1
|
Bora Yildiz C, Du J, Mohan KN, Zimmer-Bensch G, Abdolahi S. The role of lncRNAs in the interplay of signaling pathways and epigenetic mechanisms in glioma. Epigenomics 2025; 17:125-140. [PMID: 39829063 PMCID: PMC11792803 DOI: 10.1080/17501911.2024.2442297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Gliomas, highly aggressive tumors of the central nervous system, present overwhelming challenges due to their heterogeneity and therapeutic resistance. Glioblastoma multiforme (GBM), the most malignant form, underscores this clinical urgency due to dismal prognosis despite aggressive treatment regimens. Recent advances in cancer research revealed signaling pathways and epigenetic mechanisms that intricately govern glioma progression, offering multifaceted targets for therapeutic intervention. This review explores the dynamic interplay between signaling events and epigenetic regulation in the context of glioma, with a particular focus on the crucial roles played by non-coding RNAs (ncRNAs). Through direct and indirect epigenetic targeting, ncRNAs emerge as key regulators shaping the molecular landscape of glioblastoma across its various stages. By dissecting these intricate regulatory networks, novel and patient-tailored therapeutic strategies could be devised to improve patient outcomes with this devastating disease.
Collapse
Affiliation(s)
- Can Bora Yildiz
- Division of Neuroepigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 Multi Senses – Multi Scales, RWTH Aachen University, Aachen, Germany
| | - Jian Du
- Division of Neuroepigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Aachen, Germany
| | - K. Naga Mohan
- Molecular Biology and Genetics Laboratory, Department of Biological Sciences, Hyderabad, India
| | - Geraldine Zimmer-Bensch
- Division of Neuroepigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 Multi Senses – Multi Scales, RWTH Aachen University, Aachen, Germany
| | - Sara Abdolahi
- Division of Neuroepigenetics, Institute of Zoology (Biology 2), RWTH Aachen University, Aachen, Germany
| |
Collapse
|
2
|
Yang Y, Feng W, Zhou J, Zhang R, Lin X, Sooranna SR, Deng Y, Shi D. Epigenetic modifications of gonadotropin receptors can regulate follicular development. Anim Reprod Sci 2024; 268:107534. [PMID: 39047429 DOI: 10.1016/j.anireprosci.2024.107534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
The spatiotemporal transcription of follicle-stimulating hormone receptor (FSHR) and luteinizing hormone/human chorionic gonadotropin receptor (LHCGR) are crucial events for follicular development. However, their regulatory mechanisms are unclear. DNA methylation and histone acetylation are the main epigenetic modifications, and play important roles in transcriptional expression, which regulate cell responses including cell proliferation, senescence and apoptosis. This review will discuss the dynamic epigenetic modifications of FSHR and LHCGR that occur during the process of follicular development and their response to gonadotropins. In addition, some alteration patterns that occur during these epigenetic modifications, as well as their retrospect retrotransposons, which regulate the gene expression levels of FSHR and LHCGR will be discussed.
Collapse
Affiliation(s)
- Yanyan Yang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Wanyou Feng
- School of Environmental and Life Sciences, Nanning Normal University, Nanning 530023, China
| | - Jinhua Zhou
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Ruimen Zhang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xinyue Lin
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Suren Rao Sooranna
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Yanfei Deng
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| | - Deshun Shi
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
3
|
Wang Y, Pattarawat P, Zhang J, Kim E, Zhang D, Fang M, Jannaman EA, Yuan Y, Chatterjee S, Kim JYJ, Scott GI, Zhang Q, Xiao S. Effects of Cyanobacterial Harmful Algal Bloom Toxin Microcystin-LR on Gonadotropin-Dependent Ovarian Follicle Maturation and Ovulation in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:67010. [PMID: 37342990 PMCID: PMC10284350 DOI: 10.1289/ehp12034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/28/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Cyanobacterial harmful algal blooms (CyanoHABs) originate from the excessive growth or bloom of cyanobacteria often referred to as blue-green algae. They have been on the rise globally in both marine and freshwaters in recently years with increasing frequency and severity owing to the rising temperature associated with climate change and increasing anthropogenic eutrophication from agricultural runoff and urbanization. Humans are at a great risk of exposure to toxins released from CyanoHABs through drinking water, food, and recreational activities, making CyanoHAB toxins a new class of contaminants of emerging concern. OBJECTIVES We investigated the toxic effects and mechanisms of microcystin-LR (MC-LR), the most prevalent CyanoHAB toxin, on the ovary and associated reproductive functions. METHODS Mouse models with either chronic daily oral or acute intraperitoneal exposure, an engineered three-dimensional ovarian follicle culture system, and human primary ovarian granulosa cells were tested with MC-LR of various dose levels. Single-follicle RNA sequencing, reverse transcription-quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, western blotting, immunohistochemistry (IHC), and benchmark dose modeling were used to examine the effects of MC-LR on follicle maturation, hormone secretion, ovulation, and luteinization. RESULTS Mice exposed long term to low-dose MC-LR did not exhibit any differences in the kinetics of folliculogenesis, but they had significantly fewer corpora lutea compared with control mice. Superovulation models further showed that mice exposed to MC-LR during the follicle maturation window had significantly fewer ovulated oocytes. IHC results revealed ovarian distribution of MC-LR, and mice exposed to MC-LR had significantly lower expression of key follicle maturation mediators. Mechanistically, in both murine and human granulosa cells exposed to MC-LR, there was reduced protein phosphatase 1 (PP1) activity, disrupted PP1-mediated PI3K/AKT/FOXO1 signaling, and less expression of follicle maturation-related genes. DISCUSSION Using both in vivo and in vitro murine and human model systems, we provide data suggesting that environmentally relevant exposure to the CyanoHAB toxin MC-LR interfered with gonadotropin-dependent follicle maturation and ovulation. We conclude that MC-LR may pose a nonnegligible risk to women's reproductive health by heightening the probability of irregular menstrual cycles and infertility related to ovulatory disorders. https://doi.org/10.1289/EHP12034.
Collapse
Affiliation(s)
- Yingzheng Wang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
- National Institute of Environmental Health Sciences Center for Oceans and Human Health and Climate Change Interactions at the University of South Carolina, Columbia, South Carolina, USA
- Center for Environmental Exposures and Disease, Rutgers University, Piscataway, New Jersey, USA
| | - Pawat Pattarawat
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Jiyang Zhang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Eunchong Kim
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Delong Zhang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Mingzhu Fang
- New Jersey Department of Environmental Protection, Trenton, New Jersey, USA
| | | | - Ye Yuan
- Colorado Center for Reproductive Medicine, Lone Tree, Colorado, USA
| | - Saurabh Chatterjee
- Department of Environmental and Occupational Health, University of California, Irvine, Irvine, California, USA
- Division of Infectious Disease, Department of Medicine, University of California, Irvine, Irvine, California, USA
| | - Ji-Yong Julie Kim
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Geoffrey I. Scott
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
- National Institute of Environmental Health Sciences Center for Oceans and Human Health and Climate Change Interactions at the University of South Carolina, Columbia, South Carolina, USA
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
- National Institute of Environmental Health Sciences Center for Oceans and Human Health and Climate Change Interactions at the University of South Carolina, Columbia, South Carolina, USA
- Center for Environmental Exposures and Disease, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
4
|
Hsieh YY, Lee KC, Cheng KC, Lee KF, Yang YL, Chu HT, Lin TW, Chen CC, Hsieh MC, Huang CY, Kuo HC, Teng CC. Antrodin C Isolated from Antrodia Cinnamomea Induced Apoptosis through ROS/AKT/ERK/P38 Signaling Pathway and Epigenetic Histone Acetylation of TNFα in Colorectal Cancer Cells. Antioxidants (Basel) 2023; 12:antiox12030764. [PMID: 36979011 PMCID: PMC10045953 DOI: 10.3390/antiox12030764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Antrodin C, a maleimide derivative compound isolated from the ethanol extract of the mycelium of Antrodia cinnamomea, is an endemic fungus of Taiwan and a potential chemoprotective agent. However, the molecular mechanisms underlying the mode of action of antrodin C on cancer cells, especially in human colorectal cancer (CRC), remain unclear. METHODS The cell death and ROS of the antrodin-C-treated HCT-116 cells were measured by annexin V-FITC/propidium iodide staining, DCFDA, and Fluo-3 fluorescence staining assays. Moreover, signaling molecules regulating TNFα cell death pathways and ROS/AKT/ERK/P38 pathways were also detected in cells treated with antrodin C by Western blotting and chromatin immunoprecipitation. The effects of antrodin C were determined in HCT-116 cell xenograft animal models in terms of tumor volumes and histopathological evaluation. RESULTS Treatment with antrodin C triggered the activation of extrinsic apoptosis pathways (TNFα, Bax, caspase-3, and -9), and also suppressed the expression of anti-apoptotic molecules Bcl-2 in HCT-116 cells in a time-dependent manner. Antrodin C also decreased cell proliferation and growth through the inactivation of cyclin D1/cyclin for the arrest of the cell cycle at the G1 phase. The activation of the ROS/AKT/ERK/P38 pathways was involved in antrodin-C-induced transcriptional activation, which implicates the role of the histone H3K9K14ac (Acetyl Lys9/Lys14) of the TNFα promoters. Immunohistochemical analyses revealed that antrodin C treatment significantly induced TNFα levels, whereas it decreased the levels of PCNA, cyclin D1, cyclin E, and MMP-9 in an in vivo xenograft mouse model. Thus, antrodin C induces cell apoptosis via the activation of the ROS/AKT/ERK/P38 signaling modules, indicating a new mechanism for antrodin C to treat CRC in vitro and in vivo.
Collapse
Affiliation(s)
- Yung-Yu Hsieh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Ko-Chao Lee
- Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung 833401, Taiwan
- College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Kung-Chuan Cheng
- Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung 833401, Taiwan
| | - Kam-Fai Lee
- Department of Pathology, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| | - Ya-Ling Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
| | - Hsin-Tung Chu
- Biotech Research Institute, Grap King Bio Ltd., Taoyuan 325002, Taiwan
| | - Ting-Wei Lin
- Biotech Research Institute, Grap King Bio Ltd., Taoyuan 325002, Taiwan
| | - Chin-Chu Chen
- Biotech Research Institute, Grap King Bio Ltd., Taoyuan 325002, Taiwan
| | - Meng-Chiao Hsieh
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| | - Cheng-Yi Huang
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| | - Hsing-Chun Kuo
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chiayi 613016, Taiwan
- Research Fellow, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 613016, Taiwan
| | - Chih-Chuan Teng
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chiayi 613016, Taiwan
- Research Fellow, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| |
Collapse
|
5
|
Kilanowska A, Ziółkowska A, Stasiak P, Gibas-Dorna M. cAMP-Dependent Signaling and Ovarian Cancer. Cells 2022; 11:cells11233835. [PMID: 36497095 PMCID: PMC9738761 DOI: 10.3390/cells11233835] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
cAMP-dependent pathway is one of the most significant signaling cascades in healthy and neoplastic ovarian cells. Working through its major effector proteins-PKA and EPAC-it regulates gene expression and many cellular functions. PKA promotes the phosphorylation of cAMP response element-binding protein (CREB) which mediates gene transcription, cell migration, mitochondrial homeostasis, cell proliferation, and death. EPAC, on the other hand, is involved in cell adhesion, binding, differentiation, and interaction between cell junctions. Ovarian cancer growth and metabolism largely depend on changes in the signal processing of the cAMP-PKA-CREB axis, often associated with neoplastic transformation, metastasis, proliferation, and inhibition of apoptosis. In addition, the intracellular level of cAMP also determines the course of other pathways including AKT, ERK, MAPK, and mTOR, that are hypo- or hyperactivated among patients with ovarian neoplasm. With this review, we summarize the current findings on cAMP signaling in the ovary and its association with carcinogenesis, multiplication, metastasis, and survival of cancer cells. Additionally, we indicate that targeting particular stages of cAMP-dependent processes might provide promising therapeutic opportunities for the effective management of patients with ovarian cancer.
Collapse
Affiliation(s)
- Agnieszka Kilanowska
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
- Correspondence: ; Tel.: +48-683-283-148
| | - Agnieszka Ziółkowska
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| | - Piotr Stasiak
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| | - Magdalena Gibas-Dorna
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| |
Collapse
|
6
|
Wu M, Guo Y, Wei S, Xue L, Tang W, Chen D, Xiong J, Huang Y, Fu F, Wu C, Chen Y, Zhou S, Zhang J, Li Y, Wang W, Dai J, Wang S. Biomaterials and advanced technologies for the evaluation and treatment of ovarian aging. J Nanobiotechnology 2022; 20:374. [PMID: 35953871 PMCID: PMC9367160 DOI: 10.1186/s12951-022-01566-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/17/2022] [Indexed: 12/26/2022] Open
Abstract
Ovarian aging is characterized by a progressive decline in ovarian function. With the increase in life expectancy worldwide, ovarian aging has gradually become a key health problem among women. Over the years, various strategies have been developed to preserve fertility in women, while there are currently no clinical treatments to delay ovarian aging. Recently, advances in biomaterials and technologies, such as three-dimensional (3D) printing and microfluidics for the encapsulation of follicles and nanoparticles as delivery systems for drugs, have shown potential to be translational strategies for ovarian aging. This review introduces the research progress on the mechanisms underlying ovarian aging, and summarizes the current state of biomaterials in the evaluation and treatment of ovarian aging, including safety, potential applications, future directions and difficulties in translation.
Collapse
Affiliation(s)
- Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yibao Huang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Fangfang Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Wenwen Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China. .,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China. .,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China. .,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China. .,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| |
Collapse
|
7
|
Haldar S, Agrawal H, Saha S, Straughn AR, Roy P, Kakar SS. Overview of follicle stimulating hormone and its receptors in reproduction and in stem cells and cancer stem cells. Int J Biol Sci 2022; 18:675-692. [PMID: 35002517 PMCID: PMC8741861 DOI: 10.7150/ijbs.63721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/21/2021] [Indexed: 11/05/2022] Open
Abstract
Follicle stimulating hormone (FSH) and its receptor (FSHR) have been reported to be responsible for several physiological functions and cancers. The responsiveness of stem cells and cancer stem cells towards the FSH-FSHR system make the function of FSH and its receptors more interesting in the context of cancer biology. This review is comprised of comprehensive information on FSH-FSHR signaling in normal physiology, gonadal stem cells, cancer cells, and potential options of utilizing FSH-FSHR system as an anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Swati Haldar
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.,Current address: Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand 249405
| | - Himanshu Agrawal
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Sarama Saha
- Department of Biochemistry, All India Institute of Medical Sciences Rishikesh, Uttarakhand 249203, India
| | - Alex R Straughn
- Department of Physiology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Sham S Kakar
- Department of Physiology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
8
|
Pharmacological Characterization of Low Molecular Weight Biased Agonists at the Follicle Stimulating Hormone Receptor. Int J Mol Sci 2021; 22:ijms22189850. [PMID: 34576014 PMCID: PMC8469697 DOI: 10.3390/ijms22189850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 01/14/2023] Open
Abstract
Follicle-stimulating hormone receptor (FSHR) plays a key role in reproduction through the activation of multiple signaling pathways. Low molecular weight (LMW) ligands composed of biased agonist properties are highly valuable tools to decipher complex signaling mechanisms as they allow selective activation of discrete signaling cascades. However, available LMW FSHR ligands have not been fully characterized yet. In this context, we explored the pharmacological diversity of three benzamide and two thiazolidinone derivatives compared to FSH. Concentration/activity curves were generated for Gαs, Gαq, Gαi, β-arrestin 2 recruitment, and cAMP production, using BRET assays in living cells. ERK phosphorylation was analyzed by Western blotting, and CRE-dependent transcription was assessed using a luciferase reporter assay. All assays were done in either wild-type, Gαs or β-arrestin 1/2 CRISPR knockout HEK293 cells. Bias factors were calculated for each pair of read-outs by using the operational model. Our results show that each ligand presented a discrete pharmacological efficacy compared to FSH, ranging from super-agonist for β-arrestin 2 recruitment to pure Gαs bias. Interestingly, LMW ligands generated kinetic profiles distinct from FSH (i.e., faster, slower or transient, depending on the ligand) and correlated with CRE-dependent transcription. In addition, clear system biases were observed in cells depleted of either Gαs or β-arrestin genes. Such LMW properties are useful pharmacological tools to better dissect the multiple signaling pathways activated by FSHR and assess their relative contributions at the cellular and physio-pathological levels.
Collapse
|
9
|
Johnson GP, Jonas KC. Mechanistic insight into how gonadotropin hormone receptor complexes direct signaling†. Biol Reprod 2021; 102:773-783. [PMID: 31882999 DOI: 10.1093/biolre/ioz228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 12/29/2022] Open
Abstract
Gonadotropin hormones and their receptors play a central role in the control of male and female reproduction. In recent years, there has been growing evidence surrounding the complexity of gonadotropin hormone/receptor signaling, with it increasingly apparent that the Gαs/cAMP/PKA pathway is not the sole signaling pathway that confers their biological actions. Here we review recent literature on the different receptor-receptor, receptor-scaffold, and receptor-signaling molecule complexes formed and how these modulate and direct gonadotropin hormone-dependent intracellular signal activation. We will touch upon the more controversial issue of extragonadal expression of FSHR and the differential signal pathways activated in these tissues, and lastly, highlight the open questions surrounding the role these gonadotropin hormone receptor complexes and how this will shape future research directions.
Collapse
Affiliation(s)
| | - Kim Carol Jonas
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| |
Collapse
|
10
|
Timóteo-Ferreira F, Abreu D, Mendes S, Matos L, Rodrigues A, Almeida H, Silva E. Redox imbalance in age-related ovarian dysfunction and perspectives for its prevention. Ageing Res Rev 2021; 68:101345. [PMID: 33894395 DOI: 10.1016/j.arr.2021.101345] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022]
Abstract
The age at which women have their first child is increasing. This change represents a major health problem to society because advanced maternal age is related with a decay in fertility and an increase in the incidence of a variety of pregnancy complications and offspring health issues. The ovary stands as the main contributor for female reproductive ageing because of the progressive age-related decrease in follicle number and oocyte quality. Loss of redox homeostasis and establishment of an ovarian oxidative microenvironment are seen as major underlying causes for such downfall and impairment of ovarian function. Thus, the use of antioxidants to preserve fertility became an important field of research. In this review, new insights on mechanisms underlying the establishment of oxidative stress and its repercussions on ovarian ageing are addressed, along with the current state of knowledge on antioxidant supplementation and its contribution for healthy ageing and extension of ovarian lifespan.
Collapse
|
11
|
Abstract
Gonadotropins are glycoprotein sex hormones regulating development and reproduction and bind to specific G protein–coupled receptors expressed in the gonads. Their effects on multiple signaling cascades and intracellular events have recently been characterized using novel technological and scientific tools. The impact of allosteric modulators on gonadotropin signaling, the role of sugars linked to the hormone backbone, the detection of endosomal compartments supporting signaling modules, and the dissection of different effects mediated by these molecules are areas that have advanced significantly in the last decade. The classic view providing the exclusive activation of the cAMP/protein kinase A (PKA) and the steroidogenic pathway by these hormones has been expanded with the addition of novel signaling cascades as determined by high-resolution imaging techniques. These new findings provided new potential therapeutic applications. Despite these improvements, unanswered issues of gonadotropin physiology, such as the intrinsic pro-apoptotic potential to these hormones, the existence of receptors assembled as heteromers, and their expression in extragonadal tissues, remain to be studied. Elucidating these issues is a challenge for future research.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Via P. Giardini 1355, 41126 Modena, Italy
| |
Collapse
|
12
|
Banerjee AA, Joseph S, Mahale SD. From cell surface to signalling and back: the life of the mammalian FSH receptor. FEBS J 2020; 288:2673-2696. [DOI: 10.1111/febs.15649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/17/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Antara A. Banerjee
- Division of Structural Biology National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
| | - Shaini Joseph
- Genetic Research Center National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
| | - Smita D. Mahale
- Division of Structural Biology National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
- ICMR Biomedical Informatics Centre National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
| |
Collapse
|
13
|
Tremblay PG, Sirard MA. Gene analysis of major signaling pathways regulated by gonadotropins in human ovarian granulosa tumor cells (KGN)†. Biol Reprod 2020; 103:583-598. [PMID: 32427331 DOI: 10.1093/biolre/ioaa079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/17/2020] [Accepted: 05/18/2020] [Indexed: 11/13/2022] Open
Abstract
The female reproductive function largely depends on timing and coordination between follicle-stimulating hormone (FSH) and luteinizing hormone. Even though it was suggested that these hormones act on granulosa cells via shared signaling pathways, mainly protein kinases A, B, and C (PKA, PKB, and PKC), there is still very little information available on how these signaling pathways are regulated by each hormone to provide such differences in gene expression throughout folliculogenesis. To obtain a global picture of the principal upstream factors involved in PKA, PKB, and PKC signaling in granulosa cells, human granulosa-like tumor cells (KGN) were treated with FSH or specific activators (forskolin, SC79, and phorbol 12-myristate 13-acetate) for each pathway to analyze gene expression with RNA-seq technology. Normalization and cutoffs (FC 1.5, P ≤ 0.05) revealed 3864 differentially expressed genes between treatments. Analysis of major upstream regulators showed that PKA is a master kinase of early cell differentiation as its activation resulted in the gene expression profile that accompanies granulosa cell differentiation. Our data also revealed that the activation of PKC in granulosa cells is also a strong differentiation signal that could control "advanced" differentiation in granulosa cells and the inflammatory cascade that occurs in the dominant follicle. According to our results, PKB activation provides support for PKA-stimulated gene expression and is also involved in granulosa cell survival throughout follicular development. Taken together, our results provide new information on PKA, PKB, and PKC signaling pathways and their roles in stimulating a follicle at the crossroad between maturation/ovulation and atresia.
Collapse
Affiliation(s)
- Patricia G Tremblay
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des sciences de l'agriculture et de l'alimentation, Département des Sciences animales, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Marc-André Sirard
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des sciences de l'agriculture et de l'alimentation, Département des Sciences animales, Université Laval, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
14
|
Ruebel ML, Latham KE. Listening to mother: Long-term maternal effects in mammalian development. Mol Reprod Dev 2020; 87:399-408. [PMID: 32202026 DOI: 10.1002/mrd.23336] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/08/2020] [Indexed: 12/17/2022]
Abstract
The oocyte is a complex cell that executes many crucial and unique functions at the start of each life. These functions are fulfilled by a unique collection of macromolecules and other factors, all of which collectively support meiosis, oocyte activation, and embryo development. This review focuses on the effects of oocyte components on developmental processes that occur after the initial stages of embryogenesis. These include long-term effects on genome function, metabolism, lineage allocation, postnatal progeny health, and even subsequent generations. Factors that regulate chromatin structure, genome programming, and mitochondrial function are elements that contribute to these oocyte functions.
Collapse
Affiliation(s)
- Meghan L Ruebel
- Department of Animal Science, and Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Keith E Latham
- Department of Animal Science, and Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
15
|
Duchatel RJ, Jackson ER, Alvaro F, Nixon B, Hondermarck H, Dun MD. Signal Transduction in Diffuse Intrinsic Pontine Glioma. Proteomics 2019; 19:e1800479. [DOI: 10.1002/pmic.201800479] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/03/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Ryan J. Duchatel
- Cancer Signalling Research Group School of Biomedical Sciences and Pharmacy Faculty of Health and Medicine University of Newcastle Callaghan NSW 2308 Australia
- Priority Research Centre for Cancer Research Innovation and Translation Hunter Medical Research Institute Lambton NSW 2305 Australia
| | - Evangeline R. Jackson
- Cancer Signalling Research Group School of Biomedical Sciences and Pharmacy Faculty of Health and Medicine University of Newcastle Callaghan NSW 2308 Australia
- Priority Research Centre for Cancer Research Innovation and Translation Hunter Medical Research Institute Lambton NSW 2305 Australia
| | - Frank Alvaro
- Priority Research Centre for Cancer Research Innovation and Translation Hunter Medical Research Institute Lambton NSW 2305 Australia
- John Hunter Children's Hospital Faculty of Health and Medicine University of Newcastle New Lambton Heights NSW 2305 Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science School of Environmental and Life Sciences University of Newcastle Callaghan NSW 2308 Australia
| | - Hubert Hondermarck
- Priority Research Centre for Cancer Research Innovation and Translation Hunter Medical Research Institute Lambton NSW 2305 Australia
- Cancer Neurobiology Group School of Biomedical Sciences and Pharmacy Faculty of Health and Medicine University of Newcastle Callaghan NSW 2308 Australia
| | - Matthew D. Dun
- Cancer Signalling Research Group School of Biomedical Sciences and Pharmacy Faculty of Health and Medicine University of Newcastle Callaghan NSW 2308 Australia
- Priority Research Centre for Cancer Research Innovation and Translation Hunter Medical Research Institute Lambton NSW 2305 Australia
| |
Collapse
|
16
|
Chu YL, Xu YR, Yang WX, Sun Y. The role of FSH and TGF-β superfamily in follicle atresia. Aging (Albany NY) 2019; 10:305-321. [PMID: 29500332 PMCID: PMC5892684 DOI: 10.18632/aging.101391] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/23/2018] [Indexed: 01/02/2023]
Abstract
Most of the mammalian follicles undergo a degenerative process called “follicle atresia”. Apoptosis of granulosa cells is the main characteristic of follicle atresia. Follicle stimulating hormone (FSH) and the transforming growth factor β (TGF-β) superfamily have important regulatory functions in this process. FSH activates protein kinase A and cooperating with insulin receptor substrates, it promotes the PI3K/Akt pathway which weakens apoptosis. Both Smad or non-Smad signaling of the transforming growth factor β superfamily seem to be related to follicle atresia, and the effect of several important family members on follicle atresia is concluded in this article. FSH and TGF-β are likely to mutually influence each other and what we have already known about the possible underlying molecular mechanism is also discussed below.
Collapse
Affiliation(s)
- Yu-Lan Chu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ya-Ru Xu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Sun
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Matvere A, Teino I, Varik I, Kuuse S, Tiido T, Kristjuhan A, Maimets T. FSH/LH-Dependent Upregulation of Ahr in Murine Granulosa Cells Is Controlled by PKA Signaling and Involves Epigenetic Regulation. Int J Mol Sci 2019; 20:ijms20123068. [PMID: 31234584 PMCID: PMC6627912 DOI: 10.3390/ijms20123068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
The aryl hydrocarbon receptor (Ahr) is a ligand-activated transcription factor primarily known for its toxicological functions. Recent studies have established its importance in many physiological processes including female reproduction, although there is limited data about the precise mechanisms how Ahr itself is regulated during ovarian follicle maturation. This study describes the expression of Ahr in ovarian granulosa cells (GCs) of immature mice in a gonadotropin-dependent manner. We show that Ahr upregulation in vivo requires both follicle stimulating hormone (FSH) and luteinizing hormone (LH) activities. FSH alone increased Ahr mRNA, but had no effect on Ahr protein level, implicating a possible LH-dependent post-transcriptional regulation. Also, the increase in Ahr protein is specific to large antral follicles in induced follicle maturation. We show that Ahr expression in GCs of mid-phase follicular maturation is downregulated by protein kinase A (PKA) signaling and activation of Ahr promoter is regulated by chromatin remodeling.
Collapse
Affiliation(s)
- Antti Matvere
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Indrek Teino
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Inge Varik
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Sulev Kuuse
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Tarmo Tiido
- Clinical Research Centre, National Centre of Translational and Clinical Research, University of Tartu, Ravila 19, 50411 Tartu, Estonia.
| | - Arnold Kristjuhan
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Toivo Maimets
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| |
Collapse
|
18
|
Abstract
The glycoprotein follicle-stimulating hormone (FSH) acts on gonadal target cells, hence regulating gametogenesis. The transduction of the hormone-induced signal is mediated by the FSH-specific G protein-coupled receptor (FSHR), of which the action relies on the interaction with a number of intracellular effectors. The stimulatory Gαs protein is a long-time known transducer of FSH signaling, mainly leading to intracellular cAMP increase and protein kinase A (PKA) activation, the latter acting as a master regulator of cell metabolism and sex steroid production. While in vivo data clearly demonstrate the relevance of PKA activation in mediating gametogenesis by triggering proliferative signals, some in vitro data suggest that pro-apoptotic pathways may be awakened as a "dark side" of cAMP/PKA-dependent steroidogenesis, in certain conditions. P38 mitogen-activated protein kinases (MAPK) are players of death signals in steroidogenic cells, involving downstream p53 and caspases. Although it could be hypothesized that pro-apoptotic signals, if relevant, may be required for regulating atresia of non-dominant ovarian follicles, they should be transient and counterbalanced by mitogenic signals upon FSHR interaction with opposing transducers, such as Gαi proteins and β-arrestins. These molecules modulate the steroidogenic pathway via extracellular-regulated kinases (ERK1/2), phosphatidylinositol-4,5-bisphosphate 3-kinases (PI3K)/protein kinase B (AKT), calcium signaling and other intracellular signaling effectors, resulting in a complex and dynamic signaling network characterizing sex- and stage-specific gamete maturation. Even if the FSH-mediated signaling network is not yet entirely deciphered, its full comprehension is of high physiological and clinical relevance due to the crucial role covered by the hormone in regulating human development and reproduction.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Department Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
- *Correspondence: Livio Casarini
| | - Pascale Crépieux
- PRC, UMR INRA0085, CNRS 7247, Centre INRA Val de Loire, Nouzilly, France
| |
Collapse
|
19
|
Riccetti L, Sperduti S, Lazzaretti C, Casarini L, Simoni M. The cAMP/PKA pathway: steroidogenesis of the antral follicular stage. ACTA ACUST UNITED AC 2018; 70:516-524. [PMID: 30160084 DOI: 10.23736/s0026-4784.18.04282-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pituitary gonadotropins, follicle-stimulating (FSH) and luteinizing hormone (LH) promote follicular recruitment and support antral follicle growth, maturation and selection, resulting in ovulation of the dominant follicle. FSH and LH biological functions are mediated by G protein-coupled receptors, FSHR and LHCGR, resulting in the activation of a number of signaling cascades, such as the cyclic AMP/protein kinase A (cAMP/PKA) pathway. Some in-vitro data are consistent with the dual, proliferative and pro-apoptotic role of cAMP, leaving unanswered questions on how cAMP/PKA signaling is linked to the follicle fate. Progression of the antral stage is characterized by the presence of dynamic serum gonadotropin and estrogen levels, accompanying proliferation and steroidogenesis of growing as well as apoptosis of atretic follicles. These events are parallel to changes of FSHR and LHCGR density at the cell surface occurring throughout the antral stage, reasonably modulating the cAMP/PKA activation pattern, cell metabolism and functions. Understanding whether gonadotropins and receptor expression levels impact on the steroidogenic pathway and play a role in determining the follicular fate, may put new light on molecular mechanisms regulating human reproduction. The aim of the present review is to update the role of major players modulating the cAMP/PKA pathway and regulating the balance between proliferative, differentiating and pro-apoptotic signals.
Collapse
Affiliation(s)
- Laura Riccetti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy -
| | - Samantha Sperduti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Clara Lazzaretti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Livio Casarini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Manuela Simoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Modena, Italy
| |
Collapse
|
20
|
Ulloa-Aguirre A, Reiter E, Crépieux P. FSH Receptor Signaling: Complexity of Interactions and Signal Diversity. Endocrinology 2018; 159:3020-3035. [PMID: 29982321 DOI: 10.1210/en.2018-00452] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/27/2018] [Indexed: 12/20/2022]
Abstract
FSH is synthesized in the pituitary by gonadotrope cells. By binding to and interacting with its cognate receptor [FSH receptor (FSHR)] in the gonads, this gonadotropin plays a key role in the control of gonadal function and reproduction. Upon activation, the FSHR undergoes conformational changes leading to transduction of intracellular signals, including dissociation of G protein complexes into components and activation of several associated interacting partners, which concertedly regulate downstream effectors. The canonical Gs/cAMP/protein kinase A pathway, considered for a long time as the sole effector of FSHR-mediated signaling, is now viewed as one of several mechanisms employed by this receptor to transduce intracellular signals in response to the FSH stimulus. This complex network of signaling pathways allows for a fine-tuning regulation of the gonadotropic stimulus, where activation/inhibition of its multiple components vary depending on the cell context, cell developmental stage, and concentration of associated receptors and corresponding ligands. Activation of these multiple signaling modules eventually converge to the hormone-integrated biological response, including survival, proliferation and differentiation of target cells, synthesis and secretion of paracrine/autocrine regulators, and, at the molecular level, functional selectivity and differential gene expression. In this mini-review, we discuss the complexity of FSHR-mediated intracellular signals activated in response to ligand stimulation. A better understanding of the signaling pathways involved in FSH action might potentially influence the development of new therapeutic strategies for reproductive disorders.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Eric Reiter
- Biology and Bioinformatics of Signaling Systems Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Nouzilly, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7247, Nouzilly, France
- Université François Rabelais, Nouzilly, France
| | - Pascale Crépieux
- Biology and Bioinformatics of Signaling Systems Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Nouzilly, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7247, Nouzilly, France
- Université François Rabelais, Nouzilly, France
| |
Collapse
|
21
|
Jiang Y, Zhao Y, Chen S, Chen L, Li C, Zhou X. Regulation by FSH of the dynamic expression of retinol-binding protein 4 in the mouse ovary. Reprod Biol Endocrinol 2018; 16:25. [PMID: 29558965 PMCID: PMC5859637 DOI: 10.1186/s12958-018-0348-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/15/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Ovarian retinoid homeostasis plays an important role in the physiological function of the ovary. Retinol-binding protein 4 (RBP4) acts as the mediator for the systemic and intercellular transport of retinol and is heavily involved in cellular retinol influx, efflux, and exchange. However, the expression patterns and regulatory mechanisms of Rbp4 in the ovary remain unclear. METHODS The expression pattern of ovarian Rbp4 was examined in immature mice during different developmental stages and in adult mice during different stages of the estrous cycle. The potential regulation and mechanisms of ovarian Rbp4 expression by estrogen and related gonadotropins in mouse ovaries were also investigated. RESULTS The present study demonstrated that the ovarian expression of Rbp4 remained constant before puberty and increased significantly in the peripubertal period. In adult female mice, the expression of Rbp4 increased at proestrus and peaked at estrus at both the mRNA and protein levels. The protein distribution of RBP4 was mainly localized in the granulosa cell and theca cell layer in follicles. In addition, the expression of Rbp4 was significantly induced by follicle-stimulating hormone (FSH) or FSH + luteinizing hormone (LH) in combination in immature mouse (3 weeks old) ovaries in vivo and in granulosa cells cultured in vitro, both at the mRNA and protein levels. In contrast, treatment with LH or 17β-estradiol did not exhibit any observable effects on ovarian Rbp4 expression. Transcription factors high-mobility group AT-hook 1 (HMGA1), steroidogenic factor 1 (SF-1), and liver receptor homolog 1 (LRH-1) (which have been previously shown to be involved in activation of Rbp4 transcription), also responded to FSH stimulation. In addition, H-89, an inhibitor of protein kinase A (PKA), and the depletion of HMGA1, SF-1, and LRH-1 by small interfering RNAs (siRNAs), resulted in a dramatic loss of the induction of Rbp4 expression by FSH at both the mRNA and protein levels. CONCLUSIONS These data indicate that the dynamic expression of Rbp4 is mainly regulated by FSH through the cAMP-PKA pathway, involving transcriptional factors HMGA1, SF-1, and LRH-1, in the mouse ovary during different stages of development and the estrous cycle.
Collapse
Affiliation(s)
- Yanwen Jiang
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, Jilin, 130062, China
| | - Yun Zhao
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, Jilin, 130062, China
| | - Shuxiong Chen
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, Jilin, 130062, China
| | - Lu Chen
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, Jilin, 130062, China
| | - Chunjin Li
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, Jilin, 130062, China.
| | - Xu Zhou
- College of Animal Science, Jilin University, 5333 Xian Road, Changchun, Jilin, 130062, China.
| |
Collapse
|
22
|
Follicle-Stimulating Hormone Receptor: Advances and Remaining Challenges. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 338:1-58. [DOI: 10.1016/bs.ircmb.2018.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Chen H, Chan HC. Amplification of FSH signalling by CFTR and nuclear soluble adenylyl cyclase in the ovary. Clin Exp Pharmacol Physiol 2017; 44 Suppl 1:78-85. [PMID: 28345252 DOI: 10.1111/1440-1681.12756] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/14/2017] [Accepted: 03/14/2017] [Indexed: 12/12/2022]
Abstract
The cAMP/PKA pathway is one of the most important signalling pathways widely distributed in most eukaryotic cells. The activation of the canonical cAMP/PKA pathway depends on transmembrane adenylyl cyclase (tmAC). Recently, soluble adenylyl cyclase (sAC), which is activated by HCO3- or Ca2+ , emerges to provide an alternative way to activate cAMP/PKA pathway with the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated Cl- /HCO3- -conducting anion channel, as a key player. This review summarizes new progress in the investigation of the CFTR/HCO3- -dependent sAC signalling and its essential role in various reproductive processes, particularly in ovarian functions. We present the evidence for a CFTR/HCO3- -dependent nuclear sAC signalling cascade that amplifies the FSH-stimulated cAMP/PKA pathway, traditionally thought to involve tmAC, in granulosa for the regulation of oestrogen production and granulosa cell proliferation. The implication of the CFTR/HCO3- /sAC pathway in amplifying other receptor-activated cAMP/PKA signalling in a wide variety of cell types and pathophysiological processes, including aging, is also discussed.
Collapse
Affiliation(s)
- Hui Chen
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, NT, Hong Kong SAR, China
| | - Hsiao Chang Chan
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, NT, Hong Kong SAR, China
| |
Collapse
|
24
|
Law NC, Donaubauer EM, Zeleznik AJ, Hunzicker-Dunn M. How Protein Kinase A Activates Canonical Tyrosine Kinase Signaling Pathways To Promote Granulosa Cell Differentiation. Endocrinology 2017; 158:2043-2051. [PMID: 28460125 PMCID: PMC5505220 DOI: 10.1210/en.2017-00163] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/24/2017] [Indexed: 12/30/2022]
Abstract
Protein kinase A (PKA) has recently been shown to mimic the actions of follicle-stimulating hormone (FSH) by activating signaling pathways that promote granulosa cell (GC) differentiation, such as phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK). We sought to elucidate the mechanism by which PKA, a Ser/Thr kinase, intersected the PI3K/AKT and MAPK/ERK pathways that are canonically activated by receptor tyrosine kinases (RTKs). Our results show that for both of these pathways, the RTK is active in the absence of FSH yet signaling down the pathways to commence transcriptional responses requires FSH-stimulated PKA activation. For both pathways, PKA initiates signaling by regulating the activity of a protein phosphatase (PP). For the PI3K/AKT pathway, PKA activates the Ser/Thr PP1 complexed with the insulinlike growth factor 1 receptor (IGF-1R) and insulin receptor substrate 1 (IRS1) to dephosphorylate Ser residues on IRS1, authorizing phosphorylation of IRS1 by the IGF-1R to activate PI3K. Treatment of GCs with FSH and exogenous IGF-1 initiates synergistic IRS1 Tyr phosphorylation and resulting gene activation. The mechanism by which PKA activates PI3K is conserved in preovulatory GCs, MCF7 breast cancer cells, and FRTL thyroid cells. For the MAPK/ERK pathway, PKA promotes inactivation of the MAPK phosphatase (MKP) dual specificity phosphatase (DUSP) MKP3/DUSP6 to permit MEK-phosphorylated ERK to accumulate downstream of the epidermal growth factor receptor. Thus, for the two central signaling pathways that regulate gene expression in GCs, FSH via PKA intersects canonical RTK-regulated signaling by modulating the activity of PPs.
Collapse
Affiliation(s)
- Nathan C. Law
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164
| | - Elyse M. Donaubauer
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164
| | - Anthony J. Zeleznik
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee Women’s Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Mary Hunzicker-Dunn
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164
| |
Collapse
|
25
|
Sharma SK, Yamamoto M, Mukai Y. Dual modified antiphospho (Ser10)-acetyl (Lys14)-histone H3 predominantly mark the pericentromeric chromatin during mitosis in monokinetic plants. J Genet 2016; 95:965-973. [PMID: 27994196 DOI: 10.1007/s12041-016-0723-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Epigenetic regulatory posttranslational histone modification marks not only function individually but also capable to act in combination as a unique pattern. A total of 16 plant species belonging to 11 genera of eight families (five dicots and three monocots) including land plants, epiphytes (orchids) and the holokinetic taxa (Drosera spp.) were analysed for chromosomal distribution of dual modified antiphospho (Ser10)-acetyl (K14)-histone H3 (H3S10phK14ac) to understand the combinatorial chromatin dynamics during mitotic cell division in plants. The anti-H3S10phK14ac evidently mark the pericentromeric chromatin on mitotic chromosomes of the plants excluding the holokinetic Drosera species, which revealed the immunolabelling of whole chromosomes all along the arms. The dual modified immunosignals were absent during early stages of mitosis, appeared intensively at metaphase and remained visible until late-anaphase/telophase however, labelled the whole chromosomes during meiotic metaphase I. Colocalization of anti-H3S10phK14ac with an onion's CENH3 antibody on mitotic chromosomes of Allium revealed the chromosomal location of anti-H3S10phK14ac in the region between signals for CENH3 detection. Overall analysis suggests that the unique localization of combinatorial histone modification mark at pericentromeric chromatin might have attributed through 'phospho-acetyl' cross talk that ultimately facilitate the sister chromatid cohesion at pericentromeres following condensation events in mitotic chromosomes. Here, we propose that dual modified H3S10phK14ac histone may serve as an additional cytogenetic landmark to identify pericentromeric chromatin during mitosis in plants. The plausible role of histone cross talk and future perspectives of combinatorial histone modification marks in plant cytogenetics with special reference to chromatin dynamics have been discussed.
Collapse
Affiliation(s)
- Santosh Kumar Sharma
- Laboratory of Plant Molecular Genetics, Division of Natural Sciences, Osaka Kyoiku University, 4-698-1 Asahigaoka, Kashiwara, Osaka 582-8582, Japan.
| | | | | |
Collapse
|
26
|
Donaubauer EM, Law NC, Hunzicker-Dunn ME. Follicle-Stimulating Hormone (FSH)-dependent Regulation of Extracellular Regulated Kinase (ERK) Phosphorylation by the Mitogen-activated Protein (MAP) Kinase Phosphatase MKP3. J Biol Chem 2016; 291:19701-12. [PMID: 27422819 DOI: 10.1074/jbc.m116.733972] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Indexed: 01/11/2023] Open
Abstract
Within the ovarian follicle, granulosa cells (GCs) surround and support immature oocytes. FSH promotes the differentiation and proliferation of GCs and is essential for fertility. We recently reported that ERK activation is necessary for FSH to induce key genes that define the preovulatory GC. This research focused on the phosphoregulation by FSH of ERK within GCs. FSH-stimulated ERK phosphorylation on Thr(202)/Tyr(204) was PKA-dependent, but MEK(Ser(217)/Ser(221)) phosphorylation was not regulated; rather, MEK was already active. However, treatment of GCs with the EGF receptor inhibitor AG1478, a dominant-negative RAS, an Src homology 2 domain-containing Tyr phosphatase inhibitor (NSC 87877), or the MEK inhibitor PD98059 blocked FSH-dependent ERK(Thr(202)/Tyr(204)) phosphorylation, demonstrating the requirement for upstream pathway components. We hypothesized that FSH via PKA enhances ERK phosphorylation by inhibiting the activity of a protein phosphatase that constitutively dephosphorylates ERK in the absence of FSH, allowing MEK-phosphorylated ERK to accumulate in the presence of FSH because of inactivation of the phosphatase. GCs treated with different phosphatase inhibitors permitted elimination of both Ser/Thr and Tyr phosphatases and implicated dual specificity phosphatases (DUSPs) in the dephosphorylation of ERK. Treatment with MAP kinase phosphatase (MKP3, DUSP6) inhibitors increased ERK(Thr(202)/Tyr(204)) phosphorylation in the absence of FSH to levels comparable with ERK phosphorylated in the presence of FSH. ERK co-immunoprecipitated with Myc-FLAG-tagged MKP3(DUSP6). GCs treated with MKP3(DUSP6) inhibitors blocked and PKA inhibitors enhanced dephosphorylation of recombinant ERK2-GST in an in vitro phosphatase assay. Together, these results suggest that FSH-stimulated ERK activation in GCs requires the PKA-dependent inactivation of MKP3(DUSP6).
Collapse
Affiliation(s)
- Elyse M Donaubauer
- From the School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| | - Nathan C Law
- From the School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| | - Mary E Hunzicker-Dunn
- From the School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| |
Collapse
|
27
|
Donaubauer EM, Hunzicker-Dunn ME. Extracellular Signal-regulated Kinase (ERK)-dependent Phosphorylation of Y-Box-binding Protein 1 (YB-1) Enhances Gene Expression in Granulosa Cells in Response to Follicle-stimulating Hormone (FSH). J Biol Chem 2016; 291:12145-60. [PMID: 27080258 DOI: 10.1074/jbc.m115.705368] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Indexed: 12/14/2022] Open
Abstract
Within the ovarian follicle, immature oocytes are surrounded and supported by granulosa cells (GCs). Stimulation of GCs by FSH leads to their proliferation and differentiation, events that are necessary for fertility. FSH activates multiple signaling pathways to regulate genes necessary for follicular maturation. Herein, we investigated the role of Y-box-binding protein-1 (YB-1) within GCs. YB-1 is a nucleic acid binding protein that regulates transcription and translation. Our results show that FSH promotes an increase in the phosphorylation of YB-1 on Ser(102) within 15 min that is maintained at significantly increased levels until ∼8 h post treatment. FSH-stimulated phosphorylation of YB-1(Ser(102)) is prevented by pretreatment of GCs with the PKA-selective inhibitor PKA inhibitor (PKI), the MEK inhibitor PD98059, or the ribosomal S6 kinase-2 (RSK-2) inhibitor BI-D1870. Thus, phosphorylation of YB-1 on Ser(102) is PKA-, ERK-, and RSK-2-dependent. However, pretreatment of GCs with the protein phosphatase 1 (PP1) inhibitor tautomycin increased phosphorylation of YB-1(Ser(102)) in the absence of FSH; FSH did not further increase YB-1(Ser(102)) phosphorylation. This result suggests that the major effect of RSK-2 is to inhibit PP1 rather than to directly phosphorylate YB-1 on Ser(102) YB-1 coimmunoprecipitated with PP1β catalytic subunit and RSK-2. Transduction of GCs with the dephospho-adenoviral-YB-1(S102A) mutant prevented the induction by FSH of Egfr, Cyp19a1, Inha, Lhcgr, Cyp11a1, Hsd17b1, and Pappa mRNAs and estradiol-17β production. Collectively, our results reveal that phosphorylation of YB-1 on Ser(102) via the ERK/RSK-2 signaling pathway is necessary for FSH-mediated expression of target genes required for maturation of follicles to a preovulatory phenotype.
Collapse
Affiliation(s)
- Elyse M Donaubauer
- From the School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| | - Mary E Hunzicker-Dunn
- From the School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| |
Collapse
|
28
|
Law NC, Hunzicker-Dunn ME. Insulin Receptor Substrate 1, the Hub Linking Follicle-stimulating Hormone to Phosphatidylinositol 3-Kinase Activation. J Biol Chem 2015; 291:4547-60. [PMID: 26702053 DOI: 10.1074/jbc.m115.698761] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Indexed: 12/21/2022] Open
Abstract
The ubiquitous phosphatidylinositol 3-kinase (PI3K) signaling pathway regulates many cellular functions. However, the mechanism by which G protein-coupled receptors (GPCRs) signal to activate PI3K is poorly understood. We have used ovarian granulosa cells as a model to investigate this pathway, based on evidence that the GPCR agonist follicle-stimulating hormone (FSH) promotes the protein kinase A (PKA)-dependent phosphorylation of insulin receptor substrate 1 (IRS1) on tyrosine residues that activate PI3K. We report that in the absence of FSH, granulosa cells secrete a subthreshold concentration of insulin-like growth factor-1 (IGF-1) that primes the IGF-1 receptor (IGF-1R) but fails to promote tyrosine phosphorylation of IRS1. FSH via PKA acts to sensitize IRS1 to the tyrosine kinase activity of the IGF-1R by activating protein phosphatase 1 (PP1) to promote dephosphorylation of inhibitory Ser/Thr residues on IRS1, including Ser(789). Knockdown of PP1β blocks the ability of FSH to activate PI3K in the presence of endogenous IGF-1. Activation of PI3K thus requires both PKA-mediated relief of IRS1 inhibition and IGF-1R-dependent tyrosine phosphorylation of IRS1. Treatment with FSH and increasing concentrations of exogenous IGF-1 triggers synergistic IRS1 tyrosine phosphorylation at PI3K-activating residues that persists downstream through protein kinase B (AKT) and FOXO1 (forkhead box protein O1) to drive synergistic expression of genes that underlies follicle maturation. Based on the ability of GPCR agonists to synergize with IGFs to enhance gene expression in other cell types, PP1 activation to relieve IRS1 inhibition may be a more general mechanism by which GPCRs act with the IGF-1R to activate PI3K/AKT.
Collapse
Affiliation(s)
- Nathan C Law
- From the School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| | - Mary E Hunzicker-Dunn
- From the School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| |
Collapse
|
29
|
Mehta A, Onteru SK, Singh D. HDAC inhibitor prevents LPS mediated inhibition of CYP19A1 expression and 17β-estradiol production in granulosa cells. Mol Cell Endocrinol 2015. [PMID: 26213324 DOI: 10.1016/j.mce.2015.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
LPS inhibits CYP19A1 expression and 17β-estradiol (E2) production in granulosa cells (GCs). This is one of the major causes of infertility underlying postpartum uterine infections. However, the precise molecular mechanism is not well elucidated. Recently we have shown, buffalo GCs exposed to LPS (1.0 μg/ml) in serum free culture, transiently increased the pro-inflammatory cytokine genes (IL-1β, TNF-α, IL-6) expression, followed by the inhibition of CYP19A1 expression and E2 production. The present study showed that transient increase in pro-inflammatory cytokines was associated with HDACs (gene expression and nuclear activity). Therefore, we tested the hypothesis if Trichostatin A (TSA), a HDAC inhibitor, can attenuate LPS induced pro-inflammatory cytokine gene expression and can prevent LPS mediated down-regulation of CYP19A1 expression and E2 in GCs. Results showed that TSA pre-treatment significantly attenuated LPS induced pro-inflammatory cytokine gene expressions, HDACs (both gene expression and enzyme activity in nucleus) and NF-κB nuclear translocation. Additionally, TSA pre-treatment reversed the inhibitory effect of LPS on CYP19A1 expression and E2 production. CHIP analyses of H3 (Lys 9/14) acetylation of ovary specific CYP19A1 proximal promoter (PII) showed that TSA pre-treatment prevented the LPS mediated H3 deacetylation, thereby increased the acetylation of PII and restored CYP19A1 expression and E2 production. The present study demonstrated that TSA pre-treatment attenuated- LPS induced immune response involving NF-κB and HDACs, and thus prevented inhibition of CYP19A1 expression and E2 production through chromatin remodeling. Our study suggests that HDAC inhibitors could be a potential therapeutic strategy to treat infertility underlying postpartum uterine infections.
Collapse
Affiliation(s)
- Anu Mehta
- Molecular Endocrinology, Functional Genomics and System Biology Laboratory, Animal Biochemistry Department, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics and System Biology Laboratory, Animal Biochemistry Department, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics and System Biology Laboratory, Animal Biochemistry Department, National Dairy Research Institute, Karnal 132001, Haryana, India.
| |
Collapse
|
30
|
Rodriguez P, Rojas J. cAMP-Induced Histones H3 Dephosphorylation Is Independent of PKA and MAP Kinase Activations and Correlates With mTOR Inactivation. J Cell Biochem 2015; 117:741-50. [PMID: 26335579 DOI: 10.1002/jcb.25359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/01/2015] [Indexed: 01/28/2023]
Abstract
cAMP is a second messenger well documented to be involved in the phosphorylation of PKA, MAP kinase, and histone H3 (H3). Early, we reported that cAMP also induced H3 dephosphorylation in a variety of proliferating cell lines. Herein, it is shown that cAMP elicits a biphasic H3 dephosphorylation independent of PKA activation in cycling cells. H89, a potent inhibitor of PKA catalytic sub-unite, could not abolish this effect. Additionally, H89 induces a rapid and biphasic H3 serine 10 dephosphorylation, while a decline in the basal phosphorylation of CREB/ATF-1 is observed. Rp-cAMPS, an analog of cAMP and specific inhibitor of PKA, is unable to suppress cAMP-mediated H3 dephosphorylation, whereas Rp-cAMPS effectively blocks CREB/ATF-1 hyper-phosphorylation by cAMP and its inducers. Interestingly, cAMP exerts a rapid and profound H3 dephosphorylation at much lower concentration (50-fold lower, 0.125 mM) than the concentration required for maximal CREB/ATF-1 phosphorylation (5 mM). Much higher cAMP concentration is required to fully induce CREB/ATF-1 gain in phosphate (5 mM), which correlates with the inhibition of H3 dephosphorylation. Also, the dephosphorylation of H3 does not overlap at onset of MAP kinase phosphorylation pathways, p38 and ERK. Surprisingly, rapamycin (an mTOR inhibitor), cAMP, and its natural inducer isoproterenol, elicit identical dephosphorylation kinetics on both S6K1 ribosomal kinase (a downstream mTOR target) and H3. Finally, cAMP-induced H3 dephosphorylation is PP1/2-dependent. The results suggest that a pathway, requiring much lower cAMP concentration to that required for CREB/ATF-1 hyper-phosphorylation, is responsible for histone H3 dephosphorylation and may be linked to mTOR down regulation.
Collapse
Affiliation(s)
- Pedro Rodriguez
- Facultad de Ciencias M, é, dicas, Escuela de Medicina, Universidad de Santiago de Chile (USACH), el Belloto 3530, segundo piso. Avenida Libertador Bernardo O'Higgins n°3363, Estación Central, Santiago, Chile
| | - Juan Rojas
- Facultad de Ciencias M, é, dicas, Escuela de Medicina, Universidad de Santiago de Chile (USACH), el Belloto 3530, segundo piso. Avenida Libertador Bernardo O'Higgins n°3363, Estación Central, Santiago, Chile
| |
Collapse
|
31
|
Mazón MJ, Molés G, Rocha A, Crespo B, Lan-Chow-Wing O, Espigares F, Muñoz I, Felip A, Carrillo M, Zanuy S, Gómez A. Gonadotropins in European sea bass: Endocrine roles and biotechnological applications. Gen Comp Endocrinol 2015; 221:31-41. [PMID: 26002037 DOI: 10.1016/j.ygcen.2015.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 04/20/2015] [Accepted: 05/05/2015] [Indexed: 12/28/2022]
Abstract
Follicle stimulating hormone (Fsh) and luteinizing hormone (Lh) are central endocrine regulators of the gonadal function in vertebrates. They act through specific receptors located in certain cell types found in the gonads. In fish, the differential roles of these hormones are being progressively elucidated due to the development of suitable tools for their study. In European sea bass (Dicentrarchus labrax), isolation of the genes coding for the gonadotropin subunits and receptors allowed in first instance to conduct expression studies. Later, to overcome the limitation of using native hormones, recombinant dimeric gonadotropins, which show different functional characteristics depending on the cell system and DNA construct, were generated. In addition, single gonadotropin beta-subunits have been produced and used as antigens for antibody production. This approach has allowed the development of detection methods for native gonadotropins, with European sea bass being one of the few species where both gonadotropins can be detected in their native form. By administering recombinant gonadotropins to gonad tissues in vitro, we were able to study their effects on steroidogenesis and intracellular pathways. Their administration in vivo has also been tested for use in basic studies and as a biotechnological approach for hormone therapy and assisted reproduction strategies. In addition to the production of recombinant hormones, gene-based therapies using somatic gene transfer have been offered as an alternative. This approach has been tested in sea bass for gonadotropin delivery in vivo. The hormones produced by the genes injected were functional and have allowed studies on the action of gonadotropins in spermatogenesis.
Collapse
Affiliation(s)
- María José Mazón
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Gregorio Molés
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Ana Rocha
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Berta Crespo
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Olivier Lan-Chow-Wing
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Felipe Espigares
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Iciar Muñoz
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Alicia Felip
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Manuel Carrillo
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Silvia Zanuy
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Ana Gómez
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain.
| |
Collapse
|
32
|
|
33
|
Wu W, Han J, Cao R, Zhang J, Li B, Liu Z, Liu K, Li Q, Pan Z, Chen J, Liu H. Sequence and regulation of the porcine FSHR gene promoter. Anim Reprod Sci 2015; 154:95-104. [DOI: 10.1016/j.anireprosci.2014.11.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 11/25/2014] [Accepted: 11/29/2014] [Indexed: 01/17/2023]
|
34
|
Hunzicker-Dunn M, Mayo K. Gonadotropin Signaling in the Ovary. KNOBIL AND NEILL'S PHYSIOLOGY OF REPRODUCTION 2015:895-945. [DOI: 10.1016/b978-0-12-397175-3.00020-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
35
|
Pogrmic-Majkic K, Samardzija D, Fa S, Hrubik J, Glisic B, Kaisarevic S, Andric N. Atrazine Enhances Progesterone Production Through Activation of Multiple Signaling Pathways in FSH-Stimulated Rat Granulosa Cells: Evidence for Premature Luteinization1. Biol Reprod 2014; 91:124. [DOI: 10.1095/biolreprod.114.122606] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
36
|
Zhao G, Zhou X, Fang T, Hou Y, Hu Y. Hyaluronic acid promotes the expression of progesterone receptor membrane component 1 via epigenetic silencing of miR-139-5p in human and rat granulosa cells. Biol Reprod 2014; 91:116. [PMID: 25232020 DOI: 10.1095/biolreprod.114.120295] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Primary ovarian insufficiency (POI) is a serious reproductive dysfunction in which the follicle pool is reduced and depleted. Abnormal apoptosis of ovarian granulosa cells (GCs) is believed to result in follicle loss. Progesterone receptor membrane component 1 (PGRMC1), which is critical for GC survival, was reported to be reduced in POI patients, but the mechanism is unknown. In the present study, we found that PGRMC1 expression was correlated with the level of hyaluronic acid (HA) in POI patients. HA up-regulated PGRMC1 expression in GCs via suppression of miR-139-5p, which was proven by Western blotting and luciferase reporter assays to target PGRMC1. Consistent with these findings, levels of miR-139-5p were significantly increased and presented an inverse correlation with PGRMC1 in POI patients. Noticeably, HA inhibited CD44-mediated miR-139-5p expression but had no effect on luciferase activity after insertion of miR-139 promoter into luciferase plasmid. Interestingly, miR-139-5p was significantly up-regulated in KGN cells (GC tumor cell line) by the histone deacetylase inhibitor trichostatin A, indicating that HA down-regulated miR-139-5p expression via histone deacetylation. Taken together, we report an unrecognized mechanism of HA in the promotion of PGRMC1 expression, suggesting that HA may be a potential molecule for the prevention and treatment of POI.
Collapse
Affiliation(s)
- Guangfeng Zhao
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Xue Zhou
- Immunology and Reproductive Biology Laboratory, Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Ting Fang
- Immunology and Reproductive Biology Laboratory, Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yayi Hou
- Immunology and Reproductive Biology Laboratory, Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
37
|
Cabej NR. On the origin of information in epigenetic structures in metazoans. Med Hypotheses 2014; 83:378-86. [PMID: 25037317 DOI: 10.1016/j.mehy.2014.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 06/14/2014] [Accepted: 06/18/2014] [Indexed: 11/27/2022]
Abstract
Epigenetic inheritance implies the existence of epigenetic information. Great progress has been made in recent years in understanding the role of the changes in epigenetic structures (methylated DNA, histone acetylation/deacetylation and chromatin remodelling) as well as the role of miRNA (MIR) expression patterns in epigenetic processes. However, as of yet, we do not have a satisfactory understanding of the origin of epigenetic information stored in, and conveyed by, these structures. We do not know whether these structures are the ultimate source of the information or whether they are simply media for storing and transmitting epigenetic information for gene expression from upstream sources to the phenotype. Herein an attempt is made to ascertain the ultimate sources of the epigenetic information they contain and transmit by tracing back the causal chain leading to the changes in epigenetic structures.
Collapse
Affiliation(s)
- Nelson R Cabej
- Department of Biology, University of Tirana, Tirana, Albania.
| |
Collapse
|
38
|
Sriraman V, Denis D, de Matos D, Yu H, Palmer S, Nataraja S. Investigation of a thiazolidinone derivative as an allosteric modulator of follicle stimulating hormone receptor: Evidence for its ability to support follicular development and ovulation. Biochem Pharmacol 2014; 89:266-75. [DOI: 10.1016/j.bcp.2014.02.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/23/2014] [Accepted: 02/26/2014] [Indexed: 11/28/2022]
|
39
|
Kolmus K, Van Troys M, Van Wesemael K, Ampe C, Haegeman G, Tavernier J, Gerlo S. β-agonists selectively modulate proinflammatory gene expression in skeletal muscle cells via non-canonical nuclear crosstalk mechanisms. PLoS One 2014; 9:e90649. [PMID: 24603712 PMCID: PMC3946252 DOI: 10.1371/journal.pone.0090649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 02/04/2014] [Indexed: 02/04/2023] Open
Abstract
The proinflammatory cytokine Tumour Necrosis Factor (TNF)-α is implicated in a variety of skeletal muscle pathologies. Here, we have investigated how in vitro cotreatment of skeletal muscle C2C12 cells with β-agonists modulates the TNF-α-induced inflammatory program. We observed that C2C12 myotubes express functional TNF receptor 1 (TNF-R1) and β2-adrenoreceptors (β2-ARs). TNF-α activated the canonical Nuclear Factor-κB (NF-κB) pathway and Mitogen-Activated Protein Kinases (MAPKs), culminating in potent induction of NF-κB-dependent proinflammatory genes. Cotreatment with the β-agonist isoproterenol potentiated the expression of inflammatory mediators, including Interleukin-6 (IL-6) and several chemokines. The enhanced production of chemotactic factors upon TNF-α/isoproterenol cotreatment was also suggested by the results from migrational analysis. Whereas we could not explain our observations by cytoplasmic crosstalk, we found that TNF-R1-and β2-AR-induced signalling cascades cooperate in the nucleus. Using the IL-6 promoter as a model, we demonstrated that TNF-α/isoproterenol cotreatment provoked phosphorylation of histone H3 at serine 10, concomitant with enhanced promoter accessibility and recruitment of the NF-κB p65 subunit, cAMP-response element-binding protein (CREB), CREB-binding protein (CBP) and RNA polymerase II. In summary, we show that β-agonists potentiate TNF-α action, via nuclear crosstalk, that promotes chromatin relaxation at selected gene promoters. Our data warrant further study into the mode of action of β-agonists and urge for caution in their use as therapeutic agents for muscular disorders.
Collapse
Affiliation(s)
- Krzysztof Kolmus
- Department of Medical Protein Research, VIB, Gent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Marleen Van Troys
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | | | - Christophe Ampe
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Guy Haegeman
- Department of Physiology, Faculty of Sciences, Ghent University, Gent, Belgium
| | - Jan Tavernier
- Department of Medical Protein Research, VIB, Gent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Sarah Gerlo
- Department of Medical Protein Research, VIB, Gent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
- * E-mail:
| |
Collapse
|
40
|
Ciccarelli A, Giustetto M. Role of ERK signaling in activity-dependent modifications of histone proteins. Neuropharmacology 2014; 80:34-44. [PMID: 24486378 DOI: 10.1016/j.neuropharm.2014.01.039] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 11/19/2022]
Abstract
It is well-established that neuronal intracellular signaling governed by the extracellular signal-regulated kinase (ERK/MAPK) plays a crucial role in long-term adaptive changes that occur during cognitive processes. ERK is a downstream component of a conserved signaling module that is activated by the serine/threonine kinase, Raf, which activates the MAPK/ERK kinase (MEK)1/2 protein kinases, which, in turn, activate ERK1/2. This signaling pathway has been reported to be activated in numerous physiological conditions due to a variety of stimuli, ranging from the activation of ionotropic glutamatergic receptors to metabotropic dopaminergic receptors and neurotrophin receptors. Interestingly, activated ERK can have early and late downstream effects at both the nuclear and synaptic levels. Locally, ERK signaling results in transient changes in the efficacy of synaptic transmission by modifying both pre- and post-synaptic targets. Once translocated into the nucleus, ERK signaling may control transcription by targeting several different regulators of gene expression such as transcription factors and histone proteins. ERK function is considered fundamental in processes such as long-term memory storage and drug addiction, by means of its role in activity-dependent epigenetic modifications that occur in the brain. In this review, we summarize the current understanding of ERK action in the neuroepigenetic processes underlying physiological responses, cognitive processes and drug addiction.
Collapse
Affiliation(s)
- Alessandro Ciccarelli
- University of Turin, Department of Neuroscience, C.so M. D'Azeglio 52, 10126 Turin, Italy
| | - Maurizio Giustetto
- University of Turin, Department of Neuroscience, C.so M. D'Azeglio 52, 10126 Turin, Italy; National Institute of Neuroscience-Italy, C.so M. D'Azeglio 52, 10126 Turin, Italy.
| |
Collapse
|
41
|
Teino I, Matvere A, Kuuse S, Ingerpuu S, Maimets T, Kristjuhan A, Tiido T. Transcriptional repression of the Ahr gene by LHCGR signaling in preovulatory granulosa cells is controlled by chromatin accessibility. Mol Cell Endocrinol 2014; 382:292-301. [PMID: 24145128 DOI: 10.1016/j.mce.2013.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 09/08/2013] [Accepted: 10/11/2013] [Indexed: 01/22/2023]
Abstract
Recent advances in establishing the role of the aryl hydrocarbon receptor (Ahr) in normophysiology have discovered its fundamental role, amongst others, in female reproduction. Considering previous studies suggesting the hormonal modulation of Ahr, we aimed to investigate whether in murine granulosa cells (GCs) the gonadotropins regulate Ahr expression and how this is mechanistically implemented. We found that the FSH-like substance--pregnant mare serum gonadotropin--led to stimulation of Ahr expression. More importantly hCG produced relatively rapid reduction of Ahr mRNA in GCs of preovulatory follicles. We show for the first time that LHCGR signaling in regulating the Ahr message involves protein kinase A pathway and is attributable to decreased transcription rate. Finally, we found that Ahr promoter accessibility was decreased by hCG, implicating chromatin remodeling in Ahr gene regulation by LH.
Collapse
Affiliation(s)
- Indrek Teino
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Antti Matvere
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Sulev Kuuse
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Sulev Ingerpuu
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Toivo Maimets
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Arnold Kristjuhan
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Tarmo Tiido
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| |
Collapse
|
42
|
Wang Q, Leader A, Tsang BK. Inhibitory roles of prohibitin and chemerin in FSH-induced rat granulosa cell steroidogenesis. Endocrinology 2013; 154:956-67. [PMID: 23254195 DOI: 10.1210/en.2012-1836] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Follicular differentiation is a tightly regulated process involving various endocrine, autocrine, and paracrine factors. The biosynthesis of progesterone and estradiol in response to FSH involves the regulation of multiple steroidogenic enzymes, such as p450 cholesterol side-chain cleavage enzyme and aromatase. Here we demonstrated that prohibitin (PHB), a multifunctional protein, inhibits FSH-induced progesterone and estradiol secretion in rat granulosa cells. The mRNA abundances of cyp11a (coding p450 cholesterol side-chain cleavage enzyme) and cyp19 (coding aromatase) were also suppressed by PHB in a time-dependent manner. It is known that a novel adipokine chemerin suppresses FSH-induced steroidogenesis in granulosa cells. Chemerin up-regulates the content of PHB, and PHB knockdown attenuates the suppressive role of chemerin on steroidogenesis. In addition, inhibition of phosphatidylinositol 3-kinase/Akt pathway enhances the suppressive action of PHB, whereas expression of constitutively active Akt attenuates this response. These findings suggest that PHB is a novel negative regulator of FSH-induced steroidogenesis, and its action with chemerin may contribute to the dysregulation of steroidogenesis in the pathogenesis of polycystic ovarian syndrome.
Collapse
Affiliation(s)
- Qi Wang
- Departments of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8L6
| | | | | |
Collapse
|
43
|
PKA and GAB2 play central roles in the FSH signaling pathway to PI3K and AKT in ovarian granulosa cells. Proc Natl Acad Sci U S A 2012; 109:E2979-88. [PMID: 23045700 DOI: 10.1073/pnas.1205661109] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Controlled maturation of ovarian follicles is necessary for fertility. Follicles are restrained at an immature stage until stimulated by FSH secreted by pituitary gonadotropes. FSH acts on granulosa cells within the immature follicle to inhibit apoptosis, promote proliferation, stimulate production of steroid and protein hormones, and induce ligand receptors and signaling intermediates. The phosphoinositide 3-kinase (PI3K)/AKT (protein kinase B) pathway is a pivotal signaling corridor necessary for transducing the FSH signal. We report that protein kinase A (PKA) mediates the actions of FSH by signaling through multiple targets to activate PI3K/AKT. PKA uses a route that promotes phosphorylation of insulin receptor substrate-1 (IRS-1) on Tyr(989), a canonical binding site for the 85-kDa regulatory subunit of PI3K that allosterically activates the catalytic subunit. PI3K activation leads to activation of AKT through phosphorylation of AKT on Thr(308) and Ser(473). The adaptor growth factor receptor bound protein 2-associated binding protein 2 (GAB2) is present in a preformed complex with PI3K heterodimer and IRS-1, it is an A-kinase anchoring protein that binds the type I regulatory subunit of PKA, and it is phosphorylated by PKA on Ser(159). Overexpression of GAB2 enhances FSH-stimulated AKT phosphorylation. GAB2, thus, seems to coordinate signals from the FSH-stimulated rise in cAMP that leads to activation of PI3K/AKT. The ability of PKA to commandeer IRS-1 and GAB2, adaptors that normally integrate receptor/nonreceptor tyrosine kinase signaling into PI3K/AKT, reveals a previously unrecognized route for PKA to activate a pathway that promotes proliferation, inhibits apoptosis, enhances translation, and initiates differentiation of granulosa cells.
Collapse
|
44
|
Meldi KM, Gaconnet GA, Mayo KE. DNA methylation and histone modifications are associated with repression of the inhibin α promoter in the rat corpus luteum. Endocrinology 2012; 153:4905-17. [PMID: 22865368 PMCID: PMC3512026 DOI: 10.1210/en.2012-1292] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The transition from follicle to corpus luteum after ovulation is associated with profound morphological and functional changes and is accompanied by corresponding changes in gene expression. The gene encoding the α subunit of the dimeric reproductive hormone inhibin is maximally expressed in the granulosa cells of the preovulatory follicle, is rapidly repressed by the ovulatory LH surge, and is expressed at only very low levels in the corpus luteum. Although previous studies have identified transient repressors of inhibin α gene transcription, little is known about how this repression is maintained in the corpus luteum. This study examines the role of epigenetic changes, including DNA methylation and histone modification, in silencing of inhibin α gene expression. Bisulfite sequencing reveals that methylation of the inhibin α proximal promoter is low in preovulatory and ovulatory follicles but is elevated in the corpus luteum. Increased methylation during luteinization is observed within the cAMP response element in the promoter, and EMSA demonstrate that methylation of this site inhibits cAMP response element binding protein binding in vitro. Chromatin immunoprecipitation reveals that repressive histone marks H3K9 and H3K27 trimethylation are increased on the inhibin α promoter in primary luteal cells, whereas the activation mark H3K4 trimethylation is decreased. The changes in histone modification precede the alterations in DNA methylation, suggesting that they facilitate the recruitment of DNA methyltransferases. We show that the DNA methyltransferase DNMT3a is present in the ovary and in luteal cells when the inhibin α promoter becomes methylated and observe recruitment of DNMT3a to the inhibin promoter during luteinization.
Collapse
Affiliation(s)
- Kristen M Meldi
- Department of Molecular Biosciences, Center for Reproductive Science, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
45
|
Monga R, Ghai S, Datta TK, Singh D. Involvement of transcription factor GATA-4 in regulation of CYP19 gene during folliculogenesis and luteinization in buffalo ovary. J Steroid Biochem Mol Biol 2012; 130:45-56. [PMID: 22245270 DOI: 10.1016/j.jsbmb.2011.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 12/15/2011] [Accepted: 12/16/2011] [Indexed: 11/18/2022]
Abstract
CYP19 gene encode aromatase, the key enzyme of estrogen biosynthesis, is regulated in species- and tissue-specific manner by alternate use of different promoters. Previously, we have reported the cloning and characterization of tissue-specific promoter and transcripts in buffalo ovary and placenta. In human and rat ovary, FSH induces the phosphorylation of transcription factor CREB (cAMP response element binding protein) through PKA pathway which binds to cAMP response element like sequence (CLS) in CYP19 gene ovarian promoter. However, in buffalo as well as in bovine, in silico analysis of ovary specific promoter sequence identified a single base pair deletion in CLS site and is designated as CLS-like sequence. To understand if CLS with a point mutation is still a functional cis-element and is involved in FSH stimulated transactivation of CYP19 gene in buffalo ovary, the present study was thus aimed to functionally characterize the role of buffalo CLS in CYP19 gene transactivation. We also studied the involvement of GATA-4, having consensus binding sites in CYP19 gene ovarian promoter in the vicinity of CLS during different stages of the buffalo estrus cycle. Reporter construct analyses and EMSA results showed that CLS is playing no significant role in CYP19 gene regulation in buffalo ovary. Real time absolute quantification of GATA-4 showed the differential expression of GATA-4 mRNA during folliculogenesis and luteinization with significantly higher transcript abundance in large follicle in comparison to other tissues. Western blot analysis of granulosa cells nuclear protein isolated from different stage of follicular development (small and large follicles) and differentiation (corpus luteum) showed that abundance of phosphorylated GATA-4 (Ser261) was significantly higher in granulosa cell nuclear protein of large follicles as compared to small follicles and corpora lutea. Interestingly, binding studies using ChIP showed significantly enhanced binding to the CYP19 gene promoter in large follicle which was seen to be declined in the luteal tissue. Similar results were obtained in the in vitro experiments as well. Finally, RNAi experiments were performed to validate the involvement of GATA-4 in CYP19 gene regulation. Results of RNAi showed that knockdown of GATA-4 mRNA significantly declined CYP19 gene mRNA as well as 17β-estradiol contents. In conclusion, result of the present study indicated that that in the absence of consensus CRE (cAMP response element); GATA-4 could be a downstream effector of cAMP/PKA pathway in regulation of CYP19 gene during folliculogenesis and luteinization.
Collapse
Affiliation(s)
- Rachna Monga
- Molecular Endocrinology Laboratory, Animal Biochemistry Division, National Dairy Research Institute (NDRI), Karnal, Haryana, India
| | | | | | | |
Collapse
|
46
|
Bapat SA. Modulation of gene expression in ovarian cancer by active and repressive histone marks. Epigenomics 2012; 2:39-51. [PMID: 22122747 DOI: 10.2217/epi.09.38] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
DNA methylation and histone modifications often function concomitantly to drive an aberrant program of gene expression in most cancers. Consequently, they have also been identified as being associated with ovarian cancer. However, several basic issues remain unclear - are these marks established early during normal ovarian functioning, or at a preneoplastic stage, or through a gradual accumulation, or do they arise de novo during transformation? Such issues have been difficult to address in ovarian cancer wherein preneoplastic lesions and progression models have not yet been established and drug-refractive disease progression is rapid and aggressive. The review presents an overview of the known involvement of histone modifications in various cellular states that might contribute to our understanding of epithelial ovarian cancer.
Collapse
Affiliation(s)
- Sharmila A Bapat
- National Centre for Cell Science, NCCS complex, Pune University Campus, Ganeshkhind, Pune, India.
| |
Collapse
|
47
|
Current advances in epigenetic modification and alteration during mammalian ovarian folliculogenesis. J Genet Genomics 2012; 39:111-23. [PMID: 22464470 DOI: 10.1016/j.jgg.2012.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 01/07/2012] [Accepted: 02/10/2012] [Indexed: 11/23/2022]
Abstract
During the growth and development of mammalian ovarian follicles, the activation and deactivation of mass genes are under the synergistic control of diverse modifiers through genetic and epigenetic events. Many factors regulate gene activity and functions through epigenetic modification without altering the DNA sequence, and the common mechanisms may include but are not limited to: DNA methylation, histone modifications (e.g., acetylation, deacetylation, phosphorylation, methylation, and ubiquitination), and RNA-associated silencing of gene expression by noncoding RNA. Over the past decade, substantial progress has been achieved in studies involving the epigenetic alterations during mammalian germ cell development. A number of candidate regulatory factors have been identified. This review focuses on the current available information of epigenetic alterations (e.g., DNA methylation, histone modification, noncoding-RNA-mediated regulation) during mammalian folliculogenesis and recounts when and how epigenetic patterns are differentially established, maintained, or altered in this process. Based on different types of epigenetic regulation, our review follows the temporal progression of events during ovarian folliculogenesis and describes the epigenetic changes and their contributions to germ cell-specific functions at each stage (i.e., primordial folliculogenesis (follicle formation), follicle maturation, and follicular atresia).
Collapse
|
48
|
Ulloa-Aguirre A, Crépieux P, Poupon A, Maurel MC, Reiter E. Novel pathways in gonadotropin receptor signaling and biased agonism. Rev Endocr Metab Disord 2011; 12:259-74. [PMID: 21526415 DOI: 10.1007/s11154-011-9176-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gonadotropins play a central role in the control of male and female reproduction. Selective agonists and antagonists of gonadotropin receptors would be of great interest for the treatment of infertility or as non steroidal contraceptive. However, to date, only native hormones are being used in assisted reproduction technologies as there is no pharmacological agent available to manipulate gonadotropin receptors. Over the last decade, there has been a growing perception of the complexity associated with gonadotropin receptors' cellular signaling. It is now clear that the Gs/cAMP/PKA pathway is not the sole mechanism that must be taken into account in order to understand these hormones' biological actions. In parallel, consistent with the emerging paradigm of biased agonism, several examples of ligand-mediated selective signaling pathway activation by gonadotropin receptors have been reported. Small molecule ligands, modulating antibodies interacting with the hormones and glycosylation variants of the native glycoproteins have all demonstrated their potential to trigger such selective signaling. Altogether, the available data and emerging concepts give rise to intriguing opportunities towards a more efficient control of reproductive function and associated disorders.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- BIOS group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France.
| | | | | | | | | |
Collapse
|
49
|
Telikicherla D, Ambekar A, Palapetta SM, Dwivedi SB, Raju R, Sharma J, Prasad TK, Ramachandra Y, Mohan SS, Maharudraiah J, Mukherjee S, Pandey A. A comprehensive curated resource for follicle stimulating hormone signaling. BMC Res Notes 2011; 4:408. [PMID: 21996254 PMCID: PMC3204250 DOI: 10.1186/1756-0500-4-408] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 10/13/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Follicle stimulating hormone (FSH) is an important hormone responsible for growth, maturation and function of the human reproductive system. FSH regulates the synthesis of steroid hormones such as estrogen and progesterone, proliferation and maturation of follicles in the ovary and spermatogenesis in the testes. FSH is a glycoprotein heterodimer that binds and acts through the FSH receptor, a G-protein coupled receptor. Although online pathway repositories provide information about G-protein coupled receptor mediated signal transduction, the signaling events initiated specifically by FSH are not cataloged in any public database in a detailed fashion. FINDINGS We performed comprehensive curation of the published literature to identify the components of FSH signaling pathway and the molecular interactions that occur upon FSH receptor activation. Our effort yielded 64 reactions comprising 35 enzyme-substrate reactions, 11 molecular association events, 11 activation events and 7 protein translocation events that occur in response to FSH receptor activation. We also cataloged 265 genes, which were differentially expressed upon FSH stimulation in normal human reproductive tissues. CONCLUSIONS We anticipate that the information provided in this resource will provide better insights into the physiological role of FSH in reproductive biology, its signaling mediators and aid in further research in this area. The curated FSH pathway data is freely available through NetPath (http://www.netpath.org), a pathway resource developed previously by our group.
Collapse
Affiliation(s)
- Deepthi Telikicherla
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Monga R, Ghai S, Datta TK, Singh D. Tissue-specific promoter methylation and histone modification regulate CYP19 gene expression during folliculogenesis and luteinization in buffalo ovary. Gen Comp Endocrinol 2011; 173:205-15. [PMID: 21663742 DOI: 10.1016/j.ygcen.2011.05.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/16/2011] [Accepted: 05/24/2011] [Indexed: 01/08/2023]
Abstract
Aromatase, the key enzyme of estrogen biosynthesis, is encoded by the CYP19 gene. The expression of CYP19 gene is regulated in species- and tissue-specific manner by alternate use of different promoters. We have previously, cloned and characterized the tissue-specific promoter and tissue-specific transcripts in preovulatory (granulosa cells) and postovulatory (corpus luteum) structure of buffalo ovary. The present study was aimed to understand if epigenetic gene regulation through DNA methylation and histone modifications is involved in tissue-specific CYP19 gene regulation during folliculogenesis and luteinization in buffalo ovary. Methylation analysis of five CpG dinucleotides of ovary specific proximal promoter II showed hypo-methylation in large follicle while hyper-methylation in corpus luteum. However, PI.1, the exclusive promoter responsible for residual CYP19 gene expression in corpus luteum, was found to be hypermethylated. Analysis of histone modifications using ChIP assay revealed that the distal promoter (PI.1) of CYP19 gene is ~40-fold more enriched with acetylated Histone H3 in corpus luteum than in the large follicle. This indicates that PI.1 chromatin was more accessible for transcription in corpus luteum as compared to large follicles. The chromatin accessibility for the proximal promoter (PII) in the preovulatory stage tends to be higher than the luteal tissue. However, the difference was not found to be significant. In vitro experiments showed the similar results. In conclusion, results of the present study suggests that tissue-specific methylation status of PII and chromatin remodeling through histone modifications of PI.1, coincides with the changes in expression of CYP19 gene and thus are the regulatory mechanism controlling its tissue-specific expression and promoter activity during folliculogenesis and luteinization.
Collapse
Affiliation(s)
- Rachna Monga
- Molecular Endocrinology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| | | | | | | |
Collapse
|