1
|
Zhao Z, Shen X, Chen S, Gu J, Wang H, Mojica MF, Samanta M, Bhowmik D, Vila AJ, Bonomo RA, Haider S. Gating interactions steer loop conformational changes in the active site of the L1 metallo-β-lactamase. eLife 2023; 12:e83928. [PMID: 36826989 PMCID: PMC9977270 DOI: 10.7554/elife.83928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
β-Lactam antibiotics are the most important and widely used antibacterial agents across the world. However, the widespread dissemination of β-lactamases among pathogenic bacteria limits the efficacy of β-lactam antibiotics. This has created a major public health crisis. The use of β-lactamase inhibitors has proven useful in restoring the activity of β-lactam antibiotics, yet, effective clinically approved inhibitors against class B metallo-β-lactamases are not available. L1, a class B3 enzyme expressed by Stenotrophomonas maltophilia, is a significant contributor to the β-lactam resistance displayed by this opportunistic pathogen. Structurally, L1 is a tetramer with two elongated loops, α3-β7 and β12-α5, present around the active site of each monomer. Residues in these two loops influence substrate/inhibitor binding. To study how the conformational changes of the elongated loops affect the active site in each monomer, enhanced sampling molecular dynamics simulations were performed, Markov State Models were built, and convolutional variational autoencoder-based deep learning was applied. The key identified residues (D150a, H151, P225, Y227, and R236) were mutated and the activity of the generated L1 variants was evaluated in cell-based experiments. The results demonstrate that there are extremely significant gating interactions between α3-β7 and β12-α5 loops. Taken together, the gating interactions with the conformational changes of the key residues play an important role in the structural remodeling of the active site. These observations offer insights into the potential for novel drug development exploiting these gating interactions.
Collapse
Affiliation(s)
- Zhuoran Zhao
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Xiayu Shen
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Shuang Chen
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Jing Gu
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Haun Wang
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
| | - Maria F Mojica
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of MedicineClevelandUnited States
- Louis Stokes Cleveland Department of Veterans Affairs Medical CenterClevelandUnited States
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES)ClevelandUnited States
| | - Moumita Samanta
- College of Computing, Georgia Institute of TechnologyAtlantaUnited States
| | - Debsindhu Bhowmik
- Computer Science and Engineering Division, Oak Ridge National LaboratoriesOak RidgeUnited States
| | - Alejandro J Vila
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES)ClevelandUnited States
- Laboratorio de Metaloproteínas, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR)RosarioArgentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de RosarioRosarioArgentina
| | - Robert A Bonomo
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of MedicineClevelandUnited States
- Louis Stokes Cleveland Department of Veterans Affairs Medical CenterClevelandUnited States
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES)ClevelandUnited States
- Departments of Medicine, Biochemistry, Pharmacology, and Proteomics and Bioinformatics, Case Western Reserve University School of MedicineClevelandUnited States
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College LondonLondonUnited Kingdom
- UCL Centre for Advanced Research Computing, University College LondonLondonUnited Kingdom
| |
Collapse
|
2
|
Kinetic and Structural Characterization of the First B3 Metallo-β-Lactamase with an Active Site Glutamic Acid. Antimicrob Agents Chemother 2021; 65:e0093621. [PMID: 34310207 DOI: 10.1128/aac.00936-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structural diversity in metallo-β-lactamases (MBLs), especially in the vicinity of the active site, has been a major hurdle in the development of clinically effective inhibitors. Representatives from three variants of the B3 MBL subclass, containing either the canonical HHH/DHH active site motif (present in the majority of MBLs in this subclass) or the QHH/DHH (B3-Q) or HRH/DQK (B3-RQK) variations were reported previously. Here, we describe the structure and kinetic properties of the first example (SIE-1) of a fourth variant containing the EHH/DHH active site motif (B3-E). SIE-1 was identified in the hexachlorocyclohexane-degrading bacterium Sphingobium indicum, and kinetic analyses demonstrate that although it is active against a wide range of antibiotics its efficiency is lower than that of other B3 MBLs, but with improved efficiency towards cephalosporins relative to other β-lactam substrates. The overall fold of SIE-1 is characteristic of the MBLs; the notable variation is observed in the Zn1 site due to the replacement of the canonical His116 by a glutamate. The unusual preference of SIE-1 for cephalosporins and its occurrence in a widespread environmental organism suggests scope for increased MBL-mediated β-lactam resistance. It is thus relevant to include SIE-1 into MBL inhibitor design studies to widen the therapeutic scope of much needed anti-resistance drugs.
Collapse
|
3
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
4
|
Lucic A, Hinchliffe P, Malla TR, Tooke CL, Brem J, Calvopiña K, Lohans CT, Rabe P, McDonough MA, Armistead T, Orville AM, Spencer J, Schofield CJ. Faropenem reacts with serine and metallo-β-lactamases to give multiple products. Eur J Med Chem 2021; 215:113257. [PMID: 33618159 PMCID: PMC7614720 DOI: 10.1016/j.ejmech.2021.113257] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/23/2021] [Accepted: 01/30/2021] [Indexed: 11/30/2022]
Abstract
Penems have demonstrated potential as antibacterials and β-lactamase inhibitors; however, their clinical use has been limited, especially in comparison with the structurally related carbapenems. Faropenem is an orally active antibiotic with a C-2 tetrahydrofuran (THF) ring, which is resistant to hydrolysis by some β-lactamases. We report studies on the reactions of faropenem with carbapenem-hydrolysing β-lactamases, focusing on the class A serine β-lactamase KPC-2 and the metallo β-lactamases (MBLs) VIM-2 (a subclass B1 MBL) and L1 (a B3 MBL). Kinetic studies show that faropenem is a substrate for all three β-lactamases, though it is less efficiently hydrolysed by KPC-2. Crystallographic analyses on faropenem-derived complexes reveal opening of the β-lactam ring with formation of an imine with KPC-2, VIM-2, and L1. In the cases of the KPC-2 and VIM-2 structures, the THF ring is opened to give an alkene, but with L1 the THF ring remains intact. Solution state studies, employing NMR, were performed on L1, KPC-2, VIM-2, VIM-1, NDM-1, OXA-23, OXA-10, and OXA-48. The solution results reveal, in all cases, formation of imine products in which the THF ring is opened; formation of a THF ring-closed imine product was only observed with VIM-1 and VIM-2. An enamine product with a closed THF ring was also observed in all cases, at varying levels. Combined with previous reports, the results exemplify the potential for different outcomes in the reactions of penems with MBLs and SBLs and imply further structure-activity relationship studies are worthwhile to optimise the interactions of penems with β-lactamases. They also exemplify how crystal structures of β-lactamase substrate/inhibitor complexes do not always reflect reaction outcomes in solution.
Collapse
Affiliation(s)
- Anka Lucic
- Chemistry Research Laboratory, The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Philip Hinchliffe
- Cellular and Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Tika R Malla
- Chemistry Research Laboratory, The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Catherine L Tooke
- Cellular and Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Jürgen Brem
- Chemistry Research Laboratory, The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Karina Calvopiña
- Chemistry Research Laboratory, The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | | | - Patrick Rabe
- Chemistry Research Laboratory, The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Michael A McDonough
- Chemistry Research Laboratory, The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Timothy Armistead
- Cellular and Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Allen M Orville
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom.
| | - James Spencer
- Cellular and Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom.
| | - Christopher J Schofield
- Chemistry Research Laboratory, The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom.
| |
Collapse
|
5
|
Palacios AR, Rossi MA, Mahler GS, Vila AJ. Metallo-β-Lactamase Inhibitors Inspired on Snapshots from the Catalytic Mechanism. Biomolecules 2020; 10:E854. [PMID: 32503337 PMCID: PMC7356002 DOI: 10.3390/biom10060854] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
β-Lactam antibiotics are the most widely prescribed antibacterial drugs due to their low toxicity and broad spectrum. Their action is counteracted by different resistance mechanisms developed by bacteria. Among them, the most common strategy is the expression of β-lactamases, enzymes that hydrolyze the amide bond present in all β-lactam compounds. There are several inhibitors against serine-β-lactamases (SBLs). Metallo-β-lactamases (MBLs) are Zn(II)-dependent enzymes able to hydrolyze most β-lactam antibiotics, and no clinically useful inhibitors against them have yet been approved. Despite their large structural diversity, MBLs have a common catalytic mechanism with similar reaction species. Here, we describe a number of MBL inhibitors that mimic different species formed during the hydrolysis process: substrate, transition state, intermediate, or product. Recent advances in the development of boron-based and thiol-based inhibitors are discussed in the light of the mechanism of MBLs. We also discuss the use of chelators as a possible strategy, since Zn(II) ions are essential for substrate binding and catalysis.
Collapse
Affiliation(s)
- Antonela R. Palacios
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina; (A.R.P.); (M.-A.-R.)
| | - María-Agustina Rossi
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina; (A.R.P.); (M.-A.-R.)
| | - Graciela S. Mahler
- Laboratorio de Química Farmacéutica, Facultad de Química, Universidad de la Republica (UdelaR), Montevideo 11800, Uruguay;
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina; (A.R.P.); (M.-A.-R.)
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| |
Collapse
|
6
|
Mu X, Xu D. QM/MM investigation of substrate binding of subclass B3 metallo-β-lactamase SMB-1 from Serratia marcescents: insights into catalytic mechanism. J Mol Model 2020; 26:71. [PMID: 32146530 DOI: 10.1007/s00894-020-4330-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 02/23/2020] [Indexed: 11/25/2022]
Abstract
Metallo-β-lactamases (MβLs) can hydrolyze and deactivate lactam-containing antibiotics, which are the major mechanism to cause drug resistance in the treatment of bacterial infections. This has become a global concern due to the lack of clinically approved inhibitors so far. SMB-1 from Serratia marcescents is a novel B3 subclass MβL, which could inactivate nearly all β-lactam-containing antibiotics, e.g., cephalosporins and carbapenems. It represents a new round of worrisome bacterial resistance. In this work, the Michaelis model of SMB-1 in complex with ampicillin was simulated using combined quantum mechanical and molecular mechanical method. Similar with other dizinc MβLs, a Zn-bridged hydroxide ion was simulated as the nucleophile for the hydrolysis reaction assisted by D120. The protonation of D120 could lead to the loss of Oδ2-Zn2 coordination bond, whereas the C3 carboxylate group moves down to become a new ligand to Zn2. The initial β-lactam ring-opening reaction leads to a conserved nitrogen anionic intermediate, which forms a new ligation between the resulted nitrogen anion and Zn2. The corresponding reaction free energy barrier for the first step of lactam ring-opening reaction was calculated to be 19.2 kcal/mol. During the reaction, Q157 serves as the putative "oxyanion hole" rather than Zn1 in L1 enzyme, which was confirmed via the site-directed mutagenesis simulation of Q157A. Our theoretical studies showed some insights into the substrate binding and catalytic mechanism of the SMB-1 metallo-β-lactamase.
Collapse
Affiliation(s)
- Xia Mu
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Dingguo Xu
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China. .,Research Center for Material Genome Engineering, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
| |
Collapse
|
7
|
A general reaction mechanism for carbapenem hydrolysis by mononuclear and binuclear metallo-β-lactamases. Nat Commun 2017; 8:538. [PMID: 28912448 PMCID: PMC5599593 DOI: 10.1038/s41467-017-00601-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/12/2017] [Indexed: 12/16/2022] Open
Abstract
Carbapenem-resistant Enterobacteriaceae threaten human health, since carbapenems are last resort drugs for infections by such organisms. Metallo-β-lactamases (MβLs) are the main mechanism of resistance against carbapenems. Clinically approved inhibitors of MBLs are currently unavailable as design has been limited by the incomplete knowledge of their mechanism. Here, we report a biochemical and biophysical study of carbapenem hydrolysis by the B1 enzymes NDM-1 and BcII in the bi-Zn(II) form, the mono-Zn(II) B2 Sfh-I and the mono-Zn(II) B3 GOB-18. These MβLs hydrolyse carbapenems via a similar mechanism, with accumulation of the same anionic intermediates. We characterize the Michaelis complex formed by mono-Zn(II) enzymes, and we identify all intermediate species, enabling us to propose a chemical mechanism for mono and binuclear MβLs. This common mechanism open avenues for rationally designed inhibitors of all MβLs, notwithstanding the profound differences between these enzymes’ active site structure, β-lactam specificity and metal content. Carbapenem-resistant bacteria pose a major health threat by expressing metallo-β-lactamases (MβLs), enzymes able to hydrolyse these life-saving drugs. Here the authors use biophysical and computational methods and show that different MβLs share the same reaction mechanism, suggesting new strategies for drug design.
Collapse
|
8
|
Selleck C, Clayton D, Gahan LR, Mitić N, McGeary RP, Pedroso MM, Guddat LW, Schenk G. Visualization of the Reaction Trajectory and Transition State in a Hydrolytic Reaction Catalyzed by a Metalloenzyme. Chemistry 2017; 23:4778-4781. [DOI: 10.1002/chem.201700866] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Christopher Selleck
- School of Chemistry and Molecular Biosciences The University of Queensland, St. Lucia Queensland 4072 Australia
| | - Daniel Clayton
- School of Chemistry and Molecular Biosciences The University of Queensland, St. Lucia Queensland 4072 Australia
| | - Lawrence R. Gahan
- School of Chemistry and Molecular Biosciences The University of Queensland, St. Lucia Queensland 4072 Australia
| | - Nataša Mitić
- Department of Chemistry Maynooth University, Maynooth, Co. Kildare Ireland
| | - Ross P. McGeary
- School of Chemistry and Molecular Biosciences The University of Queensland, St. Lucia Queensland 4072 Australia
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences The University of Queensland, St. Lucia Queensland 4072 Australia
| | - Luke W. Guddat
- School of Chemistry and Molecular Biosciences The University of Queensland, St. Lucia Queensland 4072 Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences The University of Queensland, St. Lucia Queensland 4072 Australia
| |
Collapse
|
9
|
Möhler JS, Kolmar T, Synnatschke K, Hergert M, Wilson LA, Ramu S, Elliott AG, Blaskovich MAT, Sidjabat HE, Paterson DL, Schenk G, Cooper MA, Ziora ZM. Enhancement of antibiotic-activity through complexation with metal ions - Combined ITC, NMR, enzymatic and biological studies. J Inorg Biochem 2016; 167:134-141. [PMID: 27984786 DOI: 10.1016/j.jinorgbio.2016.11.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/17/2016] [Accepted: 11/22/2016] [Indexed: 02/01/2023]
Abstract
Alternative solutions need to be developed to overcome the growing problem of multi-drug resistant bacteria. This study explored the possibility of creating complexes of antibiotics with metal ions, thereby increasing their activity. Analytical techniques such as isothermal titration calorimetry and nuclear magnetic resonance were used to examine the structure and interactions between Cu(II), Ag(I) or Zn(II) and β-lactam antibiotics. The metal-β-lactam complexes were also tested for antimicrobial activity, by micro-broth dilution and disk diffusion methods, showing a synergistic increase in the activity of the drugs, and enzymatic inhibition assays confirming inhibition of β-lactamases responsible for resistance. The metal-antibiotic complex concept was proven to be successful with the activity of the drugs enhanced against β-lactamase-producing bacteria. The highest synergistic effects were observed for complexes formed with Ag(I).
Collapse
Affiliation(s)
- Jasper S Möhler
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia 4072, Australia
| | - Theresa Kolmar
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia 4072, Australia
| | - Kevin Synnatschke
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia 4072, Australia
| | - Marcel Hergert
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia 4072, Australia
| | - Liam A Wilson
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia 4072, Australia
| | - Soumya Ramu
- The University of Queensland, Institute for Molecular Bioscience, St Lucia 4072, Australia
| | - Alysha G Elliott
- The University of Queensland, Institute for Molecular Bioscience, St Lucia 4072, Australia
| | - Mark A T Blaskovich
- The University of Queensland, Institute for Molecular Bioscience, St Lucia 4072, Australia
| | - Hanna E Sidjabat
- The University of Queensland, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, Queensland 4029, Australia
| | - David L Paterson
- The University of Queensland, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, Queensland 4029, Australia
| | - Gerhard Schenk
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia 4072, Australia
| | - Matthew A Cooper
- The University of Queensland, Institute for Molecular Bioscience, St Lucia 4072, Australia
| | - Zyta M Ziora
- The University of Queensland, Institute for Molecular Bioscience, St Lucia 4072, Australia.
| |
Collapse
|
10
|
Selleck C, Larrabee JA, Harmer J, Guddat LW, Mitić N, Helweh W, Ollis DL, Craig WR, Tierney DL, Monteiro Pedroso M, Schenk G. AIM-1: An Antibiotic-Degrading Metallohydrolase That Displays Mechanistic Flexibility. Chemistry 2016; 22:17704-17714. [DOI: 10.1002/chem.201602762] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Christopher Selleck
- School of Chemistry and Molecular Biosciences; The University of Queensland; St. Lucia Queensland 4072 Australia
| | - James A. Larrabee
- Department of Chemistry and Biochemistry; Middlebury College; Middlebury Vermont 05753 USA
| | - Jeffrey Harmer
- Centre for Advanced Imaging; The University of Queensland; St. Lucia Queensland 4072 Australia
| | - Luke W. Guddat
- School of Chemistry and Molecular Biosciences; The University of Queensland; St. Lucia Queensland 4072 Australia
| | - Nataša Mitić
- Department of Chemistry; Maynooth University; Maynooth, Co. Kildare Ireland
| | - Waleed Helweh
- Department of Chemistry and Biochemistry; Middlebury College; Middlebury Vermont 05753 USA
| | - David L. Ollis
- Research School of Chemistry; Australian National University of Canberra; ACT 0200 Australia
| | - Whitney R. Craig
- Department of Chemistry and Biochemistry; Miami University, Oxford; Ohio 45056 USA
| | - David L. Tierney
- Department of Chemistry and Biochemistry; Miami University, Oxford; Ohio 45056 USA
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences; The University of Queensland; St. Lucia Queensland 4072 Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences; The University of Queensland; St. Lucia Queensland 4072 Australia
| |
Collapse
|
11
|
Salimraj R, Zhang L, Hinchliffe P, Wellington EMH, Brem J, Schofield CJ, Gaze WH, Spencer J. Structural and Biochemical Characterization of Rm3, a Subclass B3 Metallo-β-Lactamase Identified from a Functional Metagenomic Study. Antimicrob Agents Chemother 2016; 60:5828-40. [PMID: 27431213 PMCID: PMC5038237 DOI: 10.1128/aac.00750-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 07/08/2016] [Indexed: 11/20/2022] Open
Abstract
β-Lactamase production increasingly threatens the effectiveness of β-lactams, which remain a mainstay of antimicrobial chemotherapy. New activities emerge through both mutation of previously known β-lactamases and mobilization from environmental reservoirs. The spread of metallo-β-lactamases (MBLs) represents a particular challenge because of their typically broad-spectrum activities encompassing carbapenems, in addition to other β-lactam classes. Increasingly, genomic and metagenomic studies have revealed the distribution of putative MBLs in the environment, but in most cases their activity against clinically relevant β-lactams and, hence, the extent to which they can be considered a resistance reservoir remain uncharacterized. Here we characterize the product of one such gene, blaRm3, identified through functional metagenomic sampling of an environment with high levels of biocide exposure. blaRm3 encodes a subclass B3 MBL that, when expressed in a recombinant Escherichia coli strain, is exported to the bacterial periplasm and hydrolyzes clinically used penicillins, cephalosporins, and carbapenems with an efficiency limited by high Km values. An Rm3 crystal structure reveals the MBL superfamily αβ/βα fold, which more closely resembles that in mobilized B3 MBLs (AIM-1 and SMB-1) than other chromosomal enzymes (L1 or FEZ-1). A binuclear zinc site sits in a deep channel that is in part defined by a relatively extended N terminus. Structural comparisons suggest that the steric constraints imposed by the N terminus may limit its affinity for β-lactams. Sequence comparisons identify Rm3-like MBLs in numerous other environmental samples and species. Our data suggest that Rm3-like enzymes represent a distinct group of B3 MBLs with a wide distribution and can be considered an environmental reservoir of determinants of β-lactam resistance.
Collapse
Affiliation(s)
- Ramya Salimraj
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Lihong Zhang
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | | | - Jürgen Brem
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | | | - William H Gaze
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
12
|
Cahill ST, Tarhonskaya H, Rydzik AM, Flashman E, McDonough MA, Schofield CJ, Brem J. Use of ferrous iron by metallo-β-lactamases. J Inorg Biochem 2016; 163:185-193. [PMID: 27498591 PMCID: PMC5108564 DOI: 10.1016/j.jinorgbio.2016.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/12/2016] [Accepted: 07/25/2016] [Indexed: 01/01/2023]
Abstract
Metallo-β-lactamases (MBLs) catalyse the hydrolysis of almost all β-lactam antibacterials including the latest generation carbapenems and are a growing worldwide clinical problem. It is proposed that MBLs employ one or two zinc ion cofactors in vivo. Isolated MBLs are reported to use transition metal ions other than zinc, including copper, cadmium and manganese, with iron ions being a notable exception. We report kinetic and biophysical studies with the di-iron(II)-substituted metallo-β-lactamase II from Bacillus cereus (di-Fe(II) BcII) and the clinically relevant B1 subclass Verona integron-encoded metallo-β-lactamase 2 (di-Fe(II) VIM-2). The results reveal that MBLs can employ ferrous iron in catalysis, but with altered kinetic and inhibition profiles compared to the zinc enzymes. A crystal structure of di-Fe(II) BcII reveals only small overall changes in the active site compared to the di-Zn(II) enzyme including retention of the di-metal bridging water; however, the positions of the metal ions are altered in the di-Fe(II) compared to the di-Zn(II) structure. Stopped-flow analyses reveal that the mechanism of nitrocefin hydrolysis by both di-Fe(II) BcII and di-Fe(II) VIM-2 is altered compared to the di-Zn(II) enzymes. Notably, given that the MBLs are the subject of current medicinal chemistry efforts, the results raise the possibility the Fe(II)-substituted MBLs may be of clinical relevance under conditions of low zinc availability, and reveal potential variation in inhibitor activity against the differently metallated MBLs.
Collapse
Affiliation(s)
| | | | - Anna M Rydzik
- Chemistry Research Laboratory, Oxford, United Kingdom
| | | | | | | | - Jürgen Brem
- Chemistry Research Laboratory, Oxford, United Kingdom.
| |
Collapse
|
13
|
Pedroso MM, Larrabee JA, Ely F, Gwee SE, Mitić N, Ollis DL, Gahan LR, Schenk G. Ca(II) Binding Regulates and Dominates the Reactivity of a Transition-Metal-Ion-Dependent Diesterase from Mycobacterium tuberculosis. Chemistry 2015; 22:999-1009. [PMID: 26662456 DOI: 10.1002/chem.201504001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Indexed: 11/07/2022]
Abstract
The diesterase Rv0805 from Mycobacterium tuberculosis is a dinuclear metallohydrolase that plays an important role in signal transduction by controlling the intracellular levels of cyclic nucleotides. As Rv0805 is essential for mycobacterial growth it is a promising new target for the development of chemotherapeutics to treat tuberculosis. The in vivo metal-ion composition of Rv0805 is subject to debate. Here, we demonstrate that the active site accommodates two divalent transition metal ions with binding affinities ranging from approximately 50 nm for Mn(II) to about 600 nm for Zn(II) . In contrast, the enzyme GpdQ from Enterobacter aerogenes, despite having a coordination sphere identical to that of Rv0805, binds only one metal ion in the absence of substrate, thus demonstrating the significance of the outer sphere to modulate metal-ion binding and enzymatic reactivity. Ca(II) also binds tightly to Rv0805 (Kd ≈40 nm), but kinetic, calorimetric, and spectroscopic data indicate that two Ca(II) ions bind at a site different from the dinuclear transition-metal-ion binding site. Ca(II) acts as an activator of the enzymatic activity but is able to promote the hydrolysis of substrates even in the absence of transition-metal ions, thus providing an effective strategy for the regulation of the enzymatic activity.
Collapse
Affiliation(s)
- Marcelo M Pedroso
- School of Chemistry and Molecular BioSciences, The University of Queensland, St. Lucia, QLD 4072, Australia), Fax
| | - James A Larrabee
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT 05753, USA
| | - Fernanda Ely
- School of Chemistry and Molecular BioSciences, The University of Queensland, St. Lucia, QLD 4072, Australia), Fax
| | - Shuhui E Gwee
- School of Chemistry and Molecular BioSciences, The University of Queensland, St. Lucia, QLD 4072, Australia), Fax
| | - Nataša Mitić
- Department of Chemistry, National University of Ireland-Maynooth, Maynooth, Co. Kildare, Ireland
| | - David L Ollis
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Lawrence R Gahan
- School of Chemistry and Molecular BioSciences, The University of Queensland, St. Lucia, QLD 4072, Australia), Fax
| | - Gerhard Schenk
- School of Chemistry and Molecular BioSciences, The University of Queensland, St. Lucia, QLD 4072, Australia), Fax.
| |
Collapse
|
14
|
Meini MR, Llarrull LI, Vila AJ. Overcoming differences: The catalytic mechanism of metallo-β-lactamases. FEBS Lett 2015; 589:3419-32. [PMID: 26297824 DOI: 10.1016/j.febslet.2015.08.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/27/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022]
Abstract
Metallo-β-lactamases are the latest resistance mechanism of pathogenic and opportunistic bacteria against carbapenems, considered as last resort drugs. The worldwide spread of genes coding for these enzymes, together with the lack of a clinically useful inhibitor, have raised a sign of alarm. Inhibitor design has been mostly impeded by the structural diversity of these enzymes. Here we provide a critical review of mechanistic studies of the three known subclasses of metallo-β-lactamases, analyzed at the light of structural and mutagenesis investigations. We propose that these enzymes present a modular structure in their active sites that can be dissected into two halves: one providing the attacking nucleophile, and the second one stabilizing a negatively charged reaction intermediate. These are common mechanistic elements in all metallo-β-lactamases. Nucleophile activation does not necessarily requires a Zn(II) ion, but a Zn(II) center is essential for stabilization of the anionic intermediate. Design of a common inhibitor could be therefore approached based in these convergent mechanistic features despite the structural differences.
Collapse
Affiliation(s)
- María-Rocío Meini
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, 200 Rosario, Argentina
| | - Leticia I Llarrull
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, 200 Rosario, Argentina; Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, 2000 Rosario, Argentina.
| | - Alejandro J Vila
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, 200 Rosario, Argentina; Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, 2000 Rosario, Argentina.
| |
Collapse
|
15
|
Selvi A, Das D, Das N. Potentiality of yeast Candida sp. SMN04 for degradation of cefdinir, a cephalosporin antibiotic: kinetics, enzyme analysis and biodegradation pathway. ENVIRONMENTAL TECHNOLOGY 2015; 36:3112-3124. [PMID: 26000889 DOI: 10.1080/09593330.2015.1054318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
A new yeast strain isolated from the pharmaceutical wastewater was capable of utilizing cefdinir as a sole carbon source for their growth in mineral medium. The yeast was identified and named as Candida sp. SMN04 based on morphology and 18S-ITS-D1/D2/D3 rRNA sequence analysis. The interaction between factors pH (3.0-9.0), inoculum dosage (1-7%), time (1-11 day) and cefdinir concentration (50-450 mg/L) was studied using a Box-Behnken design. The factors were studied as a result of their effect on cell dry weight (R1; g/L), extended spectrum β-lactamase (ESBL) assay (R2; mm), P450 activity (R3; U/mL) and degradation (R4; %). Maximum values of R1, R2, R3 and R4 were obtained at central values of all the parameters. The isolated yeast strain efficiently degraded 84% of 250 mg L⁻¹ of cefdinir within 6 days with a half-life of 2.97 days and degradation rate constant of 0.2335 per day. Pseudo-first-order model efficiently described the process. Among the various enzymes tested, the order of activity at the end of Day 4 was noted to be: cytochrome P450 (1.76 ± 0.03) > NADPH reductase (1.51 ± 0.20) > manganese peroxidase and amylase (0.66 ± 0.15; 0.66 ± 0.70). Intermediates were successfully characterized by liquid chromatography-mass spectrometry. The opening of the β-lactam ring involving ESBL activity was considered as one of the major steps in the cefdinir degradation process. Fourier transform-infrared spectroscopy analysis showed the absence of spectral vibrations between 1766 and 1519 cm⁻¹ confirming the complete removal of lactam ring during cefdinir degradation. The results of the present study are promising for the use of isolated yeast Candida sp. SMN04 as a potential bioremediation agent.
Collapse
Affiliation(s)
- A Selvi
- a School of Bio Sciences and Technology , VIT University , Vellore 632014 , Tamil Nadu , India
| | - Devlina Das
- a School of Bio Sciences and Technology , VIT University , Vellore 632014 , Tamil Nadu , India
| | - Nilanjana Das
- a School of Bio Sciences and Technology , VIT University , Vellore 632014 , Tamil Nadu , India
| |
Collapse
|
16
|
Mojica MF, Mahler SG, Bethel CR, Taracila MA, Kosmopoulou M, Papp-Wallace KM, Llarrull LI, Wilson BM, Marshall SH, Wallace CJ, Villegas MV, Harris ME, Vila AJ, Spencer J, Bonomo RA. Exploring the Role of Residue 228 in Substrate and Inhibitor Recognition by VIM Metallo-β-lactamases. Biochemistry 2015; 54:3183-96. [PMID: 25915520 DOI: 10.1021/acs.biochem.5b00106] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
β-Lactamase inhibitors (BLIs) restore the efficacy of otherwise obsolete β-lactams. However, commercially available BLIs are not effective against metallo-β-lactamases (MBLs), which continue to be disseminated globally. One group of the most clinically important MBLs is the VIM family. The discovery of VIM-24, a natural variant of VIM-2, possessing an R228L substitution and a novel phenotype, compelled us to explore the role of this position and its effects on substrate specificity. We employed mutagenesis, biochemical and biophysical assays, and crystallography. VIM-24 (R228L) confers enhanced resistance to cephems and increases the rate of turnover compared to that of VIM-2 (kcat/KM increased by 6- and 10-fold for ceftazidime and cefepime, respectively). Likely the R → L substitution relieves steric clashes and accommodates the C3N-methyl pyrrolidine group of cephems. Four novel bisthiazolidine (BTZ) inhibitors were next synthesized and tested against these MBLs. These inhibitors inactivated VIM-2 and VIM-24 equally well (Ki* values of 40-640 nM) through a two-step process in which an initial enzyme (E)-inhibitor (I) complex (EI) undergoes a conformational transition to a more stable species, E*I. As both VIM-2 and VIM-24 were inhibited in a similar manner, the crystal structure of a VIM-2-BTZ complex was determined at 1.25 Å and revealed interactions of the inhibitor thiol with the VIM Zn center. Most importantly, BTZs also restored the activity of imipenem against Klebsiella pneumoniae and Pseudomonas aeruginosa in whole cell assays producing VIM-24 and VIM-2, respectively. Our results suggest a role for position 228 in defining the substrate specificity of VIM MBLs and show that BTZ inhibitors are not affected by the R228L substitution.
Collapse
Affiliation(s)
- Maria F Mojica
- ∥Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - S Graciela Mahler
- ⊥Laboratorio de Química Farmacéutica, Universidad de la República, Montevideo, Uruguay
| | - Christopher R Bethel
- ∥Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Magdalena A Taracila
- ∥Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Magda Kosmopoulou
- @School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Krisztina M Papp-Wallace
- ∥Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Leticia I Llarrull
- #Instituto de Biología Molecular y Celular de Rosario (IBR), Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Rosario, Argentina
| | - Brigid M Wilson
- ∥Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Steven H Marshall
- ∥Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Christopher J Wallace
- ∥Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Maria V Villegas
- ∇Centro Internacional de Entrenamiento e Investigaciones Médicas, CIDEIM, Cali, Colombia
| | | | - Alejandro J Vila
- #Instituto de Biología Molecular y Celular de Rosario (IBR), Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Rosario, Argentina
| | - James Spencer
- @School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Robert A Bonomo
- ∥Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| |
Collapse
|
17
|
Affiliation(s)
- Ravi Tripathi
- Department
of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Nisanth N. Nair
- Department
of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
18
|
Targeting metallo-carbapenemases via modulation of electronic properties of cephalosporins. Biochem J 2015; 464:271-9. [PMID: 25220027 DOI: 10.1042/bj20140364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The global proliferation of metallo-carbapenemase-producing Enterobacteriaceae has created an unmet need for inhibitors of these enzymes. The rational design of metallo-carbapenemase inhibitors requires detailed knowledge of their catalytic mechanisms. Nine cephalosporins, structurally identical except for the systematic substitution of electron-donating and withdrawing groups in the para position of the styrylbenzene ring, were synthesized and utilized to probe the catalytic mechanism of New Delhi metallo-β-lactamase (NDM-1). Under steady-state conditions, K(m) values were all in the micromolar range (1.5-8.1 μM), whereas k(cat) values varied widely (17-220 s(-1)). There were large solvent deuterium isotope effects for all substrates under saturating conditions, suggesting a proton transfer is involved in the rate-limiting step. Pre-steady-state UV-visible scans demonstrated the formation of short-lived intermediates for all compounds. Hammett plots yielded reaction constants (ρ) of -0.34 ± 0.02 and -1.15 ± 0.08 for intermediate formation and breakdown, respectively. Temperature-dependence experiments yielded ΔG(‡) values that were consistent with the Hammett results. These results establish the commonality of the formation of an azanide intermediate in the NDM-1-catalysed hydrolysis of a range cephalosporins with differing electronic properties. This intermediate is a promising target for judiciously designed β-lactam antibiotics that are poor NDM-1 substrates and inhibitors with enhanced active-site residence times.
Collapse
|
19
|
Mitić N, Miraula M, Selleck C, Hadler KS, Uribe E, Pedroso MM, Schenk G. Catalytic mechanisms of metallohydrolases containing two metal ions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 97:49-81. [PMID: 25458355 DOI: 10.1016/bs.apcsb.2014.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
At least one-third of enzymes contain metal ions as cofactors necessary for a diverse range of catalytic activities. In the case of polymetallic enzymes (i.e., two or more metal ions involved in catalysis), the presence of two (or more) closely spaced metal ions gives an additional advantage in terms of (i) charge delocalisation, (ii) smaller activation barriers, (iii) the ability to bind larger substrates, (iv) enhanced electrostatic activation of substrates, and (v) decreased transition-state energies. Among this group of proteins, enzymes that catalyze the hydrolysis of ester and amide bonds form a very prominent family, the metallohydrolases. These enzymes are involved in a multitude of biological functions, and an increasing number of them gain attention for translational research in medicine and biotechnology. Their functional versatility and catalytic proficiency are largely due to the presence of metal ions in their active sites. In this chapter, we thus discuss and compare the reaction mechanisms of several closely related enzymes with a view to highlighting the functional diversity bestowed upon them by their metal ion cofactors.
Collapse
Affiliation(s)
- Nataša Mitić
- Department of Chemistry, National University of Ireland, Maynooth, Maynooth, Co. Kildare, Ireland.
| | - Manfredi Miraula
- Department of Chemistry, National University of Ireland, Maynooth, Maynooth, Co. Kildare, Ireland; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Christopher Selleck
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Kieran S Hadler
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Elena Uribe
- Department of Biochemistry and Molecular Biology, University of Concepción, Concepción, Chile
| | - Marcelo M Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
20
|
Daumann LJ, Schenk G, Gahan LR. Metallo-β-lactamases and Their Biomimetic Complexes. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Yang H, Aitha M, Marts AR, Hetrick A, Bennett B, Crowder MW, Tierney DL. Spectroscopic and mechanistic studies of heterodimetallic forms of metallo-β-lactamase NDM-1. J Am Chem Soc 2014; 136:7273-85. [PMID: 24754678 PMCID: PMC4046764 DOI: 10.1021/ja410376s] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Indexed: 11/29/2022]
Abstract
In an effort to characterize the roles of each metal ion in metallo-β-lactamase NDM-1, heterodimetallic analogues (CoCo-, ZnCo-, and CoCd-) of the enzyme were generated and characterized. UV-vis, (1)H NMR, EPR, and EXAFS spectroscopies were used to confirm the fidelity of the metal substitutions, including the presence of a homogeneous, heterodimetallic cluster, with a single-atom bridge. This marks the first preparation of a metallo-β-lactamase selectively substituted with a paramagnetic metal ion, Co(II), either in the Zn1 (CoCd-NDM-1) or in the Zn2 site (ZnCo-NDM-1), as well as both (CoCo-NDM-1). We then used these metal-substituted forms of the enzyme to probe the reaction mechanism, using steady-state and stopped-flow kinetics, stopped-flow fluorescence, and rapid-freeze-quench EPR. Both metal sites show significant effects on the kinetic constants, and both paramagnetic variants (CoCd- and ZnCo-NDM-1) showed significant structural changes on reaction with substrate. These changes are discussed in terms of a minimal kinetic mechanism that incorporates all of the data.
Collapse
Affiliation(s)
- Hao Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Mahesh Aitha
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Amy R. Marts
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Alyssa Hetrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Brian Bennett
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Michael W. Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - David L. Tierney
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
22
|
Karsisiotis AI, Damblon CF, Roberts GCK. A variety of roles for versatile zinc in metallo-β-lactamases. Metallomics 2014; 6:1181-97. [DOI: 10.1039/c4mt00066h] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
β-Lactamases inactivate the important β-lactam antibiotics by catalysing the hydrolysis of the β-lactam ring, thus. One class of these enzymes, the metallo-β-lactamases, bind two zinc ions at the active site and these play important roles in the catalytic mechanism.
Collapse
Affiliation(s)
| | - C. F. Damblon
- Chimie Biologique Structurale
- Institut de Chimie
- Université de Liège
- 4000 Liège, Belgium
| | - G. C. K. Roberts
- The Henry Wellcome Laboratories of Structural Biology
- Department of Biochemistry
- University of Leicester
- Leicester LE1 9HN, UK
| |
Collapse
|
23
|
Yang KW, Feng L, Yang SK, Aitha M, LaCuran AE, Oelschlaeger P, Crowder MW. New β-phospholactam as a carbapenem transition state analog: Synthesis of a broad-spectrum inhibitor of metallo-β-lactamases. Bioorg Med Chem Lett 2013; 23:5855-9. [PMID: 24064498 PMCID: PMC3833270 DOI: 10.1016/j.bmcl.2013.08.098] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/21/2013] [Accepted: 08/26/2013] [Indexed: 10/26/2022]
Abstract
In an effort to test whether a transition state analog is an inhibitor of the metallo-β-lactamases, a phospholactam analog of carbapenem has been synthesized and characterized. The phospholactam 1 proved to be a weak, time-dependent inhibitor of IMP-1 (70%), CcrA (70%), L1 (70%), NDM-1 (53%), and Bla2 (94%) at an inhibitor concentration of 100μM. The phospholactam 1 activated ImiS and BcII at the same concentration. Docking studies were used to explain binding and to offer suggestions for modifications to the phospholactam scaffold to improve binding affinities.
Collapse
Affiliation(s)
- Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Lei Feng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Shao-Kang Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Mahesh Aitha
- Department of Chemistry and Biochemistry, Miami University, 160 Hughes Hall, Oxford, OH 45056, USA
| | - Alecander E. LaCuran
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 E. Second St., Pomona, CA 91766, USA
| | - Peter Oelschlaeger
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 E. Second St., Pomona, CA 91766, USA
| | - Michael W. Crowder
- Department of Chemistry and Biochemistry, Miami University, 160 Hughes Hall, Oxford, OH 45056, USA
| |
Collapse
|
24
|
Zheng M, Xu D. New Delhi Metallo-β-Lactamase I: Substrate Binding and Catalytic Mechanism. J Phys Chem B 2013; 117:11596-607. [DOI: 10.1021/jp4065906] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Min Zheng
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Dingguo Xu
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
25
|
Identification and characterization of an unusual metallo-β-lactamase from Serratia proteamaculans. J Biol Inorg Chem 2013; 18:855-63. [DOI: 10.1007/s00775-013-1035-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/14/2013] [Indexed: 11/25/2022]
|
26
|
Tiwari V, Moganty RR. Conformational stability of OXA-51 β-lactamase explains its role in carbapenem resistance of Acinetobacter baumannii. J Biomol Struct Dyn 2013; 32:1406-20. [PMID: 23879430 DOI: 10.1080/07391102.2013.819789] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Acinetobacter baumannii, an important nosocomial pathogen, is increasingly becoming resistant to antibiotics including recent β-lactam like imipenem. Production of different types of β-lactamases is one of the major resistance mechanisms which bacteria adapt. We recently reported the presence of a β-lactamase, OXA-51, in clinical strains of A. baumannii in ICUs of our hospital. This study is an attempt to understand the structure-function relationship of purified OXA-51 in carbapenem resistance in A. baumannii. The OXA-51 was cloned, expressed in E. coli Bl-21(DE3) and further purified. The in vitro enzyme activity of purified OXA-51 was confirmed by two independent techniques; in-gel assay and spectrophotometric method using nitrocefin. Further in vivo effect of OXA-51 was followed by transmission electron microscopy of bacterium. Biophysical and biochemical investigations of OXA-51 were done using LC-MS/MS, UV-Vis absorption, fluorescence, circular dichroic spectroscopy and isothermal calorimetry. Native OXA-51 was characterized as 30.6 kDa, pI 8.43 with no disulphide bonds and comprising of 30% α-helix, 27% β-sheet. Secondary structure of OXA-51 was significantly unchanged in broad pH (4-10) and temperature (30-60 °C) range with only local alterations at tertiary structural level. Interestingly, enzymatic activity up to 75% was retained under above conditions. Hydrolysis of imipenem by OXA-51 (k(m),1 μM) was found to be thermodynamically favourable. In the presence of imipenem, morphology of sensitive strain of A. baumannii was drastically changed, while OXA-51-transformed sensitive strain retained the stable coccobacillus shape, which demonstrates that imipenem is able to kill sensitive strain but is unable to do so in OXA-51-transformed strain. Hence the production of pH- and temperature-stable OXA-51 appears to be a major determinant in the resistance mechanisms adopted by A. baumannii in order to evade even the latest β-lactams, imipenem. It can be concluded from the study that OXA-51 plays a vital role in the survival of the pathogen under stress conditions and thus poses a major threat.
Collapse
Affiliation(s)
- Vishvanath Tiwari
- a Department of Biochemistry , All India Institute of Medical Sciences , Ansari Nagar, New Delhi 110029 , India
| | | |
Collapse
|
27
|
Daumann LJ, Larrabee JA, Comba P, Schenk G, Gahan LR. Dinuclear Cobalt(II) Complexes as Metallo-β-lactamase Mimics. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201300280] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Biapenem inactivation by B2 metallo β-lactamases: energy landscape of the hydrolysis reaction. PLoS One 2013; 8:e55136. [PMID: 23372827 PMCID: PMC3556986 DOI: 10.1371/journal.pone.0055136] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 12/18/2012] [Indexed: 11/26/2022] Open
Abstract
Background A general mechanism has been proposed for metallo β-lactamases (MβLs), in which deprotonation of a water molecule near the Zn ion(s) results in the formation of a hydroxide ion that attacks the carbonyl oxygen of the β-lactam ring. However, because of the absence of X-ray structures that show the exact position of the antibiotic in the reactant state (RS) it has been difficult to obtain a definitive validation of this mechanism. Methodology/Principal Findings We have employed a strategy to identify the RS, which does not rely on substrate docking and/or molecular dynamics. Starting from the X-ray structure of the enzyme:product complex (the product state, PS), a QM/MM scan was used to drive the reaction uphill from product back to reactant. Since in this process also the enzyme changes from PS to RS, we actually generate the enzyme:substrate complex from product and avoid the uncertainties associated with models of the reactant state. We used this strategy to study the reaction of biapenem hydrolysis by B2 MβL CphA. QM/MM simulations were carried out under 14 different ionization states of the active site, in order to generate potential energy surfaces (PESs) corresponding to a variety of possible reaction paths. Conclusions/Significance The calculations support a model for biapenem hydrolysis by CphA, in which the nucleophile that attacks the β-lactam ring is not the water molecule located in proximity of the active site Zn, but a second water molecule, hydrogen bonded to the first one, which is used up in the reaction, and thus is not visible in the X-ray structure of the enzyme:product complex.
Collapse
|
29
|
Abstract
β-Lactam antibiotics are the most commonly used antibacterial agents and growing resistance to these drugs is a concern. Metallo-β-lactamases are a diverse set of enzymes that catalyze the hydrolysis of a broad range of β-lactam drugs including carbapenems. This diversity is reflected in the observation that the enzyme mechanisms differ based on whether one or two zincs are bound in the active site that, in turn, is dependent on the subclass of β-lactamase. The dissemination of the genes encoding these enzymes among Gram-negative bacteria has made them an important cause of resistance. In addition, there are currently no clinically available inhibitors to block metallo-β-lactamase action. This review summarizes the numerous studies that have yielded insights into the structure, function, and mechanism of action of these enzymes.
Collapse
Affiliation(s)
- Timothy Palzkill
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
30
|
Genetic and biochemical characterization of an acquired subgroup B3 metallo-β-lactamase gene, blaAIM-1, and its unique genetic context in Pseudomonas aeruginosa from Australia. Antimicrob Agents Chemother 2012; 56:6154-9. [PMID: 22985886 DOI: 10.1128/aac.05654-11] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three clinical Pseudomonas aeruginosa isolates (WCH2677, WCH2813, and WCH2837) isolated from the Women's and Children's Hospital, Adelaide, Australia, produced a metallo-β-lactamase (MBL)-positive Etest result. All isolates were PCR negative for known MBL genes. A gene bank was created, and an MBL gene, designated bla(AIM-1), was cloned and fully characterized. The encoded enzyme, AIM-1, is a group B3 MBL that has the highest level of identity to THIN-B and L1. It is chromosomal and flanked by two copies (one intact and one truncated) of an ISCR element, ISCR15. Southern hybridization studies indicated the movement of both ISCR15 and bla(AIM-1) within the three different clinical isolates. AIM-1 hydrolyzes most β-lactams, with the exception of aztreonam and, to a lesser extent, ceftazidime; however, it possesses significantly higher k(cat) values for cefepime and carbapenems than most other MBLs. AIM-1 was the first mobile group B3 enzyme detected and signals further problems for already beleaguered antimicrobial regimes to treat serious P. aeruginosa and other Gram-negative infections.
Collapse
|
31
|
Shanthi J, Pazhanimurugan R, Gopikrishnan V, Balagurunathan R. Mechanism of drug resistance, characterization of plasmid-borne determinants and transformation study in P. aeruginosa from burn and ICU units-its susceptibility pattern. Burns 2012; 39:643-9. [PMID: 22980776 DOI: 10.1016/j.burns.2012.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 08/09/2012] [Accepted: 08/14/2012] [Indexed: 11/28/2022]
Abstract
The transfer of drug resistance between hospital pathogens has led to alarming increase of multidrug resistant strains imposing therapeutic challenges. These resistant isolates harbor various mechanisms to counteract the drugs administered and have been reported to deliver these factors to sensitive strains in hostile environment. The present study aimed to screen for multidrug resistant Pseudomonas aeruginosa strains for the production of extended-spectrum β-lactamases, metallo-β-lactamases, AmpC β-lactamase, drug efflux phenotypes and co-transfer the resistance for cephalosporin and other non-beta lactam antibiotics in CaCl2 treated drug sensitive E. coli strains. From the 87 samples processed about 23 isolates of P. aeruginosa were ESBL and MBL positive, 5 (20%) were found to be AmpC β-lactamase producers, efflux mechanism was observed in 8 isolates, 15 isolates had MIC of 16 μg/ml. A putative efflux mechanism was observed in 8 out of 23 isolates that showed decrease in the MIC of meropenem with reserpine. The plasmid profile was characterized for all the common isolates obtained from burn and ICU units. About 69.66% of E. coli recombinants scored positive for both beta lactam and non-beta lactam antibiotics is due to co transfer of resistant plasmid obtained from P. aeruginosa.
Collapse
Affiliation(s)
- J Shanthi
- Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | | | | | | |
Collapse
|
32
|
Gatti DL. Biapenem inactivation by B2 metallo β-lactamases: energy landscape of the post-hydrolysis reactions. PLoS One 2012; 7:e30079. [PMID: 22272276 PMCID: PMC3260057 DOI: 10.1371/journal.pone.0030079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 12/13/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The first line of defense by bacteria against β-lactam antibiotics is the expression of β-lactamases, which cleave the amide bond of the β-lactam ring. In the reaction of biapenem inactivation by B2 metallo β-lactamases (MβLs), after the β-lactam ring is opened, the carboxyl group generated by the hydrolytic process and the hydroxyethyl group (common to all carbapenems) rotate around the C5-C6 bond, assuming a new position that allows a proton transfer from the hydroxyethyl group to C2, and a nucleophilic attack on C3 by the oxygen atom of the same side-chain. This process leads to the formation of a bicyclic compound, as originally observed in the X-ray structure of the metallo β-lactamase CphA in complex with product. METHODOLOGY/PRINCIPAL FINDINGS QM/MM and metadynamics simulations of the post-hydrolysis steps in solution and in the enzyme reveal that while the rotation of the hydroxyethyl group can occur in solution or in the enzyme active site, formation of the bicyclic compound occurs primarily in solution, after which the final product binds back to the enzyme. The calculations also suggest that the rotation and cyclization steps can occur at a rate comparable to that observed experimentally for the enzymatic inactivation of biapenem only if the hydrolysis reaction leaves the N4 nitrogen of the β-lactam ring unprotonated. CONCLUSIONS/SIGNIFICANCE The calculations support the existence of a common mechanism (in which ionized N4 is the leaving group) for carbapenems hydrolysis in all MβLs, and suggest a possible revision of mechanisms for B2 MβLs in which the cleavage of the β-lactam ring is associated with or immediately followed by protonation of N4. The study also indicates that the bicyclic derivative of biapenem has significant affinity for B2 MβLs, and that it may be possible to obtain clinically effective inhibitors of these enzymes by modification of this lead compound.
Collapse
Affiliation(s)
- Domenico L Gatti
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America.
| |
Collapse
|
33
|
Analysis of the functional contributions of Asn233 in metallo-β-lactamase IMP-1. Antimicrob Agents Chemother 2011; 55:5696-702. [PMID: 21896903 DOI: 10.1128/aac.00340-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metallo-β-lactamases, such as IMP-1, are a major global health threat, as they provide for bacterial resistance to a wide range of β-lactam antibiotics, including carbapenems. Understanding the molecular details of the enzymatic process and the sequence requirements for function are essential aids in overcoming β-lactamase-mediated resistance. An asparagine residue is conserved at position 233 in approximately 67% of all metallo-β-lactamases. Despite its conservation, the molecular basis of Asn233 function is poorly understood and remains controversial. It has previously been shown that mutations at this site exhibit context-dependent sequence requirements in that the importance of a given amino acid depends on the antibiotic being tested. To provide a more thorough examination as to the function and sequence requirements at this position, a collection of IMP-1 mutants encoding each of the 19 possible amino acid substitutions was generated. The resistance levels toward four β-lactam antibiotics were measured for Escherichia coli containing each of these mutants. The sequence requirements at position 233 for wild-type levels of resistance toward two cephalosporins were the most relaxed, while there were more stringent sequence requirements for resistance to ampicillin or imipenem. Enzyme kinetic analysis and determinations of steady-state protein levels indicated that the effects of the substitutions on resistance are due to changes in the kinetic parameters of the enzyme. Taken together, the results indicate that substitutions at position 233 significantly alter the kinetic parameters of the enzyme, but most substituted enzymes are able to provide for a high level of resistance to a broad range of β-lactams.
Collapse
|
34
|
Three factors that modulate the activity of class D β-lactamases and interfere with the post-translational carboxylation of Lys70. Biochem J 2011; 432:495-504. [PMID: 21108605 DOI: 10.1042/bj20101122] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The activity of class D β-lactamases is dependent on Lys70 carboxylation in the active site. Structural, kinetic and affinity studies show that this post-translational modification can be affected by the presence of a poor substrate such as moxalactam but also by the V117T substitution. Val117 is a strictly conserved hydrophobic residue located in the active site. In addition, inhibition of class D β-lactamases by chloride ions is due to a competition between the side chain carboxylate of the modified Lys70 and chloride ions. Determination of the individual kinetic constants shows that the deacylation of the acyl-enzyme is the rate-limiting step for the wild-type OXA-10 β-lactamase.
Collapse
|
35
|
High-resolution crystal structure of the subclass B3 metallo-beta-lactamase BJP-1: rational basis for substrate specificity and interaction with sulfonamides. Antimicrob Agents Chemother 2010; 54:4343-51. [PMID: 20696874 DOI: 10.1128/aac.00409-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metallo-β-lactamases (MBLs) are important enzymatic factors in resistance to β-lactam antibiotics that show important structural and functional heterogeneity. BJP-1 is a subclass B3 MBL determinant produced by Bradyrhizobium japonicum that exhibits interesting properties. BJP-1, like CAU-1 of Caulobacter vibrioides, overall poorly recognizes β-lactam substrates and shows an unusual substrate profile compared to other MBLs. In order to understand the structural basis of these properties, the crystal structure of BJP-1 was obtained at 1.4-Å resolution. This revealed significant differences in the conformation and locations of the active-site loops, determining a rather narrow active site and the presence of a unique N-terminal helix bearing Phe-31, whose side chain binds in the active site and represents an obstacle for β-lactam substrate binding. In order to probe the potential of sulfonamides (known to inhibit various zinc-dependent enzymes) to bind in the active sites of MBLs, the structure of BJP-1 in complex with 4-nitrobenzenesulfonamide was also obtained (at 1.33-A resolution), thereby revealing the mode of interaction of these molecules in MBLs. Interestingly, sulfonamide binding resulted in the displacement of the side chain of Phe-31 from its hydrophobic binding pocket, where the benzene ring of the molecule is now found. These data further highlight the structural diversity shown by MBLs but also provide interesting insights in the structure-function relationships of these enzymes. More importantly, we provided the first structural observation of MBL interaction with sulfonamides, which might represent an interesting scaffold for the design of MBL inhibitors.
Collapse
|
36
|
The mechanisms of catalysis by metallo beta-lactamases. Bioinorg Chem Appl 2010:576297. [PMID: 18551183 PMCID: PMC2422870 DOI: 10.1155/2008/576297] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 01/29/2008] [Accepted: 02/26/2008] [Indexed: 01/03/2023] Open
Abstract
Class B β-lactamases or metallo-β-lactamases (MBLs) require zinc ions to catalyse the hydrolysis of β-lactam antibiotics such as penicillins, cephalosporins, carbapenems, and cephamycins. There are no clinically useful inhibitors against MBLs which are responsible for the resistance of some bacteria to antibiotics. There are two metal-ion binding sites that have different zinc ligands but the exact roles of the metal-ion remain controversial, and distinguishing between their relative importance is complex. The metal-ion can act as a Lewis acid by co-ordination to the β-lactam carbonyl oxygen to facilitate nucleophilic attack and stabilise the negative charge developed on this oxygen in the tetrahedral intermediate anion. The metal-ion also lowers the pKa of the directly co-ordinated water molecule so that the metal-bound hydroxide ion is a better nucleophile than water and is used to attack the β-lactam carbonyl carbon. An intrinsic property of binuclear metallo hydrolytic enzymes that depend on a metal-bound water both as the attacking nucleophile and as a ligand for the second metal-ion is that this water molecule, which is consumed during hydrolysis of the substrate, has to be replaced to maintain the catalytic cycle. With MBL this is reflected in some unusual kinetic profiles.
Collapse
|
37
|
Lisa MN, Hemmingsen L, Vila AJ. Catalytic role of the metal ion in the metallo-beta-lactamase GOB. J Biol Chem 2009; 285:4570-7. [PMID: 20007696 DOI: 10.1074/jbc.m109.063743] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metallo-beta-lactamases (MbetaLs) stand as one of the main mechanisms of bacterial resistance toward carbapenems. The rational design of an inhibitor for MbetaLs has been limited by an incomplete knowledge of their catalytic mechanism and by the structural diversity of their active sites. Here we show that the MbetaL GOB from Elizabethkingia meningoseptica is active as a monometallic enzyme by using different divalent transition metal ions as surrogates of the native Zn(II) ion. Of the metal derivatives in which Zn(II) is replaced, Co(II) and Cd(II) give rise to the most active enzymes and are shown to occupy the same binding site as the native ion. However, Zn(II) is the only metal ion capable of stabilizing an anionic intermediate that accumulates during nitrocefin hydrolysis, in which the C-N bond has already been cleaved. This finding demonstrates that the catalytic role of the metal ion in GOB is to stabilize the formation of this intermediate prior to nitrogen protonation. This role may be general to all MbetaLs, whereas nucleophile activation by a Zn(II) ion is not a conserved mechanistic feature.
Collapse
Affiliation(s)
- María-Natalia Lisa
- Departamento de Química Biológica and Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | | | | |
Collapse
|
38
|
Hawk MJ, Breece RM, Hajdin CE, Bender KM, Hu Z, Costello AL, Bennett B, Tierney DL, Crowder MW. Differential binding of Co(II) and Zn(II) to metallo-beta-lactamase Bla2 from Bacillus anthracis. J Am Chem Soc 2009; 131:10753-62. [PMID: 19588962 DOI: 10.1021/ja900296u] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In an effort to probe the structure, mechanism, and biochemical properties of metallo-beta-lactamase Bla2 from Bacillus anthracis, the enzyme was overexpressed, purified, and characterized. Metal analyses demonstrated that recombinant Bla2 tightly binds 1 equiv of Zn(II). Steady-state kinetic studies showed that mono-Zn(II) Bla2 (1Zn-Bla2) is active, while di-Zn(II) Bla2 (ZnZn-Bla2) was unstable. Catalytically, 1Zn-Bla2 behaves like the related enzymes CcrA and L1. In contrast, di-Co(II) Bla2 (CoCo-Bla2) is substantially more active than the mono-Co(II) analogue. Rapid kinetics and UV-vis, (1)H NMR, EPR, and EXAFS spectroscopic studies show that Co(II) binding to Bla2 is distributed, while EXAFS shows that Zn(II) binding is sequential. To our knowledge, this is the first documented example of a Zn enzyme that binds Co(II) and Zn(II) via distinct mechanisms, underscoring the need to demonstrate transferability when extrapolating results on Co(II)-substituted proteins to the native Zn(II)-containing forms.
Collapse
Affiliation(s)
- Megan J Hawk
- Department of Chemistry and Biochemistry, 160 Hughes Hall, Miami University, Oxford, Ohio 45056, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 2009; 53:5046-54. [PMID: 19770275 DOI: 10.1128/aac.00774-09] [Citation(s) in RCA: 1743] [Impact Index Per Article: 116.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A Swedish patient of Indian origin traveled to New Delhi, India, and acquired a urinary tract infection caused by a carbapenem-resistant Klebsiella pneumoniae strain that typed to the sequence type 14 complex. The isolate, Klebsiella pneumoniae 05-506, was shown to possess a metallo-beta-lactamase (MBL) but was negative for previously known MBL genes. Gene libraries and amplification of class 1 integrons revealed three resistance-conferring regions; the first contained bla(CMY-4) flanked by ISEcP1 and blc. The second region of 4.8 kb contained a complex class 1 integron with the gene cassettes arr-2, a new erythromycin esterase gene; ereC; aadA1; and cmlA7. An intact ISCR1 element was shown to be downstream from the qac/sul genes. The third region consisted of a new MBL gene, designated bla(NDM-1), flanked on one side by K. pneumoniae DNA and a truncated IS26 element on its other side. The last two regions lie adjacent to one another, and all three regions are found on a 180-kb region that is easily transferable to recipient strains and that confers resistance to all antibiotics except fluoroquinolones and colistin. NDM-1 shares very little identity with other MBLs, with the most similar MBLs being VIM-1/VIM-2, with which it has only 32.4% identity. As well as possessing unique residues near the active site, NDM-1 also has an additional insert between positions 162 and 166 not present in other MBLs. NDM-1 has a molecular mass of 28 kDa, is monomeric, and can hydrolyze all beta-lactams except aztreonam. Compared to VIM-2, NDM-1 displays tighter binding to most cephalosporins, in particular, cefuroxime, cefotaxime, and cephalothin (cefalotin), and also to the penicillins. NDM-1 does not bind to the carbapenems as tightly as IMP-1 or VIM-2 and turns over the carbapenems at a rate similar to that of VIM-2. In addition to K. pneumoniae 05-506, bla(NDM-1) was found on a 140-kb plasmid in an Escherichia coli strain isolated from the patient's feces, inferring the possibility of in vivo conjugation. The broad resistance carried on these plasmids is a further worrying development for India, which already has high levels of antibiotic resistance.
Collapse
|
40
|
Hadler KS, Mitić N, Ely F, Hanson GR, Gahan LR, Larrabee JA, Ollis DL, Schenk G. Structural Flexibility Enhances the Reactivity of the Bioremediator Glycerophosphodiesterase by Fine-Tuning Its Mechanism of Hydrolysis. J Am Chem Soc 2009; 131:11900-8. [DOI: 10.1021/ja903534f] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kieran S. Hadler
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia, Centre for Magnetic Resonance, The University of Queensland, St. Lucia, Queensland, 4072, Australia, Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753, and Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| | - Nataša Mitić
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia, Centre for Magnetic Resonance, The University of Queensland, St. Lucia, Queensland, 4072, Australia, Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753, and Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| | - Fernanda Ely
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia, Centre for Magnetic Resonance, The University of Queensland, St. Lucia, Queensland, 4072, Australia, Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753, and Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| | - Graeme R. Hanson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia, Centre for Magnetic Resonance, The University of Queensland, St. Lucia, Queensland, 4072, Australia, Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753, and Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| | - Lawrence R Gahan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia, Centre for Magnetic Resonance, The University of Queensland, St. Lucia, Queensland, 4072, Australia, Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753, and Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| | - James A. Larrabee
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia, Centre for Magnetic Resonance, The University of Queensland, St. Lucia, Queensland, 4072, Australia, Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753, and Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| | - David L. Ollis
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia, Centre for Magnetic Resonance, The University of Queensland, St. Lucia, Queensland, 4072, Australia, Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753, and Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia, Centre for Magnetic Resonance, The University of Queensland, St. Lucia, Queensland, 4072, Australia, Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753, and Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| |
Collapse
|
41
|
Tioni MF, Llarrull LI, Poeylaut-Palena AA, Martí MA, Saggu M, Periyannan GR, Mata EG, Bennett B, Murgida DH, Vila AJ. Trapping and characterization of a reaction intermediate in carbapenem hydrolysis by B. cereus metallo-beta-lactamase. J Am Chem Soc 2009; 130:15852-63. [PMID: 18980308 DOI: 10.1021/ja801169j] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metallo-beta-lactamases hydrolyze most beta-lactam antibiotics. The lack of a successful inhibitor for them is related to the previous failure to characterize a reaction intermediate with a clinically useful substrate. Stopped-flow experiments together with rapid freeze-quench EPR and Raman spectroscopies were used to characterize the reaction of Co(II)-BcII with imipenem. These studies show that Co(II)-BcII is able to hydrolyze imipenem in both the mono- and dinuclear forms. In contrast to the situation met for penicillin, the species that accumulates during turnover is an enzyme-intermediate adduct in which the beta-lactam bond has already been cleaved. This intermediate is a metal-bound anionic species with a novel resonant structure that is stabilized by the metal ion at the DCH or Zn2 site. This species has been characterized based on its spectroscopic features. This represents a novel, previously unforeseen intermediate that is related to the chemical nature of carbapenems, as confirmed by the finding of a similar intermediate for meropenem. Since carbapenems are the only substrates cleaved by B1, B2, and B3 lactamases, identification of this intermediate could be exploited as a first step toward the design of transition-state-based inhibitors for all three classes of metallo-beta-lactamases.
Collapse
Affiliation(s)
- Mariana F Tioni
- Instituto de Biologia Molecular y Celular de Rosario and Biophysics Section, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Llarrull LI, Tioni MF, Vila AJ. Metal Content and Localization during Turnover in B. cereus Metallo-β-lactamase. J Am Chem Soc 2008; 130:15842-51. [DOI: 10.1021/ja801168r] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Leticia I. Llarrull
- IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), and Biophysics Section, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Mariana F. Tioni
- IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), and Biophysics Section, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Alejandro J. Vila
- IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), and Biophysics Section, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| |
Collapse
|
43
|
Hu Z, Periyannan G, Bennett B, Crowder MW. Role of the Zn1 and Zn2 sites in metallo-beta-lactamase L1. J Am Chem Soc 2008; 130:14207-16. [PMID: 18831550 PMCID: PMC2678235 DOI: 10.1021/ja8035916] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In an effort to probe the role of the Zn(II) sites in metallo-beta-lactamase L1, mononuclear metal ion containing and heterobimetallic analogues of the enzyme were generated and characterized using kinetic and spectroscopic studies. Mononuclear Zn(II)-containing L1, which binds Zn(II) in the consensus Zn1 site, was shown to be slightly active; however, this enzyme did not stabilize a nitrocefin-derived reaction intermediate that had been previously detected. Mononuclear Co(II)- and Fe(III)-containing L1 were essentially inactive, and NMR and EPR studies suggest that these metal ions bind to the consensus Zn2 site in L1. Heterobimetallic analogues (ZnCo and ZnFe) analogues of L1 were generated, and stopped-flow kinetic studies revealed that these enzymes rapidly hydrolyze nitrocefin and that there are large amounts of the reaction intermediate formed during the reaction. The heterobimetallic analogues were reacted with nitrocefin, and the reactions were rapidly freeze quenched. EPR studies on these samples demonstrate that Co(II) is 5-coordinate in the resting state, proceeds through a 4-coordinate species during the reaction, and is 5-coordinate in the enzyme-product complex. These studies demonstrate that the metal ion in the Zn1 site is essential for catalysis in L1 and that the metal ion in the Zn2 site is crucial for stabilization of the nitrocefin-derived reaction intermediate.
Collapse
Affiliation(s)
- Zhenxin Hu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| | - Gopalraj Periyannan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
- Department of Biophysics and National Biomedical EPR Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Brian Bennett
- Department of Biophysics and National Biomedical EPR Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Michael W. Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| |
Collapse
|
44
|
Hu Z, Periyannan GR, Crowder MW. Folding strategy to prepare Co(II)-substituted metallo-beta-lactamase L1. Anal Biochem 2008; 378:177-83. [PMID: 18445468 PMCID: PMC2587373 DOI: 10.1016/j.ab.2008.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 04/01/2008] [Accepted: 04/03/2008] [Indexed: 11/24/2022]
Abstract
In an effort to overcome previous problems with the preparation of Co(II)-substituted metallo-beta-lactamase L1, two strategies were undertaken. Attempts to prepare Co(II)-substituted L1 using biological incorporation resulted in an enzyme that contained only 1 Eq of cobalt and exhibited no catalytic activity. Co(II)-substituted L1 could be prepared by refolding metal-free L1 in the presence of Co(II), and the resulting enzyme contained 1.8 Eq of cobalt, yielded a UV-Vis spectrum consistent with 5-coordinate Co(II), and exhibited a k(cat) of 63 s(-1) and K(m) of 20 microM when using nitrocefin as the substrate. Pre-steady-state fluorescence and UV-Vis studies demonstrated that refolded, Co(II)-substituted L1 uses the same kinetic mechanism as Zn(II)-containing L1, in which a reaction intermediate is formed when using nitrocefin as substrate. The described refolding strategy can be used to prepare other Co(II)-substituted Zn(II)-metalloenzymes, particularly those that contain a solvent-exposable disulfide, which often causes oxidation of Co(II) to Co(III).
Collapse
Affiliation(s)
- Zhenxin Hu
- Department of Chemistry and Biochemistry, 160 Hughes Hall, Miami University, Oxford, OH 45056
| | - Gopal R. Periyannan
- Department of Chemistry and Biochemistry, 160 Hughes Hall, Miami University, Oxford, OH 45056
| | - Michael W. Crowder
- Department of Chemistry and Biochemistry, 160 Hughes Hall, Miami University, Oxford, OH 45056
| |
Collapse
|
45
|
Xu D, Guo H, Cui Q. Antibiotic Deactivation by a Dizinc β-Lactamase: Mechanistic Insights from QM/MM and DFT Studies. J Am Chem Soc 2007; 129:10814-22. [PMID: 17691780 DOI: 10.1021/ja072532m] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hybrid quantum mechanical/molecular mechanical (QM/MM) methods and density functional theory (DFT) were used to investigate the initial ring-opening step in the hydrolysis of moxalactam catalyzed by the dizinc L1 beta-lactamase from Stenotrophomonas maltophilia. Anchored at the enzyme active site via direct metal binding as suggested by a recent X-ray structure of an enzyme-product complex (Spencer, J.; et al. J. Am. Chem. Soc. 2005, 127, 14439), the substrate is well aligned with the nucleophilic hydroxide that bridges the two zinc ions. Both QM/MM and DFT results indicate that the addition of the hydroxide nucleophile to the carbonyl carbon in the substrate lactam ring leads to a metastable intermediate via a dominant nucleophilic addition barrier. The potential of mean force obtained by SCC-DFTB/MM simulations and corrected by DFT/MM calculations yields a reaction free energy barrier of 23.5 kcal/mol, in reasonable agreement with the experimental value of 18.5 kcal/mol derived from kcat of 0.15 s(-1). It is further shown that zinc-bound Asp120 plays an important role in aligning the nucleophile, but accepts the hydroxide proton only after the nucleophilic addition. The two zinc ions are found to participate intimately in the catalysis, consistent with the proposed mechanism. In particular, the Zn(1) ion is likely to serve as an "oxyanion hole" in stabilizing the carbonyl oxygen, while the Zn(2) ion acts as an electrophilic catalyst to stabilize the anionic nitrogen leaving group.
Collapse
Affiliation(s)
- Dingguo Xu
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | |
Collapse
|
46
|
Wang C, Guo H. Inhibitor Binding by Metallo-β-lactamase IMP-1 from Pseudomonas aeruginosa: Quantum Mechanical/Molecular Mechanical Simulations. J Phys Chem B 2007; 111:9986-92. [PMID: 17663582 DOI: 10.1021/jp073864g] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dynamics of the IMP-1 enzyme complexed with three prototypical inhibitors are investigated using a quantum mechanical/molecular mechanical (QM/MM) method based on the self-consistent-charge density-functional tight-binding model. The binding patterns of the inhibitors observed in X-ray diffraction experiments are well reproduced in 600 ps molecular dynamics simulations at room temperature. These inhibitors anchor themselves in the enzyme active site by direct coordination with the two zinc ions, displacing the hydroxide nucleophile that bridges the two zinc ions. In addition, they also interact with several active-site residues and those in two mobile loops. The excellent agreement with experimental structural data validates the QM/MM treatment used in our simulations.
Collapse
Affiliation(s)
- Canhui Wang
- Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | |
Collapse
|
47
|
Bebrone C. Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem Pharmacol 2007; 74:1686-701. [PMID: 17597585 DOI: 10.1016/j.bcp.2007.05.021] [Citation(s) in RCA: 376] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 05/24/2007] [Accepted: 05/24/2007] [Indexed: 11/27/2022]
Abstract
One strategy employed by bacterial strains to resist beta-lactam antibiotics is the expression of metallo-beta-lactamases requiring Zn(2+) for activity. In the last few years, many new zinc beta-lactamases have been described and several pathogens are now known to synthesize members of this class. Metallo-beta-lactamases are especially worrisome due to: (1) their broad activity profiles that encompass most beta-lactam antibiotics, including the carbapenems; (2) potential for horizontal transference; and (3) the absence of clinically useful inhibitors. On the basis of the known sequences, three different lineages, identified as subclasses B1, B2, and B3 have been characterized. The three-dimensional structure of at least one metallo-beta-lactamase of each subclass has been solved. These very similar 3D structures are characterized by the presence of an alphabetabetaalpha-fold. In addition to metallo-beta-lactamases which cleave the amide bond of the beta-lactam ring, the metallo-beta-lactamase superfamily includes enzymes which hydrolyze thiol-ester, phosphodiester and sulfuric ester bonds as well as oxydoreductases. Most of the 6000 members of this superfamily share five conserved motifs, the most characteristic being the His116-X-His118-X-Asp120-His121 signature. They all exhibit an alphabetabetaalpha-fold, similar to that found in the structure of zinc beta-lactamases. Many members of this superfamily are involved in mRNA maturation and DNA reparation. This fact suggests the hypothesis that metallo-beta-lactamases may be the result of divergent evolution starting from an ancestral protein which did not have a beta-lactamase activity.
Collapse
Affiliation(s)
- Carine Bebrone
- Center for Protein Engineering/Biological Macromolecules, University of Liège, Allée du 6 Août B6, Sart-Tilman 4000 Liège, Belgium.
| |
Collapse
|
48
|
Chen CR, Lin CH, Lin JW, Chang CI, Tseng YH, Weng SF. Characterization of a novel T4-type Stenotrophomonas maltophilia virulent phage Smp14. Arch Microbiol 2007; 188:191-7. [PMID: 17440710 DOI: 10.1007/s00203-007-0238-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 03/19/2007] [Accepted: 03/24/2007] [Indexed: 10/23/2022]
Abstract
Stenotrophomonas maltophilia (Sm), with most of the isolates being resistant to multidrugs, is an opportunistic bacterium causing nosocomial infections. In this study, a novel virulent Sm phage, Smp14, was characterized. Electron microscopy showed that Smp14 resembled members of Myoviridae and adsorbed to poles of the host cells during infection. It lysed 37 of 87 clinical Sm isolates in spot test, displayed a latent period of ca. 20 min, and had a burst size of ca. 150. Its genome (estimated to be 160 kb by PFGE), containing m4C and two unknown modified bases other than m5C and m6A as identified by HPLC, resisted to digestion with many restriction endonucleases except MseI. These properties indicate that it is a novel Sm phage distinct from the previously reported phiSMA5 which has a genome of 250 kb digestible with various restriction enzymes. Sequencing of a 16 kb region revealed 12 ORFs encoding structural proteins sharing 15-45% identities with the homologues from T4-type phages. SDS-PAGE displayed 20 virion proteins, with the most abundant one being the 39 kDa major capsid protein (gp23), which had the N-terminal 52 amino acids removed. Phylogenetic analysis based on gp23 classified Smp14 into a novel single-membered T4-type subgroup.
Collapse
Affiliation(s)
- Chiy-Rong Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan
| | | | | | | | | | | |
Collapse
|
49
|
Llarrull LI, Fabiane SM, Kowalski JM, Bennett B, Sutton BJ, Vila AJ. Asp-120 locates Zn2 for optimal metallo-beta-lactamase activity. J Biol Chem 2007; 282:18276-18285. [PMID: 17426028 DOI: 10.1074/jbc.m700742200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metallo-beta-lactamases are zinc-dependent hydrolases that inactivate beta-lactam antibiotics, rendering bacteria resistant to them. Asp-120 is fully conserved in all metallo-beta-lactamases and is central to catalysis. Several roles have been proposed for Asp-120, but so far there is no agreed consensus. We generated four site-specifically substituted variants of the enzyme BcII from Bacillus cereus as follows: D120N, D120E, D120Q, and D120S. Replacement of Asp-120 by other residues with very different metal ligating capabilities severely impairs the lactamase activity without abolishing metal binding to the mutated site. A kinetic study of these mutants indicates that Asp-120 is not the proton donor, nor does it play an essential role in nucleophilic activation. Spectroscopic and crystallographic analysis of D120S BcII, the least active mutant bearing the weakest metal ligand in the series, reveals that this enzyme is able to accommodate a dinuclear center and that perturbations in the active site are limited to the Zn2 site. It is proposed that the role of Asp-120 is to act as a strong Zn2 ligand, locating this ion optimally for substrate binding, stabilization of the development of a partial negative charge in the beta-lactam nitrogen, and protonation of this atom by a zinc-bound water molecule.
Collapse
Affiliation(s)
- Leticia I Llarrull
- Departamento de Química Biológica-Area Biofísica, Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Stella M Fabiane
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London Bridge, SE1 1UL London, United Kingdom
| | - Jason M Kowalski
- National Biomedical EPR Center, Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-0509
| | - Brian Bennett
- National Biomedical EPR Center, Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-0509
| | - Brian J Sutton
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London Bridge, SE1 1UL London, United Kingdom
| | - Alejandro J Vila
- Departamento de Química Biológica-Area Biofísica, Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina.
| |
Collapse
|
50
|
Morán-Barrio J, González JM, Lisa MN, Costello AL, Peraro MD, Carloni P, Bennett B, Tierney DL, Limansky AS, Viale AM, Vila AJ. The metallo-beta-lactamase GOB is a mono-Zn(II) enzyme with a novel active site. J Biol Chem 2007; 282:18286-18293. [PMID: 17403673 DOI: 10.1074/jbc.m700467200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Metallo-beta-lactamases (MbetaLs) are zinc-dependent enzymes able to hydrolyze and inactivate most beta-lactam antibiotics. The large diversity of active site structures and metal content among MbetaLs from different sources has limited the design of a pan-MbetaL inhibitor. Here we report the biochemical and biophysical characterization of a novel MbetaL, GOB-18, from a clinical isolate of a Gram-negative opportunistic pathogen, Elizabethkingia meningoseptica. Different spectroscopic techniques, three-dimensional modeling, and mutagenesis experiments, reveal that the Zn(II) ion is bound to Asp120, His121, His263, and a solvent molecule, i.e. in the canonical Zn2 site of dinuclear MbetaLs. Contrasting all other related MbetaLs, GOB-18 is fully active against a broad range of beta-lactam substrates using a single Zn(II) ion in this site. These data further enlarge the structural diversity of MbetaLs.
Collapse
Affiliation(s)
- Jorgelina Morán-Barrio
- Departamento de Química Biológica and Departamento de Microbiología, Instituto de Biología Molecular y Celular de Rosario (IBR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Javier M González
- Departamento de Química Biológica and Departamento de Microbiología, Instituto de Biología Molecular y Celular de Rosario (IBR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - María Natalia Lisa
- Departamento de Química Biológica and Departamento de Microbiología, Instituto de Biología Molecular y Celular de Rosario (IBR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Alison L Costello
- Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131
| | - Matteo Dal Peraro
- Center for Molecular Modeling, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Paolo Carloni
- International School for Advanced Studies, Via Beirut 2-4, 34100 Trieste, Italy
| | - Brian Bennett
- National Biomedical EPR Center, Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-0509
| | - David L Tierney
- Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131
| | - Adriana S Limansky
- Departamento de Química Biológica and Departamento de Microbiología, Instituto de Biología Molecular y Celular de Rosario (IBR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Alejandro M Viale
- Departamento de Química Biológica and Departamento de Microbiología, Instituto de Biología Molecular y Celular de Rosario (IBR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Alejandro J Vila
- Departamento de Química Biológica and Departamento de Microbiología, Instituto de Biología Molecular y Celular de Rosario (IBR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina.
| |
Collapse
|