1
|
Xue C, Chu Q, Shi Q, Zeng Y, Lu J, Li L. Wnt signaling pathways in biology and disease: mechanisms and therapeutic advances. Signal Transduct Target Ther 2025; 10:106. [PMID: 40180907 PMCID: PMC11968978 DOI: 10.1038/s41392-025-02142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 12/29/2024] [Indexed: 04/05/2025] Open
Abstract
The Wnt signaling pathway is critically involved in orchestrating cellular functions such as proliferation, migration, survival, and cell fate determination during development. Given its pivotal role in cellular communication, aberrant Wnt signaling has been extensively linked to the pathogenesis of various diseases. This review offers an in-depth analysis of the Wnt pathway, detailing its signal transduction mechanisms and principal components. Furthermore, the complex network of interactions between Wnt cascades and other key signaling pathways, such as Notch, Hedgehog, TGF-β, FGF, and NF-κB, is explored. Genetic mutations affecting the Wnt pathway play a pivotal role in disease progression, with particular emphasis on Wnt signaling's involvement in cancer stem cell biology and the tumor microenvironment. Additionally, this review underscores the diverse mechanisms through which Wnt signaling contributes to diseases such as cardiovascular conditions, neurodegenerative disorders, metabolic syndromes, autoimmune diseases, and cancer. Finally, a comprehensive overview of the therapeutic progress targeting Wnt signaling was given, and the latest progress in disease treatment targeting key components of the Wnt signaling pathway was summarized in detail, including Wnt ligands/receptors, β-catenin destruction complexes, and β-catenin/TCF transcription complexes. The development of small molecule inhibitors, monoclonal antibodies, and combination therapy strategies was emphasized, while the current potential therapeutic challenges were summarized. This aims to enhance the current understanding of this key pathway.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Zhu S, Chen W, Masson A, Li YP. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov 2024; 10:71. [PMID: 38956429 PMCID: PMC11219878 DOI: 10.1038/s41421-024-00689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/04/2024] [Indexed: 07/04/2024] Open
Abstract
The initiation of osteogenesis primarily occurs as mesenchymal stem cells undergo differentiation into osteoblasts. This differentiation process plays a crucial role in bone formation and homeostasis and is regulated by two intricate processes: cell signal transduction and transcriptional gene expression. Various essential cell signaling pathways, including Wnt, BMP, TGF-β, Hedgehog, PTH, FGF, Ephrin, Notch, Hippo, and Piezo1/2, play a critical role in facilitating osteoblast differentiation, bone formation, and bone homeostasis. Key transcriptional factors in this differentiation process include Runx2, Cbfβ, Runx1, Osterix, ATF4, SATB2, and TAZ/YAP. Furthermore, a diverse array of epigenetic factors also plays critical roles in osteoblast differentiation, bone formation, and homeostasis at the transcriptional level. This review provides an overview of the latest developments and current comprehension concerning the pathways of cell signaling, regulation of hormones, and transcriptional regulation of genes involved in the commitment and differentiation of osteoblast lineage, as well as in bone formation and maintenance of homeostasis. The paper also reviews epigenetic regulation of osteoblast differentiation via mechanisms, such as histone and DNA modifications. Additionally, we summarize the latest developments in osteoblast biology spurred by recent advancements in various modern technologies and bioinformatics. By synthesizing these insights into a comprehensive understanding of osteoblast differentiation, this review provides further clarification of the mechanisms underlying osteoblast lineage commitment, differentiation, and bone formation, and highlights potential new therapeutic applications for the treatment of bone diseases.
Collapse
Affiliation(s)
- Siyu Zhu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Alasdair Masson
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
3
|
Qin K, Yu M, Fan J, Wang H, Zhao P, Zhao G, Zeng W, Chen C, Wang Y, Wang A, Schwartz Z, Hong J, Song L, Wagstaff W, Haydon RC, Luu HH, Ho SH, Strelzow J, Reid RR, He TC, Shi LL. Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk. Genes Dis 2024; 11:103-134. [PMID: 37588235 PMCID: PMC10425814 DOI: 10.1016/j.gendis.2023.01.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/01/2022] [Accepted: 01/29/2023] [Indexed: 08/18/2023] Open
Abstract
Wnt signaling plays a major role in regulating cell proliferation and differentiation. The Wnt ligands are a family of 19 secreted glycoproteins that mediate their signaling effects via binding to Frizzled receptors and LRP5/6 coreceptors and transducing the signal either through β-catenin in the canonical pathway or through a series of other proteins in the noncanonical pathway. Many of the individual components of both canonical and noncanonical Wnt signaling have additional functions throughout the body, establishing the complex interplay between Wnt signaling and other signaling pathways. This crosstalk between Wnt signaling and other pathways gives Wnt signaling a vital role in many cellular and organ processes. Dysregulation of this system has been implicated in many diseases affecting a wide array of organ systems, including cancer and embryological defects, and can even cause embryonic lethality. The complexity of this system and its interacting proteins have made Wnt signaling a target for many therapeutic treatments. However, both stimulatory and inhibitory treatments come with potential risks that need to be addressed. This review synthesized much of the current knowledge on the Wnt signaling pathway, beginning with the history of Wnt signaling. It thoroughly described the different variants of Wnt signaling, including canonical, noncanonical Wnt/PCP, and the noncanonical Wnt/Ca2+ pathway. Further description involved each of its components and their involvement in other cellular processes. Finally, this review explained the various other pathways and processes that crosstalk with Wnt signaling.
Collapse
Affiliation(s)
- Kevin Qin
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael Yu
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hongwei Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Interventional Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Wang W, Li F, Wang J, Liu Z, Tian M, Wang Z, Li H, Qu J, Chen Y, Hou L. Disrupting Hedgehog signaling in melanocytes by SUFU knockout leads to ocular melanocytosis and anterior segment malformation. Dis Model Mech 2023; 16:dmm050210. [PMID: 37577930 PMCID: PMC10481947 DOI: 10.1242/dmm.050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
Hedgehog (Hh) signaling is well known for its crucial role during development, but its specific role in individual cell lineages is less well characterized. Here, we disrupted Hh signaling specifically in melanocytes by using Cre-mediated cell-type-specific knockout of the Hh regulator suppressor of fused (Sufu). Interestingly, corresponding mice were fully pigmented and showed no developmental alterations in melanocyte numbers or distribution in skin and hair follicles. However, there were ectopic melanoblasts visible in the anterior chamber of the eye that eventually displayed severe malformation. Choroidal melanocytes remained unaltered. Surprisingly, the abnormal accumulation of anterior uveal melanoblasts was not the result of increased cell proliferation but of increased migration to ectopic locations such as the cornea. In melanoblasts in vitro, Sufu knockdown replicated the increase in cell migration without affecting proliferation and was mediated by an increased level of phosphorylated-ERK brought about by a reduction in the levels of the repressor form of GLI3. These results highlight the developmental divergence of distinct melanocyte subpopulations and may shed light on the pathogenesis of human ocular melanocytosis.
Collapse
Affiliation(s)
- Weizhuo Wang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Feiyang Li
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jing Wang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zuimeng Liu
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Meiyu Tian
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhenhang Wang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Huirong Li
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jia Qu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yu Chen
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Ling Hou
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
5
|
Bian Y, Hahn H, Uhmann A. The hidden hedgehog of the pituitary: hedgehog signaling in development, adulthood and disease of the hypothalamic-pituitary axis. Front Endocrinol (Lausanne) 2023; 14:1219018. [PMID: 37476499 PMCID: PMC10355329 DOI: 10.3389/fendo.2023.1219018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Hedgehog signaling plays pivotal roles in embryonic development, adult homeostasis and tumorigenesis. However, its engagement in the pituitary gland has been long underestimated although Hedgehog signaling and pituitary embryogenic development are closely linked. Thus, deregulation of this signaling pathway during pituitary development results in malformation of the gland. Research of the last years further implicates a regulatory role of Hedgehog signaling in the function of the adult pituitary, because its activity is also interlinked with homeostasis, hormone production, and most likely also formation of neoplasms of the gland. The fact that this pathway can be efficiently targeted by validated therapeutic strategies makes it a promising candidate for treating pituitary diseases. We here summarize the current knowledge about the importance of Hedgehog signaling during pituitary development and review recent data that highlight the impact of Hedgehog signaling in the healthy and the diseased adult pituitary gland.
Collapse
|
6
|
Di Bartolomeo L, Vaccaro F, Irrera N, Borgia F, Li Pomi F, Squadrito F, Vaccaro M. Wnt Signaling Pathways: From Inflammation to Non-Melanoma Skin Cancers. Int J Mol Sci 2023; 24:ijms24021575. [PMID: 36675086 PMCID: PMC9867176 DOI: 10.3390/ijms24021575] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Canonical and non-canonical Wnt signaling pathways are involved in cell differentiation and homeostasis, but also in tumorigenesis. In fact, an exaggerated activation of Wnt signaling may promote tumor growth and invasion. We summarize the most intriguing evidence about the role of Wnt signaling in cutaneous carcinogenesis, in particular in the pathogenesis of non-melanoma skin cancer (NMSC). Wnt signaling is involved in several ways in the development of skin tumors: it may modulate the inflammatory tumor microenvironment, synergize with Sonic Hedgehog pathway in the onset of basal cell carcinoma, and contribute to the progression from precancerous to malignant lesions and promote the epithelial-mesenchymal transition in squamous cell carcinoma. Targeting Wnt pathways may represent an additional efficient approach in the management of patients with NMSC.
Collapse
Affiliation(s)
- Luca Di Bartolomeo
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Federico Vaccaro
- Department of Dermatology, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Messina, 98125 Messina, Italy
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Federica Li Pomi
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Messina, 98125 Messina, Italy
| | - Mario Vaccaro
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
- Correspondence:
| |
Collapse
|
7
|
Chen Y, Zhang H, Zhao Y, Ma J. Congenital medulloblastoma in two brothers with SUFU-mutated Gorlin-Goltz syndrome: Case reports and literature review. Front Oncol 2022; 12:988798. [PMID: 36313636 PMCID: PMC9603755 DOI: 10.3389/fonc.2022.988798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCongenital medulloblastoma is very rare, and many cases involve germline mutations that can lead to inherited syndromes. Here, we first report two brothers with congenital medulloblastoma who were diagnosed with Gorlin-Goltz syndrome caused by SUFU mutation.Clinical presentationMedulloblastoma was detected in two brothers at 2 and 3 months of age, with very similar imaging features. Genetic testing revealed that both children and their mother carried SUFU gene germline mutations, and both brothers were diagnosed with Gorlin-Goltz syndrome.ConclusionGorlin-Goltz syndrome-associated congenital medulloblastoma with SUFU germline mutation is very rare. Pathological types mostly involve desmoplastic/nodular or extensive nodularity; chemotherapy is the main treatment, and studies revealing prognostic data are scarce.
Collapse
Affiliation(s)
| | | | - Yang Zhao
- *Correspondence: Jie Ma, ; Yang Zhao,
| | - Jie Ma
- *Correspondence: Jie Ma, ; Yang Zhao,
| |
Collapse
|
8
|
Garg C, khan H, Kaur A, Singh TG, Sharma VK, Singh SK. Therapeutic Implications of Sonic Hedgehog Pathway in Metabolic Disorders: Novel Target for Effective Treatment. Pharmacol Res 2022; 179:106194. [DOI: 10.1016/j.phrs.2022.106194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022]
|
9
|
Zhou H, Zhang L, Chen Y, Zhu CH, Chen FM, Li A. Research progress on the hedgehog signalling pathway in regulating bone formation and homeostasis. Cell Prolif 2021; 55:e13162. [PMID: 34918401 PMCID: PMC8780935 DOI: 10.1111/cpr.13162] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 12/11/2022] Open
Abstract
Bone formation is a complex regeneration process that was regulated by many signalling pathways, such as Wnt, Notch, BMP and Hedgehog (Hh). All of these signalling have been demonstrated to participate in the bone repair process. In particular, one promising signalling pathway involved in bone formation and homeostasis is the Hh pathway. According to present knowledge, Hh signalling plays a vital role in the development of various tissues and organs in the embryo. In adults, the dysregulation of Hh signalling has been verified to be involved in bone‐related diseases in terms of osteoarthritis, osteoporosis and bone fracture; and during the repair processes, Hh signalling could be reactivated and further modulate bone formation. In this chapter, we summarize our current understanding on the function of Hh signalling in bone formation and homeostasis. Additionally, the current therapeutic strategies targeting this cascade to coordinate and mediate the osteogenesis process have been reviewed.
Collapse
Affiliation(s)
- Huan Zhou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Lei Zhang
- Department of Orthopaedic Surgery, Xi'an Children's Hospital, Xi'an, China
| | - Yue Chen
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Chun-Hui Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Fa-Ming Chen
- Department of Periodontology, School of Stomatology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Fourth Military Medical University, Xi'an, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
Cucu I, Nicolescu MI. A Synopsis of Signaling Crosstalk of Pericytes and Endothelial Cells in Salivary Gland. Dent J (Basel) 2021; 9:dj9120144. [PMID: 34940041 PMCID: PMC8700478 DOI: 10.3390/dj9120144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
The salivary gland (SG) microvasculature constitutes a dynamic cellular organization instrumental to preserving tissue stability and homeostasis. The interplay between pericytes (PCs) and endothelial cells (ECs) culminates as a key ingredient that coordinates the development, maturation, and integrity of vessel building blocks. PCs, as a variety of mesenchymal stem cells, enthrall in the field of regenerative medicine, supporting the notion of regeneration and repair. PC-EC interconnections are pivotal in the kinetic and intricate process of angiogenesis during both embryological and post-natal development. The disruption of this complex interlinkage corresponds to SG pathogenesis, including inflammation, autoimmune disorders (Sjögren’s syndrome), and tumorigenesis. Here, we provided a global portrayal of major signaling pathways between PCs and ECs that cooperate to enhance vascular steadiness through the synergistic interchange. Additionally, we delineated how the crosstalk among molecular networks affiliate to contribute to a malignant context. Additionally, within SG microarchitecture, telocytes and myoepithelial cells assemble a labyrinthine companionship, which together with PCs appear to synchronize the regenerative potential of parenchymal constituents. By underscoring the intricacy of signaling cascades within cellular latticework, this review sketched a perceptive basis for target-selective drugs to safeguard SG function.
Collapse
Affiliation(s)
- Ioana Cucu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mihnea Ioan Nicolescu
- Division of Histology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Laboratory of Radiobiology, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
- Correspondence:
| |
Collapse
|
11
|
HIF-1-regulated expression of calreticulin promotes breast tumorigenesis and progression through Wnt/β-catenin pathway activation. Proc Natl Acad Sci U S A 2021; 118:2109144118. [PMID: 34706936 DOI: 10.1073/pnas.2109144118] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2021] [Indexed: 12/21/2022] Open
Abstract
Calreticulin (CALR) is a multifunctional protein that participates in various cellular processes, which include calcium homeostasis, cell adhesion, protein folding, and cancer progression. However, the role of CALR in breast cancer (BC) is unclear. Here, we report that CALR is overexpressed in BC compared with normal tissue, and its expression is correlated with patient mortality and stemness indices. CALR expression was increased in mammosphere cultures, CD24-CD44+ cells, and aldehyde dehydrogenase-expressing cells, which are enriched for breast cancer stem cells (BCSCs). Additionally, CALR knockdown led to BCSC depletion, which impaired tumor initiation and metastasis and enhanced chemosensitivity in vivo. Chromatin immunoprecipitation and reporter assays revealed that hypoxia-inducible factor 1 (HIF-1) directly activated CALR transcription in hypoxic BC cells. CALR expression was correlated with Wnt/β-catenin pathway activation, and an activator of Wnt/β-catenin signaling abrogated the inhibitory effect of CALR knockdown on mammosphere formation. Taken together, our results demonstrate that CALR facilitates BC progression by promoting the BCSC phenotype through Wnt/β-catenin signaling in an HIF-1-dependent manner and suggest that CALR may represent a target for BC therapy.
Collapse
|
12
|
Hedgehog/GLI Signaling Pathway: Transduction, Regulation, and Implications for Disease. Cancers (Basel) 2021; 13:cancers13143410. [PMID: 34298625 PMCID: PMC8304605 DOI: 10.3390/cancers13143410] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The Hedgehog/GLI (Hh/GLI) pathway plays a major role during development and it is commonly dysregulated in many diseases, including cancer. This highly concerted series of ligands, receptors, cytoplasmic signaling molecules, transcription factors, and co-regulators is involved in regulating the biological functions controlled by this pathway. Activation of Hh/GLI in cancer is most often through a non-canonical method of activation, independent of ligand binding. This review is intended to summarize our current understanding of the Hh/GLI signaling, non-canonical mechanisms of pathway activation, its implication in disease, and the current therapeutic strategies targeting this cascade. Abstract The Hh/GLI signaling pathway was originally discovered in Drosophila as a major regulator of segment patterning in development. This pathway consists of a series of ligands (Shh, Ihh, and Dhh), transmembrane receptors (Ptch1 and Ptch2), transcription factors (GLI1–3), and signaling regulators (SMO, HHIP, SUFU, PKA, CK1, GSK3β, etc.) that work in concert to repress (Ptch1, Ptch2, SUFU, PKA, CK1, GSK3β) or activate (Shh, Ihh, Dhh, SMO, GLI1–3) the signaling cascade. Not long after the initial discovery, dysregulation of the Hh/GLI signaling pathway was implicated in human disease. Activation of this signaling pathway is observed in many types of cancer, including basal cell carcinoma, medulloblastoma, colorectal, prostate, pancreatic, and many more. Most often, the activation of the Hh/GLI pathway in cancer occurs through a ligand-independent mechanism. However, in benign disease, this activation is mostly ligand-dependent. The upstream signaling component of the receptor complex, SMO, is bypassed, and the GLI family of transcription factors can be activated regardless of ligand binding. Additional mechanisms of pathway activation exist whereby the entirety of the downstream signaling pathway is bypassed, and PTCH1 promotes cell cycle progression and prevents caspase-mediated apoptosis. Throughout this review, we summarize each component of the signaling cascade, non-canonical modes of pathway activation, and the implications in human disease, including cancer.
Collapse
|
13
|
Han B, Sun Z, Yu T, Wang Y, Kuang L, Li T, Cai J, Cao Q, Xu Y, Gao B, Cheng SY, Yue S, Liu C. SPOP-PTEN-SUFU axis promotes progression of clear cell renal cell carcinoma via activating SHH and WNT pathway. Cell Death Discov 2021; 7:120. [PMID: 34021128 PMCID: PMC8140158 DOI: 10.1038/s41420-021-00484-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/02/2021] [Accepted: 04/19/2021] [Indexed: 11/15/2022] Open
Abstract
Although E3 ligase Speckle type BTB/POZ protein (SPOP) promotes tumorigenesis by acting as a key regulatory hub in clear cell renal cell carcinoma (ccRCC), the detailed molecular mechanism remains unclear. Here, we demonstrate that a well-known tumor suppressor, Suppressor of Fused (SUFU), is downregulated by SPOP. Interestingly, this downregulation depends on cullin-3(Cul3)-SPOP E3 ligase, but SUFU is not a direct substrate of SPOP. Phosphatase and tensin homolog (PTEN), a ubiquitinated substrate of SPOP, is involved in SPOP-mediated SUFU reduction. Importantly, inhibition of SUFU leads to elevated SHH and WNT signaling, consequently rescuing the reduced proliferation, migration, and invasion abilities of ccRCC cells caused by SPOP-knockdown. Moreover, combinatorial treatment with SHH and WNT inhibitors shows more effective for suppressing ccRCC cell proliferation and aggressiveness. These findings demonstrate that a novel SPOP–PTEN–SUFU axis promotes ccRCC carcinogenesis by activating SHH and WNT pathway, providing a new treatment strategy for ccRCC.
Collapse
Affiliation(s)
- Bo'ang Han
- Department of Medical Genetics, Nanjing Medical University, 211166, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 211166, Nanjing, China.,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, 211166, Nanjing, China
| | - Zhen Sun
- Department of Medical Genetics, Nanjing Medical University, 211166, Nanjing, China.,Department of Pathology, Affiliated Zhongshan Hospital of Dalian University, 116001, Dalian, China
| | - Tingting Yu
- Department of Medical Genetics, Nanjing Medical University, 211166, Nanjing, China.,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, 211166, Nanjing, China
| | - Yu Wang
- Department of Medical Genetics, Nanjing Medical University, 211166, Nanjing, China
| | - Lun Kuang
- Department of Medical Genetics, Nanjing Medical University, 211166, Nanjing, China
| | - Tianyuan Li
- Department of Medical Genetics, Nanjing Medical University, 211166, Nanjing, China
| | - Jing Cai
- Department of Medical Genetics, Nanjing Medical University, 211166, Nanjing, China
| | - Qing Cao
- College of Medicine, Henan University of Science and Technology, 471023, Luoyang, China
| | - Yuan Xu
- The First School of Clinical Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Binbin Gao
- Department of Medical Genetics, Nanjing Medical University, 211166, Nanjing, China
| | - Steven Y Cheng
- Department of Medical Genetics, Nanjing Medical University, 211166, Nanjing, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 211166, Nanjing, China. .,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, 211166, Nanjing, China.
| | - Shen Yue
- Department of Medical Genetics, Nanjing Medical University, 211166, Nanjing, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 211166, Nanjing, China. .,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, 211166, Nanjing, China.
| | - Chen Liu
- Department of Medical Genetics, Nanjing Medical University, 211166, Nanjing, China. .,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, 211166, Nanjing, China.
| |
Collapse
|
14
|
Peng Y, Zhang X, Lin H, Deng S, Qin Y, He J, Hu F, Zhu X, Feng X, Wang J, Wei Y, Fan X, Lin H, Ashktorab H, Smoot D, Lv Y, Li S, Meltzer SJ, Jin Z. Dual activation of Hedgehog and Wnt/β-catenin signaling pathway caused by downregulation of SUFU targeted by miRNA-150 in human gastric cancer. Aging (Albany NY) 2021; 13:10749-10769. [PMID: 33848981 PMCID: PMC8064165 DOI: 10.18632/aging.202895] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023]
Abstract
Mounting evidence has shown that miRNA-150 expression is upregulated in gastric cancer (GC) and is associated with gastric carcinogenesis, but the underlying oncogenic mechanism remains elusive. Here, we discovered that miRNA-150 targets the tumor suppressor SUFU to promote cell proliferation, migration, and the epithelial-mesenchymal transition (EMT) via the dual activation of Hedgehog (Hh) and Wnt signaling. MiRNA-150 was highly expressed in GC tissues and cell lines, and the level of this miRNA was negatively related to that of SUFU. In addition, both the miRNA-150 and SUFU levels were associated with tumor differentiation. Furthermore, miRNA-150 activated GC cell proliferation and migration in vitro. We found that miRNA-150 inhibitors repressed not only Wnt signaling by promoting cytoplasmic β-catenin localization, but also repressed Hh signaling and EMT. MiRNA-150 inhibition also resulted in significant tumor volume reductions in vivo, suggesting the potential application of miRNA-150 inhibitors in GC therapy. The expression of genes downstream of Hh and Wnt signaling was also reduced in tumors treated with miRNA-150 inhibitors. Notably, anti-SUFU siRNAs rescued the inhibitory effects of miRNA-150 inhibitors on Wnt signaling, Hh activation, EMT, cell proliferation, cell migration, and colony formation. Taken together, these findings indicate that miRNA-150 is oncogenic and promotes GC cell proliferation, migration, and EMT by activating Wnt and Hh signaling via the suppression of SUFU expression.
Collapse
Affiliation(s)
- Yin Peng
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, Guangdong, P.R. China,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, P.R. China
| | - Xiaojing Zhang
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, Guangdong, P.R. China,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, P.R. China,Department of Pathology, Guangdong Province Key Laboratory of Molecular Oncologic Pathology, Guangzhou 510515, Guangdong, P.R. China
| | - Huijuan Lin
- Department of Ultrasound, Guangdong Women and Children Hospital, Guangzhou 510000, Guangdong, P.R. China,Department of Pathology and Pathophysiology, Guangzhou Medical University, Guangzhou 510000, Guangdong, P.R. China
| | - Shiqi Deng
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, Guangdong, P.R. China
| | - Ying Qin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518000, Guangdong, P.R. China
| | - Jieqiong He
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, Guangdong, P.R. China
| | - Fan Hu
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, Guangdong, P.R. China
| | - Xiaohui Zhu
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, Guangdong, P.R. China
| | - Xianling Feng
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, Guangdong, P.R. China
| | - Jian Wang
- Department of Pathology and Pathophysiology, Guangzhou Medical University, Guangzhou 510000, Guangdong, P.R. China
| | - Yanjie Wei
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Shenzhen 518000, Guangdong, P.R. China
| | - Xinmin Fan
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, Guangdong, P.R. China
| | - Huan Lin
- Department of Vascular Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518060, Guangdong, P.R. China
| | - Hassan Ashktorab
- Department of Medicine and Cancer Center, Howard University, College of Medicine, Washington, DC 20060, USA
| | - Duane Smoot
- Department of Medicine, Meharry Medical Center, Nashville, TN 37208, USA
| | - Yansi Lv
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, Guangdong, P.R. China
| | - Song Li
- Shenzhen Science and Technology Development Exchange Center, Shenzhen 518060, Guangdong, P.R. China
| | - Stephen J. Meltzer
- Department of Medicine, GI Division, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Zhe Jin
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Pathology, Shenzhen University School of Medicine, Shenzhen 518060, Guangdong, P.R. China,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, P.R. China
| |
Collapse
|
15
|
Angius A, Scanu AM, Arru C, Muroni MR, Rallo V, Deiana G, Ninniri MC, Carru C, Porcu A, Pira G, Uva P, Cossu-Rocca P, De Miglio MR. Portrait of Cancer Stem Cells on Colorectal Cancer: Molecular Biomarkers, Signaling Pathways and miRNAome. Int J Mol Sci 2021; 22:1603. [PMID: 33562604 PMCID: PMC7915330 DOI: 10.3390/ijms22041603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death worldwide, and about 20% is metastatic at diagnosis and untreatable. Increasing evidence suggests that the heterogeneous nature of CRC is related to colorectal cancer stem cells (CCSCs), a small cells population with stemness behaviors and responsible for tumor progression, recurrence, and therapy resistance. Growing knowledge of stem cells (SCs) biology has rapidly improved uncovering the molecular mechanisms and possible crosstalk/feedback loops between signaling pathways that directly influence intestinal homeostasis and tumorigenesis. The generation of CCSCs is probably connected to genetic changes in members of signaling pathways, which control self-renewal and pluripotency in SCs and then establish function and phenotype of CCSCs. Particularly, various deregulated CCSC-related miRNAs have been reported to modulate stemness features, controlling CCSCs functions such as regulation of cell cycle genes expression, epithelial-mesenchymal transition, metastasization, and drug-resistance mechanisms. Primarily, CCSC-related miRNAs work by regulating mainly signal pathways known to be involved in CCSCs biology. This review intends to summarize the epigenetic findings linked to miRNAome in the maintenance and regulation of CCSCs, including their relationships with different signaling pathways, which should help to identify specific diagnostic, prognostic, and predictive biomarkers for CRC, but also develop innovative CCSCs-targeted therapies.
Collapse
Affiliation(s)
- Andrea Angius
- Institute of Genetic and Biomedical Research (IRGB), CNR, Cittadella Universitaria di Cagliari, 09042 Monserrato, Italy;
| | - Antonio Mario Scanu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
| | - Caterina Arru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.A.); (C.C.); (G.P.)
| | - Maria Rosaria Muroni
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
| | - Vincenzo Rallo
- Institute of Genetic and Biomedical Research (IRGB), CNR, Cittadella Universitaria di Cagliari, 09042 Monserrato, Italy;
| | - Giulia Deiana
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
| | - Maria Chiara Ninniri
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.A.); (C.C.); (G.P.)
| | - Alberto Porcu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
| | - Giovanna Pira
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (C.A.); (C.C.); (G.P.)
| | - Paolo Uva
- IRCCS G. Gaslini, 16147 Genoa, Italy;
| | - Paolo Cossu-Rocca
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
- Department of Diagnostic Services, “Giovanni Paolo II” Hospital, ASSL Olbia-ATS Sardegna, 07026 Olbia, Italy
| | - Maria Rosaria De Miglio
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella, 4, 07100 Sassari, Italy; (A.M.S.); (M.R.M.); (G.D.); (M.C.N.); (A.P.); (P.C.-R.)
| |
Collapse
|
16
|
Lee KH. Involvement of Wnt signaling in primary cilia assembly and disassembly. FEBS J 2020; 287:5027-5038. [PMID: 33015954 DOI: 10.1111/febs.15579] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 11/28/2022]
Abstract
The primary cilium is a nonmotile microtubule-based structure, which functions as an antenna-like cellular sensing organelle. The primary cilium is assembled from the basal body, a mother centriole-based structure, during interphase or a quiescent cell stage, and rapidly disassembles before entering mitosis in a dynamic cycle. Defects in this ciliogenesis dynamics are associated with human diseases such as ciliopathy and cancer, but the molecular mechanisms of the ciliogenesis dynamics are still largely unknown. To date, various cellular signaling pathways associated with primary cilia have been proposed, but the main signaling pathways regulating primary cilia assembly/disassembly remain enigmatic. This review describes recent findings in Wnt-induced primary cilia assembly/disassembly and potential future directions for the study of the cellular signaling related to the primary ciliogenesis dynamics.
Collapse
Affiliation(s)
- Kyung Ho Lee
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Korea
| |
Collapse
|
17
|
Peng Y, Zhang X, Lin H, Deng S, Qin Y, Yuan Y, Feng X, Wang J, Chen W, Hu F, Yan R, Zhao Y, Cheng Y, Wei Y, Fan X, Ashktorab H, Smoot D, Li S, Meltzer SJ, Jin Z. SUFU mediates EMT and Wnt/β-catenin signaling pathway activation promoted by miRNA-324-5p in human gastric cancer. Cell Cycle 2020; 19:2720-2733. [PMID: 33017570 DOI: 10.1080/15384101.2020.1826632] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The poor prognosis of late gastric carcinomas (GC) underscores the necessity to identify novel biomarkers for earlier diagnosis and effective therapeutic targets. MiRNA-324-5p has been shown to be over-expressed in GC, however the biological function of miRNA-324-5p implicated in gastric cancer and its downstream targets were not well understood. Wnt/β-catenin signaling pathway is aberrantly regulated in GC. We sought to explore if miRNA-324-5p promotes oncogenesis through modulating Wnt signaling and EMT. MiRNA-324-5p is highly expressed in GC based on qRT-PCR and TCGA data. In addition, in vitro cell proliferation, cell migration assays and in vivo animal exenograft were executed to show that miRNA-324-5p is an oncogenic miRNA in GC. MiRNA-324-5p activates Wnt signaling and induces EMT in GC. Further, SUFU was identified as a target of miRNA-324-5p confirmed by western blotting and luciferase assays. Spearson analysis and TCGA data indicate that the expression of SUFU is negatively associated with the expression of miRNA-324-5p. Rescue experiments were performed to determine if SUFU mediates the Wnt activation, EMT and oncogenic function of miRNA-324-5p. MiRNA-324-5p inhibitors plus SUFU siRNAs rescue partially the inhibitory effect on Wnt signaling and EMT caused by miRNA-324-5p inhibitors. Finally, the suppression of cell proliferation, migration, and colony formation ability induced by miRNA-324-5p inhibitors is alleviated by addition of SUFU siRNAs. In summary, miRNA-324-5p is overexpressed in vivo and exerts cell growth and migration-promoting effects through activating Wnt signaling and EMT by targeting SUFU in GC. It represents a potential miRNA with an oncogenic role in human gastric cancer.
Collapse
Affiliation(s)
- Yin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine , Shenzhen, Guangdong, China
| | - Xiaojing Zhang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine , Shenzhen, Guangdong, China.,Department of Pathology, Guangdong Province Key Laboratory of Molecular Oncologic Pathology , Guangzhou, Guangdong, China
| | - Huijuan Lin
- Department of Pathology and Pathophysiology, Guangzhou Medical University , Guangzhou, Guangdong, China.,Department of Ultrasound, Guangdong Women and Children Hospital , Guangzhou, Guangdong, China
| | - Shiqi Deng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine , Shenzhen, Guangdong, China
| | - Ying Qin
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital , Shenzhen, Guangdong, China
| | - Yuan Yuan
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine , Shenzhen, Guangdong, China
| | - Xianling Feng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine , Shenzhen, Guangdong, China
| | - Jian Wang
- Department of Pathology and Pathophysiology, Guangzhou Medical University , Guangzhou, Guangdong, China
| | - Wangchun Chen
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine , Shenzhen, Guangdong, China
| | - Fan Hu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine , Shenzhen, Guangdong, China
| | - Ruibin Yan
- Laboratory of Chemical Genomics, Shenzhen Graduate School of Peking University , Shenzhen, Guangdong, P.R. China
| | - Yanqiu Zhao
- Laboratory of Chemical Genomics, Shenzhen Graduate School of Peking University , Shenzhen, Guangdong, P.R. China
| | - Yulan Cheng
- Department of Medicine/GI Division, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center , Baltimore, MD, USA
| | - Yanjie Wei
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology , Shenzhen, Guangdong, P.R. China
| | - Xinmin Fan
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine , Shenzhen, Guangdong, China
| | - Hassan Ashktorab
- Department of Medicine and Cancer Center, Howard University, College of Medicine , Washington, USA
| | - Duane Smoot
- Department of Medicine, Meharry Medical Center , Nashville, TN, USA
| | - Song Li
- Laboratory of Chemical Genomics, Shenzhen Graduate School of Peking University , Shenzhen, Guangdong, P.R. China
| | - Stephen J Meltzer
- Department of Medicine/GI Division, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center , Baltimore, MD, USA
| | - Zhe Jin
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine , Shenzhen, Guangdong, China
| |
Collapse
|
18
|
Kolbe E, Aleithe S, Rennert C, Spormann L, Ott F, Meierhofer D, Gajowski R, Stöpel C, Hoehme S, Kücken M, Brusch L, Seifert M, von Schoenfels W, Schafmayer C, Brosch M, Hofmann U, Damm G, Seehofer D, Hampe J, Gebhardt R, Matz-Soja M. Mutual Zonated Interactions of Wnt and Hh Signaling Are Orchestrating the Metabolism of the Adult Liver in Mice and Human. Cell Rep 2020; 29:4553-4567.e7. [PMID: 31875560 DOI: 10.1016/j.celrep.2019.11.104] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/14/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
The Hedgehog (Hh) and Wnt/β-Catenin (Wnt) cascades are morphogen pathways whose pronounced influence on adult liver metabolism has been identified in recent years. How both pathways communicate and control liver metabolic functions are largely unknown. Detecting core components of Wnt and Hh signaling and mathematical modeling showed that both pathways in healthy liver act largely complementary to each other in the pericentral (Wnt) and the periportal zone (Hh) and communicate mainly by mutual repression. The Wnt/Hh module inversely controls the spatiotemporal operation of various liver metabolic pathways, as revealed by transcriptome, proteome, and metabolome analyses. Shifting the balance to Wnt (activation) or Hh (inhibition) causes pericentralization and periportalization of liver functions, respectively. Thus, homeostasis of the Wnt/Hh module is essential for maintaining proper liver metabolism and to avoid the development of certain metabolic diseases. With caution due to minor species-specific differences, these conclusions may hold for human liver as well.
Collapse
Affiliation(s)
- Erik Kolbe
- Rudolf-Schönheimer-Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Susanne Aleithe
- Department of Neurology, Leipzig University, Leipzig 04103, Germany
| | - Christiane Rennert
- Rudolf-Schönheimer-Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany; Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig 04103, Germany
| | - Luise Spormann
- Rudolf-Schönheimer-Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Fritzi Ott
- Rudolf-Schönheimer-Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Mass Spectrometry Faculty, Berlin 14195, Germany
| | - Robert Gajowski
- Max Planck Institute for Molecular Genetics, Mass Spectrometry Faculty, Berlin 14195, Germany
| | - Claus Stöpel
- Institute for Computer Science, Leipzig University, Leipzig 04103, Germany
| | - Stefan Hoehme
- Institute for Computer Science, Leipzig University, Leipzig 04103, Germany
| | - Michael Kücken
- Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden 01069, Germany
| | - Lutz Brusch
- Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden 01069, Germany
| | - Michael Seifert
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden 01307, Germany
| | - Witigo von Schoenfels
- Department of General Surgery and Thoracic Surgery, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Clemens Schafmayer
- Department of General Surgery and Thoracic Surgery, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Mario Brosch
- Medical Department 1, University Hospital Dresden, Technical University Dresden, Dresden 01069, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tübingen, Stuttgart 70376, Germany
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig 04103, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig 04103, Germany
| | - Jochen Hampe
- Medical Department 1, University Hospital Dresden, Technical University Dresden, Dresden 01069, Germany
| | - Rolf Gebhardt
- Rudolf-Schönheimer-Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Madlen Matz-Soja
- Rudolf-Schönheimer-Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany.
| |
Collapse
|
19
|
Yang BB, Zheng YX, Yan BX, Cao HL, Landeck L, Chen JQ, Li W, Min M, Wang P, Cai SQ, Zheng M, Man XY. Suppressor of Fused Inhibits Skin Wound Healing. Adv Wound Care (New Rochelle) 2020; 9:233-244. [PMID: 32226648 DOI: 10.1089/wound.2018.0890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Abstract
Objectives: To investigate the effect of suppressor of fused (Sufu) on epidermal and dermal cellular properties and in wound healing. Approach: Transgenic (TG) mice overexpressing human Sufu (hSufu) in the epidermis were applied to investigate the effects of Sufu on epidermal and dermal cellular properties and in wound healing. Results: Histological staining revealed a reduction of epidermal and dermal thickness and an increase of hypodermal adipose tissue in homozygous K14-hSufu TG mice when compared with wild-type (WT) controls. TG mice exhibited significantly delayed skin wound healing. Moreover, the migratory and proliferative capabilities of cultured keratinocytes were decreased in K14-hSufuTG mice. Transforming growth factor-β treatment increased the expression of α-smooth muscle actin more in WT than in TG fibroblasts. Sufu overexpression significantly decreased the expression of β-catenin, glioma transcription factor 1 (Gli1), and matrix metalloproteinase-3 in wounds of K14-hSufu TG mice when compared with controls, probably indicating a delaying effect of Sufu on wound healing via blocking the hedgehog (Hh)/Gli and Wnt/β-catenin pathway. Innovation: Our results indicate a new property of Sufu in the process of skin wound healing. It provides an important basis for Sufu as a potential target for skin wound healing. Conclusion: Our findings suggest that Sufu overexpression in the epidermis impairs wound healing via dampening the Hh/Gli and Wnt/β-catenin signaling pathway. These data provide an important basis for further analyses of Sufu in skin wound healing.
Collapse
Affiliation(s)
- Bei-Bei Yang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Xin Zheng
- Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Bing-Xi Yan
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua-Li Cao
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lilla Landeck
- Ernst von Bergmann General Hospital, Teaching Hospital of Charité–Humboldt University, Potsdam, Germany
| | - Jia-Qi Chen
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Li
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Min
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Wang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sui-Qing Cai
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Zheng
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Yong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Jiwani T, Kim JJ, Rosenblum ND. Suppressor of fused controls cerebellum granule cell proliferation by suppressing Fgf8 and spatially regulating Gli proteins. Development 2020; 147:dev.170274. [PMID: 31932349 DOI: 10.1242/dev.170274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/19/2019] [Indexed: 01/07/2023]
Abstract
Cerebellar granule cell (GC) development relies on precise regulation of sonic hedgehog (Shh)-Gli signalling activity, failure of which is associated with motor disorders and medulloblastoma. Mutations in the pathway regulator suppressor of fused (Sufu), which modulates Gli activators and repressors, are linked to cerebellar dysfunction and tumourigenesis. The mechanism by which Sufu calibrates Shh signalling in GCs is unknown. Math1-Cre-mediated deletion of Sufu in mouse GC progenitors (GCPs) demonstrated that Sufu restricts GCP proliferation and promotes cell cycle exit, by promoting expression of Gli3R and suppressing Gli2 levels. Sufu is also required to promote a high threshold of pathway activity in GCPs. Remarkably, central cerebellar lobules are more deleteriously impacted by Sufu deletion, but are less sensitive to downstream genetic manipulations to reduce Gli2 expression or overexpress a Gli3R mimic, compared with anterior lobules. Transcriptome sequencing uncovered new Sufu targets, especially Fgf8, which is upregulated in Sufu-mutant GCPs. We demonstrate that Fgf8 is necessary and sufficient to drive Sufu-mutant GCP proliferation. This study reveals new insights into the spatial and temporal regulation of cerebellar Shh-Gli signalling, while uncovering new targets, such as Fgf8.
Collapse
Affiliation(s)
- Tayyaba Jiwani
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jinny J Kim
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Norman D Rosenblum
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
21
|
Lang CMR, Chan CK, Veltri A, Lien WH. Wnt Signaling Pathways in Keratinocyte Carcinomas. Cancers (Basel) 2019; 11:cancers11091216. [PMID: 31438551 PMCID: PMC6769728 DOI: 10.3390/cancers11091216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
The skin functions as a barrier between the organism and the surrounding environment. Direct exposure to external stimuli and the accumulation of genetic mutations may lead to abnormal cell growth, irreversible tissue damage and potentially favor skin malignancy. Skin homeostasis is coordinated by an intricate signaling network, and its dysregulation has been implicated in the development of skin cancers. Wnt signaling is one such regulatory pathway orchestrating skin development, homeostasis, and stem cell activation. Aberrant regulation of Wnt signaling cascades not only gives rise to tumor initiation, progression and invasion, but also maintains cancer stem cells which contribute to tumor recurrence. In this review, we summarize recent studies highlighting functional evidence of Wnt-related oncology in keratinocyte carcinomas, as well as discussing preclinical and clinical approaches that target oncogenic Wnt signaling to treat cancers. Our review provides valuable insight into the significance of Wnt signaling for future interventions against keratinocyte carcinomas.
Collapse
Affiliation(s)
| | - Chim Kei Chan
- de Duve Institute, Université catholique de Louvain, Brussels 1200, Belgium
| | - Anthony Veltri
- de Duve Institute, Université catholique de Louvain, Brussels 1200, Belgium
| | - Wen-Hui Lien
- de Duve Institute, Université catholique de Louvain, Brussels 1200, Belgium.
| |
Collapse
|
22
|
Kumar S, Reynolds K, Ji Y, Gu R, Rai S, Zhou CJ. Impaired neurodevelopmental pathways in autism spectrum disorder: a review of signaling mechanisms and crosstalk. J Neurodev Disord 2019; 11:10. [PMID: 31202261 PMCID: PMC6571119 DOI: 10.1186/s11689-019-9268-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
Background The development of an autistic brain is a highly complex process as evident from the involvement of various genetic and non-genetic factors in the etiology of the autism spectrum disorder (ASD). Despite being a multifactorial neurodevelopmental disorder, autistic patients display a few key characteristics, such as the impaired social interactions and elevated repetitive behaviors, suggesting the perturbation of specific neuronal circuits resulted from abnormal signaling pathways during brain development in ASD. A comprehensive review for autistic signaling mechanisms and interactions may provide a better understanding of ASD etiology and treatment. Main body Recent studies on genetic models and ASD patients with several different mutated genes revealed the dysregulation of several key signaling pathways, such as WNT, BMP, SHH, and retinoic acid (RA) signaling. Although no direct evidence of dysfunctional FGF or TGF-β signaling in ASD has been reported so far, a few examples of indirect evidence can be found. This review article summarizes how various genetic and non-genetic factors which have been reported contributing to ASD interact with WNT, BMP/TGF-β, SHH, FGF, and RA signaling pathways. The autism-associated gene ubiquitin-protein ligase E3A (UBE3A) has been reported to influence WNT, BMP, and RA signaling pathways, suggesting crosstalk between various signaling pathways during autistic brain development. Finally, the article comments on what further studies could be performed to gain deeper insights into the understanding of perturbed signaling pathways in the etiology of ASD. Conclusion The understanding of mechanisms behind various signaling pathways in the etiology of ASD may help to facilitate the identification of potential therapeutic targets and design of new treatment methods.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Biochemistry and Molecular Medicine, Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA, 95817, USA.
| | - Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Ran Gu
- Department of Biochemistry and Molecular Medicine, Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Sunil Rai
- Department of Biochemistry and Molecular Medicine, Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Chengji J Zhou
- Department of Biochemistry and Molecular Medicine, Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA, 95817, USA.
| |
Collapse
|
23
|
Kerekes K, Bányai L, Trexler M, Patthy L. Structure, function and disease relevance of Wnt inhibitory factor 1, a secreted protein controlling the Wnt and hedgehog pathways. Growth Factors 2019; 37:29-52. [PMID: 31210071 DOI: 10.1080/08977194.2019.1626380] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Wnts and Hedgehogs (Hh) are large, lipid-modified extracellular morphogens that play key roles in embryonic development and stem cell proliferation of Metazoa. Both morphogens signal through heptahelical Frizzled-type receptors of the G-Protein Coupled Receptor family and there are several other similarities that suggest a common evolutionary origin of the Hh and Wnt pathways. There is evidence that the secreted protein, Wnt inhibitory factor 1 (WIF1) modulates the activity of both Wnts and Hhs and may thus contribute to the intertwining of these pathways. In this article, we review the structure, evolution, molecular interactions and functions of WIF1 with major emphasis on its role in carcinogenesis.
Collapse
Affiliation(s)
- Krisztina Kerekes
- a Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - László Bányai
- a Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - Mária Trexler
- a Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - László Patthy
- a Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| |
Collapse
|
24
|
Yin WC, Satkunendran T, Mo R, Morrissy S, Zhang X, Huang ES, Uusküla-Reimand L, Hou H, Son JE, Liu W, Liu YC, Zhang J, Parker J, Wang X, Farooq H, Selvadurai H, Chen X, Ngan ESW, Cheng SY, Dirks PB, Angers S, Wilson MD, Taylor MD, Hui CC. Dual Regulatory Functions of SUFU and Targetome of GLI2 in SHH Subgroup Medulloblastoma. Dev Cell 2018; 48:167-183.e5. [PMID: 30554998 DOI: 10.1016/j.devcel.2018.11.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/07/2018] [Accepted: 11/09/2018] [Indexed: 01/09/2023]
Abstract
SUFU alterations are common in human Sonic Hedgehog (SHH) subgroup medulloblastoma (MB). However, its tumorigenic mechanisms have remained elusive. Here, we report that loss of Sufu alone is unable to induce MB formation in mice, due to insufficient Gli2 activation. Simultaneous loss of Spop, an E3 ubiquitin ligase targeting Gli2, restores robust Gli2 activation and induces rapid MB formation in Sufu knockout background. We also demonstrated a tumor-promoting role of Sufu in Smo-activated MB (∼60% of human SHH MB) by maintaining robust Gli activity. Having established Gli2 activation as a key driver of SHH MB, we report a comprehensive analysis of its targetome. Furthermore, we identified Atoh1 as a target and molecular accomplice of Gli2 that activates core SHH MB signature genes in a synergistic manner. Overall, our work establishes the dual role of SUFU in SHH MB and provides mechanistic insights into transcriptional regulation underlying Gli2-mediated SHH MB tumorigenesis.
Collapse
Affiliation(s)
- Wen-Chi Yin
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Thevagi Satkunendran
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Rong Mo
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sorana Morrissy
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Arthur and Sonic Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, AB, Canada; Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Xiaoyun Zhang
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Eunice Shiao Huang
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Liis Uusküla-Reimand
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Huayun Hou
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Joe Eun Son
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Weifan Liu
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Yulu C Liu
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Jianing Zhang
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Joint Institute of Genetics and Genomic Medicine, Zhejiang University and University of Toronto, Toronto, ON, Canada
| | - Jessica Parker
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Xin Wang
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Arthur and Sonic Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hamza Farooq
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Arthur and Sonic Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hayden Selvadurai
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Arthur and Sonic Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Xin Chen
- Joint Institute of Genetics and Genomic Medicine, Zhejiang University and University of Toronto, Toronto, ON, Canada
| | - Elly Sau-Wai Ngan
- Department of Surgery, University of Hong Kong, Hong Kong SAR, China
| | - Steven Y Cheng
- Department of developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Peter B Dirks
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Arthur and Sonic Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephane Angers
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Michael D Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael D Taylor
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Arthur and Sonic Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Chi-Chung Hui
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Joint Institute of Genetics and Genomic Medicine, Zhejiang University and University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
25
|
Buczacki SJA, Popova S, Biggs E, Koukorava C, Buzzelli J, Vermeulen L, Hazelwood L, Francies H, Garnett MJ, Winton DJ. Itraconazole targets cell cycle heterogeneity in colorectal cancer. J Exp Med 2018; 215:1891-1912. [PMID: 29853607 PMCID: PMC6028508 DOI: 10.1084/jem.20171385] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 03/16/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022] Open
Abstract
Cellular dormancy and heterogeneity in cell cycle length provide important explanations for treatment failure after adjuvant therapy with S-phase cytotoxics in colorectal cancer (CRC), yet the molecular control of the dormant versus cycling state remains unknown. We sought to understand the molecular features of dormant CRC cells to facilitate rationale identification of compounds to target both dormant and cycling tumor cells. Unexpectedly, we demonstrate that dormant CRC cells are differentiated, yet retain clonogenic capacity. Mouse organoid drug screening identifies that itraconazole generates spheroid collapse and loss of dormancy. Human CRC cell dormancy and tumor growth can also be perturbed by itraconazole, which is found to inhibit Wnt signaling through noncanonical hedgehog signaling. Preclinical validation shows itraconazole to be effective in multiple assays through Wnt inhibition, causing both cycling and dormant cells to switch to global senescence. These data provide preclinical evidence to support an early phase trial of itraconazole in CRC.
Collapse
Affiliation(s)
- Simon J A Buczacki
- Cancer Research UK (CRUK) Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, England, UK
| | - Semiramis Popova
- Cancer Research UK (CRUK) Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, England, UK
| | - Emma Biggs
- Cancer Research UK (CRUK) Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, England, UK
| | - Chrysa Koukorava
- Cancer Research UK (CRUK) Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, England, UK
| | - Jon Buzzelli
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology (OIRO), Department of Oncology, University of Oxford, Oxford, UK
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, Netherlands
| | - Lee Hazelwood
- Cancer Research UK (CRUK) Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, England, UK
| | - Hayley Francies
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, England, UK
| | - Mathew J Garnett
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, England, UK
| | - Douglas J Winton
- Cancer Research UK (CRUK) Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, England, UK
| |
Collapse
|
26
|
Hor CH, Tang BL, Goh EL. Rab23 and developmental disorders. Rev Neurosci 2018; 29:849-860. [DOI: 10.1515/revneuro-2017-0110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/03/2018] [Indexed: 02/07/2023]
Abstract
Abstract
Rab23 is a conserved member of the Rab family of small GTPases that regulates membrane trafficking in eukaryotes. It is unique amongst the Rabs in terms of its implicated role in mammalian development, as originally illustrated by the embryonic lethality and open neural tube phenotype of a spontaneous mouse mutant that carries homozygous mutation of open brain, a gene encoding Rab23. Rab23 was initially identified to act as an antagonist of Sonic hedgehog (Shh) signaling, and has since been implicated in a number of physiological and pathological roles, including oncogenesis. Interestingly, RAB23 null allele homozygosity in humans is not lethal, but instead causes the developmental disorder Carpenter’s syndrome (CS), which is characterized by craniofacial malformations, polysyndactyly, obesity and intellectual disability. CS bears some phenotypic resemblance to a spectrum of hereditary defects associated with the primary cilium, or the ciliopathies. Recent findings have in fact implicated Rab23 in protein traffic to the primary cilium, thus linking it with the primary cellular locale of Shh signaling. Rab23 also has Shh and cilia-independent functions. It is known to mediate the expression of Nodal at the mouse left lateral plate mesoderm and Kupffer’s vesicle, the zebrafish equivalent of the mouse node. It is thus important for the left-right patterning of vertebrate embryos. In this review, we discuss the developmental disorders associated with Rab23 and attempt to relate its cellular activities to its roles in development.
Collapse
Affiliation(s)
- Catherine H.H. Hor
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School , 8 College Road , Singapore 169857 , Singapore
- Department of Research , National Neuroscience Institute , Singapore 308433 , Singapore
| | - Bor Luen Tang
- Department of Biochemistry , Yong Loo Lin School of Medicine , National University of Singapore , Singapore 117597 , Singapore
- NUS Graduate School for Integrative Sciences and Engineering , National University of Singapore, Medical Drive , Singapore 117456 , Singapore
| | - Eyleen L.K. Goh
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School , 8 College Road , Singapore 169857 , Singapore
- Department of Research , National Neuroscience Institute , Singapore 308433 , Singapore
- Department of Physiology , Yong Loo Lin School of Medicine , National University of Singapore , 8 Medical Drive , Singapore 117597 , Singapore
- KK Research Center, KK Women’s and Children’s Hospital , Singapore 229899 , Singapore
| |
Collapse
|
27
|
Carballo GB, Honorato JR, de Lopes GPF, Spohr TCLDSE. A highlight on Sonic hedgehog pathway. Cell Commun Signal 2018; 16:11. [PMID: 29558958 PMCID: PMC5861627 DOI: 10.1186/s12964-018-0220-7] [Citation(s) in RCA: 300] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/16/2018] [Indexed: 12/25/2022] Open
Abstract
Hedgehog (Hh) signaling pathway plays an essential role during vertebrate embryonic development and tumorigenesis. It is already known that Sonic hedgehog (Shh) pathway is important for the evolution of radio and chemo-resistance of several types of tumors. Most of the brain tumors are resistant to chemotherapeutic drugs, consequently, they have a poor prognosis. So, a better knowledge of the Shh pathway opens an opportunity for targeted therapies against brain tumors considering a multi-factorial molecular overview. Therefore, emerging studies are being conducted in order to find new inhibitors for Shh signaling pathway, which could be safely used in clinical trials. Shh can signal through a canonical and non-canonical way, and it also has important points of interaction with other pathways during brain tumorigenesis. So, a better knowledge of Shh signaling pathway opens an avenue of possibilities for the treatment of not only for brain tumors but also for other types of cancers. In this review, we will also highlight some clinical trials that use the Shh pathway as a target for treating brain cancer.
Collapse
Affiliation(s)
- Gabriela Basile Carballo
- Laboratorio de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rua do Rezende 156, Centro, Rio de Janeiro, CEP: 20230-024, Brazil.,Programa de Pós-Gradução em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jéssica Ribeiro Honorato
- Laboratorio de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rua do Rezende 156, Centro, Rio de Janeiro, CEP: 20230-024, Brazil.,Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Pesquisa em Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer (INCA), RJ, Brazil.,Programa de Pós-Gradução em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giselle Pinto Farias de Lopes
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Pesquisa em Hemato-Oncologia Molecular, Coordenação de Pesquisa, Instituto Nacional de Câncer (INCA), RJ, Brazil
| | - Tania Cristina Leite de Sampaio E Spohr
- Laboratorio de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rua do Rezende 156, Centro, Rio de Janeiro, CEP: 20230-024, Brazil.
| |
Collapse
|
28
|
Krishnamurthy N, Kurzrock R. Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat Rev 2018; 62:50-60. [PMID: 29169144 PMCID: PMC5745276 DOI: 10.1016/j.ctrv.2017.11.002] [Citation(s) in RCA: 742] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 12/17/2022]
Abstract
The Wnt/beta-catenin pathway is a family of proteins that is implicated in many vital cellular functions such as stem cell regeneration and organogenesis. Several intra-cellular signal transduction pathways are induced by Wnt, notably the Wnt/beta-catenin dependent pathway or canonical pathway and the non-canonical or beta-catenin-independent pathway; the latter includes the Wnt/Ca2+ and Planar Cell Polarity pathway (PCP). Wnt activation occurs at the intestinal crypt floor, and is critical to optimal maintenance of stem cells. Colorectal cancers show evidence of Wnt signaling pathway activation and this is associated with loss of function of the tumor regulator APC. Wnt activation has been observed in breast, lung, and hematopoietic malignancies and contributes to tumor recurrence. The Wnt pathway cross talks with the Notch and Sonic Hedgehog pathways, which has implications for therapeutic interventions in cancers. There are significant challenges in targeting the Wnt pathway, including finding agents that are efficacious without damaging the system of normal somatic stem cell function in cellular repair and tissue homeostasis. Here, we comprehensively review the Wnt pathway and its interactions with the Notch and Sonic Hedgehog pathways. We present the state of the field in effectors and inhibitors of Wnt signaling, including updates on clinical trials in various cancers with inhibitors of Wnt, Notch, and Sonic Hedgehog.
Collapse
Affiliation(s)
- Nithya Krishnamurthy
- Center for Personalized Cancer Therapy, UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy, UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
29
|
Zhengyuan X, Hu X, Qiang W, Nanxiang L, Junbin C, Wangming Z. Silencing of Urothelial Carcinoma Associated 1 Inhibits the Proliferation and Migration of Medulloblastoma Cells. Med Sci Monit 2017; 23:4454-4461. [PMID: 28916736 PMCID: PMC5612201 DOI: 10.12659/msm.904675] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background UCA1 is a long non-coding RNA that has been found to be aberrantly upregulated in various cancers. The aim of this study was to determine the expression level and function of UCA1 in medulloblastoma, the most common malignant brain tumor during childhood. Material/Methods Real-time PCR was used to detect the expression of UCA1 in medulloblastoma specimens and cell lines. Lentiviral-mediated expression of a short hairpin RNA (shRNA) targeting UCA1 or a negative control shRNA was also achieved with the medulloblastoma cell line, Daoy. Cell proliferation and cell cycle progression were subsequently characterized with cell counting kit (CCK)-8 and flow cytometry. Cell migration was examined in wound healing and Transwell migration assays. Results Levels of UCA1 mRNA were higher in the medulloblastoma specimens (p<0.05) and cell lines (p<0.05) compared to the corresponding nontumor adjacent tissue specimens and a glioblastoma cell line, respectively. For the Daoy cells with silenced UCA1, their proliferation was reduced by 30% compared to the Daoy cells expressing a negative control shRNA (p=0.017). Cell cycle arrest in the G0/G1 phase, resulting in a decreased number of cells in the S phase, as well as reduced cell migration in both wound scratch healing (p=0.001) and Transwell migration assays (p=0.021) were also observed for the Daoy cells with silenced UCA1. Conclusions UCA1 was highly expressed in part of medulloblastoma specimens and cell lines examined. In addition, knockdown of UCA1 significantly inhibited the proliferation and migration of medulloblastoma cells in vitro.
Collapse
Affiliation(s)
- Xie Zhengyuan
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Xiao Hu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Wang Qiang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Li Nanxiang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Cai Junbin
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Zhang Wangming
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
30
|
Bakshi A, Chaudhary SC, Rana M, Elmets CA, Athar M. Basal cell carcinoma pathogenesis and therapy involving hedgehog signaling and beyond. Mol Carcinog 2017; 56:2543-2557. [PMID: 28574612 DOI: 10.1002/mc.22690] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/23/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023]
Abstract
Basal cell carcinoma (BCC) of the skin is driven by aberrant hedgehog signaling. Thus blocking this signaling pathway by small molecules such as vismodegib inhibits tumor growth. Primary cilium in the epidermal cells plays an integral role in the processing of hedgehog signaling-related proteins. Recent genomic studies point to the involvement of additional genetic mutations that might be associated with the development of BCCs, suggesting significance of other signaling pathways, such as WNT, NOTCH, mTOR, and Hippo, aside from hedgehog in the pathogenesis of this human neoplasm. Some of these pathways could be regulated by noncoding microRNA. Altered microRNA expression profile is recognized with the progression of these lesions. Stopping treatment with Smoothened (SMO) inhibitors often leads to tumor reoccurrence in the patients with basal cell nevus syndrome, who develop 10-100 of BCCs. In addition, the initial effectiveness of these SMO inhibitors is impaired due to the onset of mutations in the drug-binding domain of SMO. These data point to a need to develop strategies to overcome tumor recurrence and resistance and to enhance efficacy by developing novel single agent-based or multiple agents-based combinatorial approaches. Immunotherapy and photodynamic therapy could be additional successful approaches particularly if developed in combination with chemotherapy for inoperable and metastatic BCCs.
Collapse
Affiliation(s)
- Anshika Bakshi
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama.,Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey
| | - Sandeep C Chaudhary
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mehtab Rana
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Craig A Elmets
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mohammad Athar
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
31
|
Wu C, Zhu X, Liu W, Ruan T, Tao K. Hedgehog signaling pathway in colorectal cancer: function, mechanism, and therapy. Onco Targets Ther 2017; 10:3249-3259. [PMID: 28721076 PMCID: PMC5501640 DOI: 10.2147/ott.s139639] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal cancers worldwide. It is a complicated and often fatal cancer, and is related to a high disease-related mortality. Around 90% of mortalities are caused by the metastasis of CRC. Current treatment statistics shows a less than 5% 5-year survival for patients with metastatic disease. The development and metastasis of CRC involve multiple factors and mechanisms. The Hedgehog (Hh) signaling plays an important role in embryogenesis and somatic development. Abnormal activation of the Hh pathway has been proven to be related to several types of human cancers. The role of Hh signaling in CRC, however, remains controversial. In this review, we will go through previous literature on the Hh signaling and its functions in the formation, proliferation, and metastasis of CRC. We will also discuss the potential of targeting Hh signaling pathway in the treatment, prognosis, and prevention of CRC.
Collapse
Affiliation(s)
- Chuanqing Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojie Zhu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weizhen Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tuo Ruan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Peng Y, Zhang X, Ma Q, Yan R, Qin Y, Zhao Y, Cheng Y, Yang M, Wang Q, Feng X, Huang Y, Huang W, Zhao Z, Wang L, Wei Y, He Z, Fan X, Li S, Jin Z, Meltzer SJ. MiRNA-194 activates the Wnt/β-catenin signaling pathway in gastric cancer by targeting the negative Wnt regulator, SUFU. Cancer Lett 2017; 385:117-127. [DOI: 10.1016/j.canlet.2016.10.035] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 12/31/2022]
|
33
|
Abstract
Neural progenitors in the embryonic neocortex must be tightly regulated in order to generate the correct number and projection neuron subtypes necessary for the formation of functional neocortical circuits. In this study, we show that the intracellular protein Suppressor of Fused (Sufu) regulates the proliferation of intermediate progenitor (IP) cells at later stages of corticogenesis to affect the number of Cux1+ upper layer neurons in the postnatal neocortex. This correlates with abnormal levels of the repressor form of Gli3 (Gli3R) and the ectopic expression of Patched 1 (Ptch1), a Sonic Hedgehog (Shh) target gene. These studies reveal that the canonical role of Sufu as an inhibitor of Shh signaling is conserved at later stages of corticogenesis and that Sufu plays a crucial role in regulating neuronal number by controlling the cell cycle dynamics of IP cells in the embryonic neocortex.
Collapse
|
34
|
Song L, Li ZY, Liu WP, Zhao MR. Crosstalk between Wnt/β-catenin and Hedgehog/Gli signaling pathways in colon cancer and implications for therapy. Cancer Biol Ther 2015; 16:1-7. [PMID: 25692617 DOI: 10.4161/15384047.2014.972215] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Wnt/β-catenin and Hedgehog/Gli signalings play key roles in multiple biogenesis such as embryonic development and tissue homeostasis. Dysregulations of these 2 pathways are frequently found in most cancers, particularly in colon cancer. Their crosstalk has been increasingly appreciated as an important mechanism in regulating colon cancer progression. Our studies into the link between Wnt/β-catenin and Hedgehog/Gli signalings in colon cancer revealed several possible crosstalk points and suggested potential therapeutic strategies for colon cancer.
Collapse
Affiliation(s)
- Li Song
- a MOE Key Lab of Environmental Remediation and Ecosystem Health; College of Environmental and Resource Sciences; Zhejiang University ; Hangzhou , China
| | | | | | | |
Collapse
|
35
|
Suppressor of fused (Sufu) represses Gli1 transcription and nuclear accumulation, inhibits glioma cell proliferation, invasion and vasculogenic mimicry, improving glioma chemo-sensitivity and prognosis. Oncotarget 2015; 5:11681-94. [PMID: 25373737 PMCID: PMC4294353 DOI: 10.18632/oncotarget.2585] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 10/10/2014] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma are highly aggressive brain tumors with poor prognosis. While various dysregulation of signaling pathways in gliomas have been described, the identification of biomarkers and therapy targets remains an important task for novel diagnostic and therapeutic approaches. Here we described that the Suppressor of fused (also known as Sufu) is significantly down-regulated in high-grade gliomas, correlating with a poor prognosis. We demonstrated that ectopic expression of Sufu inhibited cell proliferation, invasion and vasculogenic mimicry. In addition, overexpression of Sufu reduced Gli reporter gene transcription activity and prevented Gli1 nuclear accumulation, whereas knockdown of Sufu reversed these effects. Furthermore, overexpressed Sufu sensitized glioblastoma to Temozolomide and Cyclopamine. Thus, Sufu is potential tumor suppressor and therapeutic target in glioblastoma.
Collapse
|
36
|
Makino S, Zhulyn O, Mo R, Puviindran V, Zhang X, Murata T, Fukumura R, Ishitsuka Y, Kotaki H, Matsumaru D, Ishii S, Hui CC, Gondo Y. T396I mutation of mouse Sufu reduces the stability and activity of Gli3 repressor. PLoS One 2015; 10:e0119455. [PMID: 25760946 PMCID: PMC4356511 DOI: 10.1371/journal.pone.0119455] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/22/2015] [Indexed: 01/20/2023] Open
Abstract
Hedgehog signaling is primarily transduced by two transcription factors: Gli2, which mainly acts as a full-length activator, and Gli3, which tends to be proteolytically processed from a full-length form (Gli3FL) to an N-terminal repressor (Gli3REP). Recent studies using a Sufu knockout mouse have indicated that Sufu is involved in regulating Gli2 and Gli3 activator and repressor activity at multiple steps of the signaling cascade; however, the mechanism of specific Gli2 and Gli3 regulation remains to be elucidated. In this study, we established an allelic series of ENU-induced mouse strains. Analysis of one of the missense alleles, SufuT396I, showed that Thr396 residue of Sufu played a key role in regulation of Gli3 activity. SufuT396I/T396I embryos exhibited severe polydactyly, which is indicative of compromised Gli3 activity. Concomitantly, significant quantitative reductions of unprocessed Gli3 (Gli3FL) and processed Gli3 (Gli3REP) were observed in vivo as well as in vitro. Genetic experiments showed that patterning defects in the limb buds of SufuT396I/T396I were rescued by a constitutive Gli3REP allele (Gli3∆699), strongly suggesting that SufuT396I reduced the truncated Gli3 repressor. In contrast, SufuT396I qualitatively exhibited no mutational effects on Gli2 regulation. Taken together, the results of this study show that the Thr396 residue of Sufu is specifically required for regulation of Gli3 but not Gli2. This implies a novel Sufu-mediated mechanism in which Gli2 activator and Gli3 repressor are differentially regulated.
Collapse
Affiliation(s)
- Shigeru Makino
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Olena Zhulyn
- Department of Molecular Genetics, University of Toronto and Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rong Mo
- Department of Molecular Genetics, University of Toronto and Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Vijitha Puviindran
- Department of Molecular Genetics, University of Toronto and Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Xiaoyun Zhang
- Department of Molecular Genetics, University of Toronto and Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Takuya Murata
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Ryutaro Fukumura
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Yuichi Ishitsuka
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Hayato Kotaki
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Daisuke Matsumaru
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shunsuke Ishii
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, Tsukuba, Ibaraki, Japan
| | - Chi-Chung Hui
- Department of Molecular Genetics, University of Toronto and Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yoichi Gondo
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| |
Collapse
|
37
|
Martin N, Beach D, Gil J. Ageing as developmental decay: insights from p16INK4a. Trends Mol Med 2014; 20:667-74. [DOI: 10.1016/j.molmed.2014.09.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/07/2014] [Accepted: 09/09/2014] [Indexed: 01/03/2023]
|
38
|
Targeting stem cell behavior in desmoid tumors (aggressive fibromatosis) by inhibiting hedgehog signaling. Neoplasia 2014; 15:712-9. [PMID: 23814483 DOI: 10.1593/neo.13452] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 04/13/2013] [Accepted: 04/15/2013] [Indexed: 12/28/2022] Open
Abstract
Desmoid tumor (also called aggressive fibromatosis) is a lesion of mesenchymal origin that can occur as a sporadic tumor or a manifestation of the preneoplastic syndrome, familial adenomatous polyposis caused by a mutation in adenomatous polyposis coli (APC). This tumor type is characterized by the stabilization of β-catenin and activation of Tcf-mediated transcription. Cell transplantation data suggest that desmoid tumors are derived from mesenchymal progenitor cells (MSCs). As such, modulating cell signaling pathways that regulate MSC differentiation or proliferation, such as hedgehog (Hh) signaling, could alter the tumor phenotype. Here, we found that Hh signaling is activated in human and murine desmoid tumors. Inhibiting Hh signaling in human cell cultures decreased cell proliferation and β-catenin protein levels. Apc(+)/Apc(1638N) mice, which develop desmoid tumors, develop smaller and fewer tumors when Hh signaling was inhibited either genetically (by crossing Apc(+)/Apc(1638N) mice with mice lacking one copy of a Hh-activated transcription factor, Gli2 (+/-) mice) or using a pharmacologic inhibitor. Both in mice and in human tumor cell cultures, β-catenin and Hh-mediated signaling positively regulate each other's activity. These data show that targeting a pathway that regulates MSC differentiation influences desmoid tumor behavior, providing functional evidence supporting the notion that these tumors are derived from mesenchymal progenitors. It also suggests Hh blockade as a therapeutic approach for this tumor type.
Collapse
|
39
|
Pera EM, Acosta H, Gouignard N, Climent M, Arregi I. Active signals, gradient formation and regional specificity in neural induction. Exp Cell Res 2013; 321:25-31. [PMID: 24315941 DOI: 10.1016/j.yexcr.2013.11.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/21/2013] [Accepted: 11/23/2013] [Indexed: 01/01/2023]
Abstract
The question of how the vertebrate embryo gives rise to a nervous system is of paramount interest in developmental biology. Neural induction constitutes the earliest step in this process and is tightly connected with development of the embryonic body axes. In the Xenopus embryo, perpendicular gradients of BMP and Wnt signals pattern the dorsoventral and anteroposterior body axes. Both pathways need to be inhibited to allow anterior neural induction to occur. FGF8 and IGF are active neural inducers that together with BMP and Wnt signals are integrated at the level of Smad 1/5/8 phosphorylation. Hedgehog (Hh) also contributes to anterior neural induction. Suppressor-of-fused plays an important role in intertwining the Hh and Wnt pathways. Distinct mechanisms are discussed that establish morphogen gradients and integrate retinoic acid and FGF signals during posterior development. These findings not only improve our understanding of regional specification in neural induction, but have profound implications for mammalian stem cell research and regenerative medicine.
Collapse
Affiliation(s)
- Edgar M Pera
- Lund Stem Cell Center, BMC, B12, Klinikgatan 26, Lund University, S-221 84 Lund, Sweden.
| | - Helena Acosta
- Lund Stem Cell Center, BMC, B12, Klinikgatan 26, Lund University, S-221 84 Lund, Sweden
| | - Nadège Gouignard
- Lund Stem Cell Center, BMC, B12, Klinikgatan 26, Lund University, S-221 84 Lund, Sweden
| | - Maria Climent
- Lund Stem Cell Center, BMC, B12, Klinikgatan 26, Lund University, S-221 84 Lund, Sweden
| | - Igor Arregi
- Lund Stem Cell Center, BMC, B12, Klinikgatan 26, Lund University, S-221 84 Lund, Sweden
| |
Collapse
|
40
|
Kong Y, Zhang H, Chen X, Zhang W, Zhao C, Wang N, Wu N, He Y, Nan G, Zhang H, Wen S, Deng F, Liao Z, Wu D, Zhang J, Qin X, Haydon RC, Luu HH, He TC, Zhou L. Destabilization of heterologous proteins mediated by the GSK3β phosphorylation domain of the β-catenin protein. Cell Physiol Biochem 2013; 32:1187-99. [PMID: 24335169 PMCID: PMC4064945 DOI: 10.1159/000354518] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND AIMS Wnt/β-catenin signaling plays important roles in development and cellular processes. The hallmark of canonical Wnt signaling activation is the stabilization of β-catenin protein in cytoplasm and/or nucleus. The stability of β-catenin is the key to its biological functions and is controlled by the phosphorylation of its amino-terminal degradation domain. Aberrant activation of β-catenin signaling has been implicated in the development of human cancers. It has been recently suggested that GSK3βmay play an essential role in regulating global protein turnover. Here, we investigate if the GSK3β phosphorylation site-containing degradation domain of β-catenin is sufficient to destabilize heterologous proteins. METHODS AND RESULTS We engineer chimeric proteins by fusing β-catenin degradation domain at the N- and/or C-termini of the enhanced green fluorescent protein (eGFP). In both transient and stable expression experiments, the chimeric GFP proteins exhibit a significantly decreased stability, which can be effectively antagonized by lithium and Wnt1. An activating mutation in the destruction domain significantly stabilizes the fusion protein. Furthermore, GSK3 inhibitor SB-216763 effectively increases the GFP signal of the fusion protein. Conversely, the inhibition of Wnt signaling with tankyrase inhibitor XAV939 results in a decrease in GFP signal of the fusion proteins, while these small molecules have no significant effects on the mutant destruction domain-GFP fusion protein. CONCLUSION Our findings strongly suggest that the β-catenin degradation domain may be sufficient to destabilize heterologous proteins in Wnt signaling-dependent manner. It is conceivable that the chimeric GFP proteins may be used as a functional reporter to measure the dynamic status of β-catenin signaling, and to identify potential anticancer drugs that target β-catenin signaling.
Collapse
Affiliation(s)
- Yuhan Kong
- The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Silva RD, Marie SKN, Uno M, Matushita H, Wakamatsu A, Rosemberg S, Oba-Shinjo SM. CTNNB1, AXIN1 and APC expression analysis of different medulloblastoma variants. Clinics (Sao Paulo) 2013; 68:167-72. [PMID: 23525311 PMCID: PMC3584274 DOI: 10.6061/clinics/2013(02)oa08] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 10/15/2012] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES We investigated four components of the Wnt signaling pathway in medulloblastomas. Medulloblastoma is the most common type of malignant pediatric brain tumor, and the Wnt signaling pathway has been shown to be activated in this type of tumor. METHODS Sixty-one medulloblastoma cases were analyzed for β-catenin gene (CTNNB1) mutations, β-catenin protein expression via immunostaining and Wnt signaling pathway-related gene expression. All data were correlated with histological subtypes and patient clinical information. RESULTS CTNNB1 sequencing analysis revealed that 11 out of 61 medulloblastomas harbored missense mutations in residues 32, 33, 34 and 37, which are located in exon 3. These mutations alter the glycogen synthase kinase-3β phosphorylation sites, which participate in β-catenin degradation. No significant differences were observed between mutation status and histological medulloblastoma type, patient age and overall or progression-free survival times. Nuclear β-catenin accumulation, which was observed in 27.9% of the cases, was not associated with the histological type, CTNNB1 mutation status or tumor cell dissemination. The relative expression levels of genes that code for proteins involved in the Wnt signaling pathway (CTNNB1, APC, AXIN1 and WNT1) were also analyzed, but no significant correlations were found. In addition, large-cell variant medulloblastomas presented lower relative CTNNB1 expression as compared to the other tumor variants. CONCLUSIONS A small subset of medulloblastomas carry CTNNB1 mutations with consequent nuclear accumulation of β-catenin. The Wnt signaling pathway plays a role in classic, desmoplastic and extensive nodularity medulloblastoma variants but not in large-cell medulloblastomas.
Collapse
Affiliation(s)
- Roseli da Silva
- Laboratory of Molecular and Cellular Biology, Department of Neurology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
42
|
Li ZJ, Nieuwenhuis E, Nien W, Zhang X, Zhang J, Puviindran V, Wainwright BJ, Kim PCW, Hui CC. Kif7 regulates Gli2 through Sufu-dependent and -independent functions during skin development and tumorigenesis. Development 2012; 139:4152-61. [PMID: 23034632 DOI: 10.1242/dev.081190] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abnormal activation of Hedgehog (Hh) signaling leads to basal cell carcinoma (BCC) of the skin, the most common human cancer. Gli2, the major transcriptional activator of Hh signaling, is essential for hair follicle development and its overexpression in epidermis induces BCC formation and maintains tumor growth. Despite its importance in skin development and tumorigenesis, little is known about the molecular regulation of Gli2. Sufu and Kif7 are two evolutionarily conserved regulators of Gli transcription factors. Here, we show that Sufu and Kif7 regulate Gli2 through distinct mechanisms in keratinocytes. Sufu restricts the activity of Gli2 through cytoplasmic sequestration. Kif7 possesses Sufu-dependent and -independent regulatory functions in Hh signaling: while it promotes Hh pathway activity through the dissociation of Sufu-Gli2 complex, it also contributes to the repression of Hh target genes in the absence of Sufu. Deletion of both Sufu and Kif7 in embryonic skin leads to complete loss of follicular fate. Importantly, although inactivation of Sufu or Kif7 alone in adult epidermis cannot promote BCC formation, their simultaneous deletion induces BCC. These studies establish Sufu and Kif7 as crucial components in the regulation of Gli2 localization and activity, and illustrate their overlapping functions in skin development and tumor suppression.
Collapse
Affiliation(s)
- Zhu Juan Li
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Shahi MH, Rey JA, Castresana JS. The sonic hedgehog-GLI1 signaling pathway in brain tumor development. Expert Opin Ther Targets 2012; 16:1227-38. [PMID: 22992192 DOI: 10.1517/14728222.2012.720975] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The sonic hedgehog (Shh) pathway is a regulatory network involved in development and cancer. Proteins like Ptch, SMO, and Gli are central to the Shh pathway. Other proteins like HHIP, SUFU, Bmi-1, Cyclin D2, Plakoglobin, PAX6, Nkx2.2, and SFRP1 are not so well understood in Shh regulation as Gli-1 downstream target genes. AREAS COVERED In this review we try to explain the Shh pathway components and their role in development and cancer, mainly of the brain. A summary of each of the proteins is presented together with an overview of their involvement in cancer. EXPERT OPINION Genetic alterations of the Shh pathway have been detected in cancer stem cells, a subgroup of tumor cells implicated in the origin and maintenance of tumors, being responsible for cancer recurrence and chemotherapy resistance. Cancer stem cells constitute a novel target for biomedical researchers. Specifically, the Shh pathway is being explored as a new opportunity for targeted therapies against tumors. Therefore, a better knowledge of every of the regulators of the Shh pathway is needed.
Collapse
Affiliation(s)
- Mehdi H Shahi
- University of California, Department of Pharmacology, Davis, CA, USA
| | | | | |
Collapse
|
44
|
Hsu SHC, Zhang X, Cheng S, Wunder JS, Hui CC, Alman BA. Suppressor of fused (Sufu) mediates the effect of parathyroid hormone-like hormone (Pthlh) on chondrocyte differentiation in the growth plate. J Biol Chem 2012; 287:36222-8. [PMID: 22930757 DOI: 10.1074/jbc.m112.382275] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth plate chondrocytes undergo a coordinated process of differentiation, regulating long bone growth. Parathyroid hormone-like hormone (Pthlh) inhibits hypertrophic differentiation in the growth plate chondrocytes and reduces Hedgehog (Hh) signaling. In mice lacking the Hh mediator Suppressor of fused (Sufu), Pthlh treatment resulted in the up-regulation of Hh activity and an increased number of hypertrophic chondrocytes. Furthermore, Pthlh increased Sufu protein levels, and in chondrocytes lacking Sufu, it was unable to process Hh-regulated Gli transcription factors. Pthlh regulates chondrocyte differentiation and Gli activity in a Sufu-dependent manner, with Sufu acting as a molecular switch in its regulation of differentiation.
Collapse
Affiliation(s)
- Shu-Hsuan C Hsu
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Chi S, Xie G, Liu H, Chen K, Zhang X, Li C, Xie J. Rab23 negatively regulates Gli1 transcriptional factor in a Su(Fu)-dependent manner. Cell Signal 2012; 24:1222-8. [PMID: 22365972 PMCID: PMC3319238 DOI: 10.1016/j.cellsig.2012.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/25/2012] [Accepted: 02/08/2012] [Indexed: 12/14/2022]
Abstract
Hedgehog (Hh) signaling, via the key signal transducer Smoothened (SMO) and Gli transcription factors, is essential for embryonic development and carcinogenesis. While the biological relevance of hedgehog signaling to cancer is well established, very little is known about the molecular mechanisms by which signaling transduction of this pathway occurs. Rab23 was discovered as a negative regulator of the Hh pathway through a mouse genetic study. Here we report that Rab23 directly associates with Su(Fu) and inhibits Gli1 function in a Su(Fu)-dependent manner. By confocal microscope and immunoprecipitation, we detected interaction between Rab23 and Su(Fu). Using Gli1-mediated reporter gene analysis, we found that Rab23 can suppress Gli1 transcriptional activity in wild type but not Su(Fu) null fibroblasts. Similarly, Rab23 expression reduced the nuclear localization of Gli1 in wild type but not Su(Fu) null fibroblast cells. Consistent with the GTPase motif in the protein, we showed that Rab23 has GTPase activity. The dominant negative form of Rab23 was unable to suppress Gli1-mediated transcriptional activity. Taken together, these data provide evidence to support that Rab23 negatively regulates Gli1 activity in a Su(Fu)-dependent manner.
Collapse
Affiliation(s)
- Sumin Chi
- Wells Center for Pediatric Research, Departments of Pediatrics, Biochemistry and Molecular Biology, Pharmacology and Toxicology, The Indiana University Simon Cancer Center, Indiana University, 980 W. Walnut St., Indianapolis, IN 46202
- Departments of Physiology and Dermatology, The Fourth Military Medical University, Xi’an, China 710032
| | - Guorui Xie
- Wells Center for Pediatric Research, Departments of Pediatrics, Biochemistry and Molecular Biology, Pharmacology and Toxicology, The Indiana University Simon Cancer Center, Indiana University, 980 W. Walnut St., Indianapolis, IN 46202
- Graduate School of Biomedical Science, University of Texas Medical Branch at Galveston, Galveston, TX 77555
| | - Hailan Liu
- Wells Center for Pediatric Research, Departments of Pediatrics, Biochemistry and Molecular Biology, Pharmacology and Toxicology, The Indiana University Simon Cancer Center, Indiana University, 980 W. Walnut St., Indianapolis, IN 46202
| | - Kai Chen
- Wells Center for Pediatric Research, Departments of Pediatrics, Biochemistry and Molecular Biology, Pharmacology and Toxicology, The Indiana University Simon Cancer Center, Indiana University, 980 W. Walnut St., Indianapolis, IN 46202
| | - Xiaoli Zhang
- Wells Center for Pediatric Research, Departments of Pediatrics, Biochemistry and Molecular Biology, Pharmacology and Toxicology, The Indiana University Simon Cancer Center, Indiana University, 980 W. Walnut St., Indianapolis, IN 46202
| | - Chengxin Li
- Wells Center for Pediatric Research, Departments of Pediatrics, Biochemistry and Molecular Biology, Pharmacology and Toxicology, The Indiana University Simon Cancer Center, Indiana University, 980 W. Walnut St., Indianapolis, IN 46202
- Departments of Physiology and Dermatology, The Fourth Military Medical University, Xi’an, China 710032
| | - Jingwu Xie
- Wells Center for Pediatric Research, Departments of Pediatrics, Biochemistry and Molecular Biology, Pharmacology and Toxicology, The Indiana University Simon Cancer Center, Indiana University, 980 W. Walnut St., Indianapolis, IN 46202
| |
Collapse
|
46
|
Archer TC, Weeraratne SD, Pomeroy SL. Hedgehog-GLI pathway in medulloblastoma. J Clin Oncol 2012; 30:2154-6. [PMID: 22508821 DOI: 10.1200/jco.2011.41.1181] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Tenley C Archer
- Children’s Hospital Boston, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
47
|
Bras S, Martin-Lannerée S, Gobert V, Augé B, Breig O, Sanial M, Yamaguchi M, Haenlin M, Plessis A, Waltzer L. Myeloid leukemia factor is a conserved regulator of RUNX transcription factor activity involved in hematopoiesis. Proc Natl Acad Sci U S A 2012; 109:4986-91. [PMID: 22411814 PMCID: PMC3324030 DOI: 10.1073/pnas.1117317109] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Defining the function of the genes that, like RUNX1, are deregulated in blood cell malignancies represents an important challenge. Myeloid leukemia factors (MLFs) constitute a poorly characterized family of conserved proteins whose founding member, MLF1, has been associated with acute myeloid leukemia in humans. To gain insight into the functions of this family, we investigated the role of the Drosophila MLF homolog during blood cell development. Here we report that mlf controls the homeostasis of the Drosophila hematopoietic system. Notably, mlf participates in a positive feedback loop to fine tune the activity of the RUNX transcription factor Lozenge (LZ) during development of the crystal cells, one of the two main blood cell lineages in Drosophila. At the molecular level, our data in cell cultures and in vivo strongly suggest that MLF controls the number of crystal cells by protecting LZ from degradation. Remarkably, it appears that the human MLF1 protein can substitute for MLF in the crystal cell lineage. In addition, MLF stabilizes the human oncogenic fusion protein RUNX1-ETO and is required for RUNX1-ETO-induced blood cell disorders in a Drosophila model of leukemia. Finally, using the human leukemic blood cell line Kasumi-1, we show that MLF1 depletion impairs RUNX1-ETO accumulation and reduces RUNX1-ETO-dependent proliferation. Thus, we propose that the regulation of RUNX protein levels is a conserved feature of MLF family members that could be critical for normal and pathological blood cell development.
Collapse
Affiliation(s)
- Stéphanie Bras
- Centre de Biologie du Développement, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5547, Université de Toulouse, 31062 Toulouse, France
| | - Séverine Martin-Lannerée
- Institut Jacques Monod, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7592, Université Paris Diderot, F-75205 Paris, France; and
| | - Vanessa Gobert
- Centre de Biologie du Développement, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5547, Université de Toulouse, 31062 Toulouse, France
| | - Benoît Augé
- Centre de Biologie du Développement, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5547, Université de Toulouse, 31062 Toulouse, France
| | - Osman Breig
- Centre de Biologie du Développement, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5547, Université de Toulouse, 31062 Toulouse, France
| | - Matthieu Sanial
- Institut Jacques Monod, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7592, Université Paris Diderot, F-75205 Paris, France; and
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Marc Haenlin
- Centre de Biologie du Développement, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5547, Université de Toulouse, 31062 Toulouse, France
| | - Anne Plessis
- Institut Jacques Monod, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7592, Université Paris Diderot, F-75205 Paris, France; and
| | - Lucas Waltzer
- Centre de Biologie du Développement, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5547, Université de Toulouse, 31062 Toulouse, France
| |
Collapse
|
48
|
Yang L, Su X, Xie J. Activation of Hedgehog pathway in gastrointestinal cancers. VITAMINS AND HORMONES 2012; 88:461-72. [PMID: 22391316 DOI: 10.1016/b978-0-12-394622-5.00020-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hedgehog (Hh) pathway is a major regulator for cell differentiation, tissue polarity, and cell proliferation in embryonic development and homeostasis in adult tissue. Studies from many laboratories reveal activation of this pathway in a variety of human cancer, including basal cell carcinomas (BCCs), medulloblastomas, leukemia, gastrointestinal, lung, ovarian, breast, and prostate cancers. It is thus believed that targeted inhibition of Hh signaling may be effective in treatment and prevention of human cancer. Even more exciting is the discovery and synthesis of specific signaling antagonists for the Hh pathway, which have significant clinical implications in novel cancer therapeutics. In this review, we summarize major advances in the past 2 years in our understanding of Hh signaling activation in human gastrointestinal cancer and their potential in clinical treatment with Hh pathway inhibitors.
Collapse
Affiliation(s)
- Ling Yang
- Clinical Research Center of the Affiliated Hospital, Inner Mongolia Medical College, Hohhot, Inner Mongolia, China
| | | | | |
Collapse
|
49
|
Lichti-Kaiser K, ZeRuth G, Kang HS, Vasanth S, Jetten AM. Gli-similar proteins: their mechanisms of action, physiological functions, and roles in disease. VITAMINS AND HORMONES 2012; 88:141-71. [PMID: 22391303 DOI: 10.1016/b978-0-12-394622-5.00007-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gli-similar (Glis) 1-3 proteins constitute a subfamily of Krüppel-like zinc-finger proteins that are closely related to members of the Gli family. Glis proteins have been implicated in several pathologies, including cystic kidney disease, diabetes, hypothyroidism, fibrosis, osteoporosis, psoriasis, and cancer. In humans, a mutation in the Glis2 gene has been linked to the development of nephronophthisis (NPHP), a recessive cystic kidney disease, while mutations in Glis3 lead to an extended multisystem phenotype that includes the development of neonatal diabetes, polycystic kidneys, congenital hypothyroidism, and facial dysmorphism. Glis3 has also been identified as a risk locus for type-1 and type-2 diabetes and additional studies have revealed a role for Glis3 in pancreatic endocrine development, β-cell maintenance, and insulin regulation. Similar to Gli1-3, Glis2 and 3 have been reported to localize to the primary cilium. These studies appear to suggest that Glis proteins are part of a primary cilium-associated signaling pathway(s). It has been hypothesized that Glis proteins are activated through posttranslational modifications and subsequently translocate to the nucleus where they regulate transcription by interacting with Glis-binding sites in the promoter regions of target genes. This chapter summarizes the current state of knowledge regarding mechanisms of action of the Glis family of proteins, their physiological functions, as well as their roles in disease.
Collapse
Affiliation(s)
- Kristin Lichti-Kaiser
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | | | | | | | | |
Collapse
|
50
|
Kim W, Choy W, Dye J, Nagasawa D, Safaee M, Fong B, Yang I. The tumor biology and molecular characteristics of medulloblastoma identifying prognostic factors associated with survival outcomes and prognosis. J Clin Neurosci 2011; 18:886-90. [PMID: 21640908 DOI: 10.1016/j.jocn.2011.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/13/2011] [Accepted: 12/27/2010] [Indexed: 01/21/2023]
Abstract
Medulloblastomas (MB) are highly aggressive primitive neuroectodermal tumors (PNET) usually located in the posterior fossa. Current treatment for MBs, which includes a combination of surgery, chemotherapy and radiation, remain challenging especially in younger patients. However, advances in the understanding of regulatory pathways in cerebellar development have elucidated possible areas of dysfunction involved in tumorigenesis. Multiple studies have demonstrated the importance of the sonic hedgehog, Wnt, and Notch pathways in MB pathogenesis at the molecular level. While staging and prognosis are often based on the Chang classification system, future algorithms will involve identifying molecular markers in order to allow for more specific risk stratifications of various MB subtypes and provide improved correlation with staging and prognosis. Future development of novel therapies that target the heterogeneity of MB and are tailored to the tumor's unique molecular profile may yield improved outcomes for these patients.
Collapse
Affiliation(s)
- Won Kim
- Department of Neurological Surgery, University of California, Los Angeles, 695 Charles E. Young Drive South, Gonda 3357, Los Angeles, California 90095-1761, USA
| | | | | | | | | | | | | |
Collapse
|