1
|
Aspinall TV, Gordon JM, Bennett HJ, Karahalios P, Bukowski JP, Walker SC, Engelke DR, Avis JM. Interactions between subunits of Saccharomyces cerevisiae RNase MRP support a conserved eukaryotic RNase P/MRP architecture. Nucleic Acids Res 2007; 35:6439-50. [PMID: 17881380 PMCID: PMC2095792 DOI: 10.1093/nar/gkm553] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Ribonuclease MRP is an endonuclease, related to RNase P, which functions in eukaryotic pre-rRNA processing. In Saccharomyces cerevisiae, RNase MRP comprises an RNA subunit and ten proteins. To improve our understanding of subunit roles and enzyme architecture, we have examined protein-protein and protein–RNA interactions in vitro, complementing existing yeast two-hybrid data. In total, 31 direct protein–protein interactions were identified, each protein interacting with at least three others. Furthermore, seven proteins self-interact, four strongly, pointing to subunit multiplicity in the holoenzyme. Six protein subunits interact directly with MRP RNA and four with pre-rRNA. A comparative analysis with existing data for the yeast and human RNase P/MRP systems enables confident identification of Pop1p, Pop4p and Rpp1p as subunits that lie at the enzyme core, with probable addition of Pop5p and Pop3p. Rmp1p is confirmed as an integral subunit, presumably associating preferentially with RNase MRP, rather than RNase P, via interactions with Snm1p and MRP RNA. Snm1p and Rmp1p may act together to assist enzyme specificity, though roles in substrate binding are also indicated for Pop4p and Pop6p. The results provide further evidence of a conserved eukaryotic RNase P/MRP architecture and provide a strong basis for studies of enzyme assembly and subunit function.
Collapse
Affiliation(s)
- Tanya V. Aspinall
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK and Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-0606, USA
| | - James M.B. Gordon
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK and Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-0606, USA
| | - Hayley J. Bennett
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK and Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-0606, USA
| | - Panagiotis Karahalios
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK and Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-0606, USA
| | - John-Paul Bukowski
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK and Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-0606, USA
| | - Scott C. Walker
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK and Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-0606, USA
| | - David R. Engelke
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK and Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-0606, USA
| | - Johanna M. Avis
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK and Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109-0606, USA
- *To whom correspondence should be addressed. +44 161 306 4216+44 161 306 5201
| |
Collapse
|
2
|
Abstract
Ribonuclease P (RNase P) is an ancient and essential endonuclease that catalyses the cleavage of the 5' leader sequence from precursor tRNAs (pre-tRNAs). The enzyme is one of only two ribozymes which can be found in all kingdoms of life (Bacteria, Archaea, and Eukarya). Most forms of RNase P are ribonucleoproteins; the bacterial enzyme possesses a single catalytic RNA and one small protein. However, in archaea and eukarya the enzyme has evolved an increasingly more complex protein composition, whilst retaining a structurally related RNA subunit. The reasons for this additional complexity are not currently understood. Furthermore, the eukaryotic RNase P has evolved into several different enzymes including a nuclear activity, organellar activities, and the evolution of a distinct but closely related enzyme, RNase MRP, which has different substrate specificities, primarily involved in ribosomal RNA biogenesis. Here we examine the relationship between the bacterial and archaeal RNase P with the eukaryotic enzyme, and summarize recent progress in characterizing the archaeal enzyme. We review current information regarding the nuclear RNase P and RNase MRP enzymes in the eukaryotes, focusing on the relationship between these enzymes by examining their composition, structure and functions.
Collapse
Affiliation(s)
- Scott C Walker
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | | |
Collapse
|
3
|
Xiao S, Hsieh J, Nugent RL, Coughlin DJ, Fierke CA, Engelke DR. Functional characterization of the conserved amino acids in Pop1p, the largest common protein subunit of yeast RNases P and MRP. RNA (NEW YORK, N.Y.) 2006; 12:1023-37. [PMID: 16618965 PMCID: PMC1464857 DOI: 10.1261/rna.23206] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
RNase P and RNase MRP are ribonucleoprotein enzymes required for 5'-end maturation of precursor tRNAs (pre-tRNAs) and processing of precursor ribosomal RNAs, respectively. In yeast, RNase P and MRP holoenzymes have eight protein subunits in common, with Pop1p being the largest at >100 kDa. Little is known about the functions of Pop1p, beyond the fact that it binds specifically to the RNase P RNA subunit, RPR1 RNA. In this study, we refined the previous Pop1 phylogenetic sequence alignment and found four conserved regions. Highly conserved amino acids in yeast Pop1p were mutagenized by randomization and conditionally defective mutations were obtained. Effects of the Pop1p mutations on pre-tRNA processing, pre-rRNA processing, and stability of the RNA subunits of RNase P and MRP were examined. In most cases, functional defects in RNase P and RNase MRP in vivo were consistent with assembly defects of the holoenzymes, although moderate kinetic defects in RNase P were also observed. Most mutations affected both pre-tRNA and pre-rRNA processing, but a few mutations preferentially interfered with only RNase P or only RNase MRP. In addition, one temperature-sensitive mutation had no effect on either tRNA or rRNA processing, consistent with an additional role for RNase P, RNase MRP, or Pop1p in some other form. This study shows that the Pop1p subunit plays multiple roles in the assembly and function of of RNases P and MRP, and that the functions can be differentiated through the mutations in conserved residues.
Collapse
Affiliation(s)
- Shaohua Xiao
- Department of Biological Chemistry, University of Michigan, Ann Arbor, 48109, USA
| | | | | | | | | | | |
Collapse
|
6
|
Houser-Scott F, Xiao S, Millikin CE, Zengel JM, Lindahl L, Engelke DR. Interactions among the protein and RNA subunits of Saccharomyces cerevisiae nuclear RNase P. Proc Natl Acad Sci U S A 2002; 99:2684-9. [PMID: 11880623 PMCID: PMC122408 DOI: 10.1073/pnas.052586299] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2001] [Indexed: 12/28/2022] Open
Abstract
Ribonuclease P (RNase P) is a ubiquitous endoribonuclease that cleaves precursor tRNAs to generate mature 5' termini. Although RNase P from all kingdoms of life have been found to have essential RNA subunits, the number and size of the protein subunits ranges from one small protein in bacteria to at least nine proteins of up to 100 kDa. In Saccharomyces cerevisiae nuclear RNase P, the enzyme is composed of ten subunits: a single RNA and nine essential proteins. The spatial organization of these components within the enzyme is not yet understood. In this study we examine the likely binary protein-protein and protein-RNA subunit interactions by using directed two- and three-hybrid tests in yeast. Only two protein subunits, Pop1p and Pop4p, specifically bind the RNA subunit. Pop4p also interacted with seven of the other eight protein subunits. The remaining protein subunits all showed one or more specific protein-protein interactions with the other integral protein subunits. Of particular interest was the behavior of Rpr2p, the only protein subunit found in RNase P but not in the closely related enzyme, RNase MRP. Rpr2p interacts strongly with itself as well as with Pop4p. Similar interactions with self and Pop4p were also detected for Snm1p, the only unique protein subunit so far identified in RNase MRP. This observation is consistent with Snm1p and Rpr2p serving analogous functions in the two enzymes. This study provides a low-resolution map of the multisubunit architecture of the ribonucleoprotein enzyme, nuclear RNase P from S. cerevisiae.
Collapse
Affiliation(s)
- Felicia Houser-Scott
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0606, USA
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Ribonuclease P (RNase P) is an essential endonuclease that acts early in the tRNA biogenesis pathway. This enzyme catalyzes cleavage of the leader sequence of precursor tRNAs (pre-tRNAs), generating the mature 5' end of tRNAs. RNase P activities have been identified in Bacteria, Archaea, and Eucarya, as well as organelles. Most forms of RNase P are ribonucleoproteins, i.e., they consist of an essential RNA subunit and protein subunits, although the composition of the enzyme in mitochondria and chloroplasts is still under debate. The recent purification of the eukaryotic nuclear RNase P has demonstrated a significantly larger protein content compared to the bacterial enzyme. Moreover, emerging evidence suggests that the eukaryotic RNase P has evolved into at least two related nuclear enzymes with distinct functions, RNase P and RNase MRP. Here we review current information on RNase P, with emphasis on the composition, structure, and functions of the eukaryotic nuclear holoenzyme, and its relationship with RNase MRP.
Collapse
Affiliation(s)
- Shaohua Xiao
- Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, University of Michigan, Ann Arbor, Michigan 48109-0606
| | - Felicia Scott
- Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, University of Michigan, Ann Arbor, Michigan 48109-0606
| | - Carol A. Fierke
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606
| | - David R. Engelke
- Department of Biological Chemistry, 3200 MSRB III, 1150 W. Medical Center Drive, University of Michigan, Ann Arbor, Michigan 48109-0606
| |
Collapse
|