1
|
Kurokawa A, Yamamoto Y. Immunohistochemical identification of immune cell subsets in formalin- and zinc-fixed, paraffin-embedded tissues from chicken and duck using commercial antibodies. Vet Immunol Immunopathol 2025; 281:110898. [PMID: 39938274 DOI: 10.1016/j.vetimm.2025.110898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025]
Abstract
Immunohistochemical identification of immune cells in poultry has primarily been performed using frozen tissues, with limited identification in paraffin-embedded tissues. In this study, the following 18 commercially available primary antibodies associated with immune cell phenotypes were tested: anti-CD3, CD4 (clone CT-4 and 2-35), TCRγδ, TCRαVβ1, TCRαVβ2, CD8, BAFF-R, PAX5, Bu-1a/b, Iba-1, MRC1L-B, CSF-1R, TIM4, MHC class II (clone 2D5 and 21-1A6), MUM1, and CD45 antibodies in formalin-fixed, paraffin-embedded (FFPE) and zinc-fixed, paraffin-embedded (ZFPE) chicken and duck lymphoid tissues. In chickens, 11 antibodies in FFPE tissue and 16 in ZFPE tissue reacted with the expected antigens under some of the antigen retrieval conditions tested. Antibodies against CD4 (clone CT-4), TCRγδ, TCRαVβ1, CSF-1R, and MHC class II (clone 21-1A6) were effective only in ZFPE tissue. In ducks, cells in both FFPE and ZFPE tissues were immunolabeled by five antibodies under some of the conditions tested. Antigen retrieval suitable for cellular membrane antigen tended to be heat for FFPE tissues and no treatment for ZFPE tissues. Heat-induced antigen retrieval allowed for better detection of nuclear antigens in both FFPE and ZFPE sections. Our results indicate that commercially available antibodies can immunohistochemically detect some of chicken and duck immune cell subsets in paraffin-embedded sections.
Collapse
Affiliation(s)
- Aoi Kurokawa
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan.
| | - Yu Yamamoto
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| |
Collapse
|
2
|
Jorge SD, Chi YI, Mazaba JL, Haque N, Wagenknecht J, Smith BC, Volkman BF, Mathison AJ, Lomberk G, Zimmermann MT, Urrutia R. Deep computational phenotyping of genomic variants impacting the SET domain of KMT2C reveal molecular mechanisms for their dysfunction. Front Genet 2023; 14:1291307. [PMID: 38090150 PMCID: PMC10715303 DOI: 10.3389/fgene.2023.1291307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/17/2023] [Indexed: 12/29/2023] Open
Abstract
Introduction: Kleefstra Syndrome type 2 (KLEFS-2) is a genetic, neurodevelopmental disorder characterized by intellectual disability, infantile hypotonia, severe expressive language delay, and characteristic facial appearance, with a spectrum of other distinct clinical manifestations. Pathogenic mutations in the epigenetic modifier type 2 lysine methyltransferase KMT2C have been identified to be causative in KLEFS-2 individuals. Methods: This work reports a translational genomic study that applies a multidimensional computational approach for deep variant phenotyping, combining conventional genomic analyses, advanced protein bioinformatics, computational biophysics, biochemistry, and biostatistics-based modeling. We use standard variant annotation, paralog annotation analyses, molecular mechanics, and molecular dynamics simulations to evaluate damaging scores and provide potential mechanisms underlying KMT2C variant dysfunction. Results: We integrated data derived from the structure and dynamics of KMT2C to classify variants into SV (Structural Variant), DV (Dynamic Variant), SDV (Structural and Dynamic Variant), and VUS (Variant of Uncertain Significance). When compared with controls, these variants show values reflecting alterations in molecular fitness in both structure and dynamics. Discussion: We demonstrate that our 3D models for KMT2C variants suggest distinct mechanisms that lead to their imbalance and are not predictable from sequence alone. Thus, the missense variants studied here cause destabilizing effects on KMT2C function by different biophysical and biochemical mechanisms which we adeptly describe. This new knowledge extends our understanding of how variations in the KMT2C gene cause the dysfunction of its methyltransferase enzyme product, thereby bearing significant biomedical relevance for carriers of KLEFS2-associated genomic mutations.
Collapse
Affiliation(s)
- Salomão Dória Jorge
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Young-In Chi
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jose Lizarraga Mazaba
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Neshatul Haque
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jessica Wagenknecht
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian C. Smith
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian F. Volkman
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Angela J. Mathison
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Gwen Lomberk
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael T. Zimmermann
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Raul Urrutia
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
3
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
4
|
Abramov-Harpaz K, Miller Y. A zinc-dependent switching mechanism from an open to a new closed-state conformation of insulin-degrading enzyme. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00284h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The switching mechanism between an open-state conformation and a newly closed-state conformation of IDE is stabilized by electrostatic interactions between domain D1 and domain D3.
Collapse
Affiliation(s)
- Karina Abramov-Harpaz
- Department of Chemistry
- Ben-Gurion University of the Negev
- Be'er Sheva 84105
- Israel
- Ilse Katz Institute for Nanoscale Science and Technology
| | - Yifat Miller
- Department of Chemistry
- Ben-Gurion University of the Negev
- Be'er Sheva 84105
- Israel
- Ilse Katz Institute for Nanoscale Science and Technology
| |
Collapse
|
5
|
Singha M, Kumar G, Jain D, Kumar N G, Ray D, Ghosh AS, Basak A. Rapid Fluorescent-Based Detection of New Delhi Metallo-β-Lactamases by Photo-Cross-Linking Using Conjugates of Azidonaphthalimide and Zinc(II)-Chelating Motifs. ACS OMEGA 2019; 4:10891-10898. [PMID: 31460186 PMCID: PMC6648899 DOI: 10.1021/acsomega.9b01145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/06/2019] [Indexed: 06/10/2023]
Abstract
A method for rapid detection of metallo-β-lactamases NDM-5 and NDM-7 using conjugates of azidonaphthalimide and Zn(II) chelating motifs (like sulfonamides, hydroxamate, and terpyridine) is described. Incubation and irradiation, followed by gel electrophoresis, clearly show the presence of NDMs. The o-sulfonamide-based probe has the highest efficiency of detection for both the NDMs. The proteins are detectable at nM concentrations, and the method is also selective, works both in vitro and in vivo, as revealed by cellular imaging and also with clinical isolates.
Collapse
Affiliation(s)
- Monisha Singha
- Department
of Chemistry, Department of Biotechnology, and School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302 India
| | - Gaurav Kumar
- Department
of Chemistry, Department of Biotechnology, and School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302 India
| | - Diamond Jain
- Department
of Chemistry, Department of Biotechnology, and School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302 India
| | - Ganesh Kumar N
- Department
of Chemistry, Department of Biotechnology, and School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302 India
| | - Debashis Ray
- Department
of Chemistry, Department of Biotechnology, and School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302 India
| | - Anindya S. Ghosh
- Department
of Chemistry, Department of Biotechnology, and School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302 India
| | - Amit Basak
- Department
of Chemistry, Department of Biotechnology, and School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302 India
| |
Collapse
|
6
|
Gertz JM, Meuser M, Bouchard BA. Simultaneous flow cytometric analysis of megakaryocyte polyploidy and a labile intracellular protein using zinc-based fixation. Cytometry A 2017; 91:713-720. [PMID: 28692777 DOI: 10.1002/cyto.a.23161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/23/2017] [Accepted: 06/06/2017] [Indexed: 01/06/2023]
Abstract
Differentiating megakaryocytes undergo a unique endomitotic cell cycle leading to large polyploidal cells, which fragment to generate platelets, blood cells important for normal hemostasis. Simultaneous assessment of DNA content and cellular proteins by flow cytometry is a useful tool to study megakaryocyte differentiation and to define expression of proteins important for megakaryocyte development and platelet formation. The usefulness of zinc salt-based fixation (ZBF), a non-crosslinking method of cell fixation that permits downstream analysis of nucleic acids (Jensen et al., Cytometry A 2010;77A:798-804), in flow cytometric analysis of megakaryocyte ploidy in conjunction with extracellular and intracellular proteins was assessed. ZBF of a megakaryocyte-like cell line resulted in preservation of proteins similar to paraformaldehyde fixation, and preservation of DNA content in a manner similar to methanol fixation. This is highlighted by experiments in which polyploidal megakaryocytes were analyzed simultaneously for endocytosis of a fluorescently-labeled, endocytosed labile protein or expression of a cell surface integrin and DNA content. These studies demonstrate that ZBF will be a valuable tool to study the molecular events leading to platelet formation. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
| | - Megan Meuser
- Department of Biochemistry, University of Vermont, Burlington, Vermont
| | - Beth A Bouchard
- Department of Biochemistry, University of Vermont, Burlington, Vermont
| |
Collapse
|
7
|
Amartely H, David A, Shamir M, Lebendiker M, Izraeli S, Friedler A. Differential effects of zinc binding on structured and disordered regions in the multidomain STIL protein. Chem Sci 2016; 7:4140-4147. [PMID: 30155058 PMCID: PMC6014068 DOI: 10.1039/c6sc00115g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 03/01/2016] [Indexed: 11/24/2022] Open
Abstract
Here we show that simultaneous binding of Zn2+ ions has different effects on structured and disordered domains in the same multidomain protein.
Binding of metal ions is an important regulatory mechanism in proteins. Specifically, Zn2+ binding to disordered regions commonly induces a disorder to order transition and gain of structure or oligomerization. Here we show that simultaneous binding of Zn2+ ions has different effects on structured and disordered domains in the same multidomain protein. The centrosomal STIL protein bound Zn2+ ions via both its structured N-terminal domain (NTD) and disordered central region (IDR). Zn2+ binding induced structural rearrangement of the structured NTD but promoted oligomerization of the IDR. We suggest that by binding Zn2+ STIL acquires a different conformation, which allows its oligomerization and induces its activity. Sequence alignment of the oligomerization region revealed a new suggested motif, SxKxS/SxHxS/SxLxS, which may participate in STIL oligomerization. Binding of the same metal ion through a disordered and a structured domain in the same protein is a property that may have implications in regulating the protein activity. By doing so, the protein achieves two parallel outcomes: structural changes and oligomerization that can take place together. Our results describe a new important role of the delicate interplay between structure and intrinsic disorder in proteins.
Collapse
Affiliation(s)
- Hadar Amartely
- Institute of Chemistry , Hebrew University of Jerusalem , Safra Campus, Givat Ram , Jerusalem 91904 , Israel
| | - Ahuvit David
- Sheba Cancer Research Center and the Edmond and Lily Safra Children Hospital , Sheba Medical Center , Tel-Hashomer 52621 , Israel.,Department of Molecular Genetics and Biochemistry , Faculty of Medicine , Tel Aviv University , Tel Aviv , Israel
| | - Mai Shamir
- Institute of Chemistry , Hebrew University of Jerusalem , Safra Campus, Givat Ram , Jerusalem 91904 , Israel
| | - Mario Lebendiker
- The Wolfson Centre for Applied Structural Biology , Hebrew University of Jerusalem , Safra Campus, Givat Ram , Jerusalem 91904 , Israel
| | - Shai Izraeli
- Sheba Cancer Research Center and the Edmond and Lily Safra Children Hospital , Sheba Medical Center , Tel-Hashomer 52621 , Israel.,Department of Molecular Genetics and Biochemistry , Faculty of Medicine , Tel Aviv University , Tel Aviv , Israel
| | - Assaf Friedler
- Institute of Chemistry , Hebrew University of Jerusalem , Safra Campus, Givat Ram , Jerusalem 91904 , Israel
| |
Collapse
|
8
|
González LJ, Bahr G, Nakashige TG, Nolan EM, Bonomo RA, Vila AJ. Membrane anchoring stabilizes and favors secretion of New Delhi metallo-β-lactamase. Nat Chem Biol 2016; 12:516-22. [PMID: 27182662 PMCID: PMC4912412 DOI: 10.1038/nchembio.2083] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/14/2016] [Indexed: 01/22/2023]
Abstract
Carbapenems, 'last-resort' β-lactam antibiotics, are inactivated by zinc-dependent metallo-β-lactamases (MBLs). The host innate immune response withholds nutrient metal ions from microbial pathogens by releasing metal-chelating proteins such as calprotectin. We show that metal sequestration is detrimental for the accumulation of MBLs in the bacterial periplasm, because those enzymes are readily degraded in their nonmetallated form. However, the New Delhi metallo-β-lactamase (NDM-1) can persist under conditions of metal depletion. NDM-1 is a lipidated protein that anchors to the outer membrane of Gram-negative bacteria. Membrane anchoring contributes to the unusual stability of NDM-1 and favors secretion of this enzyme in outer-membrane vesicles (OMVs). OMVs containing NDM-1 can protect nearby populations of bacteria from otherwise lethal antibiotic levels, and OMVs from clinical pathogens expressing NDM-1 can carry this MBL and the blaNDM gene. We show that protein export into OMVs can be targeted, providing possibilities of new antibacterial therapeutic strategies.
Collapse
Affiliation(s)
- Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Toshiki G. Nakashige
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH; Departments of Medicine, Pharmacology, Microbiology and Molecular Biology, and Biochemistry; Case Western Reserve University, Cleveland, OH, USA
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
9
|
Montagner C, Nigen M, Jacquin O, Willet N, Dumoulin M, Karsisiotis AI, Roberts GCK, Damblon C, Redfield C, Matagne A. The Role of Active Site Flexible Loops in Catalysis and of Zinc in Conformational Stability of Bacillus cereus 569/H/9 β-Lactamase. J Biol Chem 2016; 291:16124-37. [PMID: 27235401 DOI: 10.1074/jbc.m116.719005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 11/06/2022] Open
Abstract
Metallo-β-lactamases catalyze the hydrolysis of most β-lactam antibiotics and hence represent a major clinical concern. The development of inhibitors for these enzymes is complicated by the diversity and flexibility of their substrate-binding sites, motivating research into their structure and function. In this study, we examined the conformational properties of the Bacillus cereus β-lactamase II in the presence of chemical denaturants using a variety of biochemical and biophysical techniques. The apoenzyme was found to unfold cooperatively, with a Gibbs free energy of stabilization (ΔG(0)) of 32 ± 2 kJ·mol(-1) For holoBcII, a first non-cooperative transition leads to multiple interconverting native-like states, in which both zinc atoms remain bound in an apparently unaltered active site, and the protein displays a well organized compact hydrophobic core with structural changes confined to the enzyme surface, but with no catalytic activity. Two-dimensional NMR data revealed that the loss of activity occurs concomitantly with perturbations in two loops that border the enzyme active site. A second cooperative transition, corresponding to global unfolding, is observed at higher denaturant concentrations, with ΔG(0) value of 65 ± 1.4 kJ·mol(-1) These combined data highlight the importance of the two zinc ions in maintaining structure as well as a relatively well defined conformation for both active site loops to maintain enzymatic activity.
Collapse
Affiliation(s)
- Caroline Montagner
- From the Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, and
| | - Michaël Nigen
- From the Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, and
| | - Olivier Jacquin
- From the Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, and
| | - Nicolas Willet
- From the Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, and
| | - Mireille Dumoulin
- From the Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, and
| | - Andreas Ioannis Karsisiotis
- the School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom
| | - Gordon C K Roberts
- the Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom, and
| | - Christian Damblon
- Département de Chimie, Université de Liège, Institut de Chimie B6, 4000 Liège (Sart Tilman), Belgium
| | - Christina Redfield
- the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - André Matagne
- From the Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, and
| |
Collapse
|
10
|
Dalle KE, Meyer F. Modelling Binuclear Metallobiosites: Insights from Pyrazole-Supported Biomimetic and Bioinspired Complexes. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500185] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Wang X, Lu M, Shi Y, Ou Y, Cheng X. Discovery of novel new Delhi metallo-β-lactamases-1 inhibitors by multistep virtual screening. PLoS One 2015; 10:e0118290. [PMID: 25734558 PMCID: PMC4348537 DOI: 10.1371/journal.pone.0118290] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 01/12/2015] [Indexed: 01/21/2023] Open
Abstract
The emergence of NDM-1 containing multi-antibiotic resistant "Superbugs" necessitates the needs of developing of novel NDM-1inhibitors. In this study, we report the discovery of novel NDM-1 inhibitors by multi-step virtual screening. From a 2,800,000 virtual drug-like compound library selected from the ZINC database, we generated a focused NDM-1 inhibitor library containing 298 compounds of which 44 chemical compounds were purchased and evaluated experimentally for their ability to inhibit NDM-1 in vitro. Three novel NDM-1 inhibitors with micromolar IC50 values were validated. The most potent inhibitor, VNI-41, inhibited NDM-1 with an IC50 of 29.6 ± 1.3 μM. Molecular dynamic simulation revealed that VNI-41 interacted extensively with the active site. In particular, the sulfonamide group of VNI-41 interacts directly with the metal ion Zn1 that is critical for the catalysis. These results demonstrate the feasibility of applying virtual screening methodologies in identifying novel inhibitors for NDM-1, a metallo-β-lactamase with a malleable active site and provide a mechanism base for rational design of NDM-1 inhibitors using sulfonamide as a functional scaffold.
Collapse
Affiliation(s)
- Xuequan Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Meiling Lu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Yang Shi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Yu Ou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Xiaodong Cheng
- Department of Integrative Biology & Pharmacology, The University of Texas Health Science Center, Houston, United States of America
| |
Collapse
|
12
|
Uversky VN. Functional roles of transiently and intrinsically disordered regions within proteins. FEBS J 2015; 282:1182-9. [DOI: 10.1111/febs.13202] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute; Morsani College of Medicine; University of South Florida; Tampa FL USA
- Department of Biological Science; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
- Laboratory of Structural Dynamics; Stability and Folding of Proteins; Institute of Cytology; Russian Academy of Sciences; St Petersburg Russia
| |
Collapse
|
13
|
Simplified captopril analogues as NDM-1 inhibitors. Bioorg Med Chem Lett 2014; 24:386-9. [DOI: 10.1016/j.bmcl.2013.10.068] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/10/2013] [Accepted: 10/29/2013] [Indexed: 11/24/2022]
|
14
|
Phelan EK, Miraula M, Selleck C, Ollis DL, Schenk G, Mitić N. Metallo-β-Lactamases: A Major Threat to Human Health. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ajmb.2014.43011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Karsisiotis AI, Damblon CF, Roberts GCK. A variety of roles for versatile zinc in metallo-β-lactamases. Metallomics 2014; 6:1181-97. [DOI: 10.1039/c4mt00066h] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
β-Lactamases inactivate the important β-lactam antibiotics by catalysing the hydrolysis of the β-lactam ring, thus. One class of these enzymes, the metallo-β-lactamases, bind two zinc ions at the active site and these play important roles in the catalytic mechanism.
Collapse
Affiliation(s)
| | - C. F. Damblon
- Chimie Biologique Structurale
- Institut de Chimie
- Université de Liège
- 4000 Liège, Belgium
| | - G. C. K. Roberts
- The Henry Wellcome Laboratories of Structural Biology
- Department of Biochemistry
- University of Leicester
- Leicester LE1 9HN, UK
| |
Collapse
|
16
|
Kubrycht J, Sigler K, Souček P, Hudeček J. Structures composing protein domains. Biochimie 2013; 95:1511-24. [DOI: 10.1016/j.biochi.2013.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/02/2013] [Indexed: 12/21/2022]
|
17
|
Mutagenesis of zinc ligand residue Cys221 reveals plasticity in the IMP-1 metallo-β-lactamase active site. Antimicrob Agents Chemother 2012; 56:5667-77. [PMID: 22908171 DOI: 10.1128/aac.01276-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Metallo-β-lactamases catalyze the hydrolysis of a broad range of β-lactam antibiotics and are a concern for the spread of drug resistance. To analyze the determinants of enzyme structure and function, the sequence requirements for the subclass B1 IMP-1 β-lactamase zinc binding residue Cys221 were tested by saturation mutagenesis and evaluated for protein expression, as well as hydrolysis of β-lactam substrates. The results indicated that most substitutions at position 221 destabilized the enzyme. Only the enzymes containing C221D and C221G substitutions were expressed well in Escherichia coli and exhibited catalytic activity toward β-lactam antibiotics. Despite the lack of a metal-chelating group at position 221, the C221G enzyme exhibited high levels of catalytic activity in the presence of exogenous zinc. Molecular modeling suggests the glycine substitution is unique among substitutions in that the complete removal of the cysteine side chain allows space for a water molecule to replace the thiol and coordinate zinc at the Zn2 zinc binding site to restore function. Multiple methods were used to estimate the C221G Zn2 binding constant to be 17 to 43 μM. Studies of enzyme function in vivo in E. coli grown on minimal medium showed that both IMP-1 and the C221G mutant exhibited compromised activity when zinc availability was low. Finally, substitutions at residue 121, which is the IMP-1 equivalent of the subclass B3 zinc-chelating position, failed to rescue C221G function, suggesting the coordination schemes of subclasses B1 and B3 are not interchangeable.
Collapse
|
18
|
Grasso G, Salomone F, Tundo GR, Pappalardo G, Ciaccio C, Spoto G, Pietropaolo A, Coletta M, Rizzarelli E. Metal ions affect insulin-degrading enzyme activity. J Inorg Biochem 2012; 117:351-8. [PMID: 22819648 DOI: 10.1016/j.jinorgbio.2012.06.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/07/2012] [Accepted: 06/10/2012] [Indexed: 01/24/2023]
Abstract
Insulin degradation is a finely tuned process that plays a major role in controlling insulin action and most evidence supports IDE (insulin-degrading enzyme) as the primary degradative agent. However, the biomolecular mechanisms involved in the interaction between IDE and its substrates are often obscure, rendering the specific enzyme activity quite difficult to target. On the other hand, biometals, such as copper, aluminum and zinc, have an important role in pathological conditions such as Alzheimer's disease or diabetes mellitus. The metabolic disorders connected with the latter lead to some metallostasis alterations in the human body and many studies point at a high level of interdependence between diabetes and several cations. We have previously reported (Grasso et al., Chem. Eur. J. 17 (2011) 2752-2762) that IDE activity toward Aβ peptides can be modulated by metal ions. Here, we have investigated the effects of different metal ions on the IDE proteolytic activity toward insulin as well as a designed peptide comprising a portion of the insulin B chain (B20-30), which has a very low affinity for metal ions. The results obtained by different experimental techniques clearly show that IDE is irreversibly inhibited by copper(I) but is still able to process its substrates when it is bound to copper(II).
Collapse
Affiliation(s)
- Giuseppe Grasso
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
MacDonald JA, Ishida H, Butler EI, Ulke-Lemée A, Chappellaz M, Tulk SE, Chik JK, Vogel HJ. Intrinsically disordered N-terminus of calponin homology-associated smooth muscle protein (CHASM) interacts with the calponin homology domain to enable tropomyosin binding. Biochemistry 2012; 51:2694-705. [PMID: 22424482 DOI: 10.1021/bi2019018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The calponin homology-associated smooth muscle (CHASM) protein plays an important adaptive role in smooth and skeletal muscle contraction. CHASM is associated with increased muscle contractility and can be localized to the contractile thin filament via its binding interaction with tropomyosin. We sought to define the structural basis for the interaction of CHASM with smooth muscle tropomyosin as a first step to understanding the contribution of CHASM to the contractile capacity of smooth muscle. Herein, we provide a structure-based model for the tropomyosin-binding domain of CHASM using a combination of hydrogen/deuterium exchange mass spectrometry (HDX-MS) and NMR analyses. Our studies provide evidence that a portion of the N-terminal intrinsically disordered region forms intramolecular contacts with the globular C-terminal calponin homology (CH) domain. Ultimately, cooperativeness between these structurally dissimilar regions is required for CHASM binding to smooth muscle tropomyosin. Furthermore, it appears that the type-2 CH domain of CHASM is required for tropomyosin binding and presents a novel function for this protein domain.
Collapse
Affiliation(s)
- Justin A MacDonald
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N 4Z6.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Bush K, Fisher JF. Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from gram-negative bacteria. Annu Rev Microbiol 2012; 65:455-78. [PMID: 21740228 DOI: 10.1146/annurev-micro-090110-102911] [Citation(s) in RCA: 306] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
β-Lactamase evolution presents to the infectious disease community a major challenge in the treatment of infections caused by multidrug-resistant gram-negative bacteria. Because over 1,000 of these naturally occurring β-lactamases exist, attempts to correlate structure and function have become daunting. Although new enzymes in the extended-spectrum β-lactamase (ESBL) families are frequently identified, the older CTX-M-14 and CTX-M-15 enzymes have become the most prevalent ESBLs in global surveillance. Carbapenemases with either serine-based or zinc-facilitated hydrolysis mechanisms are posing some of the most critical problems. Most geographical regions now report KPC serine carbapenemases and the metallo-β-lactamases VIM, IMP, and NDM-1, even though NDM-1 was only recently identified. The rapid emergence of these newer enzymes, with multiple β-lactamases appearing in a single organism, makes the design of new β-lactamase inactivators or β-lactamase-stable β-lactams all the more difficult. Combination therapy will likely be required to counteract the continuing evolution of these insidious enzymes in multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Karen Bush
- Biology Department, Indiana University, Bloomington, Indiana 47401, USA.
| | | |
Collapse
|
21
|
Grasso G, Giuffrida ML, Rizzarelli E. Metallostasis and amyloid β-degrading enzymes. Metallomics 2012; 4:937-49. [DOI: 10.1039/c2mt20105d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
22
|
Christensen R, Owens DM, Thomsen A, Pedersen S, Jensen UB. Zinc fixation for flow cytometry analysis of intracellular and surface epitopes, DNA content, and cell proliferation. ACTA ACUST UNITED AC 2011; Chapter 7:Unit 7.40. [PMID: 21732310 DOI: 10.1002/0471142956.cy0740s57] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Zinc salt-based fixation (ZBF) is a simple, cost-effective, and nonhazardous fixation method for cell suspensions that preserves all cellular structures and enables flow cytometric analysis of both surface and intracellular proteins, DNA content profiles, and pulse-labeling using the thymidine analog EdU in the same cell sample. ZBF performs equally well to formaldehyde in the preservation of surface epitope labeling and forward and side light scatter parameters, as measured by flow cytometry. DNA is maintained at high molecular weight, improving the quantification and allowing subsequent quantitative PCR analysis. Finally, ZBF treatment allows for long-term storage of labeled cells with little change in these parameters.
Collapse
Affiliation(s)
- Rikke Christensen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | | | |
Collapse
|
23
|
Griffin DH, Richmond TK, Sanchez C, Moller AJ, Breece RM, Tierney DL, Bennett B, Crowder MW. Structural and kinetic studies on metallo-β-lactamase IMP-1. Biochemistry 2011; 50:9125-34. [PMID: 21928807 DOI: 10.1021/bi200839h] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In an effort to probe for metal binding to metallo-β-lactamase (MβL) IMP-1, the enzyme was overexpressed, purified, and characterized. The resulting enzyme was shown to bind 2 equiv of Zn(II), exhibit significant catalytic activity, and yield EXAFS results similar to crystallographic data previously reported. Rapid kinetic studies showed that IMP-1 does not stabilize a nitrocefin-derived reaction intermediate; rather, the enzyme follows a simple Michaelis mechanism to hydrolyze nitrocefin. Metal-substituted and metal-reconstituted analogues of IMP-1 were prepared by directly adding metal ion stocks to metal-free enzyme, which was generated by dialysis versus EDTA. UV-vis studies on IMP-1 containing 1 equiv of Co(II) showed a strong ligand-to-metal charge transition at 340 nm, and the intensity of this feature increased when the second equivalent of Co(II) was added to the enzyme. EXAFS fits on IMP-1 containing 1 equiv of Co(II) strongly suggest the presence of a metal-metal interaction, and EPR spectra of the IMP-1 containing 1 and 2 equiv of Co(II) are very similar. Taken together, steady-state kinetic and spectroscopic studies suggest that metal binding to metal-free IMP-1 follows a positive-cooperative mode.
Collapse
Affiliation(s)
- Dionne H Griffin
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Correia JG, Johnston K, Wahl U. Nuclear radioactive techniques applied to materials research. ACTA ACUST UNITED AC 2011. [DOI: 10.1524/ract.2011.1873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
In this paper we review materials characterization techniques using radioactive isotopes at the ISOLDE/CERN facility. At ISOLDE intense beams of chemically clean radioactive isotopes are provided by selective ion-sources and high-resolution isotope separators, which are coupled on-line with particle accelerators. There, new experiments are performed by an increasing number of materials researchers, which use nuclear spectroscopic techniques such as Mössbauer, perturbed angular correlations (PAC), β-NMR and emission channeling with short-lived isotopes not available elsewhere. Additionally, diffusion studies and traditionally non-radioactive techniques as deep level transient spectroscopy, Hall effect and photoluminescence measurements are performed on radioactive doped samples, providing in this way the element signature upon correlation of the time dependence of the signal with the isotope transmutation half-life. Current developments, applications and perspectives of using radioactive ion beams and techniques in solid state and biophysics research are presented with a few examples.
Collapse
Affiliation(s)
| | - K. Johnston
- Universität des Saarlandes, Technische Physik, Saarbrücken, Deutschland
| | - U. Wahl
- Instituto Tecnológico e Nuclear, E. N. 10, Sacavém, Portugal
| |
Collapse
|
25
|
Wilderman PR, Shah MB, Liu T, Li S, Hsu S, Roberts AG, Goodlett DR, Zhang Q, Woods VL, Stout CD, Halpert JR. Plasticity of cytochrome P450 2B4 as investigated by hydrogen-deuterium exchange mass spectrometry and X-ray crystallography. J Biol Chem 2010; 285:38602-11. [PMID: 20880847 DOI: 10.1074/jbc.m110.180646] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Crystal structures of the xenobiotic metabolizing cytochrome P450 2B4 have demonstrated markedly different conformations in the presence of imidazole inhibitors or in the absence of ligand. However, knowledge of the plasticity of the enzyme in solution has remained scant. Thus, hydrogen-deuterium exchange mass spectrometry (DXMS) was utilized to probe the conformations of ligand-free P450 2B4 and the complex with 4-(4-chlorophenyl)imidazole (4-CPI) or 1-biphenyl-4-methyl-1H-imidazole (1-PBI). The results of DXMS indicate that the binding of 4-CPI slowed the hydrogen-deuterium exchange rate over the B'- and C-helices and portions of the F-G-helix cassette compared with P450 2B4 in the absence of ligands. In contrast, there was little difference between the ligand-free and 1-PBI-bound exchange sets. In addition, DXMS suggests that the ligand-free P450 2B4 is predominantly open in solution. Interestingly, a new high resolution structure of ligand-free P450 2B4 was obtained in a closed conformation very similar to the 4-CPI complex. Molecular dynamics simulations performed with the closed ligand-free structure as the starting point were used to probe the energetically accessible conformations of P450 2B4. The simulations were found to equilibrate to a conformation resembling the 1-PBI-bound P450 2B4 crystal structure. The results indicate that conformational changes observed in available crystal structures of the promiscuous xenobiotic metabolizing cytochrome P450 2B4 are consistent with its solution structural behavior.
Collapse
Affiliation(s)
- P Ross Wilderman
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jensen UB, Owens DM, Pedersen S, Christensen R. Zinc fixation preserves flow cytometry scatter and fluorescence parameters and allows simultaneous analysis of DNA content and synthesis, and intracellular and surface epitopes. Cytometry A 2010; 77:798-804. [DOI: 10.1002/cyto.a.20914] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Affiliation(s)
- Wolfgang Maret
- Department of Preventive Medicine & Community Health, The University of Texas Medical Branch, Galveston, Texas 77555-1109, USA.
| | | |
Collapse
|
28
|
Positively cooperative binding of zinc ions to Bacillus cereus 569/H/9 beta-lactamase II suggests that the binuclear enzyme is the only relevant form for catalysis. J Mol Biol 2009; 392:1278-91. [PMID: 19665032 DOI: 10.1016/j.jmb.2009.07.092] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 07/27/2009] [Accepted: 07/31/2009] [Indexed: 11/21/2022]
Abstract
Metallo-beta-lactamases catalyze the hydrolysis of most beta-lactam antibiotics and hence represent a major clinical concern. While enzymes belonging to subclass B1 have been shown to display maximum activity as dizinc species, the actual metal-to-protein stoichiometry and the affinity for zinc are not clear. We have further investigated the process of metal binding to the beta-lactamase II from Bacillus cereus 569/H/9 (known as BcII). Zinc binding was monitored using complementary biophysical techniques, including circular dichroism in the far-UV, enzymatic activity measurements, competition with a chromophoric chelator, mass spectrometry, and nuclear magnetic resonance. Most noticeably, mass spectrometry and nuclear magnetic resonance experiments, together with catalytic activity measurements, demonstrate that two zinc ions bind cooperatively to the enzyme active site (with K(1)/K(2)> or =5) and, hence, that catalysis is associated with the dizinc enzyme species only. Furthermore, competitive experiments with the chromophoric chelator Mag-Fura-2 indicates K(2)<80 nM. This contrasts with cadmium binding, which is clearly a noncooperative process with the mono form being the only species significantly populated in the presence of 1 molar equivalent of Cd(II). Interestingly, optical measurements reveal that although the apo and dizinc species exhibit undistinguishable tertiary structural organizations, the metal-depleted enzyme shows a significant decrease in its alpha-helical content, presumably associated with enhanced flexibility.
Collapse
|