated that this motif is essential for the interaction with the 9-1-1 complex. We also show that UV-induced Rad17 phosphorylation is increased in the Rad17 KYxxL mutants. These data indicate that the interaction with the 9-1-1 complex is not required for Rad17 protein to be an efficient substrate for the UV-induced phosphorylation. Our data also raise the possibility that the 9-1-1 complex plays a negative regulatory role in the Rad17 phosphorylation. We also show that the nucleotide-binding activity of Rad17 is required for its nuclear localization.
Collapse
Affiliation(s)
- Yasunori Fukumoto
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan.
| | - Masayoshi Ikeuchi
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Yuji Nakayama
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Naoto Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan.
| |
Collapse
|
5
|
USP37 deubiquitinates Cdt1 and contributes to regulate DNA replication. Mol Oncol 2016; 10:1196-206. [PMID: 27296872 DOI: 10.1016/j.molonc.2016.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 01/25/2023] Open
Abstract
DNA replication control is a key process in maintaining genomic integrity. Monitoring DNA replication initiation is particularly important as it needs to be coordinated with other cellular events and should occur only once per cell cycle. Crucial players in the initiation of DNA replication are the ORC protein complex, marking the origin of replication, and the Cdt1 and Cdc6 proteins, that license these origins to replicate by recruiting the MCM2-7 helicase. To accurately achieve its functions, Cdt1 is tightly regulated. Cdt1 levels are high from metaphase and during G1 and low in S/G2 phases of the cell cycle. This control is achieved, among other processes, by ubiquitination and proteasomal degradation. In an overexpression screen for Cdt1 deubiquitinating enzymes, we isolated USP37, to date the first ubiquitin hydrolase controlling Cdt1. USP37 overexpression stabilizes Cdt1, most likely a phosphorylated form of the protein. In contrast, USP37 knock down destabilizes Cdt1, predominantly during G1 and G1/S phases of the cell cycle. USP37 interacts with Cdt1 and is able to de-ubiquitinate Cdt1 in vivo and, USP37 is able to regulate the loading of MCM complexes onto the chromatin. In addition, downregulation of USP37 reduces DNA replication fork speed. Taken together, here we show that the deubiquitinase USP37 plays an important role in the regulation of DNA replication. Whether this is achieved via Cdt1, a central protein in this process, which we have shown to be stabilized by USP37, or via additional factors, remains to be tested.
Collapse
|
6
|
Chk1 Activation Protects Rad9A from Degradation as Part of a Positive Feedback Loop during Checkpoint Signalling. PLoS One 2015; 10:e0144434. [PMID: 26658951 PMCID: PMC4676731 DOI: 10.1371/journal.pone.0144434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/18/2015] [Indexed: 11/19/2022] Open
Abstract
Phosphorylation of Rad9A at S387 is critical for establishing a physical interaction with TopBP1, and to downstream activation of Chk1 for checkpoint activation. We have previously demonstrated a phosphorylation of Rad9A that occurs at late time points in cells exposed to genotoxic agents, which is eliminated by either Rad9A overexpression, or conversion of S387 to a non-phosphorylatable analogue. Based on this, we hypothesized that this late Rad9A phosphorylation is part of a feedback loop regulating the checkpoint. Here, we show that Rad9A is hyperphosphorylated and accumulates in cells exposed to bleomycin. Following the removal of bleomycin, Rad9A is polyubiquitinated, and Rad9A protein levels drop, indicating an active degradation process for Rad9A. Chk1 inhibition by UCN-01 or siRNA reduces Rad9A levels in cells synchronized in S-phase or exposed to DNA damage, indicating that Chk1 activation is required for Rad9A stabilization in S-phase and during checkpoint activation. Together, these results demonstrate a positive feedback loop involving Rad9A-dependend activation of Chk1, coupled with Chk1-dependent stabilization of Rad9A that is critical for checkpoint regulation.
Collapse
|
7
|
Panigrahi SK, Hopkins KM, Lieberman HB. Regulation of NEIL1 protein abundance by RAD9 is important for efficient base excision repair. Nucleic Acids Res 2015; 43:4531-46. [PMID: 25873625 PMCID: PMC4482081 DOI: 10.1093/nar/gkv327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/31/2015] [Indexed: 11/21/2022] Open
Abstract
RAD9 participates in DNA damage-induced cell cycle checkpoints and DNA repair. As a member of the RAD9-HUS1-RAD1 (9-1-1) complex, it can sense DNA damage and recruit ATR to damage sites. RAD9 binding can enhance activities of members of different DNA repair pathways, including NEIL1 DNA glycosylase, which initiates base excision repair (BER) by removing damaged DNA bases. Moreover, RAD9 can act independently of 9-1-1 as a gene-specific transcription factor. Herein, we show that mouse Rad9−/− relative to Rad9+/+ embryonic stem (ES) cells have reduced levels of Neil1 protein. Also, human prostate cancer cells, DU145 and PC-3, knocked down for RAD9 demonstrate reduced NEIL1 abundance relative to controls. We found that Rad9 is required for Neil1 protein stability in mouse ES cells, whereas it regulates NEIL1 transcription in the human cells. RAD9 depletion enhances sensitivity to UV, gamma rays and menadione, but ectopic expression of RAD9 or NEIL1 restores resistance. Glycosylase/apurinic lyase activity was reduced in Rad9−/− mouse ES and RAD9 knocked-down human prostate cancer whole cell extracts, relative to controls. Neil1 or Rad9 addition restored this incision activity. Thus, we demonstrate that RAD9 regulates BER by controlling NEIL1 protein levels, albeit by different mechanisms in human prostate cancer versus mouse ES cells.
Collapse
Affiliation(s)
- Sunil K Panigrahi
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - Kevin M Hopkins
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - Howard B Lieberman
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
8
|
Kelly R, Davey SK. Tousled-like kinase-dependent phosphorylation of Rad9 plays a role in cell cycle progression and G2/M checkpoint exit. PLoS One 2013; 8:e85859. [PMID: 24376897 PMCID: PMC3869942 DOI: 10.1371/journal.pone.0085859] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/06/2013] [Indexed: 11/23/2022] Open
Abstract
Genomic integrity is preserved by checkpoints, which act to delay cell cycle progression in the presence of DNA damage or replication stress. The heterotrimeric Rad9-Rad1-Hus1 (9-1-1) complex is a PCNA-like clamp that is loaded onto DNA at structures resulting from damage and is important for initiating and maintaining the checkpoint response. Rad9 possesses a C-terminal tail that is phosphorylated constitutively and in response to cell cycle position and DNA damage. Previous studies have identified tousled-like kinase 1 (TLK1) as a kinase that may modify Rad9. Here we show that Rad9 is phosphorylated in a TLK-dependent manner in vitro and in vivo, and that T355 within the C-terminal tail is the primary targeted residue. Phosphorylation of Rad9 at T355 is quickly reduced upon exposure to ionizing radiation before returning to baseline later in the damage response. We also show that TLK1 and Rad9 interact constitutively, and that this interaction is enhanced in chromatin-bound Rad9 at later stages of the damage response. Furthermore, we demonstrate via siRNA-mediated depletion that TLK1 is required for progression through S-phase in normally cycling cells, and that cells lacking TLK1 display a prolonged G2/M arrest upon exposure to ionizing radiation, a phenotype that is mimicked by over-expression of a Rad9-T355A mutant. Given that TLK1 has previously been shown to be transiently inactivated upon phosphorylation by Chk1 in response to DNA damage, we propose that TLK1 and Chk1 act in concert to modulate the phosphorylation status of Rad9, which in turn serves to regulate the DNA damage response.
Collapse
Affiliation(s)
- Ryan Kelly
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen’s University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Scott K. Davey
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen’s University, Kingston, Ontario, Canada
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
9
|
Janes S, Schmidt U, Ashour Garrido K, Ney N, Concilio S, Zekri M, Caspari T. Heat induction of a novel Rad9 variant from a cryptic translation initiation site reduces mitotic commitment. J Cell Sci 2012; 125:4487-97. [PMID: 22797921 DOI: 10.1242/jcs.104075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Exposure of human cells to heat switches the activating signal of the DNA damage checkpoint from genotoxic to temperature stress. This change reduces mitotic commitment at the expense of DNA break repair. The thermal alterations behind this switch remain elusive despite the successful use of heat to sensitise cancer cells to DNA breaks. Rad9 is a highly conserved subunit of the Rad9-Rad1-Hus1 (9-1-1) checkpoint-clamp that is loaded by Rad17 onto damaged chromatin. At the DNA, Rad9 activates the checkpoint kinases Rad3(ATR) and Chk1 to arrest cells in G2. Using Schizosaccharomyces pombe as a model eukaryote, we discovered a new variant of Rad9, Rad9-M50, whose expression is specifically induced by heat. High temperatures promote alternative translation from a cryptic initiation codon at methionine-50. This process is restricted to cycling cells and is independent of the temperature-sensing mitogen-activated protein kinase (MAPK) pathway. While full-length Rad9 delays mitosis in the presence of DNA lesions, Rad9-M50 functions in a remodelled checkpoint pathway to reduce mitotic commitment at elevated temperatures. This remodelled pathway still relies on Rad1 and Hus1, but acts independently of Rad17. Heat-induction of Rad9-M50 ensures that the kinase Chk1 remains in a hypo-phosphorylated state. Elevated temperatures specifically reverse the DNA-damage-induced modification of Chk1 in a manner dependent on Rad9-M50. Taken together, heat reprogrammes the DNA damage checkpoint at the level of Chk1 by inducing a Rad9 variant that can act outside of the canonical 9-1-1 complex.
Collapse
Affiliation(s)
- Simon Janes
- Bangor University, Genome Biology Group, College of Natural Sciences, School of Biological Sciences, Brambell Building, Deiniol Road, Bangor LL57 2UW, UK
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Rad9 plays a crucial role in maintaining genomic stability by regulating cell cycle checkpoints, DNA repair, telomere stability, and apoptosis. Rad9 controls these processes mainly as part of the heterotrimeric 9-1-1 (Rad9-Hus1-Rad1) complex. However, in recent years it has been demonstrated that Rad9 can also act independently of the 9-1-1 complex as a transcriptional factor, participate in immunoglobulin class switch recombination, and show 3'-5' exonuclease activity. Aberrant Rad9 expression has been associated with prostate, breast, lung, skin, thyroid, and gastric cancers. High expression of Rad9 is causally related to, at least, human prostate cancer growth. On the other hand, deletion of Mrad9, the mouse homolog, is responsible for increased skin cancer incidence. These results reveal that Rad9 can act as an oncogene or tumor suppressor. Which of the many functions of Rad9 are causally related to initiation and progression of tumorigenesis and the mechanistic details by which Rad9 induces or suppresses tumorigenesis are presently not known, but are crucial for the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Constantinos G Broustas
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
11
|
De Benedetti A. The Tousled-Like Kinases as Guardians of Genome Integrity. ISRN MOLECULAR BIOLOGY 2012; 2012:627596. [PMID: 23869254 PMCID: PMC3712517 DOI: 10.5402/2012/627596] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Tousled-like kinases (TLKs) function in processes of chromatin assembly, including replication, transcription, repair, and chromosome segregation. TLKs interact specifically (and phosphorylate) with the chromatin assembly factor Asf1, a histone H3-H4 chaperone, histone H3 itself at Ser10, and also Rad9, a key protein involved in DNA repair and cell cycle signaling following DNA damage. These interactions are believed to be responsible for the action of TLKs in double-stranded break repair and radioprotection and also in the propagation of the DNA damage response. Hence, I propose that TLKs play key roles in maintenance of genome integrity in many organisms of both kingdoms. In this paper, I highlight key issues of the known roles of these proteins, particularly in the context of DNA repair (IR and UV), their possible relevance to genome integrity and cancer development, and as possible targets for intervention in cancer management.
Collapse
Affiliation(s)
- Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| |
Collapse
|
12
|
He W, Ma X, Yang X, Zhao Y, Qiu J, Hang H. A role for the arginine methylation of Rad9 in checkpoint control and cellular sensitivity to DNA damage. Nucleic Acids Res 2011; 39:4719-27. [PMID: 21321020 PMCID: PMC3113557 DOI: 10.1093/nar/gkq1264] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The genome stability is maintained by coordinated action of DNA repairs and checkpoints, which delay progression through the cell cycle in response to DNA damage. Rad9 is conserved from yeast to human and functions in cell cycle checkpoint controls. Here, a regulatory mechanism for Rad9 function is reported. In this study Rad9 has been found to interact with and be methylated by protein arginine methyltransferase 5 (PRMT5). Arginine methylation of Rad9 plays a critical role in S/M and G2/M cell cycle checkpoints. The activation of the Rad9 downstream checkpoint effector Chk1 is impaired in cells only expressing a mutant Rad9 that cannot be methylated. Additionally, Rad9 methylation is also required for cellular resistance to DNA damaging stresses. In summary, we uncovered that arginine methylation is important for regulation of Rad9 function, and thus is a major element for maintaining genome integrity.
Collapse
Affiliation(s)
- Wei He
- National Laboratory of Biomacromolecules and Center for Computational and Systems Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
13
|
Maniwa Y, Nishio W, Yoshimura M. Application of hRad9 in lung cancer treatment as a molecular marker and a molecular target. Thorac Cancer 2011; 2:7-15. [PMID: 27755837 DOI: 10.1111/j.1759-7714.2010.00036.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
DNA damage sensor proteins work as upstream components of the DNA damage checkpoint signaling pathways that are essential for cell cycle control and the induction of apoptosis. hRad9 is a member of a family of proteins that act as DNA damage sensors and plays an important role as an upstream regulator of checkpoint signaling. We clarified the significant accumulation of hRad9 in the nuclei of tumor cells in surgically-resected non-small-cell lung cancer (NSCLC) specimens and found the capacity to produce a functional hRad9 protein was intact in lung cancer cells. This finding suggested that hRad9 was a vital component in the pathways that lead to the survival and progression of NSCLC and suggested that hRad9 was a good candidate for a molecular target to control lung cancer cell growth. RNA interference targeting hRad9 was performed to examine this hypothesis. The impairment of the DNA damage checkpoint signaling pathway induced cancer cell death. hRad9 might be a novel molecular target for lung cancer treatment.
Collapse
Affiliation(s)
- Yoshimasa Maniwa
- Division of Thoracic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Wataru Nishio
- Division of Thoracic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masahiro Yoshimura
- Division of Thoracic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
14
|
Rappas M, Oliver AW, Pearl LH. Structure and function of the Rad9-binding region of the DNA-damage checkpoint adaptor TopBP1. Nucleic Acids Res 2010; 39:313-24. [PMID: 20724438 PMCID: PMC3017600 DOI: 10.1093/nar/gkq743] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
TopBP1 is a scaffold protein that coordinates activation of the DNA-damage-checkpoint response by coupling binding of the 9-1-1 checkpoint clamp at sites of ssDNA, to activation of the ATR–ATRIP checkpoint kinase complex. We have now determined the crystal structure of the N-terminal region of human TopBP1, revealing an unexpected triple-BRCT domain structure. The arrangement of the BRCT domains differs significantly from previously described tandem BRCT domain structures, and presents two distinct sites for binding phosphopeptides in the second and third BRCT domains. We show that the site in the second but not third BRCT domain in the N-terminus of TopBP1, provides specific interaction with a phosphorylated motif at pSer387 in Rad9, which can be generated by CK2.
Collapse
Affiliation(s)
- Mathieu Rappas
- Cancer Research UK DNA Repair Enzyme Group, Section of Structural Biology, The Institute of Cancer Research, London, UK
| | | | | |
Collapse
|
15
|
Greer Card DA, Sierant ML, Davey S. Rad9A is required for G2 decatenation checkpoint and to prevent endoreduplication in response to topoisomerase II inhibition. J Biol Chem 2010; 285:15653-15661. [PMID: 20305300 DOI: 10.1074/jbc.m109.096156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rad9A checkpoint protein interacts with and is required for proper localization of topoisomerase II-binding protein 1 (TopBP1) in response to DNA damage. Topoisomerase II (Topo II), another binding partner of TopBP1, decatenates sister chromatids that become intertwined during replication. Inhibition of Topo II by ICRF-193 (meso-4,4'-(3,2-butanediyl)-bis-(2,6-piperazinedione)), a catalytic inhibitor that does not induce DNA double-strand breaks, causes a mitotic delay known as the G(2) decatenation checkpoint. Here, we demonstrate that this checkpoint, dependent on ATR and BRCA1, also requires Rad9A. Analysis of different Rad9A phosphorylation mutants suggests that these modifications are required to prevent endoreduplication and to maintain decatenation checkpoint arrest. Furthermore, Rad9A Ser(272) is phosphorylated in response to Topo II inhibition. ICRF-193 treatment also causes phosphorylation of an effector kinase downstream of Rad9A in the DNA damage checkpoint pathway, Chk2, at Thr(68). Both of these sites are major targets of phosphorylation by the ATM kinase, although it has previously been shown that ATM is not required for the decatenation checkpoint. Examination of ataxia telangectasia (A-T) cells demonstrates that ATR does not compensate for ATM loss, suggesting that phosphorylation of Rad9A and Chk2 by ATM plays an additional role in response to Topo II inhibition than checkpoint function alone. Finally, we have shown that murine embryonic stem cells deficient for Rad9A have higher levels of catenated mitotic spreads than wild-type counterparts. Together, these results emphasize the importance of Rad9A in preserving genomic integrity in the presence of catenated chromosomes and all types of DNA aberrations.
Collapse
Affiliation(s)
- Deborah A Greer Card
- Cancer Research Institute, Division of Cancer Biology and Genetics, Queen's University, Kingston, Ontario K7L 3N6, Canada; Departments of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Megan L Sierant
- Cancer Research Institute, Division of Cancer Biology and Genetics, Queen's University, Kingston, Ontario K7L 3N6, Canada; Departments of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Scott Davey
- Cancer Research Institute, Division of Cancer Biology and Genetics, Queen's University, Kingston, Ontario K7L 3N6, Canada; Departments of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada; Departments of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada; Departments of Oncology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
16
|
Marchetti F, Coleman MA, Jones IM, Wyrobek AJ. Candidate protein biodosimeters of human exposure to ionizing radiation. Int J Radiat Biol 2009; 82:605-39. [PMID: 17050475 DOI: 10.1080/09553000600930103] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE To conduct a literature review of candidate protein biomarkers for individual radiation biodosimetry of exposure to ionizing radiation. MATERIALS AND METHODS Reviewed approximately 300 publications (1973 - April 2006) that reported protein effects in mammalian systems after either in vivo or in vitro radiation exposure. RESULTS We found 261 radiation-responsive proteins including 173 human proteins. Most of the studies used high doses of ionizing radiation (>4 Gy) and had no information on dose- or time-responses. The majority of the proteins showed increased amounts or changes in phosphorylation states within 24 h after exposure (range: 1.5- to 10-fold). Of the 47 proteins that are responsive at doses of 1 Gy and below, 6 showed phosphorylation changes at doses below 10 cGy. Proteins were assigned to 9 groups based on consistency of response across species, dose- and time-response information and known role in the radiation damage response. CONCLUSIONS ATM (Ataxia telengiectasia mutated), H2AX (histone 2AX), CDKN1A (Cyclin-dependent kinase inhibitor 1A), and TP53 (tumor protein 53) are top candidate radiation protein biomarkers. Furthermore, we recommend a panel of protein biomarkers, each with different dose and time optima, to improve individual radiation biodosimetry for discriminating between low-, moderate-, and high-dose exposures. Our findings have applications for early triage and follow-up medical assessments.
Collapse
Affiliation(s)
- Francesco Marchetti
- Biosciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | | | | | | |
Collapse
|
17
|
Sohn SY, Cho Y. Crystal structure of the human rad9-hus1-rad1 clamp. J Mol Biol 2009; 390:490-502. [PMID: 19464297 DOI: 10.1016/j.jmb.2009.05.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 05/13/2009] [Accepted: 05/15/2009] [Indexed: 11/17/2022]
Abstract
Three evolutionarily conserved proteins, Rad9, Hus1, and Rad1, form a heterotrimeric 9-1-1 complex that plays critical roles in cellular responses to DNA damage by activating checkpoints and by recruiting DNA repair enzymes to DNA lesions. We have determined the crystal structure of the human Rad9 (residues 1-272)-Hus1-Rad1 complex at 2.5 A resolution. The 9(1-272)-1-1 complex forms a closed ring, with each subunit having a similar structure. Despite its high level of similarity to proliferating cell nucleus antigen in terms of overall structure, the 9(1-272)-1-1 complex exhibits notable differences in local structures, including interdomain connecting loops, H2 and H3 helices, and loops in the vicinity of the helices of each subunit. These local structural variations provide several unique features to the 9-1-1 heterotrimeric complex-including structures of intermolecular interfaces and the inner surface around the central hole, and different electrostatic potentials at and near the interdomain connecting loops of each 9-1-1 subunit-compared to the proliferating cell nucleus antigen trimer. We propose that these structural features allow the 9-1-1 complex to bind to a damaged DNA during checkpoint control and to serve as a platform for base excision repair. We also show that the 9(1-272)-1-1 complex, but not the full-length 9-1-1 complex, forms a stable complex with the 5' recessed DNA, suggesting that the C-terminal tail of Rad9 is involved in the regulation of the 9-1-1 complex in DNA binding.
Collapse
Affiliation(s)
- Sun Young Sohn
- National Creative Research Center for Structural Biology and Department of Life Science, Pohang University of Science and Technology, Hyo-ja dong, Pohang, KyungBook, South Korea
| | | |
Collapse
|
18
|
Doré AS, Kilkenny ML, Rzechorzek NJ, Pearl LH. Crystal structure of the rad9-rad1-hus1 DNA damage checkpoint complex--implications for clamp loading and regulation. Mol Cell 2009; 34:735-45. [PMID: 19446481 DOI: 10.1016/j.molcel.2009.04.027] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Revised: 04/14/2009] [Accepted: 04/23/2009] [Indexed: 10/20/2022]
Abstract
Rad9, Rad1, and Hus1 form a heterotrimeric complex (9-1-1) that is loaded onto DNA at sites of DNA damage. DNA-loaded 9-1-1 activates signaling through the Chk1 arm of the DNA damage checkpoint response via recruitment and stimulation of ATR. Additionally, 9-1-1 may play a direct role in facilitating DNA damage repair via interaction with a number of DNA repair enzymes. We have now determined the crystal structure of the human 9-1-1 complex, revealing a toroidal structure with a similar architecture to the homotrimeric PCNA DNA-binding clamp. The structure explains the formation of a unique heterotrimeric arrangement and reveals significant differences among the three subunits in the sites implicated in binding to the clamp loader and to ligand proteins. Biochemical analysis reveals a single repair enzyme-binding site on 9-1-1 that can be blocked competitively by the PCNA-binding cell-cycle regulator p21(cip1/waf1).
Collapse
Affiliation(s)
- Andrew S Doré
- CR-UK DNA Repair Enzymes Group, Section of Structural Biology, The Institute of Cancer Research, 237 Fulham Road, Chelsea, SW36JB London, UK
| | | | | | | |
Collapse
|
19
|
Sunavala-Dossabhoy G, De Benedetti A. Tousled homolog, TLK1, binds and phosphorylates Rad9; TLK1 acts as a molecular chaperone in DNA repair. DNA Repair (Amst) 2009; 8:87-102. [DOI: 10.1016/j.dnarep.2008.09.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 06/02/2008] [Accepted: 09/02/2008] [Indexed: 11/30/2022]
|
20
|
Cabrera G, Cabrejos ME, Morassutti AL, Cabezón C, Orellana J, Hellman U, Zaha A, Galanti N. DNA damage, RAD9 and fertility/infertility of Echinococcus granulosus hydatid cysts. J Cell Physiol 2008; 216:498-506. [PMID: 18348165 DOI: 10.1002/jcp.21418] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hydatidosis, caused by the larval stage of the platyhelminth parasite Echinococcus granulosus, affects human and animal health. Hydatid fertile cysts are formed in intermediate hosts (human and herbivores) producing protoscoleces, the infective form to canines, at their germinal layers. Infertile cysts are also formed, but they are unable to produce protoscoleces. The molecular mechanisms involved in hydatid cysts fertility/infertility are unknown. Nevertheless, previous work from our laboratory has suggested that apoptosis is involved in hydatid cyst infertility and death. On the other hand, fertile hydatid cysts can resist oxidative damage due to reactive oxygen and nitrogen species. On these foundations, we have postulated that when oxidative damage of DNA in the germinal layers exceeds the capability of DNA repair mechanisms, apoptosis is triggered and hydatid cysts infertility occurs. We describe a much higher percentage of nuclei with oxidative DNA damage in dead protoscoleces and in the germinal layer of infertile cysts than in fertile cysts, suggesting that DNA repair mechanisms are active in fertile cysts. rad9, a conserved gene, plays a key role in cell cycle checkpoint modulation and DNA repair. We found that RAD9 of E. granulosus (EgRAD9) is expressed at the mRNA and protein levels. As it was found in other eukaryotes, EgRAD9 is hyperphosphorylated in response to DNA damage. Our results suggest that molecules involved in DNA repair in the germinal layer of fertile hydatid cysts and in protoscoleces, such as EgRAD9, may allow preserving the fertility of hydatid cysts in the presence of ROS and RNS.
Collapse
Affiliation(s)
- Gonzalo Cabrera
- Programa Disciplinario de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Delacroix S, Wagner JM, Kobayashi M, Yamamoto KI, Karnitz LM. The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1. Genes Dev 2007; 21:1472-7. [PMID: 17575048 PMCID: PMC1891424 DOI: 10.1101/gad.1547007] [Citation(s) in RCA: 352] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
DNA replication stress triggers the activation of Checkpoint Kinase 1 (Chk1) in a pathway that requires the independent chromatin loading of the ATRIP-ATR (ATR-interacting protein/ATM [ataxia-telangiectasia mutated]-Rad3-related kinase) complex and the Rad9-Hus1-Rad1 (9-1-1) clamp. We show that Rad9's role in Chk1 activation is to bind TopBP1, which stimulates ATR-mediated Chk1 phosphorylation via TopBP1's activation domain (AD), a domain that binds and activates ATR. Notably, fusion of the AD to proliferating cell nuclear antigen (PCNA) or histone H2B bypasses the requirement for the 9-1-1 clamp, indicating that the 9-1-1 clamp's primary role in activating Chk1 is to localize the AD to a stalled replication fork.
Collapse
Affiliation(s)
- Sinny Delacroix
- Department of Molecular Pharmacology and Experimental Therapeutics, Department of Radiation Oncology, and the Division of Oncology Research, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | - Jill M. Wagner
- Department of Molecular Pharmacology and Experimental Therapeutics, Department of Radiation Oncology, and the Division of Oncology Research, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | - Masahiko Kobayashi
- Department of Molecular Pathology and Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
| | - Ken-ichi Yamamoto
- Department of Molecular Pathology and Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
| | - Larry M. Karnitz
- Department of Molecular Pharmacology and Experimental Therapeutics, Department of Radiation Oncology, and the Division of Oncology Research, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
- Corresponding author.E-MAIL ; FAX (507) 284-3906
| |
Collapse
|
22
|
Lieberman HB. Rad9, an evolutionarily conserved gene with multiple functions for preserving genomic integrity. J Cell Biochem 2006; 97:690-7. [PMID: 16365875 DOI: 10.1002/jcb.20759] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Rad9 gene is evolutionarily conserved. Analysis of the gene from yeast, mouse and human reveal roles in multiple, fundamental biological processes primarily but not exclusively important for regulating genomic integrity. The encoded mammalian proteins participate in promoting resistance to DNA damage, cell cycle checkpoint control, DNA repair, and apoptosis. Other functions include a role in embryogenesis, the transactivation of multiple target genes, co-repression of androgen-induced transcription activity of the androgen receptor, a 3'-5' exonuclease activity, and the regulation of ribonucleotide synthesis. Analyses of the functions of Rad9, and in particular its role in regulating and coordinating numerous fundamental biological activities, should not only provide information about the molecular mechanisms of several individual cellular processes, but might also lend insight into the more global control and coordination of what at least superficially present as independent pathways.
Collapse
Affiliation(s)
- Howard B Lieberman
- Center for Radiological Research, Columbia University, 630 W. 168th St., New York, New York 10032, USA.
| |
Collapse
|
23
|
Maniwa Y, Yoshimura M, Bermudez VP, Okada K, Kanomata N, Ohbayashi C, Nishimura Y, Hayashi Y, Hurwitz J, Okita Y. His239Arg SNP of HRAD9 is associated with lung adenocarcinoma. Cancer 2006; 106:1117-22. [PMID: 16444745 DOI: 10.1002/cncr.21705] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND It was previously reported that a functional human (h) Rad9 protein accumulated in the nuclei of non-small cell lung carcinoma (NSCLC) cells. Those experiments, however, did not examine whether the hRad9 gene was mutated in those cells. The sequence of the HRAD9 gene in NSCLC cells was investigated. METHODS The sequence of the HRAD9 was examined in tumor and peripheral normal lung tissues obtained from 50 lung adenocarcinoma patients during surgery. The expression of its mRNA using reverse transcription polymerase chain reaction (RT-PCR) was also examined. RESULTS No sequence alterations were detected in the HRAD9 gene, which was found to be normally transcribed in surgically resected lung carcinoma cells. However, in eight (16.0%) cases a single nucleotide polymorphism (SNP) was observed at the second position of codon 239 (His/Arg heterozygous variant) of the gene. This frequency was significantly higher than that found in the normal population. CONCLUSIONS Whereas the capacity to produce a functional hRad9 protein was intact in lung adenocarcinoma cells, a nonsynonymous SNP of HRAD9 was detected that might be associated with the development of lung adenocarcinoma.
Collapse
Affiliation(s)
- Yoshimasa Maniwa
- Division of Cardiovascular, Thoracic, and Pediatric Surgery, Kobe University Graduate School of Medicine, Kobe, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Dang T, Bao S, Wang XF. Human Rad9 is required for the activation of S-phase checkpoint and the maintenance of chromosomal stability. Genes Cells 2005; 10:287-95. [PMID: 15773892 DOI: 10.1111/j.1365-2443.2005.00840.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In response to DNA damage or replication block, cells activate a battery of checkpoint signaling cascades to control cell cycle progression and elicit DNA repair in order to maintain genomic stability and integrity. Identified as a homolog of its fission yeast counterpart, human Rad9 was proposed to form a Rad9-Hus1-Rad1 protein complex to mediate checkpoint signals. However, the precise function of Rad9 in the process of checkpoint activation is not fully understood. Using the RNA interference technique, we investigated the role of Rad9 in the genotoxic stress-induced activation of S-phase checkpoint and the maintenance of chromosomal stability. We found that Rad9 knockdown reduced the phosphorylation of Rad17, Chk1 and Smc1 in response to DNA replication block and certain types of DNA damage. Immunofluorescence studies showed that the removal of Rad9 disrupted the foci formation of phosphorylated Chk1, but not ATR. Moreover, Rad9 knockdown resulted in radioresistant DNA synthesis and reduced cell viability under replication stress. Finally, removal of Rad9 by RNAi led to increased accumulation of spontaneous chromosomal aberrations. Taken together, these results suggest a critical and specific role of Rad9 in the activation of S-phase checkpoint and the maintenance of chromosome stability.
Collapse
Affiliation(s)
- Tongyun Dang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
25
|
Maniwa Y, Yoshimura M, Bermudez VP, Yuki T, Okada K, Kanomata N, Ohbayashi C, Hayashi Y, Hurwitz J, Okita Y. Accumulation of hRad9 protein in the nuclei of nonsmall cell lung carcinoma cells. Cancer 2005; 103:126-32. [PMID: 15558813 DOI: 10.1002/cncr.20740] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND DNA damage sensor proteins have received much attention as upstream components of the DNA damage checkpoint signaling pathway that are required for cell cycle control and the induction of apoptosis. Deficiencies in these proteins are directly linked to the accumulation of gene mutations, which can induce cellular transformation and result in malignant disease. METHODS Using 48 sets of tumor tissue specimens and peripheral normal lung tissue specimens from 48 patients with nonsmall cell lung carcinoma (NSCLC) who underwent surgery, the authors investigated the expression of hRad9 protein, a member of the human DNA damage sensor family, using immunohistochemical and Western blot analyses. RESULTS Immunohistochemical analysis detected the accumulation of hRad9 in the nuclei of tumor cells in 16 tumor tissue specimens, (33% of tumor tissue specimens examined). Western blot analysis also revealed elevated levels of phosphorylated hRad9 protein in NSCLC cells that was accompanied by the detection of phosphorylated Chk1, a protein kinase that regulates the downstream signaling of the DNA damage checkpoint pathway. Furthermore, strong expression of hRad9 was correlated with an increase in Ki-67 expression index in the tumor cells that were examined. CONCLUSIONS The findings made in the current study suggest that Rad9 expression may play an important role in cell cycle control in NSCLC cells and may influence NSCLC cell phenotype.
Collapse
Affiliation(s)
- Yoshimasa Maniwa
- Division of Cardiovascular, Thoracic, and Pediatric Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bayly R, Chuen L, Currie RA, Hyndman BD, Casselman R, Blobel GA, LeBrun DP. E2A-PBX1 interacts directly with the KIX domain of CBP/p300 in the induction of proliferation in primary hematopoietic cells. J Biol Chem 2004; 279:55362-71. [PMID: 15507449 DOI: 10.1074/jbc.m408654200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The E2A gene encodes DNA-binding transcription factors, called E12 and E47, involved in cell specification and maturation. E2A is also involved in a chromosomal translocation that leads to the expression of an oncogenic transcription factor called E2A-PBX1 in cases of acute leukemia. In the work described here, we elucidate the interaction between E2A-PBX1 and transcriptional co-activators. We confirm that the E2A portion can interact with CBP and PCAF and map required elements on E2A and CBP. On CBP, the interaction involves the KIX domain, a well characterized domain that mediates interactions with several other oncogenic transcription factors. On E2A, the interaction with CBP requires conserved alpha-helical domains that reside within activation domains 1 and 2 (AD1 and AD2, respectively). Using purified, recombinant proteins, we show that the E2A-CBP interaction is direct. Notwithstanding the previously demonstrated ability of AD1 and AD2 to function independently, some of our findings suggest functional cooperativity between these two domains. Finally, we show that the CBP/p300-interactive helical domains of E2A are important in the induction of proliferation in cultured primary bone marrow cells retrovirally transduced with E2A-PBX1. Our findings suggest that some aspects of E2A-PBX1 oncogenesis involve a direct interaction with the KIX domain of CBP/p300.
Collapse
Affiliation(s)
- Richard Bayly
- Queen's University Cancer Research Institute, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | | | | | | | | | | | | |
Collapse
|
27
|
Hopkins KM, Auerbach W, Wang XY, Hande MP, Hang H, Wolgemuth DJ, Joyner AL, Lieberman HB. Deletion of mouse rad9 causes abnormal cellular responses to DNA damage, genomic instability, and embryonic lethality. Mol Cell Biol 2004; 24:7235-48. [PMID: 15282322 PMCID: PMC479733 DOI: 10.1128/mcb.24.16.7235-7248.2004] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe rad9 gene promotes cell survival through activation of cell cycle checkpoints induced by DNA damage. Mouse embryonic stem cells with a targeted deletion of Mrad9, the mouse ortholog of this gene, were created to evaluate its function in mammals. Mrad9(-/-) cells demonstrated a marked increase in spontaneous chromosome aberrations and HPRT mutations, indicating a role in the maintenance of genomic integrity. These cells were also extremely sensitive to UV light, gamma rays, and hydroxyurea, and heterozygotes were somewhat sensitive to the last two agents relative to Mrad9(+/+) controls. Mrad9(-/-) cells could initiate but not maintain gamma-ray-induced G(2) delay and retained the ability to delay DNA synthesis rapidly after UV irradiation, suggesting that checkpoint abnormalities contribute little to the radiosensitivity observed. Ectopic expression of Mrad9 or human HRAD9 complemented Mrad9(-/-) cell defects, indicating that the gene has radioresponse and genomic maintenance functions that are evolutionarily conserved. Mrad9(+/-) mice were generated, but heterozygous intercrosses failed to yield Mrad9(-/-) pups, since embryos died at midgestation. Furthermore, Mrad9(-/-) mouse embryo fibroblasts were not viable. These investigations establish Mrad9 as a key mammalian genetic element of pathways that regulate the cellular response to DNA damage, maintenance of genomic integrity, and proper embryonic development.
Collapse
Affiliation(s)
- Kevin M Hopkins
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lindsey-Boltz LA, Wauson EM, Graves LM, Sancar A. The human Rad9 checkpoint protein stimulates the carbamoyl phosphate synthetase activity of the multifunctional protein CAD. Nucleic Acids Res 2004; 32:4524-30. [PMID: 15326225 PMCID: PMC516061 DOI: 10.1093/nar/gkh789] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The human Rad9 checkpoint protein is a subunit of the heterotrimeric Rad9-Rad1-Hus1 (9-1-1) complex that plays a role as a damage sensor in the DNA damage checkpoint response. Rad9 has been found to interact with several other proteins outside the context of the 9-1-1 complex with no obvious checkpoint functions. During our studies on the 9-1-1 complex, we found that Rad9 immunoprecipitates contained a 240 kDa protein that was identified as carbamoyl phosphate synthetase/aspartate transcarbamoylase/dihydroorotase (CAD), a multienzymatic protein required for the de novo synthesis of pyrimidine nucleotides and cell growth. Further investigations revealed that only free Rad9, but not Rad9 within the 9-1-1 complex, bound to CAD. The rate-limiting step in de novo pyrimidine nucleotide synthesis is catalyzed by the carbamoyl phosphate synthetase II (CPSase) domain of CAD. We find that Rad9 binds to the CPSase domain, and, moreover, this binding results in a 2-fold stimulation of the CPSase activity of CAD. Similar results were also obtained with an N-terminal Rad9 fragment. These findings suggest that Rad9 may play a role in ribonucleotide biosynthesis.
Collapse
Affiliation(s)
- Laura A Lindsey-Boltz
- Department of Biochemistry and Biophysics, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
29
|
Dufault VM, Oestreich AJ, Vroman BT, Karnitz LM. Identification and characterization of RAD9B, a paralog of the RAD9 checkpoint gene. Genomics 2004; 82:644-51. [PMID: 14611806 DOI: 10.1016/s0888-7543(03)00200-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
RAD9 is an integral element of the PCNA-like HUS1-RAD1-RAD9 (9-1-1) complex that participates in genotoxin-induced CHK1 activation. We have identified a novel RAD9 paralog, dubbed RAD9B, in humans and mice. RAD9 and RAD9B share extensive amino acid homology throughout their entire sequences (36% identity, 48% similarity). Northern blotting revealed that RAD9B transcripts are highly expressed in human testes, with lower levels found in skeletal muscle. In contrast, RT-PCR analysis and immunoprecipitation demonstrated that RAD9B is also expressed in tumor cells. Like RAD9, RAD9B associates with HUS1, RAD1, and RAD17, suggesting that it is a RAD9 paralog that engages in similar biochemical reactions. In addition, we have also shown that RAD9 and RAD9B interact with the HUS1 paralog, HUS1B. Taken together, these results suggest that these proteins can combinatorially assemble into distinct 9-1-1 clamps that may have distinct biological functions.
Collapse
Affiliation(s)
- Vanessa M Dufault
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
30
|
Abstract
The activation of caspases is a critical event for the execution phase of programmed cell death. Caspases are highly specific in their ability to activate or inhibit many crucial proteins in the cell via cleavage. In this study, we report the identification of several caspase-3-like cleavage sites in the cell-cycle checkpoint protein Rad9. We demonstrate that human Rad9 can be specifically cleaved in cells induced to enter apoptosis by both DNA damage and staurosporine treatment. Indeed, we show that human Rad9 can be effectively cleaved both in vitro and in vivo, which can be inhibited by either a pan-caspase inhibitor or a caspase-3-specific inhibitor. Additionally, no cleavage of Rad9 can be seen in the caspase-3-deficient cell line MCF-7. Site-directed mutagenesis of three of the most conserved cleavage sites dramatically abrogates cleavage of Rad9 by caspase-3 in vitro, and in intact cells after DNA damage. Expression of the cleavage-resistant mutant Rad9 DDD/AAA appears to protect the cell from DNA damage-induced apoptosis. Immunofluorescence studies of Rad9 localization before and after induction of apoptosis show a translocation of Rad9 from the nucleus to the cytosol, concomitant to the appearance of apoptotic morphology. Furthermore, analysis of a truncated Rad9 mutant that corresponds to a putative N-terminal cleavage fragment shows that the N-terminal portion of Rad9 localizes in the cytosol, binds to Bcl-XL, and induces apoptosis. These results support a dual role for cleavage of Rad9: (1) the liberation and translocation of the BH3 domain-containing N-terminus of Rad9 to the cytosol, as a means of promoting apoptosis via antagonism of Bcl-XL, and (2) the disruption of the Rad9-Rad1-Hus1 DNA damage checkpoint complex.
Collapse
Affiliation(s)
- Michael W Lee
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | |
Collapse
|
31
|
St Onge RP, Besley BDA, Pelley JL, Davey S. A role for the phosphorylation of hRad9 in checkpoint signaling. J Biol Chem 2003; 278:26620-8. [PMID: 12734188 DOI: 10.1074/jbc.m303134200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The integrity of the human genome is preserved by signal transduction pathways called checkpoints, which delay progression through the cell cycle when DNA damage is present. Three checkpoint proteins, hRad9, hRad1, and hHus1, form a proliferating cell nuclear antigen-like, heterotrimeric complex that has been proposed to function in the initial detection of DNA structural abnormalities. hRad9 is highly modified by phosphorylation, in a constitutive manner and in response to both DNA damage and cell cycle position. Here we present evidence that Thr292 of hRad9 is subject to Cdc2-dependent phosphorylation in mitosis. Furthermore, our data are also consistent with four other hRad9 phosphorylation sites (Ser277, Ser328, Ser336, and Thr355) being regulated in part by Cdc2. We also identify Ser387 as a novel site of hRad9 constitutive phosphorylation and show that phosphorylation at Ser387 is a prerequisite for one form of DNA damage-induced hyperphosphorylation of hRad9. Characterization of nonphosphorylatable mutants has revealed that hRad9 phosphorylation plays a critical role in checkpoint signaling. Overexpression of these mutants blocks the interaction between hRad9 and the DNA damage-responsive protein TopBP1 and impairs the cellular response to DNA damage during S phase.
Collapse
Affiliation(s)
- Robert P St Onge
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
32
|
Roos-Mattjus P, Hopkins KM, Oestreich AJ, Vroman BT, Johnson KL, Naylor S, Lieberman HB, Karnitz LM. Phosphorylation of human Rad9 is required for genotoxin-activated checkpoint signaling. J Biol Chem 2003; 278:24428-37. [PMID: 12709442 DOI: 10.1074/jbc.m301544200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rad9, a key component of genotoxin-activated checkpoint signaling pathways, associates with Hus1 and Rad1 in a heterotrimeric complex (the 9-1-1 complex). Rad9 is inducibly and constitutively phosphorylated. However, the role of Rad9 phosphorylation is unknown. Here we identified nine phosphorylation sites, all of which lie in the carboxyl-terminal 119-amino acid Rad9 tail and examined the role of phosphorylation in genotoxin-triggered checkpoint activation. Rad9 mutants lacking a Ser-272 phosphorylation site, which is phosphorylated in response to genotoxins, had no effect on survival or checkpoint activation in Mrad9-/- mouse ES cells treated with hydroxyurea (HU), ionizing radiation (IR), or ultraviolet radiation (UV). In contrast, additional Rad9 tail phosphorylation sites were essential for Chk1 activation following HU, IR, and UV treatment. Consistent with a role for Chk1 in S-phase arrest, HU- and UV-induced S-phase arrest was abrogated in the Rad9 phosphorylation mutants. In contrast, however, Rad9 did not play a role in IR-induced S-phase arrest. Clonogenic assays revealed that cells expressing a Rad9 mutant lacking phosphorylation sites were as sensitive as Rad9-/- cells to UV and HU. Although Rad9 contributed to survival of IR-treated cells, the identified phosphorylation sites only minimally contributed to survival following IR treatment. Collectively, these results demonstrate that the Rad9 phospho-tail is a key participant in the Chk1 activation pathway and point to additional roles for Rad9 in cellular responses to IR.
Collapse
Affiliation(s)
- Pia Roos-Mattjus
- Department of Biochemistry and Molecular Biology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Gatei M, Sloper K, Sorensen C, Syljuäsen R, Falck J, Hobson K, Savage K, Lukas J, Zhou BB, Bartek J, Khanna KK. Ataxia-telangiectasia-mutated (ATM) and NBS1-dependent phosphorylation of Chk1 on Ser-317 in response to ionizing radiation. J Biol Chem 2003; 278:14806-11. [PMID: 12588868 DOI: 10.1074/jbc.m210862200] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammals, the ATM (ataxia-telangiectasia-mutated) and ATR (ATM and Rad3-related) protein kinases function as critical regulators of the cellular DNA damage response. The checkpoint functions of ATR and ATM are mediated, in part, by a pair of checkpoint effector kinases termed Chk1 and Chk2. In mammalian cells, evidence has been presented that Chk1 is devoted to the ATR signaling pathway and is modified by ATR in response to replication inhibition and UV-induced damage, whereas Chk2 functions primarily through ATM in response to ionizing radiation (IR), suggesting that Chk2 and Chk1 might have evolved to channel the DNA damage signal from ATM and ATR, respectively. We demonstrate here that the ATR-Chk1 and ATM-Chk2 pathways are not parallel branches of the DNA damage response pathway but instead show a high degree of cross-talk and connectivity. ATM does in fact signal to Chk1 in response to IR. Phosphorylation of Chk1 on Ser-317 in response to IR is ATM-dependent. We also show that functional NBS1 is required for phosphorylation of Chk1, indicating that NBS1 might facilitate the access of Chk1 to ATM at the sites of DNA damage. Abrogation of Chk1 expression by RNA interference resulted in defects in IR-induced S and G(2)/M phase checkpoints; however, the overexpression of phosphorylation site mutant (S317A, S345A or S317A/S345A double mutant) Chk1 failed to interfere with these checkpoints. Surprisingly, the kinase-dead Chk1 (D130A) also failed to abrogate the S and G(2) checkpoint through any obvious dominant negative effect toward endogenous Chk1. Therefore, further studies will be required to assess the contribution made by phosphorylation events to Chk1 regulation. Overall, the data presented in the study challenge the model in which Chk1 only functions downstream from ATR and indicate that ATM does signal to Chk1. In addition, this study also demonstrates that Chk1 is essential for IR-induced inhibition of DNA synthesis and the G(2)/M checkpoint.
Collapse
Affiliation(s)
- Magtouf Gatei
- Queensland Institute of Medical Research, Post Office Royal Brisbane Hospital, Brisbane, Queensland 4029, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yoshida K, Wang HG, Miki Y, Kufe D. Protein kinase Cdelta is responsible for constitutive and DNA damage-induced phosphorylation of Rad9. EMBO J 2003; 22:1431-41. [PMID: 12628935 PMCID: PMC151076 DOI: 10.1093/emboj/cdg134] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mammalian homolog of the Schizosaccharomyces pombe Rad9 is involved in checkpoint signaling and the induction of apoptosis. While the mechanisms responsible for the regulation of human Rad9 (hRad9) are not known, hRad9 is subject to hyperphosphorylation in the response of cells to DNA damage. The present results demonstrate that protein kinase Cdelta (PKCdelta) associates with Rad9 and that DNA damage induces this interaction. PKCdelta phosphorylates hRad9 in vitro and in cells exposed to genotoxic agents. The functional significance of the interaction between hRad9 and PKCdelta is supported by the finding that activation of PKCdelta is necessary for formation of the Rad9-Hus1-Rad1 complex. We also show that PKCdelta is required for binding of hRad9 to Bcl-2. In concert with these results, inhibition of PKCdelta attenuates Rad9-mediated apoptosis. These findings demonstrate that PKCdelta is responsible for the regulation of Rad9 in the Hus1-Rad1 complex and in the apoptotic response to DNA damage.
Collapse
Affiliation(s)
- Kiyotsugu Yoshida
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, Drug Discovery Program, H.Lee Moffitt Cancer Center and Research Institute, University of South Florida College of Medicine, Tampa, FL, USA and Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan Corresponding author e-mail:
| | - Hong-Gang Wang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, Drug Discovery Program, H.Lee Moffitt Cancer Center and Research Institute, University of South Florida College of Medicine, Tampa, FL, USA and Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan Corresponding author e-mail:
| | - Yoshio Miki
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, Drug Discovery Program, H.Lee Moffitt Cancer Center and Research Institute, University of South Florida College of Medicine, Tampa, FL, USA and Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan Corresponding author e-mail:
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, Drug Discovery Program, H.Lee Moffitt Cancer Center and Research Institute, University of South Florida College of Medicine, Tampa, FL, USA and Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan Corresponding author e-mail:
| |
Collapse
|
35
|
Bermudez VP, Lindsey-Boltz LA, Cesare AJ, Maniwa Y, Griffith JD, Hurwitz J, Sancar A. Loading of the human 9-1-1 checkpoint complex onto DNA by the checkpoint clamp loader hRad17-replication factor C complex in vitro. Proc Natl Acad Sci U S A 2003; 100:1633-8. [PMID: 12578958 PMCID: PMC149884 DOI: 10.1073/pnas.0437927100] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human DNA damage sensors, Rad17-replication factor C (Rad17-RFC) and the Rad9-Rad1-Hus1 (9-1-1) checkpoint complex, are thought to be involved in the early steps of the DNA damage checkpoint response. Rad17-RFC and the 9-1-1 complex have been shown to be structurally similar to the replication factors, RFC clamp loader and proliferating cell nuclear antigen polymerase clamp, respectively. Here, we demonstrate functional similarities between the replication and checkpoint clamp loader/DNA clamp pairs. When all eight subunits of the two checkpoint complexes are coexpressed in insect cells, a stable Rad17-RFC/9-1-1 checkpoint supercomplex forms in vivo and is readily purified. The two individually purified checkpoint complexes also form a supercomplex in vitro, which depends on ATP and is mediated by interactions between Rad17 and Rad9. Rad17-RFC binds to nicked circular, gapped, and primed DNA and recruits the 9-1-1 complex in an ATP-dependent manner. Electron microscopic analyses of the reaction products indicate that the 9-1-1 ring is clamped around the DNA.
Collapse
Affiliation(s)
- Vladimir P Bermudez
- Program in Molecular Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Roos-Mattjus P, Vroman BT, Burtelow MA, Rauen M, Eapen AK, Karnitz LM. Genotoxin-induced Rad9-Hus1-Rad1 (9-1-1) chromatin association is an early checkpoint signaling event. J Biol Chem 2002; 277:43809-12. [PMID: 12228248 DOI: 10.1074/jbc.m207272200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rad17, Rad1, Hus1, and Rad9 are key participants in checkpoint signaling pathways that block cell cycle progression in response to genotoxins. Biochemical and molecular modeling data predict that Rad9, Hus1, and Rad1 form a heterotrimeric complex, dubbed 9-1-1, which is loaded onto chromatin by a complex of Rad17 and the four small replication factor C (RFC) subunits (Rad17-RFC) in response to DNA damage. It is unclear what checkpoint proteins or checkpoint signaling events regulate the association of the 9-1-1 complex with DNA. Here we show that genotoxin-induced chromatin binding of 9-1-1 does not require the Rad9-inducible phosphorylation site (Ser-272). Although we found that Rad9 undergoes an additional phosphatidylinositol 3-kinase-related kinase (PIKK)-dependent posttranslational modification, we also show that genotoxin-triggered 9-1-1 chromatin binding does not depend on the catalytic activity of the PIKKs ataxia telangiectasia-mutated (ATM), ataxia telangiectasia and Rad3-related (ATR), or DNA-PK. Additionally, 9-1-1 chromatin binding does not require DNA replication, suggesting that the complex can be loaded onto DNA in response to DNA structures other than stalled DNA replication forks. Collectively, these studies demonstrate that 9-1-1 chromatin binding is a proximal event in the checkpoint signaling cascade.
Collapse
Affiliation(s)
- Pia Roos-Mattjus
- Department of Biochemistry and Molecular Biology, Mayo Graduate School, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|