1
|
Wegrzyn K, Oliwa M, Nowacka M, Zabrocka E, Bury K, Purzycki P, Czaplewska P, Pipka J, Giraldo R, Konieczny I. Rep protein accommodates together dsDNA and ssDNA which enables a loop-back mechanism to plasmid DNA replication initiation. Nucleic Acids Res 2023; 51:10551-10567. [PMID: 37713613 PMCID: PMC10602881 DOI: 10.1093/nar/gkad740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
For DNA replication initiation in Bacteria, replication initiation proteins bind to double-stranded DNA (dsDNA) and interact with single-stranded DNA (ssDNA) at the replication origin. The structural-functional relationship of the nucleoprotein complex involving initiator proteins is still elusive and different models are proposed. In this work, based on crosslinking combined with mass spectrometry (MS), the analysis of mutant proteins and crystal structures, we defined amino acid residues essential for the interaction between plasmid Rep proteins, TrfA and RepE, and ssDNA. This interaction and Rep binding to dsDNA could not be provided in trans, and both are important for dsDNA melting at DNA unwinding element (DUE). We solved two crystal structures of RepE: one in a complex with ssDNA DUE, and another with both ssDNA DUE and dsDNA containing RepE-specific binding sites (iterons). The amino acid residues involved in interaction with ssDNA are located in the WH1 domain in stand β1, helices α1 and α2 and in the WH2 domain in loops preceding strands β1' and β2' and in these strands. It is on the opposite side compared to RepE dsDNA-recognition interface. Our data provide evidence for a loop-back mechanism through which the plasmid replication initiator molecule accommodates together dsDNA and ssDNA.
Collapse
Affiliation(s)
- Katarzyna Wegrzyn
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Monika Oliwa
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Marzena Nowacka
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109 Warsaw, Poland
| | - Elżbieta Zabrocka
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Katarzyna Bury
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Piotr Purzycki
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Justyna Pipka
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Rafael Giraldo
- Centro de Investigaciones Biológicas – CSIC, E28040 Madrid, Spain
| | - Igor Konieczny
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| |
Collapse
|
2
|
Bury K, Wegrzyn K, Konieczny I. Handcuffing reversal is facilitated by proteases and replication initiator monomers. Nucleic Acids Res 2017; 45:3953-3966. [PMID: 28335002 PMCID: PMC5397158 DOI: 10.1093/nar/gkx166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/03/2017] [Indexed: 01/04/2023] Open
Abstract
Specific nucleoprotein complexes are formed strictly to prevent over-initiation of DNA replication. An example of those is the so-called handcuff complex, in which two plasmid molecules are coupled together with plasmid-encoded replication initiation protein (Rep). In this work, we elucidate the mechanism of the handcuff complex disruption. In vitro tests, including dissociation progress analysis, demonstrate that the dimeric variants of plasmid RK2 replication initiation protein TrfA are involved in assembling the plasmid handcuff complex which, as we found, reveals high stability. Particular proteases, namely Lon and ClpAP, disrupt the handcuff by degrading TrfA, thus affecting plasmid stability. Moreover, our data demonstrate that TrfA monomers are able to dissociate handcuffed plasmid molecules. Those monomers displace TrfA molecules, which are involved in handcuff formation, and through interaction with the uncoupled plasmid replication origins they re-initiate DNA synthesis. We discuss the relevance of both Rep monomers and host proteases for plasmid maintenance under vegetative and stress conditions.
Collapse
Affiliation(s)
- Katarzyna Bury
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-308 Gdansk, Poland
| | - Katarzyna Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-308 Gdansk, Poland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-308 Gdansk, Poland
| |
Collapse
|
3
|
Jha JK, Ramachandran R, Chattoraj DK. Opening the Strands of Replication Origins-Still an Open Question. Front Mol Biosci 2016; 3:62. [PMID: 27747216 PMCID: PMC5043065 DOI: 10.3389/fmolb.2016.00062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 09/16/2016] [Indexed: 11/22/2022] Open
Abstract
The local separation of duplex DNA strands (strand opening) is necessary for initiating basic transactions on DNA such as transcription, replication, and homologous recombination. Strand opening is commonly a stage at which these processes are regulated. Many different mechanisms are used to open the DNA duplex, the details of which are of great current interest. In this review, we focus on a few well-studied cases of DNA replication origin opening in bacteria. In particular, we discuss the opening of origins that support the theta (θ) mode of replication, which is used by all chromosomal origins and many extra-chromosomal elements such as plasmids and phages. Although the details of opening can vary among different origins, a common theme is binding of the initiator to multiple sites at the origin, causing stress that opens an adjacent and intrinsically unstable A+T rich region. The initiator stabilizes the opening by capturing one of the open strands. How the initiator binding energy is harnessed for strand opening remains to be understood.
Collapse
Affiliation(s)
- Jyoti K Jha
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| | - Revathy Ramachandran
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| | - Dhruba K Chattoraj
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
4
|
Yano H, Wegrzyn K, Loftie-Eaton W, Johnson J, Deckert GE, Rogers LM, Konieczny I, Top EM. Evolved plasmid-host interactions reduce plasmid interference cost. Mol Microbiol 2016; 101:743-56. [PMID: 27121483 DOI: 10.1111/mmi.13407] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2016] [Indexed: 01/01/2023]
Abstract
Antibiotic selection drives adaptation of antibiotic resistance plasmids to new bacterial hosts, but the molecular mechanisms are still poorly understood. We previously showed that a broad-host-range plasmid was poorly maintained in Shewanella oneidensis, but rapidly adapted through mutations in the replication initiation gene trfA1. Here we examined if these mutations reduced the fitness cost of TrfA1, and whether this was due to changes in interaction with the host's DNA helicase DnaB. The strains expressing evolved TrfA1 variants showed a higher growth rate than those expressing ancestral TrfA1. The evolved TrfA1 variants showed a lower affinity to the helicase than ancestral TrfA1 and were no longer able to activate the helicase at the oriV without host DnaA. Moreover, persistence of the ancestral plasmid was increased upon overexpression of DnaB. Finally, the evolved TrfA1 variants generated higher plasmid copy numbers than ancestral TrfA1. The findings suggest that ancestral plasmid instability can at least partly be explained by titration of DnaB by TrfA1. Thus under antibiotic selection resistance plasmids can adapt to a novel bacterial host through partial loss of function mutations that simultaneously increase plasmid copy number and decrease unfavorably high affinity to one of the hosts' essential proteins.
Collapse
Affiliation(s)
- Hirokazu Yano
- Department of Biological Sciences.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, 83844, USA.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| | - Katarznya Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, 24 Kladki, 80-822, Gdansk, Poland
| | - Wesley Loftie-Eaton
- Department of Biological Sciences.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, 83844, USA
| | | | - Gail E Deckert
- Department of Biological Sciences.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, 83844, USA
| | - Linda M Rogers
- Department of Biological Sciences.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, 83844, USA
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, 24 Kladki, 80-822, Gdansk, Poland
| | - Eva M Top
- Department of Biological Sciences.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, 83844, USA
| |
Collapse
|
5
|
Karlowicz A, Wegrzyn K, Dubiel A, Ropelewska M, Konieczny I. Proteolysis in plasmid DNA stable maintenance in bacterial cells. Plasmid 2016; 86:7-13. [PMID: 27252071 DOI: 10.1016/j.plasmid.2016.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 01/12/2023]
Abstract
Plasmids, as extrachromosomal genetic elements, need to work out strategies that promote independent replication and stable maintenance in host bacterial cells. Their maintenance depends on constant formation and dissociation of nucleoprotein complexes formed on plasmid DNA. Plasmid replication initiation proteins (Rep) form specific complexes on direct repeats (iterons) localized within the plasmid replication origin. Formation of these complexes along with a strict control of Rep protein cellular concentration, quaternary structure, and activity, is essential for plasmid maintenance. Another important mechanism for maintenance of low-copy-number plasmids are the toxin-antitoxin (TA) post-segregational killing (psk) systems, which prevent plasmid loss from the bacterial cell population. In this mini review we discuss the importance of nucleoprotein complex processing by energy-dependent host proteases in plasmid DNA replication and plasmid type II toxin-antitoxin psk systems, and draw attention to the elusive role of DNA in this process.
Collapse
Affiliation(s)
- Anna Karlowicz
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Katarzyna Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Andrzej Dubiel
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Malgorzata Ropelewska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| |
Collapse
|
6
|
Abstract
Iteron-containing plasmids are model systems for studying the metabolism of extrachromosomal genetic elements in bacterial cells. Here we describe the current knowledge and understanding of the structure of iteron-containing replicons, the structure of the iteron plasmid encoded replication initiation proteins, and the molecular mechanisms for iteron plasmid DNA replication initiation. We also discuss the current understanding of control mechanisms affecting the plasmid copy number and how host chaperone proteins and proteases can affect plasmid maintenance in bacterial cells.
Collapse
|
7
|
Plasmid replication initiator interactions with origin 13-mers and polymerase subunits contribute to strand-specific replisome assembly. Proc Natl Acad Sci U S A 2015. [PMID: 26195759 DOI: 10.1073/pnas.1504926112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the molecular basis for replisome activity has been extensively investigated, it is not clear what the exact mechanism for de novo assembly of the replication complex at the replication origin is, or how the directionality of replication is determined. Here, using the plasmid RK2 replicon, we analyze the protein interactions required for Escherichia coli polymerase III (Pol III) holoenzyme association at the replication origin. Our investigations revealed that in E. coli, replisome formation at the plasmid origin involves interactions of the RK2 plasmid replication initiation protein (TrfA) with both the polymerase β- and α-subunits. In the presence of other replication proteins, including DnaA, helicase, primase and the clamp loader, TrfA interaction with the β-clamp contributes to the formation of the β-clamp nucleoprotein complex on origin DNA. By reconstituting in vitro the replication reaction on ssDNA templates, we demonstrate that TrfA interaction with the β-clamp and sequence-specific TrfA interaction with one strand of the plasmid origin DNA unwinding element (DUE) contribute to strand-specific replisome assembly. Wild-type TrfA, but not the TrfA QLSLF mutant (which does not interact with the β-clamp), in the presence of primase, helicase, Pol III core, clamp loader, and β-clamp initiates DNA synthesis on ssDNA template containing 13-mers of the bottom strand, but not the top strand, of DUE. Results presented in this work uncovered requirements for anchoring polymerase at the plasmid replication origin and bring insights of how the directionality of DNA replication is determined.
Collapse
|
8
|
Affiliation(s)
- Ratnesh Chandra Mishra
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
9
|
Mogk A, Kummer E, Bukau B. Cooperation of Hsp70 and Hsp100 chaperone machines in protein disaggregation. Front Mol Biosci 2015; 2:22. [PMID: 26042222 PMCID: PMC4436881 DOI: 10.3389/fmolb.2015.00022] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/04/2015] [Indexed: 11/13/2022] Open
Abstract
Unicellular and sessile organisms are particularly exposed to environmental stress such as heat shock causing accumulation and aggregation of misfolded protein species. To counteract protein aggregation, bacteria, fungi, and plants encode a bi-chaperone system composed of ATP-dependent Hsp70 and hexameric Hsp100 (ClpB/Hsp104) chaperones, which rescue aggregated proteins and provide thermotolerance to cells. The partners act in a hierarchic manner with Hsp70 chaperones coating first the surface of protein aggregates and next recruiting Hsp100 through direct physical interaction. Hsp100 proteins bind to the ATPase domain of Hsp70 via their unique M-domain. This extra domain functions as a molecular toggle allosterically controlling ATPase and threading activities of Hsp100. Interactions between neighboring M-domains and the ATPase ring keep Hsp100 in a repressed state exhibiting low ATP turnover. Breakage of intermolecular M-domain interactions and dissociation of M-domains from the ATPase ring relieves repression and allows for Hsp70 interaction. Hsp70 binding in turn stabilizes Hsp100 in the activated state and primes Hsp100 ATPase domains for high activity upon substrate interaction. Hsp70 thereby couples Hsp100 substrate binding and motor activation. Hsp100 activation presumably relies on increased subunit cooperation leading to high ATP turnover and threading power. This Hsp70-mediated activity control of Hsp100 is crucial for cell viability as permanently activated Hsp100 variants are toxic. Hsp100 activation requires simultaneous binding of multiple Hsp70 partners, restricting high Hsp100 activity to the surface of protein aggregates and ensuring Hsp100 substrate specificity.
Collapse
Affiliation(s)
- Axel Mogk
- Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance Heidelberg, Germany
| | - Eva Kummer
- Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance Heidelberg, Germany
| |
Collapse
|
10
|
Zabrocka E, Wegrzyn K, Konieczny I. Two replication initiators - one mechanism for replication origin opening? Plasmid 2014; 76:72-8. [PMID: 25454070 DOI: 10.1016/j.plasmid.2014.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/30/2014] [Accepted: 10/10/2014] [Indexed: 11/25/2022]
Abstract
DNA replication initiation has been well-characterized; however, studies in the past few years have shown that there are still important discoveries to be made. Recent publications concerning the bacterial DnaA protein have revealed how this replication initiator, via interaction with specific sequences within the origin region, causes local destabilization of double stranded DNA. Observations made in the context of this bacterial initiator have also been converging with those recently made for plasmid Rep proteins. In this mini review we discuss the relevance of new findings for the RK2 plasmid replication initiator, TrfA, with regard to new data on the structure of complexes formed by the chromosomal replication initiator DnaA. We discuss structure-function relationships of replication initiation proteins.
Collapse
Affiliation(s)
- Elzbieta Zabrocka
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Katarzyna Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822 Gdansk, Poland.
| |
Collapse
|
11
|
Jain A, Srivastava P. Broad host range plasmids. FEMS Microbiol Lett 2013; 348:87-96. [DOI: 10.1111/1574-6968.12241] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/09/2013] [Accepted: 08/20/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Aayushi Jain
- Department of Biochemical Engineering and Biotechnology; Indian Institute of Technology; New Delhi India
| | - Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology; Indian Institute of Technology; New Delhi India
| |
Collapse
|
12
|
Lipińska N, Ziętkiewicz S, Sobczak A, Jurczyk A, Potocki W, Morawiec E, Wawrzycka A, Gumowski K, Ślusarz M, Rodziewicz-Motowidło S, Chruściel E, Liberek K. Disruption of ionic interactions between the nucleotide binding domain 1 (NBD1) and middle (M) domain in Hsp100 disaggregase unleashes toxic hyperactivity and partial independence from Hsp70. J Biol Chem 2012; 288:2857-69. [PMID: 23233670 DOI: 10.1074/jbc.m112.387589] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hsp100 chaperones cooperate with the Hsp70 chaperone system to disaggregate and reactivate heat-denatured aggregated proteins to promote cell survival after heat stress. The homology models of Hsp100 disaggregases suggest the presence of a conserved network of ionic interactions between the first nucleotide binding domain (NBD1) and the coiled-coil middle subdomain, the signature domain of disaggregating chaperones. Mutations intended to disrupt the putative ionic interactions in yeast Hsp104 and bacterial ClpB disaggregases resulted in remarkable changes of their biochemical properties. These included an increase in ATPase activity, a significant increase in the rate of in vitro substrate renaturation, and partial independence from the Hsp70 chaperone in disaggregation. Paradoxically, the increased activities resulted in serious growth impediments in yeast and bacterial cells instead of improvement of their thermotolerance. Our results suggest that this toxic activity is due to the ability of the mutated disaggregases to unfold independently from Hsp70, native folded proteins. Complementary changes that restore particular salt bridges within the suggested network suppressed the toxic effects. We propose a novel structural aspect of Hsp100 chaperones crucial for specificity and efficiency of the disaggregation reaction.
Collapse
Affiliation(s)
- Natalia Lipińska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, 80-822 Gdansk, Kladki 24, Poland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Seyffer F, Kummer E, Oguchi Y, Winkler J, Kumar M, Zahn R, Sourjik V, Bukau B, Mogk A. Hsp70 proteins bind Hsp100 regulatory M domains to activate AAA+ disaggregase at aggregate surfaces. Nat Struct Mol Biol 2012; 19:1347-55. [PMID: 23160352 DOI: 10.1038/nsmb.2442] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 10/15/2012] [Indexed: 11/09/2022]
Abstract
Bacteria, fungi and plants rescue aggregated proteins using a powerful bichaperone system composed of an Hsp70 chaperone and an Hsp100 AAA+ disaggregase. In Escherichia coli, the Hsp70 chaperone DnaK binds aggregates and targets the disaggregase ClpB to the substrate. ClpB hexamers use ATP to thread substrate polypeptides through the central pore, driving disaggregation. How ClpB finds DnaK and regulates threading remains unclear. To dissect the disaggregation mechanism, we separated these steps using primarily chimeric ClpB-ClpV constructs that directly recognize alternative substrates, thereby obviating DnaK involvement. We show that ClpB has low intrinsic disaggregation activity that is normally repressed by the ClpB middle (M) domain. In the presence of aggregate, DnaK directly binds M-domain motif 2, increasing ClpB ATPase activity to unleash high ClpB threading power. Our results uncover a new function for Hsp70: the coupling of substrate targeting to AAA+ chaperone activation at aggregate surfaces.
Collapse
Affiliation(s)
- Fabian Seyffer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Roles of long and short replication initiation proteins in the fate of IncP-1 plasmids. J Bacteriol 2012; 194:1533-43. [PMID: 22228734 DOI: 10.1128/jb.06395-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Broad-host-range IncP-1 plasmids generally encode two replication initiation proteins, TrfA1 and TrfA2. TrfA2 is produced from an internal translational start site within trfA1. While TrfA1 was previously shown to be essential for replication in Pseudomonas aeruginosa, its role in other bacteria within its broad host range has not been established. To address the role of TrfA1 and TrfA2 in other hosts, efficiency of transformation, plasmid copy number (PCN), and plasmid stability were first compared between a mini-IncP-1β plasmid and its trfA1 frameshift variant in four phylogenetically distant hosts: Escherichia coli, Pseudomonas putida, Sphingobium japonicum, and Cupriavidus necator. TrfA2 was sufficient for replication in these hosts, but the presence of TrfA1 enhanced transformation efficiency and PCN. However, TrfA1 did not contribute to, and even negatively affected, long-term plasmid persistence. When trfA genes were cloned under a constitutive promoter in the chromosomes of the four hosts, strains expressing either both TrfA1 and TrfA2 or TrfA1 alone, again, generally elicited a higher PCN of an IncP1-β replicon than strains expressing TrfA2 alone. When a single species of TrfA was produced at different concentrations in E. coli cells, TrfA1 maintained a 3- to 4-fold higher PCN than TrfA2 at the same TrfA concentrations, indicating that replication mediated by TrfA1 is more efficient than that by TrfA2. These results suggest that the broad-host-range properties of IncP-1 plasmids are essentially conferred by TrfA2 and the intact replication origin alone but that TrfA1 is nonetheless important to efficiently establish plasmid replication upon transfer into a broad range of hosts.
Collapse
|
15
|
Kubik S, Wegrzyn K, Pierechod M, Konieczny I. Opposing effects of DNA on proteolysis of a replication initiator. Nucleic Acids Res 2011; 40:1148-59. [PMID: 21976729 PMCID: PMC3273809 DOI: 10.1093/nar/gkr813] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
DNA replication initiation proteins (Reps) are subjected to degradation by cellular proteases. We investigated how the formation of nucleoprotein complex, involving Rep and a protease, affects Rep degradation. All known Escherichia coli AAA+ cytosolic proteases and the replication initiation protein TrfA of the broad-host-range plasmid RK2 were used. Our results revealed that DNA influences the degradation process and that the observed effects are opposite and protease specific. In the case of ClpXP and ClpYQ proteases, DNA abolishes proteolysis, while in the case of ClpAP and Lon proteases it stimulates the process. ClpX and ClpY cannot interact with DNA-bound TrfA, while the ClpAP and Lon activities are enhanced by the formation of nucleoprotein complexes involving both the protease and TrfA. Lon has to interact with TrfA before contacting DNA, or this interaction can occur with TrfA already bound to DNA. The TrfA degradation by Lon can be carried out only on DNA. The absence of Lon results with higher stability of TrfA in the cell.
Collapse
Affiliation(s)
- Slawomir Kubik
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Gdansk, Poland
| | | | | | | |
Collapse
|
16
|
Kolatka K, Kubik S, Rajewska M, Konieczny I. Replication and partitioning of the broad-host-range plasmid RK2. Plasmid 2010; 64:119-34. [DOI: 10.1016/j.plasmid.2010.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 06/08/2010] [Accepted: 06/21/2010] [Indexed: 11/27/2022]
|
17
|
Pierechod M, Nowak A, Saari A, Purta E, Bujnicki JM, Konieczny I. Conformation of a plasmid replication initiator protein affects its proteolysis by ClpXP system. Protein Sci 2009; 18:637-49. [PMID: 19241373 DOI: 10.1002/pro.68] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteins from the Rep family of DNA replication initiators exist mainly as dimers, but only monomers can initiate DNA replication by interaction with the replication origin (ori). In this study, we investigated both the activation (monomerization) and the degradation of the broad-host-range plasmid RK2 replication initiation protein TrfA, which we found to be a member of a class of DNA replication initiators containing winged helix (WH) domains. Our in vivo and in vitro experiments demonstrated that the ClpX-dependent activation of TrfA leading to replicationally active protein monomers and mutations affecting TrfA dimer formation, result in the inhibition of TrfA protein degradation by the ClpXP proteolytic system. These data revealed that the TrfA monomers and dimers are degraded at substantially different rates. Our data also show that the plasmid replication initiator activity and stability in E. coli cells are affected by ClpXP system only when the protein sustains dimeric form.
Collapse
Affiliation(s)
- Marcin Pierechod
- Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Gdansk, Poland
| | | | | | | | | | | |
Collapse
|
18
|
Common and specific mechanisms of AAA+ proteins involved in protein quality control. Biochem Soc Trans 2008; 36:120-5. [PMID: 18208398 DOI: 10.1042/bst0360120] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A protein quality control system, consisting of molecular chaperones and proteases, controls the folding status of proteins and mediates the refolding or degradation of misfolded proteins. Ring-forming AAA+ (ATPase associated with various cellular activities) proteins play crucial roles in both processes by co-operating with either peptidases or chaperone systems. Peptidase-associated AAA+ proteins bind substrates and thread them through their axial channel into the attached proteolytic chambers for degradation. In contrast, the AAA+ protein ClpB evolved independently from an interacting peptidase and co-operates with a cognate Hsp70 (heat-shock protein 70) chaperone system to solubilize and refold aggregated proteins. The activity of this bi-chaperone system is crucial for the survival of bacteria, yeast and plants during severe stress conditions. Hsp70 acts at initial stages of the disaggregation process, enabling ClpB to extract single unfolded polypeptides from the aggregate via a threading activity. Although both classes of AAA+ proteins share a common threading activity, it is apparent that their divergent evolution translates into specific mechanisms, reflecting adaptations to their respective functions. The ClpB-specific M-domain (middle domain) represents such an extra feature that verifies ClpB as the central disaggregase in vivo. M-domains act as regulatory devices to control both ClpB ATPase activity and the Hsp70-dependent binding of aggregated proteins to the ClpB pore, thereby coupling the Hsp70 chaperone activity with the ClpB threading motor to ensure efficient protein disaggregation.
Collapse
|
19
|
Lee S, Choi JM, Tsai FTF. Visualizing the ATPase cycle in a protein disaggregating machine: structural basis for substrate binding by ClpB. Mol Cell 2007; 25:261-71. [PMID: 17244533 PMCID: PMC1855157 DOI: 10.1016/j.molcel.2007.01.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 10/10/2006] [Accepted: 01/03/2007] [Indexed: 11/17/2022]
Abstract
ClpB is a ring-shaped molecular chaperone that has the remarkable ability to disaggregate stress-damaged proteins. Here we present the electron cryomicroscopy reconstruction of an ATP-activated ClpB trap mutant, along with reconstructions of ClpB in the AMPPNP, ADP, and in the nucleotide-free state. We show that motif 2 of the ClpB M domain is positioned between the D1-large domains of neighboring subunits and could facilitate a concerted, ATP-driven conformational change in the AAA-1 ring. We further demonstrate biochemically that ATP is essential for high-affinity substrate binding to ClpB and cannot be substituted with AMPPNP. Our structures show that in the ATP-activated state, the D1 loops are stabilized at the central pore, providing the structural basis for high-affinity substrate binding. Taken together, our results support a mechanism by which ClpB captures substrates on the upper surface of the AAA-1 ring before threading them through the ClpB hexamer in an ATP hydrolysis-driven step.
Collapse
Affiliation(s)
- Sukyeong Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
20
|
Susin MF, Baldini RL, Gueiros-Filho F, Gomes SL. GroES/GroEL and DnaK/DnaJ have distinct roles in stress responses and during cell cycle progression in Caulobacter crescentus. J Bacteriol 2006; 188:8044-53. [PMID: 16980445 PMCID: PMC1698207 DOI: 10.1128/jb.00824-06] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Misfolding and aggregation of protein molecules are major threats to all living organisms. Therefore, cells have evolved quality control systems for proteins consisting of molecular chaperones and proteases, which prevent protein aggregation by either refolding or degrading misfolded proteins. DnaK/DnaJ and GroES/GroEL are the best-characterized molecular chaperone systems in bacteria. In Caulobacter crescentus these chaperone machines are the products of essential genes, which are both induced by heat shock and cell cycle regulated. In this work, we characterized the viabilities of conditional dnaKJ and groESL mutants under different types of environmental stress, as well as under normal physiological conditions. We observed that C. crescentus cells with GroES/EL depleted are quite resistant to heat shock, ethanol, and freezing but are sensitive to oxidative, saline, and osmotic stresses. In contrast, cells with DnaK/J depleted are not affected by the presence of high concentrations of hydrogen peroxide, NaCl, and sucrose but have a lower survival rate after heat shock, exposure to ethanol, and freezing and are unable to acquire thermotolerance. Cells lacking these chaperones also have morphological defects under normal growth conditions. The absence of GroE proteins results in long, pinched filamentous cells with several Z-rings, whereas cells lacking DnaK/J are only somewhat more elongated than normal predivisional cells, and most of them do not have Z-rings. These findings indicate that there is cell division arrest, which occurs at different stages depending on the chaperone machine affected. Thus, the two chaperone systems have distinct roles in stress responses and during cell cycle progression in C. crescentus.
Collapse
Affiliation(s)
- Michelle F Susin
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, SP, Brasil
| | | | | | | |
Collapse
|
21
|
Wang Y, Bogenhagen DF. Human Mitochondrial DNA Nucleoids Are Linked to Protein Folding Machinery and Metabolic Enzymes at the Mitochondrial Inner Membrane. J Biol Chem 2006; 281:25791-802. [PMID: 16825194 DOI: 10.1074/jbc.m604501200] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial DNA (mtDNA) is packaged into bacterial nucleoid-like structures, each containing several mtDNA molecules. The distribution of nucleoids during mitochondrial fission and fusion events and during cytokinesis is important to the segregation of mitochondrial genomes in heteroplasmic cells bearing a mixture of wild-type and mutant mtDNA molecules. We report fractionation of HeLa cell mtDNA nucleoids into two subsets of complexes that differ in their sedimentation velocity and their association with cytoskeletal proteins. Pulse labeling studies indicated that newly replicated mtDNA molecules are evenly represented in the rapidly and slowly sedimenting fractions. Slowly sedimenting nucleoids were immunoaffinity purified using antibodies to either of two abundant mtDNA-binding proteins, TFAM or mtSSB. These two different immunoaffinity procedures yielded very similar sets of proteins, with 21 proteins in common, including most of the proteins previously shown to play roles in mtDNA replication and transcription. In addition to previously identified mitochondrial proteins, multiple peptides were observed for one novel DNA metabolic protein, the DEAH-box helicase DHX30. Antibodies raised against a recombinant fragment of this protein confirmed the mitochondrial localization of a specific isoform of DHX30.
Collapse
Affiliation(s)
- Yousong Wang
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794-8651, USA
| | | |
Collapse
|
22
|
Lewandowska A, Gierszewska M, Marszalek J, Liberek K. Hsp78 chaperone functions in restoration of mitochondrial network following heat stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:141-51. [PMID: 16545993 DOI: 10.1016/j.bbamcr.2006.01.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 01/13/2006] [Accepted: 01/17/2006] [Indexed: 11/17/2022]
Abstract
Under physiological conditions mitochondria of yeast Saccharomyces cerevisiae form a branched tubular network, the continuity of which is maintained by balanced membrane fusion and fission processes. Here, we show using mitochondrial matrix targeted green fluorescent protein that exposure of cells to extreme heat shock led to dramatic changes in mitochondrial morphology, as tubular network disintegrated into several fragmented vesicles. Interestingly, this fragmentation did not affect mitochondrial ability to maintain the membrane potential. Cells subjected to recovery at physiological temperature were able to restore the mitochondrial network, as long as an active matrix chaperone, Hsp78, was present. Deletion of HSP78 gene did not affect fragmentation of mitochondria upon heat stress, but significantly inhibited ability to restore mitochondrial network. Changes of mitochondrial morphology correlated with aggregation of mitochondrial proteins. On the other hand, recovery of mitochondrial network correlated with disappearance of protein aggregates and reactivation of enzymatic activity of a model thermo-sensitive protein: mitochondrial DNA polymerase. Since protein disaggregation and refolding is mediated by Hsp78 chaperone collaborating with Hsp70 chaperone system, we postulate that effect of Hsp78 on mitochondrial morphology upon recovery after heat shock is mediated by its ability to restore activity of unknown protein(s) responsible for maintenance of mitochondrial morphology.
Collapse
Affiliation(s)
- Agnieszka Lewandowska
- Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland.
| | | | | | | |
Collapse
|
23
|
Abstract
The AAA+ (ATPases associated with various cellular activities) family is a large and functionally diverse group of enzymes that are able to induce conformational changes in a wide range of substrate proteins. The family's defining feature is a structurally conserved ATPase domain that assembles into oligomeric rings and undergoes conformational changes during cycles of nucleotide binding and hydrolysis. Here, we review the structural organization of AAA+ proteins, the conformational changes they undergo, the range of different reactions they catalyse, and the diseases associated with their dysfunction.
Collapse
Affiliation(s)
- Phyllis I Hanson
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
24
|
Laksanalamai P, Pavlov AR, Slesarev AI, Robb FT. Stabilization ofTaq DNA Polymerase at High Temperature by Protein Folding Pathways From a Hyperthermophilic Archaeon,Pyrococcus furiosus. Biotechnol Bioeng 2005; 93:1-5. [PMID: 16299772 DOI: 10.1002/bit.20781] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pyrococcus furiosus, a hyperthermophilic archaeon growing optimally at 100 degrees C, encodes three protein chaperones, a small heat shock protein (sHsp), a prefoldin (Pfd), and a chaperonin (Cpn). In this study, we report that the passive chaperones sHsp and Pfd from P. furiosus can boost the protein refolding activity of the ATP-dependent Cpn from the same hyperthermophile. The thermo-stability of Taq polymerase was significantly improved by combinations of P. furiosus chaperones, showing ongoing protein folding activity at elevated temperatures and during thermal cycling. Based on these results, we propose that the protein folding apparatus in the hyperthermophilic archaeon, P. furiosus can be utilized to enhance the durability and cost effectiveness of high temperature biocatalysts.
Collapse
Affiliation(s)
- Pongpan Laksanalamai
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, 701 E. Pratt St., Baltimore, MD 21202, USA.
| | | | | | | |
Collapse
|
25
|
Stewart GR, Robertson BD, Young DB. Analysis of the function of mycobacterial DnaJ proteins by overexpression and microarray profiling. Tuberculosis (Edinb) 2004; 84:180-7. [PMID: 15207487 DOI: 10.1016/j.tube.2003.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2003] [Indexed: 01/09/2023]
Abstract
Regulation of expression of the Hsp70/DnaK chaperone plays an important role during infection with Mycobacterium tuberculosis. We have examined the effect of manipulating the level of expression of DnaJ, one of the components of the chaperone apparatus. Overexpression of DnaJ1 resulted in elevated transcription of both the hsp70/dnaK and hsp60/groE chaperone genes, consistent with an increase in the cellular content of nascent and unfolded peptide substrates. There was also an increase in transcription of genes flanking the origin of chromosomal replication, suggesting an important role for DnaJ1 in controlling interaction of the Hsp70 chaperone with the DnaA protein. Overexpression of DnaJ2 had no detectable effect on transcription of other genes. Overexpression in combination with microarray profiling provides a complementary approach to gene deletion for exploring the function of essential genes in M. tuberculosis.
Collapse
Affiliation(s)
- Graham R Stewart
- Centre for Molecular Microbiology and Infection, Flowers Building, South Kensington Campus, Imperial College London, SW7 2AZ, UK.
| | | | | |
Collapse
|
26
|
Weibezahn J, Tessarz P, Schlieker C, Zahn R, Maglica Z, Lee S, Zentgraf H, Weber-Ban EU, Dougan DA, Tsai FTF, Mogk A, Bukau B. Thermotolerance Requires Refolding of Aggregated Proteins by Substrate Translocation through the Central Pore of ClpB. Cell 2004; 119:653-65. [PMID: 15550247 DOI: 10.1016/j.cell.2004.11.027] [Citation(s) in RCA: 371] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2004] [Revised: 08/20/2004] [Accepted: 10/06/2004] [Indexed: 10/26/2022]
Abstract
Cell survival under severe thermal stress requires the activity of the ClpB (Hsp104) AAA+ chaperone that solubilizes and reactivates aggregated proteins in concert with the DnaK (Hsp70) chaperone system. How protein disaggregation is achieved and whether survival is solely dependent on ClpB-mediated elimination of aggregates or also on reactivation of aggregated proteins has been unclear. We engineered a ClpB variant, BAP, which associates with the ClpP peptidase and thereby is converted into a degrading disaggregase. BAP translocates substrates through its central pore directly into ClpP for degradation. ClpB-dependent translocation is demonstrated to be an integral part of the disaggregation mechanism. Protein disaggregation by the BAP/ClpP complex remains dependent on DnaK, defining a role for DnaK at early stages of the disaggregation reaction. The activity switch of BAP to a degrading disaggregase does not support thermotolerance development, demonstrating that cell survival during severe thermal stress requires reactivation of aggregated proteins.
Collapse
Affiliation(s)
- Jimena Weibezahn
- Zentrum für Molekulare Biologie der Universität Heidelberg, Universität Heidelberg, Im Neuenheimer Feld 282, Heidelberg D-69120, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zzaman S, Reddy JM, Bastia D. The DnaK-DnaJ-GrpE chaperone system activates inert wild type pi initiator protein of R6K into a form active in replication initiation. J Biol Chem 2004; 279:50886-94. [PMID: 15485812 DOI: 10.1074/jbc.m407531200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plasmid R6K is an interesting model system for investigating initiation of DNA replication, not only near the primary binding sites of the initiator protein pi but also at a distance, caused by pi -mediated DNA looping. An important milestone in the mechanistic analysis of this replicon was the development of a reconstituted replication system consisting of 22 different highly purified proteins (Abhyankar, M. A., Zzaman, S., and Bastia, D. (2003) J. Biol. Chem. 278, 45476-45484). Although the in vitro reconstituted system promotes ori gamma-specific initiation of replication by a mutant form of the initiator called pi*, the wild type (WT) pi is functionally inert in this system. Here we show that the chaperone DnaK along with its co-chaperone DnaJ and the nucleotide exchange factor GrpE were needed to activate WT pi and caused it to initiate replication in vitro at the correct origin. We show further that the reaction was relatively chaperone-specific and that other chaperones, such as ClpB and ClpX, were incapable of activating WT pi. The molecular mechanism of activation appeared to be a chaperone-catalyzed facilitation of dimeric inert WT pi into iteron-bound monomers. Protein-protein interaction analysis by enzyme-linked immunosorbent assay revealed that, in the absence of ATP, DnaJ directly interacted with pi but its binary interactions with DnaK and GrpE and with ClpB and ClpX were at background levels, suggesting that pi is recruited by protein-protein interaction with DnaJ and then fed into the DnaK chaperone machine to promote initiator activation.
Collapse
Affiliation(s)
- Shamsu Zzaman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
28
|
Chakraborty A, Sen B, Datta R, Datta AK. Isomerase-Independent Chaperone Function of Cyclophilin Ensures Aggregation Prevention of Adenosine Kinase Both in vitro and under in vivo Conditions. Biochemistry 2004; 43:11862-72. [PMID: 15362872 DOI: 10.1021/bi049490o] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using inactive aggregates of adenosine kinase (AdK) from Leishmania donovani as the model substrate, we recently demonstrated that a cyclophilin (LdCyP) from the same source in an isomerase-independent fashion reactivated the enzyme in vitro by disaggregating its inactive oligomers [Chakraborty et al. (2002) J. Biol. Chem. 277, 47451-47460]. Besides disrupting preformed aggregates, LdCyP also prevents reaggregation of the newly formed active protein that is generated after productive refolding from its urea-denatured state. To investigate possible physiological implications of such phenomena, a unique expression system that simultaneously induces both AdK and LdCyP in naturally AdK-deficient Escherichia coli, was developed. Both in vitro and in vivo experiments revealed that oligomerization is an inherent property of this particular enzyme. In vivo protein cross-linking studies, activity determination analysis and Ado phosphorylation experiments carried out in cells coexpressing both the proteins unequivocally demonstrated that, similar to the phenomena observed in vitro, aggregates of the enzyme formed in vivo are able to interact with both LdCyP and its N-terminal truncated form (N(22-88)DEL LdCyP) in a crowded intracellular environment, resulting in aggregation prevention and reactivation of the enzyme. Our results indicate that the isomerase-independent chaperone function of LdCyP, detected in vitro, participates in vivo as well to keep aggregation-prone proteins in a monomeric state. Furthermore, analogous to yeast/bacterial two-hybrid systems, development of this simple coexpression system may help in the confirmation of interaction of two proteins under simulated in vivo conditions.
Collapse
Affiliation(s)
- Anutosh Chakraborty
- Division of Infectious Diseases, Leishmania Group, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata-700 032, India
| | | | | | | |
Collapse
|
29
|
Schlieker C, Weibezahn J, Patzelt H, Tessarz P, Strub C, Zeth K, Erbse A, Schneider-Mergener J, Chin JW, Schultz PG, Bukau B, Mogk A. Substrate recognition by the AAA+ chaperone ClpB. Nat Struct Mol Biol 2004; 11:607-15. [PMID: 15208691 DOI: 10.1038/nsmb787] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Accepted: 04/16/2004] [Indexed: 02/07/2023]
Abstract
The AAA+ protein ClpB cooperates with the DnaK chaperone system to solubilize and refold proteins from an aggregated state. The substrate-binding site of ClpB and the mechanism of ClpB-dependent protein disaggregation are largely unknown. Here we identified a substrate-binding site of ClpB that is located at the central pore of the first AAA domain. The conserved Tyr251 residue that lines the central pore contributes to substrate binding and its crucial role was confirmed by mutational analysis and direct crosslinking to substrates. Because the positioning of an aromatic residue at the central pore is conserved in many AAA+ proteins, a central substrate-binding site involving this residue may be a common feature of this protein family. The location of the identified binding site also suggests a possible translocation mechanism as an integral part of the ClpB-dependent disaggregation reaction.
Collapse
Affiliation(s)
- Christian Schlieker
- Zentrum für Molekulare Biologie, Universität Heidelberg, Im Neuenheimer Feld 282, Heidelberg 69120, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Laksanalamai P, Whitehead TA, Robb FT. Minimal protein-folding systems in hyperthermophilic archaea. Nat Rev Microbiol 2004; 2:315-24. [PMID: 15031730 DOI: 10.1038/nrmicro866] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pongpan Laksanalamai
- Center of Marine Biotechnology, University of Maryland, 701 East Pratt Street, Baltimore, Maryland 21202, USA
| | | | | |
Collapse
|
31
|
Sharma S, Sathyanarayana BK, Bird JG, Hoskins JR, Lee B, Wickner S. Plasmid P1 RepA Is Homologous to the F Plasmid RepE Class of Initiators. J Biol Chem 2004; 279:6027-34. [PMID: 14634015 DOI: 10.1074/jbc.m310917200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA replication of plasmid P1 requires a plasmid-encoded origin DNA-binding protein, RepA. RepA is an inactive dimer and is converted by molecular chaperones into an active monomer that binds RepA binding sites. Although the sequence of RepA is not homologous to that of F plasmid RepE, we found by using fold-recognition programs that RepA shares structural homology with RepE and built a model based on the RepE crystal structure. We constructed mutants in the two predicted DNA binding domains to test the model. As expected, the mutants were defective in P1 DNA binding. The model predicted that RepA binds the first half of the binding site through interactions with the C-terminal DNA binding domain and the second half through interactions with the N-terminal domain. The experiments supported the prediction. The model was further supported by the observation that mutants defective in dimerization map to the predicted subunit interface region, based on the crystal structure of pPS10 RepA, a RepE family member. These results suggest P1 RepA is structurally homologous to plasmid initiators, including those of F, R6K, pSC101, pCU1, pPS10, pFA3, pGSH500, Rts1, RepHI1B, RepFIB, and RSF1010.
Collapse
Affiliation(s)
- Suveena Sharma
- Laboratory of Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
32
|
Weiner J, Zimmerman CU, Göhlmann HWH, Herrmann R. Transcription profiles of the bacterium Mycoplasma pneumoniae grown at different temperatures. Nucleic Acids Res 2003; 31:6306-20. [PMID: 14576319 PMCID: PMC275481 DOI: 10.1093/nar/gkg841] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Applying microarray technology, we have investigated the transcriptome of the small bacterium Mycoplasma pneumoniae grown at three different temperature conditions: 32, 37 and 32 degrees C followed by a heat shock for 15 min at 43 degrees C, before isolating the RNA. From 688 proposed open-reading frames, 676 were investigated and 564 were found to be expressed (P < 0.001; 606 with P < 0.01) and at least 33 (P < 0.001; 77 at P < 0.01) regulated. By quantitative real-time PCR of selected mRNA species, the expression data could be linked to absolute molecule numbers. We found M.pneumoniae to be regulated at the transcriptional level. Forty-seven genes were found to be significantly up-regulated after heat shock (P < 0.01). Among those were the conserved heat shock genes like dnaK, lonA and clpB, but also several genes coding for ribosomal proteins and 10 genes of unassigned functions. In addition, 30 genes were found to be down-regulated under the applied heat shock conditions. Further more, we have compared different methods of cDNA synthesis (random hexamer versus gene-specific primers, different RNA concentrations) and various normalization strategies of the raw microarray data.
Collapse
Affiliation(s)
- J Weiner
- Zentrum für Molekulare Biologie Heidelberg, Universität Heidelberg, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
33
|
Kedzierska B, Glinkowska M, Iwanicki A, Obuchowski M, Sojka P, Thomas MS, Wegrzyn G. Toxicity of the bacteriophage lambda cII gene product to Escherichia coli arises from inhibition of host cell DNA replication. Virology 2003; 313:622-8. [PMID: 12954227 DOI: 10.1016/s0042-6822(03)00376-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bacteriophage lambda cII gene codes for a transcriptional activator protein which is a crucial regulator at the stage of the "lysis-versus-lysogeny" decision during phage development. The CII protein is highly toxic to the host, Escherichia coli, when overproduced. However, the molecular mechanism of this toxicity is not known. Here we demonstrate that DNA synthesis, but not total RNA synthesis, is strongly inhibited in cII-overexpressing E. coli cells. The toxicity was also observed when the transcriptional stimulator activity of CII was abolished either by a point mutation in the cII gene or by a point mutation, rpoA341, in the gene coding for the RNA polymerase alpha subunit. Moreover, inhibition of cell growth, caused by both wild-type and mutant CII proteins in either rpoA(+) or rpoA341 hosts, could be relieved by overexpression of the E. coli dnaB and dnaC genes. In vitro replication of an oriC-based plasmid DNA was somewhat impaired by the presence of the CII, and several CII-resistant E. coli strains contain mutations near dnaC. We conclude that the DNA replication machinery may be a target for the toxic activity of CII.
Collapse
Affiliation(s)
- Barbara Kedzierska
- Department of Molecular Biology, University of Gdańsk, Kladki 24, 80-822 Gdańsk, Poland
| | | | | | | | | | | | | |
Collapse
|
34
|
Weibezahn J, Schlieker C, Bukau B, Mogk A. Characterization of a trap mutant of the AAA+ chaperone ClpB. J Biol Chem 2003; 278:32608-17. [PMID: 12805357 DOI: 10.1074/jbc.m303653200] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The AAA+ protein ClpB mediates the solubilization of protein aggregates in cooperation with the DnaK chaperone system (KJE). The order of action of ClpB and KJE on aggregated proteins is unknown. We describe a ClpB variant with mutational alterations in the Walker B motif of both AAA domains (E279A/E678A), which binds but does not hydrolyze ATP. This variant associates in vitro and in vivo in a stable manner with protein substrates, demonstrating direct interaction of ClpB with protein aggregates for the first time. Substrate interaction is strictly dependent on ATP binding to both AAA domains of ClpB. The unique substrate binding properties of the double Walker B variant allowed to dissect the order of ClpB and DnaK action during disaggregation reactions. ClpB-E279A/E678A outcompetes the DnaK system for binding to the model substrate TrfA and inhibits the dissociation of small protein aggregates by DnaK only, indicating that ClpB acts prior to DnaK on protein substrates.
Collapse
Affiliation(s)
- Jimena Weibezahn
- ZMBH, Universität Heidelberg, Im NeuenheimerFeld 282, Heidelberg D-69120, Germany
| | | | | | | |
Collapse
|
35
|
Giraldo R. Common domains in the initiators of DNA replication in Bacteria, Archaea and Eukarya: combined structural, functional and phylogenetic perspectives. FEMS Microbiol Rev 2003; 26:533-54. [PMID: 12586394 DOI: 10.1111/j.1574-6976.2003.tb00629.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Although DNA replication is the universal process for the transmission of genetic information in all living organisms, until very recently evidence was lacking for a related structure and function in the proteins (initiators) that trigger replication in the three 'Life Domains' (Bacteria, Archaea and Eukarya). In this article new data concerning the presence of common features in the initiators of chromosomal replication in bacteria, archaea and eukaryotes are reviewed. Initiators are discussed in the light of: (i) The structure and function of their conserved ATPases Associated with various cellular Activities (AAA+) and winged-helix domains. (ii) The nature of the macromolecular assemblies that they constitute at the replication origins. (iii) Their possible phylogenetic relationship, attempting to sketch the essentials of a hypothetical DNA replication initiator in the micro-organism proposed to be the ancestor of all living cells.
Collapse
Affiliation(s)
- Rafael Giraldo
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas (CSIC), C/Velázquez 144, 28006 Madrid, Spain.
| |
Collapse
|
36
|
Rottgers K, Zufall N, Guiard B, Voos W. The ClpB homolog Hsp78 is required for the efficient degradation of proteins in the mitochondrial matrix. J Biol Chem 2002; 277:45829-37. [PMID: 12237310 DOI: 10.1074/jbc.m207152200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular chaperones perform vital functions in mitochondrial protein import and folding. In yeast mitochondria, two members of the Clp/Hsp100 chaperone family, Hsp78 and Mcx1, have been identified as homologs of the bacterial proteins ClpB and ClpX, respectively. In this report we employed a novel quantitative assay system to assess the role of Hsp78 and Mcx1 in protein degradation within the matrix. Mitochondria were preloaded with large amounts of two purified recombinant reporter proteins exhibiting different folding stabilities. Proteolysis of the imported substrate proteins depended on the mitochondrial level of ATP and was mediated by the matrix protease Pim1/LON. Degradation rates were found to be independent of the folding stability of the reporter proteins. Mitochondria from hsp78Delta cells exhibited a significant defect in the degradation efficiency of both substrates even at low temperature whereas mcx1Delta mitochondria showed wild-type activity. The proteolysis defect in hsp78Delta mitochondria was independent from the aggregation behavior of the substrate proteins. We conclude that Hsp78 is a genuine component of the mitochondrial proteolysis system required for the efficient degradation of substrate proteins in the matrix.
Collapse
Affiliation(s)
- Karin Rottgers
- Institut für Biochemie und Molekularbiologie, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany
| | | | | | | |
Collapse
|
37
|
Kim SY, Sharma S, Hoskins JR, Wickner S. Interaction of the DnaK and DnaJ chaperone system with a native substrate, P1 RepA. J Biol Chem 2002; 277:44778-83. [PMID: 12237299 DOI: 10.1074/jbc.m206176200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DnaK, the Hsp70 chaperone of Escherichia coli interacts with protein substrates in an ATP-dependent manner, in conjunction with DnaJ and GrpE co-chaperones, to carry out protein folding, protein remodeling, and assembly and disassembly of multisubunit protein complexes. To understand how DnaJ targets specific proteins for recognition by the DnaK chaperone system, we investigated the interaction of DnaJ and DnaK with a known natural substrate, bacteriophage P1 RepA protein. By characterizing RepA deletion derivatives, we found that DnaJ interacts with a region of RepA located between amino acids 180 and 200 of the 286-amino acid protein. A peptide corresponding to amino acids 180-195 inhibited the interaction of RepA and DnaJ. Two site-directed RepA mutants with alanine substitutions in this region were about 4-fold less efficiently activated for oriP1 DNA binding by DnaJ and DnaK than wild type RepA. We also identified by deletion analysis a site in RepA, in the region of amino acids 35-49, which interacts with DnaK. An alanine substitution mutant in amino acids 36-39 was constructed and found defective in activation by DnaJ and DnaK. Taken together the results suggest that DnaJ and DnaK interact with separate sites on RepA.
Collapse
Affiliation(s)
- Soon-Young Kim
- Laboratory of Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892-4264, USA
| | | | | | | |
Collapse
|