1
|
Cronan JE. Biotin protein ligase as you like it: Either extraordinarily specific or promiscuous protein biotinylation. Proteins 2024; 92:435-448. [PMID: 37997490 PMCID: PMC10932917 DOI: 10.1002/prot.26642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Biotin (vitamin H or B7) is a coenzyme essential for all forms of life. Biotin has biological activity only when covalently attached to a few key metabolic enzyme proteins. Most organisms have only one attachment enzyme, biotin protein ligase (BPL), which attaches biotin to all target proteins. The sequences of these proteins and their substrate proteins are strongly conserved throughout biology. Structures of both the biotin ligase- and biotin-acceptor domains of mammals, plants, several bacterial species, and archaea have been determined. These, together with mutational analyses of ligases and their protein substrates, illustrate the exceptional specificity of this protein modification. For example, the Escherichia coli BPL biotinylates only one of the >4000 cellular proteins. Several bifunctional bacterial biotin ligases transcriptionally regulate biotin synthesis and/or transport in concert with biotinylation. The human BPL has been demonstrated to play an important role in that mutations in the BPL encoding gene cause one form of the disease, biotin-responsive multiple carboxylase deficiency. Promiscuous mutant versions of several BPL enzymes release biotinoyl-AMP, the active intermediate of the ligase reaction, to solvent. The released biotinoyl-AMP acts as a chemical biotinylation reagent that modifies lysine residues of neighboring proteins in vivo. This proximity-dependent biotinylation (called BioID) approach has been heavily utilized in cell biology.
Collapse
Affiliation(s)
- John E Cronan
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
2
|
Gómez Borrego J, Torrent Burgas M. Structural assembly of the bacterial essential interactome. eLife 2024; 13:e94919. [PMID: 38226900 PMCID: PMC10863985 DOI: 10.7554/elife.94919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/22/2023] [Indexed: 01/17/2024] Open
Abstract
The study of protein interactions in living organisms is fundamental for understanding biological processes and central metabolic pathways. Yet, our knowledge of the bacterial interactome remains limited. Here, we combined gene deletion mutant analysis with deep-learning protein folding using AlphaFold2 to predict the core bacterial essential interactome. We predicted and modeled 1402 interactions between essential proteins in bacteria and generated 146 high-accuracy models. Our analysis reveals previously unknown details about the assembly mechanisms of these complexes, highlighting the importance of specific structural features in their stability and function. Our work provides a framework for predicting the essential interactomes of bacteria and highlight the potential of deep-learning algorithms in advancing our understanding of the complex biology of living organisms. Also, the results presented here offer a promising approach to identify novel antibiotic targets.
Collapse
Affiliation(s)
- Jordi Gómez Borrego
- Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de BarcelonaCerdanyola del VallèsSpain
| | - Marc Torrent Burgas
- Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de BarcelonaCerdanyola del VallèsSpain
| |
Collapse
|
3
|
Huang C, Liu D, Li ZA, Molloy DP, Luo ZF, Su Y, Li HO, Liu Q, Wang RZ, Xiao LT. The PPR protein RARE1-mediated editing of chloroplast accD transcripts is required for fatty acid biosynthesis and heat tolerance in Arabidopsis. PLANT COMMUNICATIONS 2023; 4:100461. [PMID: 36221851 PMCID: PMC9860180 DOI: 10.1016/j.xplc.2022.100461] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/12/2022] [Accepted: 10/10/2022] [Indexed: 06/01/2023]
Abstract
It has been reported that Arabidopsis chloroplast accD transcripts undergo RNA editing and that loss of accD-C794 RNA editing does not affect plant growth under normal conditions. To date, the exact biological role of accD-C794 editing has remained elusive. Here, we reveal an unexpected role for accD-C794 editing in response to heat stress. Loss of accD-C794 editing results in a yellow and dwarf phenotype with decreased chloroplast gene expression under heat stress, and artificial improvement of C794-edited accD gene expression enhances heat tolerance in Arabidopsis. These data suggest that accD-C794 editing confers heat tolerance in planta. We also found that treatment with the product of acetyl coenzyme A carboxylase (ACCase) could allay mutant phenotypic characteristics and showed that a mutation in the CAC3 gene for the α-subunit of ACCase was associated with dwarfism under heat stress. These observations indicate that defective accD-C794 editing may be intrinsic to reduced ACCase activity, thereby contributing to heat sensitivity. ACCase catalyzes the committed step of de novo fatty acid (FA) biosynthesis. FA content analysis revealed that unsaturated oleic (C18:1) and linoleic acids (C18:2) were low in the accD-C794 editing-defective mutant but high in the C794-edited accD-overexpressing plants compared with the wild type. Supplying exogenous C18:1 and C18:2 could rescue the mutant phenotype, suggesting that these FAs play an essential role in tolerance to heat stress. Transmission electron microscopy observations showed that heat stress seriously affected the membrane architecture in accD editing-defective mutants but not in accD-overexpressing plants. These results provide the first evidence that accD-C794 editing regulates FA biosynthesis for maintenance of membrane structural homeostasis under heat stress.
Collapse
Affiliation(s)
- Chao Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Dan Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Zi-Ang Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - David P Molloy
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
| | - Zhou-Fei Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yi Su
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Hai-Ou Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Qing Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Ruo-Zhong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Lang-Tao Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
4
|
Hauschild P, Vogel RF, Hilgarth M. Transcriptomic analysis of the response of Photobacterium phosphoreum and Photobacterium carnosum to co-contaminants on chicken meat. Arch Microbiol 2022; 204:467. [PMID: 35804270 DOI: 10.1007/s00203-022-03059-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
This study investigated the impact of Brochothrix (B.) thermosphacta and Pseudomonas (Ps.) fragi on the transcriptomes of Photobacterium (P.) phosphoreum and P. carnosum on chicken meat under modified atmosphere (MA) and air atmosphere (AA). P. phosphoreum TMW2.2103 responded to MA with a reduced transcript number related to cell division and an enhanced number related to oxidative stress. Concomitantly, the analysis revealed upregulation of fermentation and downregulation of respiration. It predicts enhanced substrate competition in presence of co-contaminants/MA. In contrast, the strain upregulated the respiration in AA, supposably due to improved substrate accessibility in this situation. For P. carnosum TMW2.2149 the respiration was downregulated, and the pyruvate metabolism upregulated under MA. MA/co-contaminant resulted in multiple upregulated metabolic routes. Conversely, AA/co-contaminant resulted only in minor regulations, showing inability to cope with fast growing competitors. Observations reveal different strategies of photobacteria to react to co-contaminants on meat.
Collapse
Affiliation(s)
- Philippa Hauschild
- Lehrstuhl Technische Mikrobiologie, Technische Universität München, Gregor-Mendel-Straße 4, 85354, Freising, Germany
| | - Rudi F Vogel
- Lehrstuhl Technische Mikrobiologie, Technische Universität München, Gregor-Mendel-Straße 4, 85354, Freising, Germany
| | - Maik Hilgarth
- Lehrstuhl Technische Mikrobiologie, Technische Universität München, Gregor-Mendel-Straße 4, 85354, Freising, Germany.
| |
Collapse
|
5
|
Bao Q, Zhi R, Zhou S, Zhao Y, Mao Y, Li G, Deng YU. Claisen condensation reaction mediated pimelate biosynthesis via the reverse adipate-degradation pathway and its isoenzymes. Chembiochem 2022; 23:e202200098. [PMID: 35352865 DOI: 10.1002/cbic.202200098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Indexed: 11/11/2022]
Abstract
Pimelic acid is an important seven-carbon dicarboxylic acid, which is broadly applied in various fields. The industrial production of pimelic acid is mainly through chemical method, which is complicated and environment unfriendly. Herein, we found that pimelic acid could be biosynthesized by the reverse adipate-degradation pathway (RADP), a typical Claisen condensation reaction that could be applied to the arrangement of C-C bond. In order to strengthen the supply of glutaryl-CoA precursor, PA5530 protein was used to transport glutaric acid. Subsequently, we discovered that the enzymes in the BIOZ pathway was isoenzymes with the RADP. By combining the isoenzymes of the two pathways, the titer of pimelic acid reached 36.7 mg·L -1 under the optimal combination, which was increased by 382.9% compared with the control strain B-3. It was also the highest titer of pimelic acid biosynthesized by Claisen condensation reaction, laying foundations for further pimelic acid and its derivatives production.
Collapse
Affiliation(s)
- Qingqing Bao
- Jiangnan University, National Engineering Laboratory for Cereal Fermentation Technology (NELCF), CHINA
| | - Rui Zhi
- Jiangnan University, National Engineering Laboratory for Cereal Fermentation Technology (NELCF), CHINA
| | - Shenghu Zhou
- Jiangnan University, National Engineering Laboratory for Cereal Fermentation Technology (NELCF), CHINA
| | - Yunying Zhao
- Jiangnan University, National Engineering Laboratory for Cereal Fermentation Technology (NELCF), CHINA
| | - Yin Mao
- Jiangnan University, National Engineering Laboratory for Cereal Fermentation Technology (NELCF), CHINA
| | - Guohui Li
- Jiangnan University, National Engineering Laboratory for Cereal Fermentation Technology (NELCF), CHINA
| | - Y U Deng
- Jiangnan University, School of biotechnology, 1800 LIHU AVENUE, 214122, WUXI, CHINA
| |
Collapse
|
6
|
Ali I, Khan A, Fa Z, Khan T, Wei DQ, Zheng J. Crystal structure of Acetyl-CoA carboxylase (AccB) from Streptomyces antibioticus and insights into the substrate-binding through in silico mutagenesis and biophysical investigations. Comput Biol Med 2022; 145:105439. [PMID: 35344865 DOI: 10.1016/j.compbiomed.2022.105439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 11/18/2022]
Abstract
Acetyl-CoA carboxylase (ACC) is crucial for polyketides biosynthesis and acts as an essential metabolic checkpoint. It is also an attractive drug target against obesity, cancer, microbial infections, and diabetes. However, the lack of knowledge, particularly sequence-structure function relationship to narrate ligand-enzyme binding, has hindered the progress of ACC-specific therapeutics and unnatural "natural" polyketides. Structural characterization of such enzymes will boost the opportunity to understand the substrate binding, designing new inhibitors and information regarding the molecular rules which control the substrate specificity of ACCs. To understand the substrate specificity, we determined the crystal structure of AccB (Carboxyl-transferase, CT) from Streptomyces antibioticus with a resolution of 2.3 Å and molecular modeling approaches were employed to unveil the molecular mechanism of acetyl-CoA recognition and processing. The CT domain of S. antibioticus shares a similar structural organization with the previous structures and the two steps reaction was confirmed by enzymatic assay. Furthermore, to reveal the key hotspots required for the substrate recognition and processing, in silico mutagenesis validated only three key residues (V223, Q346, and Q514) that help in the fixation of the substrate. Moreover, we also presented atomic level knowledge on the mechanism of the substrate binding, which unveiled the terminal loop (500-514) function as an opening and closing switch and pushes the substrate inside the cavity for stable binding. A significant decline in the hydrogen bonding half-life was observed upon the alanine substitution. Consequently, the presented structural data highlighted the potential key interacting residues for substrate recognition and will also help to re-design ACCs active site for proficient substrate specificity to produce diverse polyketides.
Collapse
Affiliation(s)
- Imtiaz Ali
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Zhang Fa
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Taimoor Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, PR China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
7
|
The Classical, Yet Controversial, First Enzyme of Lipid Synthesis: Escherichia coli Acetyl-CoA Carboxylase. Microbiol Mol Biol Rev 2021; 85:e0003221. [PMID: 34132100 DOI: 10.1128/mmbr.00032-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Escherichia coli acetyl-CoA carboxylase (ACC), the enzyme responsible for synthesis of malonyl-CoA, the building block of fatty acid synthesis, is the paradigm bacterial ACC. Many reports on the structures and stoichiometry of the four subunits comprising the active enzyme as well as on regulation of ACC activity and expression have appeared in the almost 20 years since this subject was last reviewed. This review seeks to update and expand on these reports.
Collapse
|
8
|
Biochemical and structural characterization of the BioZ enzyme engaged in bacterial biotin synthesis pathway. Nat Commun 2021; 12:2056. [PMID: 33824341 PMCID: PMC8024396 DOI: 10.1038/s41467-021-22360-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/12/2021] [Indexed: 01/07/2023] Open
Abstract
Biotin is an essential micro-nutrient across the three domains of life. The paradigm earlier step of biotin synthesis denotes "BioC-BioH" pathway in Escherichia coli. Here we report that BioZ bypasses the canonical route to begin biotin synthesis. In addition to its origin of Rhizobiales, protein phylogeny infers that BioZ is domesticated to gain an atypical role of β-ketoacyl-ACP synthase III. Genetic and biochemical characterization demonstrates that BioZ catalyzes the condensation of glutaryl-CoA (or ACP) with malonyl-ACP to give 5'-keto-pimeloyl ACP. This intermediate proceeds via type II fatty acid synthesis (FAS II) pathway, to initiate the formation of pimeloyl-ACP, a precursor of biotin synthesis. To further explore molecular basis of BioZ activity, we determine the crystal structure of Agrobacterium tumefaciens BioZ at 1.99 Å, of which the catalytic triad and the substrate-loading tunnel are functionally defined. In particular, we localize that three residues (S84, R147, and S287) at the distant bottom of the tunnel might neutralize the charge of free C-carboxyl group of the primer glutaryl-CoA. Taken together, this study provides molecular insights into the BioZ biotin synthesis pathway.
Collapse
|
9
|
Sirithanakorn C, Cronan JE. Biotin, a universal and essential cofactor: Synthesis, ligation and regulation. FEMS Microbiol Rev 2021; 45:6081095. [PMID: 33428728 DOI: 10.1093/femsre/fuab003] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 12/22/2022] Open
Abstract
Biotin is a covalently attached enzyme cofactor required for intermediary metabolism in all three domains of life. Several important human pathogens (e.g. Mycobacterium tuberculosis) require biotin synthesis for pathogenesis. Humans lack a biotin synthetic pathway hence bacterial biotin synthesis is a prime target for new therapeutic agents. The biotin synthetic pathway is readily divided into early and late segments. Although pimelate, a seven carbon α,ω-dicarboxylic acid that contributes seven of the ten biotin carbons atoms, was long known to be a biotin precursor, its biosynthetic pathway was a mystery until the E. coli pathway was discovered in 2010. Since then, diverse bacteria encode evolutionarily distinct enzymes that replace enzymes in the E. coli pathway. Two new bacterial pimelate synthesis pathways have been elucidated. In contrast to the early pathway the late pathway, assembly of the fused rings of the cofactor, was long thought settled. However, a new enzyme that bypasses a canonical enzyme was recently discovered as well as homologs of another canonical enzyme that functions in synthesis of another protein-bound coenzyme, lipoic acid. Most bacteria tightly regulate transcription of the biotin synthetic genes in a biotin-responsive manner. The bifunctional biotin ligases which catalyze attachment of biotin to its cognate enzymes and repress biotin gene transcription are best understood regulatory system.
Collapse
Affiliation(s)
- Chaiyos Sirithanakorn
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.,Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | - John E Cronan
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA.,Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
10
|
Hu Y, Cronan JE. α-proteobacteria synthesize biotin precursor pimeloyl-ACP using BioZ 3-ketoacyl-ACP synthase and lysine catabolism. Nat Commun 2020; 11:5598. [PMID: 33154364 PMCID: PMC7645780 DOI: 10.1038/s41467-020-19251-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/28/2020] [Indexed: 11/09/2022] Open
Abstract
Pimelic acid, a seven carbon α,ω-dicarboxylic acid (heptanedioic acid), is known to provide seven of the ten biotin carbon atoms including all those of the valeryl side chain. Distinct pimelate synthesis pathways were recently elucidated in Escherichia coli and Bacillus subtilis where fatty acid synthesis plus dedicated biotin enzymes produce the pimelate moiety. In contrast, the α-proteobacteria which include important plant and mammalian pathogens plus plant symbionts, lack all of the known pimelate synthesis genes and instead encode bioZ genes. Here we report a pathway in which BioZ proteins catalyze a 3-ketoacyl-acyl carrier protein (ACP) synthase III-like reaction to produce pimeloyl-ACP with five of the seven pimelate carbon atoms being derived from glutaryl-CoA, an intermediate in lysine degradation. Agrobacterium tumefaciens strains either deleted for bioZ or which encode a BioZ active site mutant are biotin auxotrophs, as are strains defective in CaiB which catalyzes glutaryl-CoA synthesis from glutarate and succinyl-CoA.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John E Cronan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
11
|
Abstract
Biotin plays an essential role in growth of mycobacteria. Synthesis of the cofactor is essential for Mycobacterium tuberculosis to establish and maintain chronic infections in a murine model of tuberculosis. Although the late steps of mycobacterial biotin synthesis, assembly of the heterocyclic rings, are thought to follow the canonical pathway, the mechanism of synthesis of the pimelic acid moiety that contributes most of the biotin carbon atoms is unknown. We report that the Mycobacterium smegmatis gene annotated as encoding Tam, an O-methyltransferase that monomethylates and detoxifies trans-aconitate, instead encodes a protein having the activity of BioC, an O-methyltransferase that methylates the free carboxyl of malonyl-ACP. The M. smegmatis Tam functionally replaced Escherichia coli BioC both in vivo and in vitro. Moreover, deletion of the M. smegmatis tam gene resulted in biotin auxotrophy, and addition of biotin to M. smegmatis cultures repressed tam gene transcription. Although its pathogenicity precluded in vivo studies, the M. tuberculosis Tam also replaced E. coli BioC both in vivo and in vitro and complemented biotin-independent growth of the M. smegmatis tam deletion mutant strain. Based on these data, we propose that the highly conserved mycobacterial tam genes be renamed bioCM. tuberculosis BioC presents a target for antituberculosis drugs which thus far have been directed at late reactions in the pathway with some success.
Collapse
Affiliation(s)
- Zhe Hu
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - John E Cronan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
12
|
Eggers J, Strittmatter CS, Küsters K, Biller E, Steinbüchel A. Biotin Synthesis in Ralstonia eutropha H16 Utilizes Pimeloyl Coenzyme A and Can Be Regulated by the Amount of Acceptor Protein. Appl Environ Microbiol 2020; 86:e01512-20. [PMID: 32680858 PMCID: PMC7480372 DOI: 10.1128/aem.01512-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 11/20/2022] Open
Abstract
The biotin metabolism of the Gram-negative facultative chemolithoautotrophic bacterium Ralstonia eutropha (syn. Cupriavidus necator), which is used for biopolymer production in industry, was investigated. A biotin auxotroph mutant lacking bioF was generated, and biotin depletion in the cells and the minimal biotin demand of a biotin-auxotrophic R. eutropha strain were determined. Three consecutive cultivations in biotin-free medium were necessary to prevent growth of the auxotrophic mutant, and 40 ng/ml biotin was sufficient to promote cell growth. Nevertheless, 200 ng/ml biotin was necessary to ensure growth comparable to that of the wild type, which is similar to the demand of biotin-auxotrophic mutants among other prokaryotic and eukaryotic microbes. A phenotypic complementation of the R. eutropha ΔbioF mutant was only achieved by homologous expression of bioF of R. eutropha or heterologous expression of bioF of Bacillus subtilis but not by bioF of Escherichia coli Together with the results from bioinformatic analysis of BioFs, this leads to the assumption that the intermediate of biotin synthesis in R. eutropha is pimeloyl-CoA instead of pimeloyl-acyl carrier protein (ACP) like in the Gram-positive B. subtilis Internal biotin content was enhanced by homologous expression of accB, whereas homologous expression of accB and accC2 in combination led to decreased biotin concentrations in the cells. Although a DNA-binding domain of the regulator protein BirA is missing, biotin synthesis seemed to be influenced by the amount of acceptor protein present.IMPORTANCERalstonia eutropha is applied in industry for the production of biopolymers and serves as a research platform for the production of diverse fine chemicals. Due to its ability to grow on hydrogen and carbon dioxide as the sole carbon and energy source, R. eutropha is often utilized for metabolic engineering to convert inexpensive resources into value-added products. The understanding of the metabolic pathways in this bacterium is mandatory for further bioengineering of the strain and for the development of new strategies for biotechnological production.
Collapse
Affiliation(s)
- Jessica Eggers
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Carl Simon Strittmatter
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Kira Küsters
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Emre Biller
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Functional Replacement of the BioC and BioH Proteins of Escherichia coli Biotin Precursor Biosynthesis by Ehrlichia chaffeensis Novel Proteins. Curr Microbiol 2019; 76:626-636. [PMID: 30915508 DOI: 10.1007/s00284-019-01669-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/05/2019] [Indexed: 01/22/2023]
Abstract
The biosynthesis of the pimelate moiety of biotin in Escherichia coli requires two specialized proteins, BioC and BioH. However, the enzymes that have BioC- or BioH-like activities show remarkable sequence diversity among biotin-producing bacteria. Here, we report that the intracellular rickettsial pathogen Ehrlichia chaffeensis encodes two novel proteins, BioT and BioU, which functionally replace the E. coli BioC and BioH proteins, respectively. The desthiobiotin assays demonstrated that these two proteins make pimeloyl-acyl carrier protein (ACP) from the substrate malonyl-ACP with the aid of the FAS II pathway, through the expected pimeloyl-ACP methyl ester intermediate. BioT and BioU homologues seem restricted to the species of Ehrlichia and its close relative, Anaplasma. Taken together, the synthesis of the biotin precursor in E. chaffeensis appears to be catalyzed by two novel BioC- and BioH-like proteins.
Collapse
|
14
|
Abstract
INTRODUCTION High-content protein microarrays in principle enable the functional interrogation of the human proteome in a broad range of applications, including biomarker discovery, profiling of immune responses, identification of enzyme substrates, and quantifying protein-small molecule, protein-protein and protein-DNA/RNA interactions. As with other microarrays, the underlying proteomic platforms are under active technological development and a range of different protein microarrays are now commercially available. However, deciphering the differences between these platforms to identify the most suitable protein microarray for the specific research question is not always straightforward. Areas covered: This review provides an overview of the technological basis, applications and limitations of some of the most commonly used full-length, recombinant protein and protein fragment microarray platforms, including ProtoArray Human Protein Microarrays, HuProt Human Proteome Microarrays, Human Protein Atlas Protein Fragment Arrays, Nucleic Acid Programmable Arrays and Immunome Protein Arrays. Expert commentary: The choice of appropriate protein microarray platform depends on the specific biological application in hand, with both more focused, lower density and higher density arrays having distinct advantages. Full-length protein arrays offer advantages in biomarker discovery profiling applications, although care is required in ensuring that the protein production and array fabrication methodology is compatible with the required downstream functionality.
Collapse
Affiliation(s)
- Jessica G Duarte
- a Cancer Immunobiology Laboratory, Olivia Newton-John Cancer Research Institute/School of Cancer Medicine , La Trobe University , Heidelberg , Australia
| | - Jonathan M Blackburn
- b Institute of Infectious Disease and Molecular Medicine & Department of Integrative Biomedical Sciences, Faculty of Health Sciences , University of Cape Town , Observatory, South Africa
| |
Collapse
|
15
|
Verma V, Kaur C, Grover P, Gupta A, Chaudhary VK. Biotin-tagged proteins: Reagents for efficient ELISA-based serodiagnosis and phage display-based affinity selection. PLoS One 2018; 13:e0191315. [PMID: 29360877 PMCID: PMC5779676 DOI: 10.1371/journal.pone.0191315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 01/03/2018] [Indexed: 02/06/2023] Open
Abstract
The high-affinity interaction between biotin and streptavidin has opened avenues for using recombinant proteins with site-specific biotinylation to achieve efficient and directional immobilization. The site-specific biotinylation of proteins carrying a 15 amino acid long Biotin Acceptor Peptide tag (BAP; also known as AviTag) is effected on a specific lysine either by co-expressing the E. coli BirA enzyme in vivo or by using purified recombinant E. coli BirA enzyme in the presence of ATP and biotin in vitro. In this paper, we have designed a T7 promoter-lac operator-based expression vector for rapid and efficient cloning, and high-level cytosolic expression of proteins carrying a C-terminal BAP tag in E. coli with TEV protease cleavable N-terminal deca-histidine tag, useful for initial purification. Furthermore, a robust three-step purification pipeline integrated with well-optimized protocols for TEV protease-based H10 tag removal, and recombinant BirA enzyme-based site-specific in vitro biotinylation is described to obtain highly pure biotinylated proteins. Most importantly, the paper demonstrates superior sensitivities in indirect ELISA with directional and efficient immobilization of biotin-tagged proteins on streptavidin-coated surfaces in comparison to passive immobilization. The use of biotin-tagged proteins through specific immobilization also allows more efficient selection of binders from a phage-displayed naïve antibody library. In addition, for both these applications, specific immobilization requires much less amount of protein as compared to passive immobilization and can be easily multiplexed. The simplified strategy described here for the production of highly pure biotin-tagged proteins will find use in numerous applications, including those, which may require immobilization of multiple proteins simultaneously on a solid surface.
Collapse
Affiliation(s)
- Vaishali Verma
- Centre for Innovation in Infectious Disease Research, Education and Training (CIIDRET), University of Delhi South Campus, New Delhi, India
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Charanpreet Kaur
- Centre for Innovation in Infectious Disease Research, Education and Training (CIIDRET), University of Delhi South Campus, New Delhi, India
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Payal Grover
- Centre for Innovation in Infectious Disease Research, Education and Training (CIIDRET), University of Delhi South Campus, New Delhi, India
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Amita Gupta
- Centre for Innovation in Infectious Disease Research, Education and Training (CIIDRET), University of Delhi South Campus, New Delhi, India
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
- * E-mail: (VKC); (AG)
| | - Vijay K. Chaudhary
- Centre for Innovation in Infectious Disease Research, Education and Training (CIIDRET), University of Delhi South Campus, New Delhi, India
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
- * E-mail: (VKC); (AG)
| |
Collapse
|
16
|
Manandhar M, Cronan JE. A Canonical Biotin Synthesis Enzyme, 8-Amino-7-Oxononanoate Synthase (BioF), Utilizes Different Acyl Chain Donors in Bacillus subtilis and Escherichia coli. Appl Environ Microbiol 2018; 84:e02084-17. [PMID: 29054876 PMCID: PMC5734022 DOI: 10.1128/aem.02084-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/15/2017] [Indexed: 12/24/2022] Open
Abstract
BioF (8-amino-7-oxononanoate synthase) is a strictly conserved enzyme that catalyzes the first step in assembly of the fused heterocyclic rings of biotin. The BioF acyl chain donor has long been thought to be pimeloyl-CoA. Indeed, in vitro the Escherichia coli and Bacillus sphaericus enzymes have been shown to condense pimeloyl-CoA with l-alanine in a pyridoxal 5'-phosphate-dependent reaction with concomitant CoA release and decarboxylation of l-alanine. However, recent in vivo studies of E. coli and Bacillus subtilis suggested that the BioF proteins of the two bacteria could have different specificities for pimelate thioesters in that E. coli BioF may utilize either pimeloyl coenzyme A (CoA) or the pimelate thioester of the acyl carrier protein (ACP) of fatty acid synthesis. In contrast, B. subtilis BioF seemed likely to be specific for pimeloyl-CoA and unable to utilize pimeloyl-ACP. We now report genetic and in vitro data demonstrating that B. subtilis BioF specifically utilizes pimeloyl-CoA.IMPORTANCE Biotin is an essential vitamin required by mammals and birds because, unlike bacteria, plants, and some fungi, these organisms cannot make biotin. Currently, the biotin included in vitamin tablets and animal feeds is made by chemical synthesis. This is partly because the biosynthetic pathways in bacteria are incompletely understood. This paper defines an enzyme of the Bacillus subtilis pathway and shows that it differs from that of Escherichia coli in the ability to utilize specific precursors. These bacteria have been used in biotin production and these data may aid in making biotin produced by biotechnology commercially competitive with that produced by chemical synthesis.
Collapse
Affiliation(s)
- Miglena Manandhar
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - John E Cronan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
17
|
Expression and Activity of the BioH Esterase of Biotin Synthesis is Independent of Genome Context. Sci Rep 2017; 7:2141. [PMID: 28526858 PMCID: PMC5438404 DOI: 10.1038/s41598-017-01490-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/28/2017] [Indexed: 01/15/2023] Open
Abstract
BioH is an α/β-hydrolase required for synthesis of the pimelate moiety of biotin in diverse bacteria. The bioH gene is found in different genomic contexts. In some cases (e.g., Escherichia coli) the gene is not located within a biotin synthetic operon and its transcription is not coregulated with the other biotin synthesis genes. In other genomes such as Pseudomonas aeruginosa the bioH gene is within a biotin synthesis operon and its transcription is coregulated with the other biotin operon genes. The esterases of pimelate moiety synthesis show remarkable genomic plasticity in that in some biotin operons bioH is replaced by other α/ß hydrolases of diverse sequence. The “wild card” nature of these enzymes led us to compare the paradigm “freestanding” E. coli BioH with the operon-encoded P. aeruginosa BioH. We hypothesized that the operon-encoded BioH might differ in its expression level and/or activity from the freestanding BioH gene. We report this is not the case. The two BioH proteins show remarkably similar hydrolase activities and substrate specificity. Moreover, Pseudomonas aeruginosa BioH is more highly expressed than E. coli BioH. Despite the enzymatic similarities of the two BioH proteins, bioinformatics analysis places the freestanding and operon-encoded BioH proteins into distinct clades.
Collapse
|
18
|
Salie MJ, Thelen JJ. Regulation and structure of the heteromeric acetyl-CoA carboxylase. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1207-1213. [PMID: 27091637 DOI: 10.1016/j.bbalip.2016.04.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 11/16/2022]
Abstract
The enzyme acetyl-CoA carboxylase (ACCase) catalyzes the committed step of the de novo fatty acid biosynthesis (FAS) pathway by converting acetyl-CoA to malonyl-CoA. Two forms of ACCase exist in nature, a homomeric and heteromic form. The heteromeric form of this enzyme requires four different subunits for activity: biotin carboxylase; biotin carboxyl carrier protein; and α- and β-carboxyltransferases. Heteromeric ACCases (htACCase) can be found in prokaryotes and the plastids of most plants. The plant htACCase is regulated by diverse mechanisms reflected by the biochemical and genetic complexity of this multienzyme complex and the plastid stroma where it resides. In this review we summarize the regulation of the plant htACCase and also describe the structural characteristics of this complex from both prokaryotes and plants. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Matthew J Salie
- Department of Biochemistry, University of Missouri-Columbia, Christopher S. Bond Life Sciences Center, 1201 E. Rollins, Columbia, MO 65201, USA.
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri-Columbia, Christopher S. Bond Life Sciences Center, 1201 E. Rollins, Columbia, MO 65201, USA.
| |
Collapse
|
19
|
Assembly of Lipoic Acid on Its Cognate Enzymes: an Extraordinary and Essential Biosynthetic Pathway. Microbiol Mol Biol Rev 2016; 80:429-50. [PMID: 27074917 DOI: 10.1128/mmbr.00073-15] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although the structure of lipoic acid and its role in bacterial metabolism were clear over 50 years ago, it is only in the past decade that the pathways of biosynthesis of this universally conserved cofactor have become understood. Unlike most cofactors, lipoic acid must be covalently bound to its cognate enzyme proteins (the 2-oxoacid dehydrogenases and the glycine cleavage system) in order to function in central metabolism. Indeed, the cofactor is assembled on its cognate proteins rather than being assembled and subsequently attached as in the typical pathway, like that of biotin attachment. The first lipoate biosynthetic pathway determined was that of Escherichia coli, which utilizes two enzymes to form the active lipoylated protein from a fatty acid biosynthetic intermediate. Recently, a more complex pathway requiring four proteins was discovered in Bacillus subtilis, which is probably an evolutionary relic. This pathway requires the H protein of the glycine cleavage system of single-carbon metabolism to form active (lipoyl) 2-oxoacid dehydrogenases. The bacterial pathways inform the lipoate pathways of eukaryotic organisms. Plants use the E. coli pathway, whereas mammals and fungi probably use the B. subtilis pathway. The lipoate metabolism enzymes (except those of sulfur insertion) are members of PFAM family PF03099 (the cofactor transferase family). Although these enzymes share some sequence similarity, they catalyze three markedly distinct enzyme reactions, making the usual assignment of function based on alignments prone to frequent mistaken annotations. This state of affairs has possibly clouded the interpretation of one of the disorders of human lipoate metabolism.
Collapse
|
20
|
A Biotin Biosynthesis Gene Restricted to Helicobacter. Sci Rep 2016; 6:21162. [PMID: 26868423 PMCID: PMC4751477 DOI: 10.1038/srep21162] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/12/2016] [Indexed: 02/07/2023] Open
Abstract
In most bacteria the last step in synthesis of the pimelate moiety of biotin is cleavage of the ester bond of pimeloyl-acyl carrier protein (ACP) methyl ester. The paradigm cleavage enzyme is Escherichia coli BioH which together with the BioC methyltransferase allows synthesis of the pimelate moiety by a modified fatty acid biosynthetic pathway. Analyses of the extant bacterial genomes showed that bioH is absent from many bioC-containing bacteria and is replaced by other genes. Helicobacter pylori lacks a gene encoding a homologue of the known pimeloyl-ACP methyl ester cleavage enzymes suggesting that it encodes a novel enzyme that cleaves this intermediate. We isolated the H. pylori gene encoding this enzyme, bioV, by complementation of an E. coli bioH deletion strain. Purified BioV cleaved the physiological substrate, pimeloyl-ACP methyl ester to pimeloyl-ACP by use of a catalytic triad, each member of which was essential for activity. The role of BioV in biotin biosynthesis was demonstrated using a reconstituted in vitro desthiobiotin synthesis system. BioV homologues seem the sole pimeloyl-ACP methyl ester esterase present in the Helicobacter species and their occurrence only in H. pylori and close relatives provide a target for development of drugs to specifically treat Helicobacter infections.
Collapse
|
21
|
Abstract
Two vitamins, biotin and lipoic acid, are essential in all three domains of life. Both coenzymes function only when covalently attached to key metabolic enzymes. There they act as "swinging arms" that shuttle intermediates between two active sites (= covalent substrate channeling) of key metabolic enzymes. Although biotin was discovered over 100 years ago and lipoic acid 60 years ago, it was not known how either coenzyme is made until recently. In Escherichia coli the synthetic pathways for both coenzymes have now been worked out for the first time. The late steps of biotin synthesis, those involved in assembling the fused rings, were well described biochemically years ago, although recent progress has been made on the BioB reaction, the last step of the pathway in which the biotin sulfur moiety is inserted. In contrast, the early steps of biotin synthesis, assembly of the fatty acid-like "arm" of biotin were unknown. It has now been demonstrated that the arm is made by using disguised substrates to gain entry into the fatty acid synthesis pathway followed by removal of the disguise when the proper chain length is attained. The BioC methyltransferase is responsible for introducing the disguise, and the BioH esterase is responsible for its removal. In contrast to biotin, which is attached to its cognate proteins as a finished molecule, lipoic acid is assembled on its cognate proteins. An octanoyl moiety is transferred from the octanoyl acyl carrier protein of fatty acid synthesis to a specific lysine residue of a cognate protein by the LipB octanoyltransferase followed by sulfur insertion at carbons C-6 and C-8 by the LipA lipoyl synthetase. Assembly on the cognate proteins regulates the amount of lipoic acid synthesized, and, thus, there is no transcriptional control of the synthetic genes. In contrast, transcriptional control of the biotin synthetic genes is wielded by a remarkably sophisticated, yet simple, system, exerted through BirA, a dual-function protein that both represses biotin operon transcription and ligates biotin to its cognate proteins.
Collapse
|
22
|
Abstract
The pathways in Escherichia coli and (largely by analogy) S. enterica remain the paradigm of bacterial lipid synthetic pathways, although recently considerable diversity among bacteria in the specific areas of lipid synthesis has been demonstrated. The structural biology of the fatty acid synthetic proteins is essentially complete. However, the membrane-bound enzymes of phospholipid synthesis remain recalcitrant to structural analyses. Recent advances in genetic technology have allowed the essentialgenes of lipid synthesis to be tested with rigor, and as expected most genes are essential under standard growth conditions. Conditionally lethal mutants are available in numerous genes, which facilitates physiological analyses. The array of genetic constructs facilitates analysis of the functions of genes from other organisms. Advances in mass spectroscopy have allowed very accurate and detailed analyses of lipid compositions as well as detection of the interactions of lipid biosynthetic proteins with one another and with proteins outside the lipid pathway. The combination of these advances has resulted in use of E. coli and S. enterica for discovery of new antimicrobials targeted to lipid synthesis and in deciphering the molecular actions of known antimicrobials. Finally,roles for bacterial fatty acids other than as membrane lipid structural components have been uncovered. For example, fatty acid synthesis plays major roles in the synthesis of the essential enzyme cofactors, biotin and lipoic acid. Although other roles for bacterial fatty acids, such as synthesis of acyl-homoserine quorum-sensing molecules, are not native to E. coli introduction of the relevant gene(s) synthesis of these foreign molecules readily proceeds and the sophisticated tools available can used to decipher the mechanisms of synthesis of these molecules.
Collapse
|
23
|
Abstract
Two vitamins, biotin and lipoic acid, are essential in all three domains of life. Both coenzymes function only when covalently attached to key metabolic enzymes. There they act as "swinging arms" that shuttle intermediates between two active sites (= covalent substrate channeling) of key metabolic enzymes. Although biotin was discovered over 100 years ago and lipoic acid was discovered 60 years ago, it was not known how either coenzyme is made until recently. In Escherichia coli the synthetic pathways for both coenzymes have now been worked out for the first time. The late steps of biotin synthesis, those involved in assembling the fused rings, were well described biochemically years ago, although recent progress has been made on the BioB reaction, the last step of the pathway, in which the biotin sulfur moiety is inserted. In contrast, the early steps of biotin synthesis, assembly of the fatty acid-like "arm" of biotin, were unknown. It has now been demonstrated that the arm is made by using disguised substrates to gain entry into the fatty acid synthesis pathway followed by removal of the disguise when the proper chain length is attained. The BioC methyltransferase is responsible for introducing the disguise and the BioH esterase for its removal. In contrast to biotin, which is attached to its cognate proteins as a finished molecule, lipoic acid is assembled on its cognate proteins. An octanoyl moiety is transferred from the octanoyl-ACP of fatty acid synthesis to a specific lysine residue of a cognate protein by the LipB octanoyl transferase, followed by sulfur insertion at carbons C6 and C8 by the LipA lipoyl synthetase. Assembly on the cognate proteins regulates the amount of lipoic acid synthesized, and thus there is no transcriptional control of the synthetic genes. In contrast, transcriptional control of the biotin synthetic genes is wielded by a remarkably sophisticated, yet simple, system exerted through BirA, a dual-function protein that both represses biotin operon transcription and ligates biotin to its cognate protein.
Collapse
|
24
|
The Atypical Occurrence of Two Biotin Protein Ligases in Francisella novicida Is Due to Distinct Roles in Virulence and Biotin Metabolism. mBio 2015; 6:e00591. [PMID: 26060274 PMCID: PMC4462617 DOI: 10.1128/mbio.00591-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The physiological function of biotin requires biotin protein ligase activity in order to attach the coenzyme to its cognate proteins, which are enzymes involved in central metabolism. The model intracellular pathogen Francisella novicida is unusual in that it encodes two putative biotin protein ligases rather than the usual single enzyme. F. novicida BirA has a ligase domain as well as an N-terminal DNA-binding regulatory domain, similar to the prototypical BirA protein in E. coli. However, the second ligase, which we name BplA, lacks the N-terminal DNA binding motif. It has been unclear why a bacterium would encode these two disparate biotin protein ligases, since F. novicida contains only a single biotinylated protein. In vivo complementation and enzyme assays demonstrated that BirA and BplA are both functional biotin protein ligases, but BplA is a much more efficient enzyme. BirA, but not BplA, regulated transcription of the biotin synthetic operon. Expression of bplA (but not birA) increased significantly during F. novicida infection of macrophages. BplA (but not BirA) was required for bacterial replication within macrophages as well as in mice. These data demonstrate that F. novicida has evolved two distinct enzymes with specific roles; BplA possesses the major ligase activity, whereas BirA acts to regulate and thereby likely prevent wasteful synthesis of biotin. During infection BplA seems primarily employed to maximize the efficiency of biotin utilization without limiting the expression of biotin biosynthetic genes, representing a novel adaptation strategy that may also be used by other intracellular pathogens. Our findings show that Francisella novicida has evolved two functional biotin protein ligases, BplA and BirA. BplA is a much more efficient enzyme than BirA, and its expression is significantly induced upon infection of macrophages. Only BplA is required for F. novicida pathogenicity, whereas BirA prevents wasteful biotin synthesis. These data demonstrate that the atypical occurrence of two biotin protein ligases in F. novicida is linked to distinct roles in virulence and biotin metabolism.
Collapse
|
25
|
Broussard TC, Kobe MJ, Pakhomova S, Neau DB, Price AE, Champion TS, Waldrop GL. The three-dimensional structure of the biotin carboxylase-biotin carboxyl carrier protein complex of E. coli acetyl-CoA carboxylase. Structure 2013; 21:650-7. [PMID: 23499019 DOI: 10.1016/j.str.2013.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 02/01/2013] [Accepted: 02/03/2013] [Indexed: 02/07/2023]
Abstract
Acetyl-coenzyme A (acetyl-CoA) carboxylase is a biotin-dependent, multifunctional enzyme that catalyzes the regulated step in fatty acid synthesis. The Escherichia coli enzyme is composed of a homodimeric biotin carboxylase (BC), biotinylated biotin carboxyl carrier protein (BCCP), and an α2β2 heterotetrameric carboxyltransferase. This enzyme complex catalyzes two half-reactions to form malonyl-coenzyme A. BC and BCCP participate in the first half-reaction, whereas carboxyltransferase and BCCP are involved in the second. Three-dimensional structures have been reported for the individual subunits; however, the structural basis for how BCCP reacts with the carboxylase or transferase is unknown. Therefore, we report here the crystal structure of E. coli BCCP complexed with BC to a resolution of 2.49 Å. The protein-protein complex shows a unique quaternary structure and two distinct interfaces for each BCCP monomer. These BCCP binding sites are unique compared to phylogenetically related biotin-dependent carboxylases and therefore provide novel targets for developing antibiotics against bacterial acetyl-CoA carboxylase.
Collapse
Affiliation(s)
- Tyler C Broussard
- Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Feng Y, Zhang H, Cronan JE. Profligate biotin synthesis in α-proteobacteria - a developing or degenerating regulatory system? Mol Microbiol 2013; 88:77-92. [PMID: 23387333 DOI: 10.1111/mmi.12170] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2013] [Indexed: 11/29/2022]
Abstract
Biotin (vitamin H) is a key enzyme cofactor required in all three domains of life. Although this cofactor was discovered over 70 years ago and has long been recognized as an essential nutrient for animals, our knowledge of the strategies bacteria use to sense biotin demand is very limited. The paradigm mechanism is that of Escherichia coli in which BirA protein, the prototypical bi-functional biotin protein ligase, both covalently attaches biotin to the acceptor proteins of central metabolism and represses transcription of the biotin biosynthetic pathway in response to biotin demand. However, in other bacteria the biotin protein ligase lacks a DNA-binding domain which raises the question of how these bacteria regulate the synthesis of biotin, an energetically expensive molecule. A bioinformatic study by Rodionov and Gelfand identified a protein termed BioR in α-proteobacteria and predicted that BioR would have the biotin operon regulatory role that in most other bacteria is fulfilled by the BirA DNA-binding domain. We have now tested this prediction in the plant pathogen Agrobacterium tumefaciens. As predicted the A. tumefaciens biotin protein ligase is a fully functional ligase that has no role in regulation of biotin synthesis whereas BioR represses transcription of the biotin synthesis genes. Moreover, as determined by electrophoretic mobility shift assays, BioR binds the predicted operator site, which is located downstream of the mapped transcription start site. qPCR measurements indicated that deletion of BioR resulted in a c. 15-fold increase of bio operon transcription in the presence of high biotin levels. Effective repression of a plasmid-borne bioB-lacZ reporter was seen only upon the overproduction of BioR. In contrast to E. coli and Bacillus subtilis where biotin synthesis is tightly controlled, A. tumefaciens synthesizes much more biotin than needed for modification of the biotin-requiring enzymes. Protein-bound biotin constitutes only about 0.5% of the total biotin, most of which is found in the culture medium. To the best of our knowledge, A. tumefaciens represents the first example of profligate biotin synthesis by a wild type bacterium.
Collapse
Affiliation(s)
- Youjun Feng
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
27
|
Waldrop GL, Holden HM, St Maurice M. The enzymes of biotin dependent CO₂ metabolism: what structures reveal about their reaction mechanisms. Protein Sci 2013; 21:1597-619. [PMID: 22969052 DOI: 10.1002/pro.2156] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Biotin is the major cofactor involved in carbon dioxide metabolism. Indeed, biotin-dependent enzymes are ubiquitous in nature and are involved in a myriad of metabolic processes including fatty acid synthesis and gluconeogenesis. The cofactor, itself, is composed of a ureido ring, a tetrahydrothiophene ring, and a valeric acid side chain. It is the ureido ring that functions as the CO₂ carrier. A complete understanding of biotin-dependent enzymes is critically important for translational research in light of the fact that some of these enzymes serve as targets for anti-obesity agents, antibiotics, and herbicides. Prior to 1990, however, there was a dearth of information regarding the molecular architectures of biotin-dependent enzymes. In recent years there has been an explosion in the number of three-dimensional structures reported for these proteins. Here we review our current understanding of the structures and functions of biotin-dependent enzymes. In addition, we provide a critical analysis of what these structures have and have not revealed about biotin-dependent catalysis.
Collapse
Affiliation(s)
- Grover L Waldrop
- Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | | | | |
Collapse
|
28
|
Chen N, Hong FL, Wang HH, Yuan QH, Ma WY, Gao XN, Shi R, Zhang RJ, Sun CS, Wang SB. Modified recombinant proteins can be exported via the Sec pathway in Escherichia coli. PLoS One 2012; 7:e42519. [PMID: 22912705 PMCID: PMC3418276 DOI: 10.1371/journal.pone.0042519] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 07/10/2012] [Indexed: 01/29/2023] Open
Abstract
The correct folding of a protein is a pre-requirement for its proper posttranslational modification. The Escherichia coli Sec pathway, in which preproteins, in an unfolded, translocation-competent state, are rapidly secreted across the cytoplasmic membrane, is commonly assumed to be unfavorable for their modification in the cytosol. Whether posttranslationally modified recombinant preproteins can be efficiently transported via the Sec pathway, however, remains unclear. ACP and BCCP domain (BCCP87) are carrier proteins that can be converted into active phosphopantetheinylated ACP (holo-ACP) and biotinylated-BCCP (holo-BCCP) by AcpS and BirA, respectively. In the present study, we show that, when ACP or BCCP87 is fused to the C-terminus of secretory protein YebF or MBP, the resulting fusion protein preYebF-ACP, preYebF-BCCP87, preMBP-ACP or preMBP-BCCP87 can be modified and then secreted. Our data demonstrate that posttranslational modification of preYebF-ACP, preYebF-BCCP87 preMBP-ACP and preMBP-BCCP87 can take place in the cytosol prior to translocation, and the Sec machinery accommodates these previously modified fusion proteins. High levels of active holo-ACP and holo-BCCP87 are achieved when AcpS or BirA is co-expressed, especially when sodium azide is used to retard their translocation across the inner membrane. Our results also provide an alternative to achieve a high level of modified recombinant proteins expressed extracellularly.
Collapse
Affiliation(s)
- Nan Chen
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Fu-Lin Hong
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Hai-Hong Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Qi-Hang Yuan
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Wan-Yan Ma
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Xu-Na Gao
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Rui Shi
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Rui-Juan Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Chang-Sheng Sun
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, P. R. China
| | - Sheng-Bin Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, P. R. China
- * E-mail:
| |
Collapse
|
29
|
Differential proteome analysis of a selected bacterial strain isolated from a high background radiation area in response to radium stress. J Proteomics 2012; 75:4820-32. [DOI: 10.1016/j.jprot.2012.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 04/24/2012] [Accepted: 05/13/2012] [Indexed: 10/28/2022]
|
30
|
Alves J, Westling L, Peters EC, Harris JL, Trauger JW. Cloning, expression, and enzymatic activity of Acinetobacter baumannii and Klebsiella pneumoniae acetyl-coenzyme A carboxylases. Anal Biochem 2011; 417:103-11. [PMID: 21704013 DOI: 10.1016/j.ab.2011.05.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/02/2011] [Accepted: 05/25/2011] [Indexed: 10/18/2022]
Abstract
Pathogenic Gram-negative bacteria are a major public health concern because they are causative agents of life-threatening hospital-acquired infections. Due to the increasing rates of resistance to available antibiotics, there is an urgent need to develop new drugs. Acetyl-coenzyme A carboxylase (ACCase) is a promising target for the development of novel antibiotics. We describe here the expression, purification, and enzymatic activity of recombinant ACCases from two clinically relevant Gram-negative pathogens, Acinetobacter baumannii and Klebsiella pneumoniae. Recombinant ACCase subunits (AccAD, AccB, and AccC) were expressed and purified, and the holoenzymes were reconstituted. ACCase enzyme activity was monitored by direct detection of malonyl-coenzyme A (malonyl-CoA) formation by liquid chromatography tandem mass spectrometry (LC-MS/MS). Steady-state kinetics experiments showed similar k(cat) and K(M) values for both enzymes. In addition, similar IC(50) values were observed for inhibition of both enzymes by a previously reported ACCase inhibitor. To provide a higher throughput assay suitable for inhibitor screening, we developed and validated a luminescence-based ACCase assay that monitors ATP depletion. Finally, we established an enzyme activity assay for the isolated AccAD (carboxyltransferase) subunit, which is useful for determining whether novel ACCase inhibitors inhibit the biotin carboxylase or carboxyltransferase site of ACCase. The methods described here could be applied toward the identification and characterization of novel inhibitors.
Collapse
Affiliation(s)
- Juliano Alves
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | | | | | | | | |
Collapse
|
31
|
Purushothaman S, Annamalai K, Tyagi AK, Surolia A. Diversity in functional organization of class I and class II biotin protein ligase. PLoS One 2011; 6:e16850. [PMID: 21390227 PMCID: PMC3048393 DOI: 10.1371/journal.pone.0016850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Accepted: 01/16/2011] [Indexed: 11/28/2022] Open
Abstract
The cell envelope of Mycobacterium tuberculosis
(M.tuberculosis) is composed of a variety of lipids
including mycolic acids, sulpholipids, lipoarabinomannans, etc., which impart
rigidity crucial for its survival and pathogenesis. Acyl CoA carboxylase (ACC)
provides malonyl-CoA and methylmalonyl-CoA, committed precursors for fatty acid
and essential for mycolic acid synthesis respectively. Biotin Protein Ligase
(BPL/BirA) activates apo-biotin carboxyl carrier protein (BCCP) by biotinylating
it to an active holo-BCCP. A minimal peptide (Schatz), an efficient substrate
for Escherichia coli BirA, failed to serve as substrate for
M. tuberculosis Biotin Protein Ligase
(MtBPL). MtBPL specifically biotinylates
homologous BCCP domain, MtBCCP87, but not
EcBCCP87. This is a unique feature of
MtBPL as EcBirA lacks such a stringent
substrate specificity. This feature is also reflected in the lack of
self/promiscuous biotinylation by MtBPL. The N-terminus/HTH
domain of EcBirA has the self-biotinable lysine residue that is
inhibited in the presence of Schatz peptide, a peptide designed to act as a
universal acceptor for EcBirA. This suggests that when biotin
is limiting, EcBirA preferentially catalyzes, biotinylation of
BCCP over self-biotinylation. R118G mutant of EcBirA showed
enhanced self and promiscuous biotinylation but its homologue, R69A
MtBPL did not exhibit these properties. The catalytic
domain of MtBPL was characterized further by limited
proteolysis. Holo-MtBPL is protected from proteolysis by
biotinyl-5′ AMP, an intermediate of MtBPL catalyzed
reaction. In contrast, apo-MtBPL is completely digested by
trypsin within 20 min of co-incubation. Substrate selectivity and inability to
promote self biotinylation are exquisite features of MtBPL and
are a consequence of the unique molecular mechanism of an enzyme adapted for the
high turnover of fatty acid biosynthesis.
Collapse
Affiliation(s)
| | | | - Anil K. Tyagi
- Department of Biochemistry, University of
Delhi South Campus, New Delhi, India
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of
Science, Bangalore, India
- National Institute of Immunology, Aruna Asaf
Ali Marg, New Delhi, India
- * E-mail:
| |
Collapse
|
32
|
Gago G, Diacovich L, Arabolaza A, Tsai SC, Gramajo H. Fatty acid biosynthesis in actinomycetes. FEMS Microbiol Rev 2011; 35:475-97. [PMID: 21204864 DOI: 10.1111/j.1574-6976.2010.00259.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
All organisms that produce fatty acids do so via a repeated cycle of reactions. In mammals and other animals, these reactions are catalyzed by a type I fatty acid synthase (FAS), a large multifunctional protein to which the growing chain is covalently attached. In contrast, most bacteria (and plants) contain a type II system in which each reaction is catalyzed by a discrete protein. The pathway of fatty acid biosynthesis in Escherichia coli is well established and has provided a foundation for elucidating the type II FAS pathways in other bacteria (White et al., 2005). However, fatty acid biosynthesis is more diverse in the phylum Actinobacteria: Mycobacterium, possess both FAS systems while Streptomyces species have only the multienzyme FAS II system and Corynebacterium species exclusively FAS I. In this review, we present an overview of the genome organization, biochemical properties and physiological relevance of the two FAS systems in the three genera of actinomycetes mentioned above. We also address in detail the biochemical and structural properties of the acyl-CoA carboxylases (ACCases) that catalyzes the first committed step of fatty acid synthesis in actinomycetes, and discuss the molecular bases of their substrate specificity and the structure-based identification of new ACCase inhibitors with antimycobacterial properties.
Collapse
Affiliation(s)
- Gabriela Gago
- Microbiology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | | | |
Collapse
|
33
|
Delli-Bovi TA, Spalding MD, Prigge ST. Overexpression of biotin synthase and biotin ligase is required for efficient generation of sulfur-35 labeled biotin in E. coli. BMC Biotechnol 2010; 10:73. [PMID: 20937134 PMCID: PMC2964542 DOI: 10.1186/1472-6750-10-73] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 10/11/2010] [Indexed: 12/27/2022] Open
Abstract
Background Biotin is an essential enzyme cofactor that acts as a CO2 carrier in carboxylation and decarboxylation reactions. The E. coli genome encodes a biosynthetic pathway that produces biotin from pimeloyl-CoA in four enzymatic steps. The final step, insertion of sulfur into desthiobiotin to form biotin, is catalyzed by the biotin synthase, BioB. A dedicated biotin ligase (BirA) catalyzes the covalent attachment of biotin to biotin-dependent enzymes. Isotopic labeling has been a valuable tool for probing the details of the biosynthetic process and assaying the activity of biotin-dependent enzymes, however there is currently no established method for 35S labeling of biotin. Results In this study, we produced [35S]-biotin from Na35SO4 and desthiobiotin with a specific activity of 30.7 Ci/mmol, two orders of magnitude higher than previously published methods. The biotinylation domain (PfBCCP-79) from the Plasmodium falciparum acetyl-CoA carboxylase (ACC) was expressed in E. coli as a biotinylation substrate. We found that overexpression of the E. coli biotin synthase, BioB, and biotin ligase, BirA, increased PfBCCP-79 biotinylation 160-fold over basal levels. Biotinylated PfBCCP-79 was purified by affinity chromatography, and free biotin was liberated using acid hydrolysis. We verified that we had produced radiolabeled biologically active [D]-biotin that specifically labels biotinylated proteins through reuptake in E. coli. Conclusions The strategy described in our report provides a simple and effective method for the production of [35S]-biotin in E. coli based on affinity chromatography.
Collapse
Affiliation(s)
- Teegan A Delli-Bovi
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
34
|
Arabolaza A, Shillito ME, Lin TW, Diacovich L, Melgar M, Pham H, Amick D, Gramajo H, Tsai SC. Crystal structures and mutational analyses of acyl-CoA carboxylase beta subunit of Streptomyces coelicolor. Biochemistry 2010; 49:7367-76. [PMID: 20690600 DOI: 10.1021/bi1005305] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first committed step of fatty acid and polyketides biosynthesis, the biotin-dependent carboxylation of an acyl-CoA, is catalyzed by acyl-CoA carboxylases (ACCases) such as acetyl-CoA carboxylase (ACC) and propionyl-CoA carboxylase (PCC). ACC and PCC in Streptomyces coelicolor are homologue multisubunit complexes that can carboxylate different short chain acyl-CoAs. While ACC is able to carboxylate acetyl-, propionyl-, or butyryl-CoA with approximately the same specificity, PCC only recognizes propionyl- and butyryl-CoA as substrates. How ACC and PCC have such different specificities toward these substrates is only partially understood. To further understand the molecular basis of how the active site residues can modulate the substrate recognition, we mutated D422, N80, R456, and R457 of PccB, the catalytic beta subunit of PCC. The crystal structures of six PccB mutants and the wild type crystal structure were compared systematically to establish the sequence-structure-function relationship that correlates the observed substrate specificity toward acetyl-, propionyl-, and butyryl-CoA with active site geometry. The experimental data confirmed that D422 is a key determinant of substrate specificity, influencing not only the active site properties but further altering protein stability and causing long-range conformational changes. Mutations of N80, R456, and R457 lead to variations in the quaternary structure of the beta subunit and to a concomitant loss of enzyme activity, indicating the importance of these residues in maintaining the active protein conformation as well as a critical role in substrate binding.
Collapse
Affiliation(s)
- Ana Arabolaza
- Instituto de Biología Molecular y Celular de Rosario (IBR-Consejo Nacional de Investigaciones Científicas y Técnicas) and Departamento de Microbiología, Facultad de Ciencias Bioquímicasy Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Healy S, McDonald MK, Wu X, Yue WW, Kochan G, Oppermann U, Gravel RA. Structural impact of human and Escherichia coli biotin carboxyl carrier proteins on biotin attachment. Biochemistry 2010; 49:4687-94. [PMID: 20443544 DOI: 10.1021/bi901612y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Holocarboxylase synthetase (HCS, human) and BirA (Escherichia coli) are biotin protein ligases that catalyze the ATP-dependent attachment of biotin to apocarboxylases. Biotin attachment occurs on a highly conserved lysine residue within a consensus sequence (Ala/Val-Met-Lys-Met) that is found in carboxylases in most organisms. Numerous studies have indicated that HCS and BirA, as well as biotin protein ligases from other organisms, can attach biotin to apocarboxylases from different organisms, indicating that the mechanism of biotin attachment is well conserved. In this study, we examined the cross-reactivity of biotin attachment between human and bacterial biotin ligases by comparing biotinylation of p-67 and BCCP87, the biotin-attachment domain fragments from human propionyl-CoA carboxylase and E. coli acetyl-CoA carboxylase, respectively. While BirA has similar biotinylation activity toward the two substrates, HCS has reduced activity toward bacterial BCCP87 relative to its native substrate, p-67. The crystal structure of a digested form of p-67, spanning a sequence that contains a seven-residue protruding thumb loop in BCCP87, revealed the absence of a similar structure in the human peptide. Significantly, an engineered "thumbless" bacterial BCCP87 could be biotinylated by HCS, with substrate affinity restored to near normal. This study suggests that the thumb loop found in bacterial carboxylases interferes with optimal interaction with the mammalian biotin protein ligase. While the function of the thumb loop remains unknown, these results indicate a constraint on specificity of the bacterial substrate for biotin attachment that is not itself a feature of BirA.
Collapse
Affiliation(s)
- Shannon Healy
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4N1.
| | | | | | | | | | | | | |
Collapse
|
36
|
Reyda MR, Fugate CJ, Jarrett JT. A complex between biotin synthase and the iron-sulfur cluster assembly chaperone HscA that enhances in vivo cluster assembly. Biochemistry 2009; 48:10782-92. [PMID: 19821612 DOI: 10.1021/bi901393t] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biotin synthase (BioB) is an iron-sulfur enzyme that catalyzes the last step in biotin biosynthesis, the insertion of sulfur between the C6 and C9 atoms of dethiobiotin to complete the thiophane ring of biotin. Recent in vitro experiments suggest that the sulfur is derived from a [2Fe-2S](2+) cluster within BioB, and that the remnants of this cluster dissociate from the enzyme following each turnover. For BioB to catalyze multiple rounds of biotin synthesis, the [2Fe-2S](2+) cluster in BioB must be reassembled, a process that could be conducted in vivo by the ISC or SUF iron-sulfur cluster assembly systems. The bacterial ISC system includes HscA, an Hsp70 class molecular chaperone, whose yeast homologue has been shown to play an important but nonessential role in assembly of mitochondrial FeS clusters in Saccharomyces cerevisiae. In this work, we show that in Escherichia coli, HscA significantly improves the efficiency of the in vivo assembly of the [2Fe-2S](2+) cluster on BioB under conditions of low to moderate iron. In vitro, we show that HscA binds with increased affinity to BioB missing one or both FeS clusters, with a maximum of two HscA molecules per BioB dimer. BioB binds to HscA in an ATP/ADP-independent manner, and a high-affinity complex is also formed with a truncated form of HscA that lacks the nucleotide binding domain. Further, the BioB-HscA complex binds the FeS cluster scaffold protein IscU in a noncompetitive manner, generating a complex that contains all three proteins. We propose that HscA plays a role in facilitating the transfer of FeS clusters from IscU into the appropriate target apoproteins such as biotin synthase, perhaps by enhancing or prolonging the requisite protein-protein interaction.
Collapse
Affiliation(s)
- Michael R Reyda
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| | | | | |
Collapse
|
37
|
Cheng CC, Shipps GW, Yang Z, Sun B, Kawahata N, Soucy KA, Soriano A, Orth P, Xiao L, Mann P, Black T. Discovery and optimization of antibacterial AccC inhibitors. Bioorg Med Chem Lett 2009; 19:6507-14. [PMID: 19875284 DOI: 10.1016/j.bmcl.2009.10.057] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 10/12/2009] [Accepted: 10/13/2009] [Indexed: 11/27/2022]
Abstract
The biotin carboxylase (AccC) is part of the multi-component bacterial acetyl coenzyme-A carboxylase (ACCase) and is essential for pathogen survival. We describe herein the affinity optimization of an initial hit to give 2-(2-chlorobenzylamino)-1-(cyclohexylmethyl)-1H-benzo[d]imidazole-5-carboxamide (1), which was identified using our proprietary Automated Ligand Identification System (ALIS).(1) The X-ray co-crystal structure of 1 was solved and revealed several key interactions and opportunities for further optimization in the ATP site of AccC. Structure Based Drug Design (SBDD) and parallel synthetic approaches resulted in a novel series of AccC inhibitors, exemplified by (R)-2-(2-chlorobenzylamino)-1-(2,3-dihydro-1H-inden-1-yl)-1H-imidazo[4,5-b]pyridine-5-carboxamide (40). This compound is a potent and selective inhibitor of bacterial AccC with an IC(50) of 20 nM and a MIC of 0.8 microg/mL against a sensitized strain of Escherichia coli (HS294 E. coli).
Collapse
Affiliation(s)
- Cliff C Cheng
- Schering-Plough Research Institute, Cambridge, MA 02141, United States.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Pendini NR, Bailey LM, Booker GW, Wilce MC, Wallace JC, Polyak SW. Microbial biotin protein ligases aid in understanding holocarboxylase synthetase deficiency. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:973-82. [DOI: 10.1016/j.bbapap.2008.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 03/16/2008] [Accepted: 03/26/2008] [Indexed: 11/16/2022]
|
39
|
Lee CK, Cheong HK, Ryu KS, Lee JI, Jeon YH, Cheong CJ. Biotinoyl Domain of Human Acetyl-CoA Carboxylase;Structural Insights into the Carboxyl Transfer Mechanism. JOURNAL OF THE KOREAN MAGNETIC RESONANCE SOCIETY 2008. [DOI: 10.6564/jkmrs.2008.12.1.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Solution Structure and Backbone Dynamics of the Biotinylation Domain of Helicobacter pylori Biotin-carboxyl Carrier Protein. B KOREAN CHEM SOC 2008. [DOI: 10.5012/bkcs.2008.29.2.347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Biotinoyl domain of human acetyl-CoA carboxylase: Structural insights into the carboxyl transfer mechanism. Proteins 2008; 72:613-24. [DOI: 10.1002/prot.21952] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Reyda MR, Dippold R, Dotson ME, Jarrett JT. Loss of iron-sulfur clusters from biotin synthase as a result of catalysis promotes unfolding and degradation. Arch Biochem Biophys 2007; 471:32-41. [PMID: 18155152 DOI: 10.1016/j.abb.2007.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 12/04/2007] [Accepted: 12/05/2007] [Indexed: 11/30/2022]
Abstract
Biotin synthase (BioB) is an S-adenosylmethionine radical enzyme that catalyzes addition of sulfur to dethiobiotin to form the biotin thiophane ring. In vitro, Escherichia coli BioB is active for only one turnover, during which the [2Fe-2S]2+ cluster is destroyed, one sulfide from the cluster is incorporated as the biotin thiophane sulfur, while Fe2+ ions and the remaining S2- ion are released from the protein. The present work examines the fate of the protein following the loss of the FeS clusters. We examine the quaternary structure and thermal stability of active and inactive states of BioB, and find that loss of either the [4Fe-4S]2+ or [2Fe-2S]2+ clusters results in destabilization but not global unfolding of BioB. Using susceptibility to limited proteolysis as a guide, we find that specific regions of the protein appear to be transiently unfolded following loss of these clusters. We also examine the in vivo degradation of biotin synthase during growth in low-iron minimal media and find that BioB is degraded by an apparent ATP-dependent proteolysis mechanism that sequentially cleaves small fragments starting at the C-terminus. BioB appears to be resistant to degradation and capable of multiple turnovers only under high-iron conditions that favor repair of the FeS clusters, a process most likely mediated by the Isc or Suf iron-sulfur cluster assembly systems.
Collapse
Affiliation(s)
- Michael R Reyda
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822-2275, United States
| | | | | | | |
Collapse
|
43
|
Abdel-Hamid AM, Cronan JE. Coordinate expression of the acetyl coenzyme A carboxylase genes, accB and accC, is necessary for normal regulation of biotin synthesis in Escherichia coli. J Bacteriol 2006; 189:369-76. [PMID: 17056747 PMCID: PMC1797400 DOI: 10.1128/jb.01373-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the biotin (bio) biosynthetic operon of Escherichia coli is negatively regulated by the BirA protein, an atypical repressor protein in that it is also an enzyme. The BirA-catalyzed reaction involves the covalent attachment of biotin to AccB, a subunit of acetyl coenzyme (acetyl-CoA) carboxylase. The two functions of BirA allow regulation of the bio operon to respond to the intracellular concentrations of both biotin and unbiotinylated AccB. We report here that bio operon expression is down-regulated by overproduction of AccC, another acetyl-CoA carboxylase subunit known to form a complex with AccB. This down-regulation is eliminated when AccB and AccC are coordinately overexpressed, but only when the AccB partner is competent to bind AccC. Under AccC overexpression conditions AccB is underbiotinylated. These findings can be explained by a model in which excess AccC sequesters AccB in a complex that is a poor substrate for biotinylation. The observed disruption of biotin synthesis and attachment provides an excellent rationale for the observation that in the vast majority of sequenced bacterial genomes AccB and AccC are encoded in a two-gene operon.
Collapse
|
44
|
Abstract
A series of genetic, biochemical, and physiological studies in Escherichia coli have elucidated the unusual pathway whereby lipoic acid is synthesized. Here we describe the results of these investigations as well as the functions of enzyme proteins that are modified by covalent attachment of lipoic acid and the enzymes that catalyze the modification reactions. Some aspects of the synthesis and attachment mechanisms have strong parallels in the pathways used in synthesis and attachment of biotin and these are compared and contrasted. Homologues of the lipoic acid metabolism proteins are found in all branches of life, save the Archea, and thus these findings seem to have wide biological relevance.
Collapse
Affiliation(s)
- John E Cronan
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
45
|
Soriano A, Radice AD, Herbitter AH, Langsdorf EF, Stafford JM, Chan S, Wang S, Liu YH, Black TA. Escherichia coli acetyl-coenzyme A carboxylase: characterization and development of a high-throughput assay. Anal Biochem 2005; 349:268-76. [PMID: 16325142 DOI: 10.1016/j.ab.2005.10.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 10/21/2005] [Accepted: 10/26/2005] [Indexed: 10/25/2022]
Abstract
Bacterial acetyl-coenzyme A carboxylase (ACCase) is a multicomponent system composed of AccA, AccD, AccC, and AccB (also known as BCCP), which is required for fatty acid biosynthesis. It is essential for cell growth and has been chemically validated as a target for antimicrobial drug discovery. To identify ACCase inhibitors, a simple and robust assay that monitors the overall activity by measuring phosphate production at physiologically relevant concentrations of all protein components was developed. Inorganic phosphate production was demonstrated to directly reflect the coupled activities of AccC and AccA/D with BCCP cycling between the two half-reactions. The K(m) apparent values for ATP, acetyl-coenzyme A, and BCCP were estimated to be 60+/-14 microM, 18+/-4 microM, and 39+/-9 nM, respectively. The stoichiometry between the two half-reactions was measured to be 1:1. Carboxy-biotin produced in the first half-reaction was stable over the time course of the assay. The assay was adapted to a high-throughput screen (HTS) 384-well format using a modified published scintillation proximity method. The optimized HTS assay has acceptable Z' factor values and was validated to report inhibitions of either AccC or AccA/D. The assay is not susceptible to signal quenching due to colored compounds.
Collapse
Affiliation(s)
- Aileen Soriano
- Schering-Plough Research Institute, Kenilworth, NJ 07033, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Choi-Rhee E, Cronan JE. Biotin synthase is catalytic in vivo, but catalysis engenders destruction of the protein. ACTA ACUST UNITED AC 2005; 12:461-8. [PMID: 15850983 DOI: 10.1016/j.chembiol.2005.02.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 02/11/2005] [Accepted: 02/15/2005] [Indexed: 11/26/2022]
Abstract
Biotin synthase is responsible for the synthesis of biotin from dethiobiotin and sulfur. Although the name of the protein implies that it functions as an enzyme, it has been consistently reported that biotin synthase produces <1 molecule of biotin per molecule of protein in vitro. Moreover, the source of the biotin sulfur atom has been reported to be the [2Fe-2S] center of the protein. Biotin synthase has therefore been designated as a substrate or reactant rather than an enzyme. We report in vivo experiments demonstrating that biotin synthase is catalytic but that catalysis puts the protein at risk of proteolytic destruction.
Collapse
Affiliation(s)
- Eunjoo Choi-Rhee
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
47
|
James ES, Cronan JE. Expression of Two Escherichia coli Acetyl-CoA Carboxylase Subunits Is Autoregulated. J Biol Chem 2004; 279:2520-7. [PMID: 14594796 DOI: 10.1074/jbc.m311584200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acetyl-CoA carboxylase (ACC) catalyzes the first step of fatty acid biosynthesis, the synthesis of malonyl-CoA from acetyl-CoA using ATP and bicarbonate. In Escherichia coli and most other bacteria, ACC is composed of four subunits encoded by accA, accB, accC, and accD. Prior work from this laboratory showed that the in vivo expression of the accBC operon had a strikingly nonlinear response to gene copy number (Li, S.-J, and Cronan, J. E., Jr. (1993) J. Bacteriol. 175, 332-340) in that the presence of 50 or more copies of the accBC operon resulted in only a 2-3-fold increase in AccB and AccC. We now report that AccB functions to negatively regulate transcription of the accBC operon. Expression of a chimeric protein consisting of the N terminus of E. coli AccB and the C-terminal bioinylation domain of Bacillus subtilis AccB down-regulated transcription of the E. coli accBC operon. A truncated form of AccB consisting of the N-terminal 68 amino acids of E. coli AccB was sufficient to negatively regulate the accBC operon. In vivo bypass of acetyl-CoA carboxylase activity by expression of a malonyl-CoA synthase from Rhizobium trifolii allowed construction of strain deleted for the accA and accB genes. Unexpectedly, the deltaaccB mutation could not be resolved from the deltaaccA mutation. Transcription of the accBC operon in the deltaaccB deltaaccA strain continued well into stationary phase under growth conditions that normally result in greatly decreased transcription. These data support a model in which AccB acts as an autoregulator of accBC operon transcription.
Collapse
Affiliation(s)
- Ethan S James
- Departments of Microbiology and Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
48
|
Choi-Rhee E, Cronan JE. The biotin carboxylase-biotin carboxyl carrier protein complex of Escherichia coli acetyl-CoA carboxylase. J Biol Chem 2003; 278:30806-12. [PMID: 12794081 DOI: 10.1074/jbc.m302507200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli acetyl-CoA carboxylase (ACC) is composed of four different protein molecules. These proteins form a large but very unstable complex. Hints of a sub-complex between the biotin carboxylase (BC) and biotin carboxyl carrier protein (BCCP) subunits have been reported in the literature, but the complex was not isolated and thus the protein stoichiometry could not be determined. We report isolation of the BC.BCCP complex. By use of affinity chromatography using two different affinity tags it was shown that the complex consists of a two BCCP molecules per BC molecule. The molar ratio in the complex is the same as the ratio of the subunit proteins synthesized in vivo. We conclude that the complex consists of a dimer of BC plus four BCCP molecules instead of the 2BC.2BCCP complex previously assumed. This subunit ratio allows two conflicting models of the ACC mechanism to be rectified. We also report that the N-terminal 30 or so residues of BCCP are responsible for the interaction of BCCP with BC and that the BC.BCCP complex is a substrate for biotinylation in vitro.
Collapse
Affiliation(s)
- Eunjoo Choi-Rhee
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
49
|
Clarke DJ, Coulson J, Baillie R, Campopiano DJ. Biotinylation in the hyperthermophile Aquifex aeolicus. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1277-87. [PMID: 12631286 DOI: 10.1046/j.1432-1033.2003.03493.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Biotin protein ligase (BPL) catalyses the biotinylation of the biotin carboxyl carrier protein (BCCP) subunit of acetyl CoA carboxylase and this post-translational modification of a single lysine residue is exceptionally specific. The exact details of the protein-protein interactions involved are unclear as a BPL:BCCP complex has not yet been isolated. Moreover, detailed information is lacking on the composition, biosynthesis and role of fatty acids in hyperthermophilic organisms. We have cloned, overexpressed and purified recombinant BPL and the biotinyl domain of BCCP (BCCP Delta 67) from the extreme hyperthermophile Aquifex aeolicus. In vitro assays have demonstrated that BPL catalyses biotinylation of lysine 117 on BCCP Delta 67 at temperatures of up to 70 degrees C. Limited proteolysis of BPL with trypsin and chymotrypsin revealed a single protease-sensitive site located 44 residues from the N-terminus. This site is adjacent to the predicted substrate-binding site and proteolysis of BPL is significantly reduced in the presence of MgATP and biotin. Chemical crosslinking with 1-ethyl-3-(dimethylamino-propyl)-carbodiimide (EDC) allowed the isolation of a BPL:apo-BCCP Delta 67 complex. Furthermore, this complex was also formed between BPL and a BCCP Delta 67 mutant lacking the lysine residue (BCCP Delta 67 K117L) however, complex formation was considerably reduced using holo-BCCP Delta 67. These observations provide evidence that addition of the biotin prosthetic group reduces the ability of BCCP Delta 67 to heterodimerize with BPL, and emphasizes that a network of interactions between residues on both proteins mediates protein recognition.
Collapse
|
50
|
Abstract
Acetyl-CoA carboxylase (ACC) catalyses the first committed step of fatty acid synthesis, the carboxylation of acetyl-CoA to malonyl-CoA. Two physically distinct types of enzymes are found in nature. Bacterial and most plant chloroplasts contain a multi-subunit ACC (MS-ACC) enzyme that is readily dissociated into its component proteins. Mammals, fungi, and plant cytosols contain the second type of ACC, a single large multifunctional polypeptide. This review will focus on the structures, regulation, and enzymatic mechanisms of the bacterial and plant MS-ACCs.
Collapse
Affiliation(s)
- John E Cronan
- Department of Microbiology, B103 Chemical and Life Sciences Laboratory, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL 61801, USA.
| | | |
Collapse
|