1
|
Crocker K, Lee KK, Chakraverti-Wuerthwein M, Li Z, Tikhonov M, Mani M, Gowda K, Kuehn S. Global patterns in gene content of soil microbiomes emerge from microbial interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.542950. [PMID: 38014336 PMCID: PMC10680560 DOI: 10.1101/2023.05.31.542950] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Microbial metabolism sustains life on Earth. Sequencing surveys of communities in hosts, oceans, and soils have revealed ubiquitous patterns linking the microbes present, the genes they possess, and local environmental conditions. One prominent explanation for these patterns is environmental filtering: local conditions select strains with particular traits. However, filtering assumes ecological interactions do not influence patterns, despite the fact that interactions can and do play an important role in structuring communities. Here, we demonstrate the insufficiency of the environmental filtering hypothesis for explaining global patterns in topsoil microbiomes. Using denitrification as a model system, we find that the abundances of two characteristic genotypes trade-off with pH; nar gene abundances increase while nap abundances decrease with declining pH. Contradicting the filtering hypothesis, we show that strains possessing the Nar genotype are enriched in low pH conditions but fail to grow alone. Instead, the dominance of Nar genotypes at low pH arises from an ecological interaction with Nap genotypes that alleviates nitrite toxicity. Our study provides a roadmap for dissecting how global associations between environmental variables and gene abundances arise from environmentally modulated community interactions.
Collapse
Affiliation(s)
- Kyle Crocker
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
- Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL 60637, USA
| | - Kiseok Keith Lee
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
- Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL 60637, USA
| | | | - Zeqian Li
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
- Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL 60637, USA
- Department of Physics, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mikhail Tikhonov
- Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Madhav Mani
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
| | - Karna Gowda
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
- Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL 60637, USA
| | - Seppe Kuehn
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
- Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Zhao Y, Duan H, Erler D, Yuan Z, Ye L. Decoupling the simultaneous effects of NO 2-, pH and free nitrous acid on N 2O and NO production from enriched nitrifying activated sludge. WATER RESEARCH 2023; 245:120609. [PMID: 37713792 DOI: 10.1016/j.watres.2023.120609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/09/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
In the pursuit of energy and carbon neutrality, nitrogen removal technologies have been developed featuring nitrite (NO2-) accumulation. However, high NO2- accumulations are often associated with stimulated greenhouse gas (i.e., nitrous oxide, N2O) emissions. Furthermore, the coexistence of free nitrous acid (FNA) formed by NO2- and proton (pH) makes the consequence of NO2- accumulation on N2O emissions complicated. The concurrent three factors, NO2-, pH and FNA may play different roles on N2O and nitric oxide (NO) emissions simultaneously, which has not been systematically studied. This study aims to decouple the effects of NO2- (0-200 mg N/L), pH (6.5-8) and FNA (0-0.15 mg N/L) on the N2O and NO production rates and the production pathways by ammonia oxidizing bacteria (AOB), with the use of a series of precisely executed batch tests and isotope site-preference analysis. Results suggested the dominant factors affecting the N2O production rate were NO2- and FNA concentrations, while pH alone played a relatively insignificant role. The most influential factor shifted from NO2- to FNA as FNA concentrations increased from 0 to 0.15 mg N/L. At concentrations below 0.0045 mg HNO2-N/L, nitrite rather than FNA played a significant role stimulating N2O production at elevated nitrite concentrations. The inhibition effect of FNA emerged with further increase of FNA between 0.0045-0.015 mg HNO2-N/L, weakening the promoting effect of increased nitrite. While at concentrations above 0.015 mg HNO2-N/L, FNA inhibited N2O production especially from nitrifier denitrification pathway with the level of inhibition linearly correlated with the FNA concentration. pH and the nitrite concentration regulated the production pathways, with elevated pH promoting the nitrifier nitrification pathway, while elevated NO2- concentrations promoting the nitrifier denitrification pathway. In contrast to N2O, NO emission was less susceptible to FNA at concentrations up to 0.015 mg N/L but was stimulated by increasing NO2- concentrations. This study, for the first time, distinguished the effects of pH, NO2- and FNA on N2O and NO production, thereby providing support to the design and operation of novel nitrogen removal systems with NO2- accumulation.
Collapse
Affiliation(s)
- Yingfen Zhao
- School of Chemical Engineering, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Haoran Duan
- School of Chemical Engineering, The University of Queensland, St. Lucia, Queensland 4072, Australia; The Australian Centre for Water and Environmental Biotechnology (ACWEB), The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Dirk Erler
- Centre for Coastal Biogeochemistry, School of Environmental Science and Engineering, Southern Cross University, Lismore, New South Wales 2480, Australia
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
3
|
Sarkar A, Bhakta S, Chattopadhyay S, Dey A. Role of distal arginine residue in the mechanism of heme nitrite reductases. Chem Sci 2023; 14:7875-7886. [PMID: 37502318 PMCID: PMC10370594 DOI: 10.1039/d3sc01777j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/14/2023] [Indexed: 07/29/2023] Open
Abstract
Heme nitrite reductases reduce NO2- by 1e-/2H+ to NO or by 6e-/8H+ to NH4+ which are key steps in the global nitrogen cycle. Second-sphere residues, such as arginine (with a guanidine head group), are proposed to play a key role in the reaction by assisting substrate binding and hydrogen bonding and by providing protons to the active site for the reaction. The reactivity of an iron porphyrin with a NO2- covalently attached to a guanidinium arm in its 2nd sphere was investigated to understand the role of arginine residues in the 2nd sphere of heme nitrite reductases. The presence of the guanidinium residue allows the synthetic ferrous porphyrin to reduce NO2- and produce a ferrous nitrosyl species ({FeNO}7), where the required protons are provided by the guanidinium group in the 2nd sphere. However, in the presence of additional proton sources in solution, the reaction of ferrous porphyrin with NO2- results in the formation of ferric porphyrin and the release of NO. Spectroscopic and kinetic data indicated that re-protonation of the guanidine group in the 2nd sphere by an external proton source causes NO to dissociate from a ferric nitrosyl species ({FeNO}6) at rates similar to those observed for enzymatic sites. This re-protonation of the guanidine group mimics the proton recharge mechanism in the active site of NiR. DFT calculations indicated that the lability of the Fe-NO bond in the {FeNO}6 species is derived from the greater binding affinity of anions (e.g. NO2-) to the ferric center relative to neutral NO due to hydrogen bonding and electrostatic interaction of these bound anions with the protonated guanidium group in the 2nd sphere. The reduced {FeNO}7 species, once formed, is not affected significantly by the re-protonation of the guanidine residue. These results provide direct insight into the role of the 2nd sphere arginine residue present in the active sites of heme-based NiRs in determining the fate of NO2- reduction. Specifically, the findings using the synthetic model suggest that rapid re-protonation of these arginine residues may trigger the dissociation of NO from the {FeNO}6, which may also be the case in the protein active site.
Collapse
Affiliation(s)
- Ankita Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S.C. Mullick Road Kolkata WB 700032 India
| | - Snehadri Bhakta
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S.C. Mullick Road Kolkata WB 700032 India
| | - Samir Chattopadhyay
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S.C. Mullick Road Kolkata WB 700032 India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S.C. Mullick Road Kolkata WB 700032 India
| |
Collapse
|
4
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
5
|
Amanullah S, Saha P, Nayek A, Ahmed ME, Dey A. Biochemical and artificial pathways for the reduction of carbon dioxide, nitrite and the competing proton reduction: effect of 2nd sphere interactions in catalysis. Chem Soc Rev 2021; 50:3755-3823. [DOI: 10.1039/d0cs01405b] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reduction of oxides and oxoanions of carbon and nitrogen are of great contemporary importance as they are crucial for a sustainable environment.
Collapse
Affiliation(s)
- Sk Amanullah
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Paramita Saha
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhijit Nayek
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Md Estak Ahmed
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhishek Dey
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| |
Collapse
|
6
|
León-Saiki GM, Carreres BM, Remmers IM, Wijffels RH, Martins dos Santos VA, van der Veen D, Schaap PJ, Suarez-Diez M, Martens DE. Evaluation of diurnal responses of Tetradesmus obliquus under nitrogen limitation. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Functional interactions between nitrite reductase and nitric oxide reductase from Paracoccus denitrificans. Sci Rep 2019; 9:17234. [PMID: 31754148 PMCID: PMC6872814 DOI: 10.1038/s41598-019-53553-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/29/2019] [Indexed: 12/25/2022] Open
Abstract
Denitrification is a microbial pathway that constitutes an important part of the nitrogen cycle on earth. Denitrifying organisms use nitrate as a terminal electron acceptor and reduce it stepwise to nitrogen gas, a process that produces the toxic nitric oxide (NO) molecule as an intermediate. In this work, we have investigated the possible functional interaction between the enzyme that produces NO; the cd1 nitrite reductase (cd1NiR) and the enzyme that reduces NO; the c-type nitric oxide reductase (cNOR), from the model soil bacterium P. denitrificans. Such an interaction was observed previously between purified components from P. aeruginosa and could help channeling the NO (directly from the site of formation to the side of reduction), in order to protect the cell from this toxic intermediate. We find that electron donation to cNOR is inhibited in the presence of cd1NiR, presumably because cd1NiR binds cNOR at the same location as the electron donor. We further find that the presence of cNOR influences the dimerization of cd1NiR. Overall, although we find no evidence for a high-affinity, constant interaction between the two enzymes, our data supports transient interactions between cd1NiR and cNOR that influence enzymatic properties of cNOR and oligomerization properties of cd1NiR. We speculate that this could be of particular importance in vivo during metabolic switches between aerobic and denitrifying conditions.
Collapse
|
8
|
Olaya-Abril A, Hidalgo-Carrillo J, Luque-Almagro VM, Fuentes-Almagro C, Urbano FJ, Moreno-Vivián C, Richardson DJ, Roldán MD. Exploring the Denitrification Proteome of Paracoccus denitrificans PD1222. Front Microbiol 2018; 9:1137. [PMID: 29896187 PMCID: PMC5987163 DOI: 10.3389/fmicb.2018.01137] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/14/2018] [Indexed: 11/24/2022] Open
Abstract
Denitrification is a respiratory process that produces nitrous oxide as an intermediate, which may escape to the atmosphere before its reduction to dinitrogen through the nitrous oxide reductase NosZ. In this work, the denitrification process carried out by Paracoccus denitrificans PD1222 has been explored through a quantitative proteomic analysis. Under anaerobic conditions, with nitrate as sole nitrogen source, the synthesis of all the enzymes involved in denitrification, the respiratory nitrate, nitrite, nitric oxide, and nitrous oxide reductases, was increased. However, the periplasmic and assimilatory nitrate reductases decreased. Synthesis of transporters for alcohols, D-methionine, sulfate and copper, most of the enzymes involved in the tricarboxylic acid cycle, and proteins involved in other metabolic processes like lysine catabolism, fatty acids degradation and acetyl-CoA synthesis, was increased during denitrification in P. denitrificans PD1222. As consequence, an enhanced production of the central metabolite acetyl-CoA was observed. After establishing the key features of the denitrification proteome, its changes by the influence of a competitive electron acceptor, oxygen, or competitive nitrogen source, ammonium, were evaluated.
Collapse
Affiliation(s)
- Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
| | | | | | | | | | - Conrado Moreno-Vivián
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
| | - David J. Richardson
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - María D. Roldán
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
9
|
Blum JM, Su Q, Ma Y, Valverde-Pérez B, Domingo-Félez C, Jensen MM, Smets BF. The pH dependency of N-converting enzymatic processes, pathways and microbes: effect on net N2O production. Environ Microbiol 2018; 20:1623-1640. [DOI: 10.1111/1462-2920.14063] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 01/31/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Jan-Michael Blum
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| | - Qingxian Su
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| | - Yunjie Ma
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| | - Borja Valverde-Pérez
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| | - Carlos Domingo-Félez
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| | - Marlene Mark Jensen
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| | - Barth F. Smets
- Department of Environmental Engineering; Technical University of Denmark, Miljøvej Building 115; Kongens Lyngby 2800 Denmark
| |
Collapse
|
10
|
Electron transfer and docking between cytochrome cd 1 nitrite reductase and different redox partners — A comparative study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1412-1421. [DOI: 10.1016/j.bbabio.2016.04.279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/30/2016] [Accepted: 04/27/2016] [Indexed: 11/21/2022]
|
11
|
Qu Z, Bakken LR, Molstad L, Frostegård Å, Bergaust LL. Transcriptional and metabolic regulation of denitrification in Paracoccus denitrificans allows low but significant activity of nitrous oxide reductase under oxic conditions. Environ Microbiol 2016; 18:2951-63. [PMID: 26568281 DOI: 10.1111/1462-2920.13128] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/02/2015] [Accepted: 11/08/2015] [Indexed: 11/27/2022]
Abstract
Oxygen is known to repress denitrification at the transcriptional and metabolic levels. It has been a common notion that nitrous oxide reductase (N2 OR) is the most sensitive enzyme among the four N-oxide reductases involved in denitrification, potentially leading to increased N2 O production under suboxic or fluctuating oxygen conditions. We present detailed gas kinetics and transcription patterns from batch culture experiments with Paracoccus denitrificans, allowing in vivo estimation of e(-) -flow to O2 and N2 O under various O2 regimes. Transcription of nosZ took place concomitantly with that of narG under suboxic conditions, whereas transcription of nirS and norB was inhibited until O2 levels approached 0 μM in the liquid. Catalytically functional N2 OR was synthesized and active in aerobically raised cells transferred to vials with 7 vol% O2 in headspace, but N2 O reduction rates were 10 times higher when anaerobic pre-cultures were subjected to the same conditions. Upon oxygen exposure, there was an incomplete and transient inactivation of N2 OR that could be ascribed to its lower ability to compete for electrons compared with terminal oxidases. The demonstrated reduction of N2 O at high O2 partial pressure and low N2 O concentrations by a bacterium not known as a typical aerobic denitrifier may provide one clue to the understanding of why some soils appear to act as sinks rather than sources for atmospheric N2 O.
Collapse
Affiliation(s)
- Zhi Qu
- Department of Environmental Sciences, Norwegian University of Life Sciences, PO Box 5003, N-1432, Ås, Norway
| | - Lars R Bakken
- Department of Environmental Sciences, Norwegian University of Life Sciences, PO Box 5003, N-1432, Ås, Norway
| | - Lars Molstad
- Department of Environmental Sciences, Norwegian University of Life Sciences, PO Box 5003, N-1432, Ås, Norway
| | - Åsa Frostegård
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, N-1432, Ås, Norway
| | - Linda L Bergaust
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, N-1432, Ås, Norway.
| |
Collapse
|
12
|
Yoon S, Cruz-García C, Sanford R, Ritalahti KM, Löffler FE. Denitrification versus respiratory ammonification: environmental controls of two competing dissimilatory NO3(-)/NO2(-) reduction pathways in Shewanella loihica strain PV-4. THE ISME JOURNAL 2015; 9:1093-104. [PMID: 25350157 PMCID: PMC4409154 DOI: 10.1038/ismej.2014.201] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 08/30/2014] [Accepted: 09/05/2014] [Indexed: 11/09/2022]
Abstract
Denitrification and respiratory ammonification are two competing, energy-conserving NO3(-)/NO2(-) reduction pathways that have major biogeochemical consequences for N retention, plant growth and climate. Batch and continuous culture experiments using Shewanella loihica strain PV-4, a bacterium possessing both the denitrification and respiratory ammonification pathways, revealed factors that determine NO3(-)/NO2(-) fate. Denitrification dominated at low carbon-to-nitrogen (C/N) ratios (that is, electron donor-limiting growth conditions), whereas ammonium was the predominant product at high C/N ratios (that is, electron acceptor-limiting growth conditions). pH and temperature also affected NO3(-)/NO2(-) fate, and incubation above pH 7.0 and temperatures of 30 °C favored ammonium formation. Reverse-transcriptase real-time quantitative PCR analyses correlated the phenotypic observations with nirK and nosZ transcript abundances that decreased up to 1600-fold and 27-fold, respectively, under conditions favoring respiratory ammonification. Of the two nrfA genes encoded on the strain PV-4 genome, nrfA0844 transcription decreased only when the chemostat reactor received medium with the lowest C/N ratio of 1.5, whereas nrfA0505 transcription occurred at low levels (≤3.4 × 10(-2) transcripts per cell) under all growth conditions. At intermediate C/N ratios, denitrification and respiratory ammonification occurred concomitantly, and both nrfA0844 (5.5 transcripts per cell) and nirK (0.88 transcripts per cell) were transcribed. Recent findings suggest that organisms with both the denitrification and respiratory ammonification pathways are not uncommon in soil and sediment ecosystems, and strain PV-4 offers a tractable experimental system to explore regulation of dissimilatory NO3(-)/NO2(-) reduction pathways.
Collapse
Affiliation(s)
- Sukhwan Yoon
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Claribel Cruz-García
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Robert Sanford
- Department of Geology, University of Illinois, Urbana, IL, USA
| | - Kirsti M Ritalahti
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
- University of Tennessee and Oak Ridge National Laboratory (UT-ORNL) Joint Institute for Biological Sciences (JIBS) and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Frank E Löffler
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
- University of Tennessee and Oak Ridge National Laboratory (UT-ORNL) Joint Institute for Biological Sciences (JIBS) and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
13
|
Silaghi-Dumitrescu R, Svistunenko DA, Cioloboc D, Bischin C, Scurtu F, Cooper CE. Nitrite binding to globins: linkage isomerism, EPR silence and reductive chemistry. Nitric Oxide 2014; 42:32-9. [PMID: 25172022 PMCID: PMC4256065 DOI: 10.1016/j.niox.2014.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 07/29/2014] [Accepted: 08/18/2014] [Indexed: 12/28/2022]
Abstract
A DFT-derived barrier for nitrite linkage isomerism on heme center is reported. EPR spectra of nitrite adducts show evidence for linkage isomerism. The electronic structure of Fe(III)-nitrite heme is conformation-dependent. Certain conformations are inducive to EPR silence. Fe(II)-nitrite is undetectable on stopped-flow time scales.
The nitrite adducts of globins can potentially bind via O- or N- linkage to the heme iron. We have used EPR (electron paramagnetic resonance) and DFT (density functional theory) to explore these binding modes to myoglobin and hemoglobin. We demonstrate that the nitrite adducts of both globins have detectable EPR signals; we provide an explanation for the difficulty in detecting these EPR features, based on uniaxial state considerations. The EPR and DFT data show that both nitrite linkage isomers can be present at the same time and that the two isomers are readily interconvertible in solution. The millisecond-scale process of nitrite reduction by Hb is investigated in search of the elusive Fe(II)-nitrite adduct.
Collapse
Affiliation(s)
- Radu Silaghi-Dumitrescu
- "Babeş-Bolyai" University, 1 Mihail Kogalniceanu str., RO-400084 Cluj-Napoca, Romania; Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK.
| | - Dimitri A Svistunenko
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Daniela Cioloboc
- "Babeş-Bolyai" University, 1 Mihail Kogalniceanu str., RO-400084 Cluj-Napoca, Romania
| | - Cristina Bischin
- "Babeş-Bolyai" University, 1 Mihail Kogalniceanu str., RO-400084 Cluj-Napoca, Romania
| | - Florina Scurtu
- "Babeş-Bolyai" University, 1 Mihail Kogalniceanu str., RO-400084 Cluj-Napoca, Romania
| | - Chris E Cooper
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| |
Collapse
|
14
|
Affiliation(s)
- Luisa B. Maia
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
15
|
Castiglione N, Rinaldo S, Giardina G, Stelitano V, Cutruzzolà F. Nitrite and nitrite reductases: from molecular mechanisms to significance in human health and disease. Antioxid Redox Signal 2012; 17:684-716. [PMID: 22304560 DOI: 10.1089/ars.2011.4196] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nitrite, previously considered physiologically irrelevant and a simple end product of endogenous nitric oxide (NO) metabolism, is now envisaged as a reservoir of NO to be activated in response to oxygen (O(2)) depletion. In the first part of this review, we summarize and compare the mechanisms of nitrite-dependent production of NO in selected bacteria and in eukaryotes. Bacterial nitrite reductases, which are copper or heme-containing enzymes, play an important role in the adaptation of pathogens to O(2) limitation and enable microrganisms to survive in the human body. In mammals, reduction of nitrite to NO under hypoxic conditions is carried out in tissues and blood by an array of metalloproteins, including heme-containing proteins and molybdenum enzymes. In humans, tissues play a more important role in nitrite reduction, not only because most tissues produce more NO than blood, but also because deoxyhemoglobin efficiently scavenges NO in blood. In the second part of the review, we outline the significance of nitrite in human health and disease and describe the recent advances and pitfalls of nitrite-based therapy, with special attention to its application in cardiovascular disorders, inflammation, and anti-bacterial defence. It can be concluded that nitrite (as well as nitrate-rich diet for long-term applications) may hold promise as therapeutic agent in vascular dysfunction and ischemic injury, as well as an effective compound able to promote angiogenesis.
Collapse
Affiliation(s)
- Nicoletta Castiglione
- Department of Biochemical Sciences, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | | | | | | | | |
Collapse
|
16
|
Simon J, Klotz MG. Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:114-35. [PMID: 22842521 DOI: 10.1016/j.bbabio.2012.07.005] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/10/2012] [Accepted: 07/19/2012] [Indexed: 11/18/2022]
Abstract
Nitrogen is an essential element of life that needs to be assimilated in its most reduced form, ammonium. On the other hand, nitrogen exists in a multitude of oxidation states and, consequently, nitrogen compounds (NCs) serve as electron donor and/or acceptors in many catabolic pathways including various forms of microbial respiration that contribute to the global biogeochemical nitrogen cycle. Some of these NCs are also known as reactive nitrogen species able to cause nitrosative stress because of their high redox reactivity. The best understood processes of the nitrogen cycle are denitrification and ammonification (both beginning with nitrate reduction to nitrite), nitrification (aerobic oxidation of ammonium and nitrite) and anaerobic ammonium oxidation (anammox). This review presents examples of the diverse architecture, either elucidated or anticipated, and the high degree of modularity of the corresponding respiratory electron transport processes found in Bacteria and Archaea, and relates these to their respective bioenergetic mechanisms of proton motive force generation. In contrast to the multiplicity of enzymes that catalyze NC transformations, the number of proteins or protein modules involved in connecting electron transport to and from these enzymes with the quinone/quinol pool is comparatively small. These quinone/quinol-reactive protein modules consist of cytochromes b and c and iron-sulfur proteins. Conclusions are drawn towards the evolutionary relationships of bioenergetic systems involved in NC transformation and deduced aspects of the evolution of the biogeochemical nitrogen cycle are presented. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.
Collapse
Affiliation(s)
- Jörg Simon
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany.
| | | |
Collapse
|
17
|
Electrochemical titrations and reaction time courses monitored in situ by magnetic circular dichroism spectroscopy. Anal Biochem 2011; 419:110-6. [DOI: 10.1016/j.ab.2011.07.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 07/24/2011] [Accepted: 07/25/2011] [Indexed: 11/19/2022]
|
18
|
Observation of fast release of NO from ferrous d₁ haem allows formulation of a unified reaction mechanism for cytochrome cd₁ nitrite reductases. Biochem J 2011; 435:217-25. [PMID: 21244362 DOI: 10.1042/bj20101615] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cytochrome cd1 nitrite reductase is a haem-containing enzyme responsible for the reduction of nitrite into NO, a key step in the anaerobic respiratory process of denitrification. The active site of cytochrome cd1 contains the unique d1 haem cofactor, from which NO must be released. In general, reduced haems bind NO tightly relative to oxidized haems. In the present paper, we present experimental evidence that the reduced d1 haem of cytochrome cd1 from Paracoccus pantotrophus releases NO rapidly (k=65-200 s(-1)); this result suggests that NO release is the rate-limiting step of the catalytic cycle (turnover number=72 s(-1)). We also demonstrate, using a complex of the d1 haem and apomyoglobin, that the rapid dissociation of NO is largely controlled by the d1 haem cofactor itself. We present a reaction mechanism proposed to be applicable to all cytochromes cd1 and conclude that the d1 haem has evolved to have low affinity for NO, as compared with other ferrous haems.
Collapse
|
19
|
Abstract
The cd1 NiRs (nitrite reductases) are enzymes catalysing the reduction of nitrite to NO (nitric oxide) in the bacterial energy conversion denitrification process. These enzymes contain two distinct redox centres: one covalently bound c-haem, which is reduced by external electron donors, and another peculiar porphyrin, the d1-haem (3,8-dioxo-17-acrylate-porphyrindione), where nitrite is reduced to NO. In the present paper, we summarize the most recent results on the mechanism of nitrite reduction by the cd1 NiR from Pseudomonas aeruginosa. We discuss the essential catalytic features of this enzyme, with special attention to the allosteric regulation of the enzyme's activity and to the mechanism employed to avoid product inhibition, i.e. trapping of the active-site reduced haem by the product NO. These results shed light on the reactivity of cd1 NiRs and assign a central role to the unique d1-haem, present only in this class of enzymes.
Collapse
|
20
|
Cutruzzolà F, Rinaldo S, Castiglione N, Giardina G, Pecht I, Brunori M. Nitrite reduction: a ubiquitous function from a pre-aerobic past. Bioessays 2010; 31:885-91. [PMID: 19554608 DOI: 10.1002/bies.200800235] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In eukaryotes, small amounts of nitrite confer cytoprotection against ischemia/reperfusion-related tissue damage in vivo, possibly via reduction to nitric oxide (NO) and inhibition of mitochondrial function. Several hemeproteins are involved in this protective mechanism, starting with deoxyhemoglobin, which is capable of reducing nitrite. In facultative aerobic bacteria, such as Pseudomonas aeruginosa, nitrite is reduced to NO by specialized heme-containing enzymes called cd(1) nitrite reductases. The details of their catalytic mechanism are summarized below, together with a hypothesis on the biological role of the unusual d(1)-heme, which, in the reduced state, shows unique properties (very high affinity for nitrite and exceptionally fast dissociation of NO). Our results support the idea that the nitrite-based reactions of contemporary eukaryotes are a vestige of earlier bacterial biochemical pathways. The evidence that nitrite reductase activities of enzymes with different cellular roles and biochemical features still exist today highlights the importance of nitrite in cellular homeostasis.
Collapse
Affiliation(s)
- Francesca Cutruzzolà
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza-Università di Roma, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
21
|
Mitigating release of the potent greenhouse gas N(2)O from the nitrogen cycle - could enzymic regulation hold the key? Trends Biotechnol 2009; 27:388-97. [PMID: 19497629 DOI: 10.1016/j.tibtech.2009.03.009] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 03/30/2009] [Accepted: 03/30/2009] [Indexed: 11/21/2022]
Abstract
When faced with a shortage of oxygen, many bacterial species use nitrate to support respiration via the process of denitrification. This takes place extensively in nitrogen-rich soils and generates the gaseous products nitric oxide (NO), nitrous oxide (N(2)O) and dinitrogen (N(2)). The denitrifying bacteria protect themselves from the endogenous cytotoxic NO produced by converting it to N(2)O, which can be released into the atmosphere. However, N(2)O is a potent greenhouse gas and hence the activity of the enzyme that breaks down N(2)O has a crucial role in restricting its atmospheric levels. Here, we review the current understanding of the process by which N(2)O is produced and destroyed and discuss the potential for feeding this into new approaches for combating N(2)O release.
Collapse
|
22
|
New insights into the activity of Pseudomonas aeruginosa cd1 nitrite reductase. Biochem Soc Trans 2009; 36:1155-9. [PMID: 19021515 DOI: 10.1042/bst0361155] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cytochrome cd(1) nitrite reductases are enzymes that catalyse the reduction of nitrite to nitric oxide (NO) in the bacterial energy conversion denitrification process. These enzymes contain two different redox centres: one covalently bound c-haem, which is reduced by external donors, and one peculiar d(1)-haem, where catalysis occurs. In the present paper, we summarize the current understanding of the reaction of nitrite reduction in the light of the most recent results on the enzyme from Pseudomonas aeruginosa and discuss the differences between enzymes from different organisms. We have evidence that release of NO from the ferrous d(1)-haem occurs rapidly enough to be fully compatible with the turnover, in contrast with previous hypotheses, and that the substrate nitrite is able to displace NO from the d(1)-haem iron. These results shed light on the mechanistic details of the activity of cd(1) nitrite reductases and on the biological role of the d(1)-haem, whose presence in this class of enzymes has to date been unexplained.
Collapse
|
23
|
Sam KA, Strampraad MJ, de Vries S, Ferguson SJ. Very Early Reaction Intermediates Detected by Microsecond Time Scale Kinetics of Cytochrome cd1-catalyzed Reduction of Nitrite. J Biol Chem 2008; 283:27403-27409. [DOI: 10.1074/jbc.m804493200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
24
|
Sam KA, Tolland JD, Fairhurst SA, Higham CW, Lowe DJ, Thorneley RN, Allen JW, Ferguson SJ. Unexpected dependence on pH of NO release from Paracoccus pantotrophus cytochrome cd1. Biochem Biophys Res Commun 2008; 371:719-23. [DOI: 10.1016/j.bbrc.2008.04.149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 04/24/2008] [Indexed: 10/22/2022]
|
25
|
Sam KA, Fairhurst SA, Thorneley RNF, Allen JWA, Ferguson SJ. Pseudoazurin dramatically enhances the reaction profile of nitrite reduction by Paracoccus pantotrophus cytochrome cd1 and facilitates release of product nitric oxide. J Biol Chem 2008; 283:12555-63. [PMID: 18310770 DOI: 10.1074/jbc.m800954200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome cd(1) is a respiratory nitrite reductase found in the periplasm of denitrifying bacteria. When fully reduced Paracoccus pantotrophus cytochrome cd(1) is mixed with nitrite in a stopped-flow apparatus in the absence of excess reductant, a kinetically stable complex of enzyme and product forms, assigned as a mixture of cFe(II) d(1)Fe(II)-NO(+) and cFe(III) d(1)Fe(II)-NO (cd(1)-X). However, in order for the enzyme to achieve steady-state turnover, product (NO) release must occur. In this work, we have investigated the effect of a physiological electron donor to cytochrome cd(1), the copper protein pseudoazurin, on the mechanism of nitrite reduction by the enzyme. Our data clearly show that initially oxidized pseudoazurin causes rapid further turnover by the enzyme to give a final product that we assign as all-ferric cytochrome cd(1) with nitrite bound to the d(1) heme (i.e. from which NO had dissociated). Pseudoazurin catalyzed this effect even when present at only one-tenth the stoichiometry of cytochrome cd(1). In contrast, redox-inert zinc pseudoazurin did not affect cd(1)-X, indicating a crucial role for electron movement between monomers or individual enzyme dimers rather than simply a protein-protein interaction. Furthermore, formation of cd(1)-X was, remarkably, accelerated by the presence of pseudoazurin, such that it occurred at a rate consistent with cd(1)-X being an intermediate in the catalytic cycle. It is clear that cytochrome cd(1) functions significantly differently in the presence of its two substrates, nitrite and electron donor protein, than in the presence of nitrite alone.
Collapse
Affiliation(s)
- Katharine A Sam
- Department of Biochemistry, University of Oxford South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | |
Collapse
|
26
|
Oganesyan VS, Cheesman MR, Thomson AJ. Magnetic Circular Dichroism Evidence for a Weakly Coupled Heme-Radical Pair at the Active Site of Cytochrome cd1, a Nitrite Reductase. Inorg Chem 2007; 46:10950-2. [DOI: 10.1021/ic701556y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vasily S. Oganesyan
- Centre for Metalloprotein Spectroscopy and Biology, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Myles R. Cheesman
- Centre for Metalloprotein Spectroscopy and Biology, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Andrew J. Thomson
- Centre for Metalloprotein Spectroscopy and Biology, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, U.K
| |
Collapse
|
27
|
Rinaldo S, Brunori M, Cutruzzolà F. Nitrite controls the release of nitric oxide in Pseudomonas aeruginosa cd1 nitrite reductase. Biochem Biophys Res Commun 2007; 363:662-6. [PMID: 17904106 DOI: 10.1016/j.bbrc.2007.09.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 09/07/2007] [Indexed: 11/15/2022]
Abstract
Nitrite reductase (cd1NIR) from Pseudomonas aeruginosa, which catalyses the reduction of nitrite to nitric oxide (NO), contains a c-heme as the electron acceptor and a d1-heme where catalysis occurs. Reduction involves binding of nitrite to the reduced d1-heme, followed by dehydration to yield NO; release of NO and re-reduction of the enzyme close the cycle. Since NO is a powerful inhibitor of ferrous hemeproteins, enzymatic turnover demands the release of NO. We recently discovered that NO dissociation from the ferrous d1-heme is fast, showing that cd1NIR behaves differently from other hemeproteins. Here we demonstrate for the first time that the physiological substrate nitrite displaces NO from the ferrous enzyme, which enters a new catalytic cycle; this reaction depends on the conserved His369 whose role in substrate stabilization is crucial for catalysis. Thus we suggest that also in vivo the activity of cd1NIR is controlled by nitrite.
Collapse
Affiliation(s)
- Serena Rinaldo
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza-Università di Roma, P.le A. Moro, 5 00185 Rome, Italy
| | | | | |
Collapse
|
28
|
van Wonderen JH, Knight C, Oganesyan VS, George SJ, Zumft WG, Cheesman MR. Activation of the cytochrome cd1 nitrite reductase from Paracoccus pantotrophus. Reaction of oxidized enzyme with substrate drives a ligand switch at heme c. J Biol Chem 2007; 282:28207-15. [PMID: 17623666 DOI: 10.1074/jbc.m701242200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochromes cd(1) are dimeric bacterial nitrite reductases, which contain two hemes per monomer. On reduction of both hemes, the distal ligand of heme d(1) dissociates, creating a vacant coordination site accessible to substrate. Heme c, which transfers electrons from donor proteins into the active site, has histidine/methionine ligands except in the oxidized enzyme from Paracoccus pantotrophus where both ligands are histidine. During reduction of this enzyme, Tyr(25) dissociates from the distal side of heme d(1), and one heme c ligand is replaced by methionine. Activity is associated with histidine/methionine coordination at heme c, and it is believed that P. pantotrophus cytochrome cd(1) is unreactive toward substrate without reductive activation. However, we report here that the oxidized enzyme will react with nitrite to yield a novel species in which heme d(1) is EPR-silent. Magnetic circular dichroism studies indicate that heme d(1) is low-spin Fe(III) but EPR-silent as a result of spin coupling to a radical species formed during the reaction with nitrite. This reaction drives the switch to histidine/methionine ligation at Fe(III) heme c. Thus the enzyme is activated by exposure to its physiological substrate without the necessity of passing through the reduced state. This reactivity toward nitrite is also observed for oxidized cytochrome cd(1) from Pseudomonas stutzeri suggesting a more general involvement of the EPR-silent Fe(III) heme d(1) species in nitrite reduction.
Collapse
Affiliation(s)
- Jessica H van Wonderen
- Centre for Metalloprotein Spectroscopy and Biology, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | | | | | | | |
Collapse
|
29
|
Rinaldo S, Arcovito A, Brunori M, Cutruzzolà F. Fast Dissociation of Nitric Oxide from Ferrous Pseudomonas aeruginosa cd1 Nitrite Reductase. J Biol Chem 2007; 282:14761-7. [PMID: 17389587 DOI: 10.1074/jbc.m700933200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heme-containing periplasmic nitrite reductase (cd(1) NIR) is responsible for the production of nitric oxide (NO) in denitrifying bacterial species, among which are several animal and plant pathogens. Heme NIRs are homodimers, each subunit containing one covalently bound c-heme and one d(1)-heme. The reduction of nitrite to NO involves binding of nitrite to the reduced protein at the level of d(1)-heme, followed by dehydration of nitrite to yield NO and release of the latter. The crucial rate-limiting step in the catalytic mechanism is thought to be the release of NO from the d(1)-heme, which has been proposed, but never demonstrated experimentally, to occur when the iron is in the ferric form, given that the reduced NO-bound derivative was presumed to be very stable, as in other hemeproteins. We have measured for the first time the kinetics of NO binding and release from fully reduced cd(1) NIR, using the enzyme from Pseudomonas aeruginosa and its site-directed mutant H369A. Quite unexpectedly, we found that NO dissociation from the reduced d(1)-heme is very rapid, several orders of magnitude faster than that measured for b-type heme containing reduced hemeproteins. Because the rate of NO dissociation from reduced cd(1) NIR, measured in the present report, is faster than or comparable with the turnover number, contrary to expectations this event may well be on the catalytic cycle and not necessarily rate-limiting. This finding also provides a rationale for the presence in cd(1) NIR of the peculiar d(1)-heme cofactor, which has probably evolved to ensure fast product dissociation.
Collapse
Affiliation(s)
- Serena Rinaldo
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Università di Roma La Sapienza, 00185 Rome, Italy
| | | | | | | |
Collapse
|
30
|
de Sousa PMP, Pauleta SR, Gonçalves MLS, Pettigrew GW, Moura I, Dos Santos MMC, Moura JJG. Mediated catalysis of Paracoccus pantotrophus cytochrome c peroxidase by P. pantotrophus pseudoazurin: kinetics of intermolecular electron transfer. J Biol Inorg Chem 2007; 12:691-8. [PMID: 17361419 DOI: 10.1007/s00775-007-0219-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 01/31/2007] [Indexed: 11/26/2022]
Abstract
This work reports the direct electrochemistry of Paracoccus pantotrophus pseudoazurin and the mediated catalysis of cytochrome c peroxidase from the same organism. The voltammetric behaviour was examined at a gold membrane electrode, and the studies were performed in the presence of calcium to enable the peroxidase activation. A formal reduction potential, E (0)', of 230 +/- 5 mV was determined for pseudoazurin at pH 7.0. Its voltammetric signal presented a pH dependence, defined by pK values of 6.5 and 10.5 in the oxidised state and 7.2 in the reduced state, and was constant up to 1 M NaCl. This small copper protein was shown to be competent as an electron donor to cytochrome c peroxidase and the kinetics of intermolecular electron transfer was analysed. A second-order rate constant of 1.4 +/- 0.2 x 10(5) M(-1) s(-1) was determined at 0 M NaCl. This parameter has a maximum at 0.3 M NaCl and is pH-independent between pH 5 and 9.
Collapse
Affiliation(s)
- P M Paes de Sousa
- ReQuimte, Centro de Química Fina e Biotecnologia, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | | | | | | | | | |
Collapse
|
31
|
Laratta WP, Nanaszko MJ, Shapleigh JP. Electron transfer to nitrite reductase of Rhodobacter sphaeroides 2.4.3: examination of cytochromes c 2 and c Y. Microbiology (Reading) 2006; 152:1479-1488. [PMID: 16622064 DOI: 10.1099/mic.0.28524-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The role of cytochromec2, encoded bycycA, and cytochromecY, encoded bycycY, in electron transfer to the nitrite reductase ofRhodobacter sphaeroides2.4.3 was investigated using bothin vivoandin vitroapproaches. BothcycAandcycYwere isolated, sequenced and insertionally inactivated in strain 2.4.3. Deletion of either gene alone had no apparent effect on the ability ofR. sphaeroidesto reduce nitrite. In acycA–cycYdouble mutant, nitrite reduction was largely inhibited. However, the expression of the nitrite reductase genenirKfrom a heterologous promoter substantially restored nitrite reductase activity in the double mutant. Using purified protein, a turnover number of 5 s−1was observed for the oxidation of cytochromec2by nitrite reductase. In contrast, oxidation ofcYonly resulted in a turnover of ∼0·1 s−1. The turnover experiments indicate thatc2is a major electron donor to nitrite reductase butcYis probably not. Taken together, these results suggest that there is likely an unidentified electron donor, in addition toc2, that transfers electrons to nitrite reductase, and that the decreased nitrite reductase activity observed in thecycA–cycYdouble mutant probably results from a change innirKexpression.
Collapse
Affiliation(s)
- William P Laratta
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14850-8101, USA
| | - Michael J Nanaszko
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14850-8101, USA
| | - James P Shapleigh
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14850-8101, USA
| |
Collapse
|
32
|
Zajicek RS, Cheesman MR, Gordon EHJ, Ferguson SJ. Y25S Variant of Paracoccus pantotrophus Cytochrome cd1 Provides Insight into Anion Binding by d1 Heme and a Rare Example of a Critical Difference between Solution and Crystal Structures. J Biol Chem 2005; 280:26073-9. [PMID: 15901734 DOI: 10.1074/jbc.m501890200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyr25 is a ligand to the active site d1 heme in as isolated, oxidized cytochrome cd1 nitrite reductase from Paracoccus pantotrophus. This form of the enzyme requires reductive activation, a process that involves not only displacement of Tyr25 from the d1 heme but also switching of the ligands at the c heme from bis-histidinyl to His/Met. A Y25S variant retains this bis-histidinyl coordination in the crystal of the oxidized state that has sulfate bound to the d1 heme iron. This Y25S form of the enzyme does not require reductive activation, an observation previously interpreted as meaning that the presence of the phenolate oxygen of Tyr25 is the critical determinant of the requirement for activation. This interpretation now needs re-evaluation because, unexpectedly, the oxidized as prepared Y25S protein, unlike the wild type, has different heme iron ligands in solution at room temperature, as judged by magnetic circular dichroism and electron spin resonance spectroscopies, than in the crystal. In addition, the binding of nitrite and cyanide to oxidized Y25S cytochrome cd1 is markedly different from the wild type enzyme, thus providing insight into the affinity of the oxidized d1 heme ring for anions in the absence of the steric barrier presented by Tyr25.
Collapse
Affiliation(s)
- Richard S Zajicek
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | |
Collapse
|
33
|
Mattila K, Haltia T. How does nitrous oxide reductase interact with its electron donors?-A docking study. Proteins 2005; 59:708-22. [PMID: 15822112 DOI: 10.1002/prot.20437] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Electron transfer reactions are crucial for respiration and denitrification. In this article, we analyze the interaction of nitrous oxide reductase with its electron donors cytochrome c550 and pseudoazurin. Our docking protocol comprises generation of candidate complexes followed by a selection step based on the distance of the donor and acceptor groups in each partner protein. Finally, the structures of the candidate complexes were optimized using a force field calculation, together with a second distance filtering step. The prediction power of this protocol was studied using the crystal structure of the cytochrome c2/photosynthetic reaction center of Rhodobacter sphaeroides as a reference. The results suggest that both cytochrome c550 and pseudoazurin bind at the same hydrophobic surface patch residing near the CuA center of nitrous oxide reductase. The central, well-conserved interaction surface of the donors is hydrophobic, but it is surrounded by numerous lysine side-chains, which interact electrostatically with analogously positioned side-chain carboxylates of the acceptor. The prediction output is an ensemble of energetically similar structures that are rotationally related to each other. While such an ensemble may reflect incomplete prediction power of the docking protocol, it may also manifest a biological situation where there are multiple ways of forming a productive electron transfer complex. Analyses of the predicted structures and the conservation pattern of the amino acid residues suggest the existence of specific electron transfer pathways to and from the CuA center of nitrous oxide reductase.
Collapse
Affiliation(s)
- Kimmo Mattila
- Institute of Biomedical Sciences/Biochemistry, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
34
|
Zajicek RS, Ferguson SJ. The enigma of Paracoccus pantotrophus cytochrome cd1 activation. Biochem Soc Trans 2005; 33:147-8. [PMID: 15667289 DOI: 10.1042/bst0330147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Paracoccus pantotrophus cytochrome cd1 nitrite reductase is isolated under aerobic conditions from anaerobically grown cells in an inactive form. This state requires reductive activation to make it catalytically competent for nitrite reduction. In this work, we discuss the methods of this reductive activation and its consequences for the cell.
Collapse
Affiliation(s)
- R S Zajicek
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | |
Collapse
|
35
|
Butler CS, Richardson DJ. The emerging molecular structure of the nitrogen cycle: an introduction to the proceedings of the 10th annual N-cycle meeting. Biochem Soc Trans 2005; 33:113-8. [PMID: 15667280 DOI: 10.1042/bst0330113] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over the last 10 years, during the lifetime of the nitrogen cycle meetings, structural biology, coupled with spectroscopy, has had a major impact of our understanding enzymology of the nitrogen cycle. The three-dimensional structures for many of the key enzymes have now been resolved and have provided a wealth of information regarding the architecture of redox active metal sites, as well as revealing novel structural folds. Coupled with structure-based spectroscopic analysis, this has led to new insight into the reaction mechanisms of the diverse chemical transformations that together cycle nitrogen in the biosphere. An overview of the some of the key developments in field over the last decade is presented.
Collapse
Affiliation(s)
- C S Butler
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, NE2 4HH, UK.
| | | |
Collapse
|
36
|
Rasmussen T, Brittain T, Berks BC, Watmough NJ, Thomson AJ. Formation of a cytochrome c–nitrous oxide reductase complex is obligatory for N2O reduction by Paracoccus pantotrophus. Dalton Trans 2005:3501-6. [PMID: 16234931 DOI: 10.1039/b501846c] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrous oxide reductase (N2OR) catalyses the final step of bacterial denitrification, the two-electron reduction of nitrous oxide (N2O) to dinitrogen (N2). N2OR contains two metal centers; a binuclear copper center, CuA, that serves to receive electrons from soluble donors, and a tetranuclear copper-sulfide center, CuZ, at the active site. Stopped flow experiments at low ionic strengths reveal rapid electron transfer (kobs=150 s-1) between reduced horse heart (HH) cytochrome c and the CuA center in fully oxidized N2OR. When fully reduced N2OR was mixed with oxidized cytochrome c, a similar rate of electron transfer was recorded for the reverse reaction, followed by a much slower internal electron transfer from CuZ to CuA(kobs=0.1-0.4 s-1). The internal electron transfer process is likely to represent the rate-determining step in the catalytic cycle. Remarkably, in the absence of cytochrome c, fully reduced N2OR is inert towards its substrate, even though sufficient electrons are stored to initiate a single turnover. However, in the presence of reduced cytochrome c and N2O, a single turnover occurs after a lag-phase. We propose that a conformational change in N2OR is induced by its specific interaction with cytochrome c that in turn either permits electron transfer between CuA and CuZ or controls the rate of N2O decomposition at the active site.
Collapse
Affiliation(s)
- Tim Rasmussen
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich, UK NR4 7TJ
| | | | | | | | | |
Collapse
|
37
|
Zajicek RS, Allen JWA, Cartron ML, Richardson DJ, Ferguson SJ. Paracoccus pantotrophusNapC can reductively activate cytochromecd1nitrite reductase. FEBS Lett 2004; 565:48-52. [PMID: 15135051 DOI: 10.1016/j.febslet.2004.03.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 03/23/2004] [Accepted: 03/25/2004] [Indexed: 11/24/2022]
Abstract
The oxidized "as isolated" form of Paracoccus pantotrophus cytochrome cd1 nitrite reductase has a bis-histidinyl coordinated c heme and a histidine/tyrosine coordinated d1 heme. This form of the enzyme has previously been shown to be kinetically incompetent. Upon reduction, the coordination of both hemes changes and the enzyme is kinetically activated. Here, we show that P. pantotrophus NapC, a tetraheme c-type cytochrome belonging to a large family of such proteins, is capable of reducing, and hence activating, "as isolated" cytochrome cd1. NapC is the first protein from P. pantotrophus identified as being capable of this activation step and, given the periplasmic co-location and co-expression of the two proteins, is a strong candidate to be a physiological activation partner.
Collapse
Affiliation(s)
- Richard S Zajicek
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | |
Collapse
|
38
|
Pearson IV, Page MD, van Spanning RJM, Ferguson SJ. A mutant of Paracoccus denitrificans with disrupted genes coding for cytochrome c550 and pseudoazurin establishes these two proteins as the in vivo electron donors to cytochrome cd1 nitrite reductase. J Bacteriol 2003; 185:6308-15. [PMID: 14563865 PMCID: PMC219389 DOI: 10.1128/jb.185.21.6308-6315.2003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Paracoccus denitrificans, electrons pass from the membrane-bound cytochrome bc(1) complex to the periplasmic nitrite reductase, cytochrome cd(1). The periplasmic protein cytochrome c(550) has often been implicated in this electron transfer, but its absence, as a consequence of mutation, has previously been shown to result in almost no attenuation in the ability of the nitrite reductase to function in intact cells. Here, the hypothesis that cytochrome c(550) and pseudoazurin are alternative electron carriers from the cytochrome bc(1) complex to the nitrite reductase was tested by construction of mutants of P. denitrificans that are deficient in either pseudoazurin or both pseudoazurin and cytochrome c(550). The latter organism, but not the former (which is almost indistinguishable in this respect from the wild type), grows poorly under anaerobic conditions with nitrate as an added electron acceptor and accumulates nitrite in the medium. Growth under aerobic conditions with either succinate or methanol as the carbon source is not significantly affected in mutants lacking either pseudoazurin or cytochrome c(550) or both these proteins. We concluded that pseudoazurin and cytochrome c(550) are the alternative electron mediator proteins between the cytochrome bc(1) complex and the cytochrome cd(1)-type nitrite reductase. We also concluded that expression of pseudoazurin is mainly controlled by the transcriptional activator FnrP.
Collapse
Affiliation(s)
- Isobel V Pearson
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | |
Collapse
|
39
|
Allen JWA, Ferguson SJ. Variation of the axial haem ligands and haem-binding motif as a probe of the Escherichia coli c-type cytochrome maturation (Ccm) system. Biochem J 2003; 375:721-8. [PMID: 12901720 PMCID: PMC1223722 DOI: 10.1042/bj20030752] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2003] [Revised: 07/28/2003] [Accepted: 08/06/2003] [Indexed: 11/17/2022]
Abstract
Cytochromes c are typically characterized by the covalent attachment of haem to polypeptide through two thioether bonds with the cysteine residues of a Cys-Xaa-Xaa-Cys-His peptide motif. In many Gram-negative bacteria, the haem is attached to the polypeptide by the periplasmically functioning cytochrome c maturation (Ccm) proteins. Exceptionally, Hydrogenobacter thermophilus cytochrome c552 can be expressed as a stable holocytochrome both in the cytoplasm of Escherichia coli in an apparently uncatalysed reaction and also in the periplasm in a Ccm-mediated reaction. In the present study we show that a Met60-->Ala variant of c552, which does not have the usual distal methionine ligand to the haem iron of the mature cytochrome, can be made in the periplasm by the Ccm system. However, no holocytochrome could be detected when this variant was expressed cytoplasmically. These data highlight differences between the two modes of cytochrome c assembly. In addition, we report investigations of haem attachment to cytochromes altered to have the special Cys-Trp-Ser-Cys-Lys haem-binding motif, and Cys-Trp-Ser-Cys-His and Cys-Trp-Ala-Cys-His analogues, of the active-site haem of nitrite reductase NrfA.
Collapse
Affiliation(s)
- James W A Allen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | |
Collapse
|
40
|
Kucera I, Kunák M. Steady-state kinetic analysis of substrate pair cycling between two enzymes: application to a mediated electron transport between the cytoplasmic membrane and the periplasmic nitrite reductase of Paracoccus denitrificans. Biophys Chem 2003; 104:617-22. [PMID: 12914907 DOI: 10.1016/s0301-4622(03)00123-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An extended kinetic model is presented for the process catalysed by two enzymes mutually connected by the cycling of two reversibly interconvertible chemically relative species. Expressions are derived for the steady-state velocity, limiting velocity (V) and the half-saturation concentration of the cycling substrate (A(0.5)). It is shown that the velocity depends on the total concentration of cycling substrate hyperbolically if both enzymes have equal activities. Based on these theoretical considerations, an experimental comparison was made between pseudoazurin and cytochrome c(550) as physiological electron transfer mediators for nitrite reduction in an in vitro reconstituted part of the respiratory chain of Paracoccus denitrificans. Pseudoazurin exhibited 1.7-fold higher V and 14-fold higher A(0.5) than cytochrome c(550) under the experimental conditions used (20 mM Tris chloride, pH 7.3, 30 degrees C).
Collapse
Affiliation(s)
- Igor Kucera
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlárská 2, CZ-61137 Brno, Czech Republic.
| | | |
Collapse
|
41
|
Gordon EHJ, Sjögren T, Löfqvist M, Richter CD, Allen JWA, Higham CW, Hajdu J, Fülöp V, Ferguson SJ. Structure and kinetic properties of Paracoccus pantotrophus cytochrome cd1 nitrite reductase with the d1 heme active site ligand tyrosine 25 replaced by serine. J Biol Chem 2003; 278:11773-81. [PMID: 12556530 DOI: 10.1074/jbc.m211886200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 1.4-A crystal structure of the oxidized state of a Y25S variant of cytochrome cd(1) nitrite reductase from Paracoccus pantotrophus is described. It shows that loss of Tyr(25), a ligand via its hydroxy group to the iron of the d(1) heme in the oxidized (as prepared) wild-type enzyme, does not result in a switch at the c heme of the unusual bishistidinyl coordination to the histidine/methionine coordination seen in other conformations of the enzyme. The Ser(25) side chain is seen in two positions in the d(1) heme pocket with relative occupancies of approximately 7:3, but in neither case is the hydroxy group bound to the iron atom; instead, a sulfate ion from the crystallization solution is bound between the Ser(25) side chain and the heme iron. Unlike the wild-type enzyme, the Y25S mutant is active as a reductase toward nitrite, oxygen, and hydroxylamine without a reductive activation step. It is concluded that Tyr(25) is not essential for catalysis of reduction of any substrate, but that the requirement for activation by reduction of the wild-type enzyme is related to a requirement to drive the dissociation of this residue from the active site. The Y25S protein retains the d(1) heme less well than the wild-type protein, suggesting that the tyrosine residue has a role in stabilizing the binding of this cofactor.
Collapse
Affiliation(s)
- Euan H J Gordon
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Daltrop O, Ferguson SJ. Cytochrome c maturation. The in vitro reactions of horse heart apocytochrome c and Paracoccus dentrificans apocytochrome c550 with heme. J Biol Chem 2003; 278:4404-9. [PMID: 12458205 DOI: 10.1074/jbc.m211124200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
C-type cytochromes are characterized by having the heme moiety covalently attached via thioether bonds between the heme vinyl groups and the thiols of conserved cysteine residues of the polypeptide chain. Previously, we have shown the in vitro formation of Hydrogenobacter thermophilus cytochrome c(552) (Daltrop, O., Allen, J. W. A., Willis, A. C., and Ferguson, S. J. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 7872-7876). In this work we report that thioether bonds can form spontaneously in vitro between heme and the apocytochromes c from horse heart and Paracoccus denitrificans via b-type cytochrome intermediates. Both apocytochromes, but not the holo forms, bind 8-anilino-1-naphthalenesulfonate, indicating that the apoproteins each have an affinity for a hydrophobic ligand. Furthermore, for both apocytochromes c an intramolecular disulfide can form between the cysteines of the CXXCH motif that is characteristic of c-type cytochromes. In vitro reaction of these apocytochromes c with heme to yield holocytochromes c, and the tendency to form a disulfide, have implications for the different systems responsible for cytochrome c maturation in vivo in various organisms.
Collapse
Affiliation(s)
- Oliver Daltrop
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | |
Collapse
|
43
|
Allen JWA, Higham CW, Zajicek RS, Watmough NJ, Ferguson SJ. A novel, kinetically stable, catalytically active, all-ferric, nitrite-bound complex of Paracoccus pantotrophus cytochrome cd1. Biochem J 2002; 366:883-8. [PMID: 12086580 PMCID: PMC1222841 DOI: 10.1042/bj20020795] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2002] [Revised: 06/24/2002] [Accepted: 06/26/2002] [Indexed: 11/17/2022]
Abstract
The oxidized form of Paracoccus pantotrophus cytochrome cd(1) nitrite reductase, as isolated, has bis-histidinyl co-ordination of the c haem and His/Tyr co-ordination of the d(1) haem. On reduction, the haem co-ordinations change to His/Met and His/vacant respectively. If the latter form of the enzyme is reoxidized, a conformer is generated in which the ferric c haem is His/Met co-ordinated; this can revert to the 'as isolated' state of the enzyme over approx. 20 min at room temperature. However, addition of nitrite to the enzyme after a cycle of reduction and reoxidation produces a kinetically stable, all-ferric complex with nitrite bound to the d(1) haem and His/Met co-ordination of the c haem. This complex is catalytically active with the physiological electron donor protein pseudoazurin. The effective dissociation constant for nitrite is 2 mM. Evidence is presented that d(1) haem is optimized to bind nitrite, as opposed to other anions that are commonly good ligands to ferric haem. The all-ferric nitrite bound state of the enzyme could not be generated stoichiometrically by mixing nitrite with the 'as isolated' conformer of cytochrome cd(1) without redox cycling.
Collapse
|