1
|
A mutation in SLC37A4 causes a dominantly inherited congenital disorder of glycosylation characterized by liver dysfunction. Am J Hum Genet 2021; 108:1040-1052. [PMID: 33964207 DOI: 10.1016/j.ajhg.2021.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/20/2021] [Indexed: 02/08/2023] Open
Abstract
SLC37A4 encodes an endoplasmic reticulum (ER)-localized multitransmembrane protein required for transporting glucose-6-phosphate (Glc-6P) into the ER. Once transported into the ER, Glc-6P is subsequently hydrolyzed by tissue-specific phosphatases to glucose and inorganic phosphate during times of glucose depletion. Pathogenic variants in SLC37A4 cause an established recessive disorder known as glycogen storage disorder 1b characterized by liver and kidney dysfunction with neutropenia. We report seven individuals who presented with liver dysfunction multifactorial coagulation deficiency and cardiac issues and were heterozygous for the same variant, c.1267C>T (p.Arg423∗), in SLC37A4; the affected individuals were from four unrelated families. Serum samples from affected individuals showed profound accumulation of both high mannose and hybrid type N-glycans, while N-glycans in fibroblasts and undifferentiated iPSC were normal. Due to the liver-specific nature of this disorder, we generated a CRISPR base-edited hepatoma cell line harboring the c.1267C>T (p.Arg423∗) variant. These cells replicated the secreted abnormalities seen in serum N-glycosylation, and a portion of the mutant protein appears to relocate to a distinct, non-Golgi compartment, possibly ER exit sites. These cells also show a gene dosage-dependent alteration in the Golgi morphology and reduced intraluminal pH that may account for the altered glycosylation. In summary, we identify a recurrent mutation in SLC37A4 that causes a dominantly inherited congenital disorder of glycosylation characterized by coagulopathy and liver dysfunction with abnormal serum N-glycans.
Collapse
|
2
|
Leng JX, Ren WW, Li Y, Yang G, Gao XD, Fujita M. Cell engineering for the production of hybrid-type N-glycans in HEK293 cells. J Biochem 2021; 170:139-151. [PMID: 33878161 DOI: 10.1093/jb/mvab051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Glycoprotein therapeutics are among the leading products in the biopharmaceutical industry. The heterogeneity of glycans in therapeutic proteins is an issue for maintaining quality, activity, and safety during bioprocessing. In this study, we knocked out genes encoding Golgi α-mannosidase-II, MAN2A1 and MAN2A2 in human embryonic kidney 293 (HEK293) cells, establishing an M2D-KO cell line that can produce recombinant proteins mainly with hybrid-type N-glycans. Furthermore, FUT8, which encodes α1,6-fucosyltransferase, was knocked out in the M2D-KO cell line, establishing a DF-KO cell line that can express non-core fucosylated hybrid-type N-glycans. Two recombinant proteins, lysosomal acid lipase (LIPA) and constant fragment (Fc) of human IgG1, were expressed in the M2D-KO and DF-KO cell lines. Glycan structural analysis revealed that complex-type N-glycans were removed in both M2D-KO and DF-KO cells. Our results suggest that these cell lines are suitable for the production of therapeutic proteins with hybrid-type N-glycans. Moreover, KO cell lines would be useful as models for researching the mechanism of antimetastatic effects in human tumors by swainsonine treatment.
Collapse
Affiliation(s)
- Ji-Xiong Leng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei-Wei Ren
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuqing Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Ganglong Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Kellman BP, Lewis NE. Big-Data Glycomics: Tools to Connect Glycan Biosynthesis to Extracellular Communication. Trends Biochem Sci 2021; 46:284-300. [PMID: 33349503 PMCID: PMC7954846 DOI: 10.1016/j.tibs.2020.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 10/05/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
Characteristically, cells must sense and respond to environmental cues. Despite the importance of cell-cell communication, our understanding remains limited and often lacks glycans. Glycans decorate proteins and cell membranes at the cell-environment interface, and modulate intercellular communication, from development to pathogenesis. Providing further challenges, glycan biosynthesis and cellular behavior are co-regulating systems. Here, we discuss how glycosylation contributes to extracellular responses and signaling. We further organize approaches for disentangling the roles of glycans in multicellular interactions using newly available datasets and tools, including glycan biosynthesis models, omics datasets, and systems-level analyses. Thus, emerging tools in big data analytics and systems biology are facilitating novel insights on glycans and their relationship with multicellular behavior.
Collapse
Affiliation(s)
- Benjamin P Kellman
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA; Department of Bioengineering, University of California San Diego School of Medicine, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA; Department of Bioengineering, University of California San Diego School of Medicine, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California San Diego School of Medicine, La Jolla, CA, USA; Novo Nordisk Foundation Center for Biosustainability at the University of California San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
4
|
Wilson MP, Quelhas D, Leão‐Teles E, Sturiale L, Rymen D, Keldermans L, Race V, Souche E, Rodrigues E, Campos T, Van Schaftingen E, Foulquier F, Garozzo D, Matthijs G, Jaeken J. SLC37A4-CDG: Second patient. JIMD Rep 2021; 58:122-128. [PMID: 33728255 PMCID: PMC7932867 DOI: 10.1002/jmd2.12195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/01/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022] Open
Abstract
Recently, a disorder caused by the heterozygous de novo c.1267C>T (p.R423*) substitution in SLC37A4 has been described. This causes mislocalization of the glucose-6-phosphate transporter to the Golgi leading to a congenital disorder of glycosylation type II (SLC37A4-CDG). Only one patient has been reported showing liver disease that improved with age and mild dysmorphism. Here we report the second patient with a type II CDG caused by the same heterozygous de novo c.1267C>T (p.R423*) mutation thereby confirming the pathogenicity of this variant and expanding the clinical picture with type 1 diabetes, severe scoliosis, and membranoproliferative glomerulonephritis. Additional clinical and biochemical data provide further insight into the mechanism and prognosis of SLC37A4-CDG.
Collapse
Affiliation(s)
- Matthew P. Wilson
- Laboratory for Molecular DiagnosisCenter for Human Genetics, KU LeuvenLeuvenBelgium
| | - Dulce Quelhas
- Centro de Genetica Medica Jacinto de Magalhaes, Centro Hospitalar Universitário de São JoãoPortoPortugal
| | - Elisa Leão‐Teles
- Centro de Referência de Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário de São JoãoPortoPortugal
| | - Luisa Sturiale
- CNR, Institute for Polymers, Composites and Biomaterials (IPCB)CataniaItaly
| | - Daisy Rymen
- Department of PediatricsCenter for Metabolic Diseases, University Hospitals LeuvenLeuvenBelgium
| | - Liesbeth Keldermans
- Laboratory for Molecular DiagnosisCenter for Human Genetics, KU LeuvenLeuvenBelgium
| | - Valérie Race
- Laboratory for Molecular DiagnosisCenter for Human Genetics, KU LeuvenLeuvenBelgium
| | - Erika Souche
- Laboratory for Molecular DiagnosisCenter for Human Genetics, KU LeuvenLeuvenBelgium
| | - Esmeralda Rodrigues
- Centro de Referência de Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário de São JoãoPortoPortugal
| | - Teresa Campos
- Centro de Referência de Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário de São JoãoPortoPortugal
| | | | - François Foulquier
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et FonctionnelleLilleFrance
| | - Domenico Garozzo
- CNR, Institute for Polymers, Composites and Biomaterials (IPCB)CataniaItaly
| | - Gert Matthijs
- Laboratory for Molecular DiagnosisCenter for Human Genetics, KU LeuvenLeuvenBelgium
| | - Jaak Jaeken
- Department of PediatricsCenter for Metabolic Diseases, University Hospitals LeuvenLeuvenBelgium
| |
Collapse
|
5
|
Harvey DJ. NEGATIVE ION MASS SPECTROMETRY FOR THE ANALYSIS OF N-LINKED GLYCANS. MASS SPECTROMETRY REVIEWS 2020; 39:586-679. [PMID: 32329121 DOI: 10.1002/mas.21622] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/13/2019] [Accepted: 12/22/2019] [Indexed: 05/03/2023]
Abstract
N-glycans from glycoproteins are complex, branched structures whose structural determination presents many analytical problems. Mass spectrometry, usually conducted in positive ion mode, often requires extensive sample manipulation, usually by derivatization such as permethylation, to provide the necessary structure-revealing fragment ions. The newer but, so far, lesser used negative ion techniques, on the contrary, provide a wealth of structural information not present in positive ion spectra that greatly simplify the analysis of these compounds and can usually be conducted without the need for derivatization. This review describes the use of negative ion mass spectrometry for the structural analysis of N-linked glycans and emphasises the many advantages that can be gained by this mode of operation. Biosynthesis and structures of the compounds are described followed by methods for release of the glycans from the protein. Methods for ionization are discussed with emphasis on matrix-assisted laser desorption/ionization (MALDI) and methods for producing negative ions from neutral compounds. Acidic glycans naturally give deprotonated species under most ionization conditions. Fragmentation of negative ions is discussed next with particular reference to those ions that are diagnostic for specific features such as the branching topology of the glycans and substitution positions of moieties such as fucose and sulfate, features that are often difficult to identify easily by conventional techniques such as positive ion fragmentation and exoglycosidase digestions. The advantages of negative over positive ions for this structural work are emphasised with an example of a series of glycans where all other methods failed to produce a structure. Fragmentation of derivatized glycans is discussed next, both with respect to derivatives at the reducing terminus of the molecules, and to methods for neutralization of the acidic groups on sialic acids to both stabilize them for MALDI analysis and to produce the diagnostic fragments seen with the neutral glycans. The use of ion mobility, combined with conventional mass spectrometry is described with emphasis on its use to extract clean glycan spectra both before and after fragmentation, to separate isomers and its use to extract additional information from separated fragment ions. A section on applications follows with examples of the identification of novel structures from lower organisms and tables listing the use of negative ions for structural identification of specific glycoproteins, glycans from viruses and uses in the biopharmaceutical industry and in medicine. The review concludes with a summary of the advantages and disadvantages of the technique. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
6
|
Morgens DW, Chan C, Kane AJ, Weir NR, Li A, Dubreuil MM, Tsui CK, Hess GT, Lavertu A, Han K, Polyakov N, Zhou J, Handy EL, Alabi P, Dombroski A, Yao D, Altman RB, Sello JK, Denic V, Bassik MC. Retro-2 protects cells from ricin toxicity by inhibiting ASNA1-mediated ER targeting and insertion of tail-anchored proteins. eLife 2019; 8:48434. [PMID: 31674906 PMCID: PMC6858068 DOI: 10.7554/elife.48434] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
The small molecule Retro-2 prevents ricin toxicity through a poorly-defined mechanism of action (MOA), which involves halting retrograde vesicle transport to the endoplasmic reticulum (ER). CRISPRi genetic interaction analysis revealed Retro-2 activity resembles disruption of the transmembrane domain recognition complex (TRC) pathway, which mediates post-translational ER-targeting and insertion of tail-anchored (TA) proteins, including SNAREs required for retrograde transport. Cell-based and in vitro assays show that Retro-2 blocks delivery of newly-synthesized TA-proteins to the ER-targeting factor ASNA1 (TRC40). An ASNA1 point mutant identified using CRISPR-mediated mutagenesis abolishes both the cytoprotective effect of Retro-2 against ricin and its inhibitory effect on ASNA1-mediated ER-targeting. Together, our work explains how Retro-2 prevents retrograde trafficking of toxins by inhibiting TA-protein targeting, describes a general CRISPR strategy for predicting the MOA of small molecules, and paves the way for drugging the TRC pathway to treat broad classes of viruses known to be inhibited by Retro-2.
Collapse
Affiliation(s)
- David W Morgens
- Department of Genetics, Stanford University, Stanford, United States
| | - Charlene Chan
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, United States
| | - Andrew J Kane
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, United States
| | - Nicholas R Weir
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, United States
| | - Amy Li
- Department of Genetics, Stanford University, Stanford, United States
| | | | - C Kimberly Tsui
- Department of Genetics, Stanford University, Stanford, United States
| | - Gaelen T Hess
- Department of Genetics, Stanford University, Stanford, United States
| | - Adam Lavertu
- Biomedical Informatics Training Program, Stanford University, Stanford, United States
| | - Kyuho Han
- Department of Genetics, Stanford University, Stanford, United States
| | - Nicole Polyakov
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, United States
| | - Jing Zhou
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, United States
| | - Emma L Handy
- Department of Chemistry, Brown University, Providence, United States
| | - Philip Alabi
- Department of Chemistry, Brown University, Providence, United States
| | - Amanda Dombroski
- Department of Chemistry, Brown University, Providence, United States
| | - David Yao
- Department of Genetics, Stanford University, Stanford, United States
| | - Russ B Altman
- Department of Genetics, Stanford University, Stanford, United States.,Bioengineering, Stanford University, Stanford, United States
| | - Jason K Sello
- Department of Chemistry, Brown University, Providence, United States
| | - Vladimir Denic
- Department of Molecular and Cellular Biology, Northwest Labs, Harvard University, Cambridge, United States
| | - Michael C Bassik
- Department of Genetics, Stanford University, Stanford, United States.,Program in Cancer Biology, Stanford University, Stanford, United States.,Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, United States
| |
Collapse
|
7
|
Maimaitiyiming Y, Yang C, Wang Y, Hussain L, Naranmandura H. Selection and characterization of novel DNA aptamer against colorectal carcinoma Caco-2 cells. Biotechnol Appl Biochem 2019; 66:412-418. [PMID: 30746785 DOI: 10.1002/bab.1737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/05/2019] [Indexed: 12/17/2022]
Abstract
Aptamers are short, single-stranded nucleic acid (DNA or RNA) oligonucleotides that can be obtained by a technique called systematic evolution of ligands by exponential enrichment (SELEX) in vitro. Due to superior properties such as small size, high binding affinity, and stability, they are considered to be feasible tools for diagnosis and treatment of disease. In the current study, we attempted to screen a high-affinity DNA aptamer to selectively target the colorectal carcinoma Caco-2 cells by using cell-based SELEX approach. After 14 consecutive rounds of selection, aptamer ApC1 was identified. Confocal microscopy results revealed that ApC1 could rapidly internalize into Caco-2 cells but not HEK 293 cells. Moreover, it showed high specificity to Caco-2 cells rather than other cell lines such as 293T, HeLa, MCF-7, HL-60, and NB4. Collectively, our results demonstrated that aptamer ApC1 has high specificity to colorectal carcinoma Caco-2 cells, which could be further applied for targeted therapy of colorectal cancer in future studies.
Collapse
Affiliation(s)
- Yasen Maimaitiyiming
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Chang Yang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yun Wang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Liaqat Hussain
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Hua Naranmandura
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
8
|
Morgens DW, Wainberg M, Boyle EA, Ursu O, Araya CL, Tsui CK, Haney MS, Hess GT, Han K, Jeng EE, Li A, Snyder MP, Greenleaf WJ, Kundaje A, Bassik MC. Genome-scale measurement of off-target activity using Cas9 toxicity in high-throughput screens. Nat Commun 2017; 8:15178. [PMID: 28474669 PMCID: PMC5424143 DOI: 10.1038/ncomms15178] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/07/2017] [Indexed: 12/24/2022] Open
Abstract
CRISPR-Cas9 screens are powerful tools for high-throughput interrogation of genome function, but can be confounded by nuclease-induced toxicity at both on- and off-target sites, likely due to DNA damage. Here, to test potential solutions to this issue, we design and analyse a CRISPR-Cas9 library with 10 variable-length guides per gene and thousands of negative controls targeting non-functional, non-genic regions (termed safe-targeting guides), in addition to non-targeting controls. We find this library has excellent performance in identifying genes affecting growth and sensitivity to the ricin toxin. The safe-targeting guides allow for proper control of toxicity from on-target DNA damage. Using this toxicity as a proxy to measure off-target cutting, we demonstrate with tens of thousands of guides both the nucleotide position-dependent sensitivity to single mismatches and the reduction of off-target cutting using truncated guides. Our results demonstrate a simple strategy for high-throughput evaluation of target specificity and nuclease toxicity in Cas9 screens.
Collapse
Affiliation(s)
- David W. Morgens
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Michael Wainberg
- Department of Computer Science, Stanford University, Stanford, California 94305, USA
| | - Evan A. Boyle
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Oana Ursu
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Carlos L. Araya
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - C. Kimberly Tsui
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Michael S. Haney
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Gaelen T. Hess
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Kyuho Han
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Edwin E. Jeng
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- Program in Cancer Biology, Stanford University, Stanford, California 94305, USA
| | - Amy Li
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Michael P. Snyder
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | | | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- Department of Computer Science, Stanford University, Stanford, California 94305, USA
| | - Michael C. Bassik
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford, California 94305, USA
| |
Collapse
|
9
|
Behrens AJ, Seabright GE, Crispin M. Targeting Glycans of HIV Envelope Glycoproteins for Vaccine Design. CHEMICAL BIOLOGY OF GLYCOPROTEINS 2017. [DOI: 10.1039/9781782623823-00300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The surface of the envelope spike of the human immunodeficiency virus (HIV) is covered with a dense array of glycans, which is sufficient to impede the host antibody response while maintaining a window for receptor recognition. The glycan density significantly exceeds that typically observed on self glycoproteins and is sufficiently high to disrupt the maturation process of glycans, from oligomannose- to complex-type glycosylation, that normally occurs during glycoprotein transit through the secretory system. It is notable that this generates a degree of homogeneity not seen in the highly mutated protein moiety. The conserved, close glycan packing and divergences from default glycan processing give a window for immune recognition. Encouragingly, in a subset of individuals, broadly neutralizing antibodies (bNAbs) have been isolated that recognize these features and are protective in passive-transfer models. Here, we review the recent advances in our understanding of the glycan shield of HIV and outline the strategies that are being pursued to elicit glycan-binding bNAbs by vaccination.
Collapse
Affiliation(s)
- Anna-Janina Behrens
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| | - Gemma E. Seabright
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| |
Collapse
|
10
|
Pandey A, Shin K, Patterson RE, Liu XQ, Rainey JK. Current strategies for protein production and purification enabling membrane protein structural biology. Biochem Cell Biol 2016; 94:507-527. [PMID: 27010607 PMCID: PMC5752365 DOI: 10.1139/bcb-2015-0143] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Membrane proteins are still heavily under-represented in the protein data bank (PDB), owing to multiple bottlenecks. The typical low abundance of membrane proteins in their natural hosts makes it necessary to overexpress these proteins either in heterologous systems or through in vitro translation/cell-free expression. Heterologous expression of proteins, in turn, leads to multiple obstacles, owing to the unpredictability of compatibility of the target protein for expression in a given host. The highly hydrophobic and (or) amphipathic nature of membrane proteins also leads to challenges in producing a homogeneous, stable, and pure sample for structural studies. Circumventing these hurdles has become possible through the introduction of novel protein production protocols; efficient protein isolation and sample preparation methods; and, improvement in hardware and software for structural characterization. Combined, these advances have made the past 10-15 years very exciting and eventful for the field of membrane protein structural biology, with an exponential growth in the number of solved membrane protein structures. In this review, we focus on both the advances and diversity of protein production and purification methods that have allowed this growth in structural knowledge of membrane proteins through X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM).
Collapse
Affiliation(s)
- Aditya Pandey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kyungsoo Shin
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Robin E. Patterson
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Xiang-Qin Liu
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jan K. Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
11
|
Chen BJ, Mills JD, Takenaka K, Bliim N, Halliday GM, Janitz M. Characterization of circular RNAs landscape in multiple system atrophy brain. J Neurochem 2016; 139:485-496. [DOI: 10.1111/jnc.13752] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/24/2016] [Accepted: 07/26/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Bei Jun Chen
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney New South Wales Australia
| | - James D. Mills
- Deptartment of (Neuro) Pathology; Academic Medical Center and Swammerdam Institute for Life Sciences; Centre for Neuroscience; University of Amsterdam; Amsterdam The Netherlands
| | - Konii Takenaka
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney New South Wales Australia
| | - Nicola Bliim
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney New South Wales Australia
| | - Glenda M. Halliday
- Neuroscience Research Australia; Sydney New South Wales Australia
- School of Medical Sciences; University of New South Wales; Sydney New South Wales Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney New South Wales Australia
| |
Collapse
|
12
|
Chang VT, Spooner RA, Crispin M, Davis SJ. Glycan Remodeling with Processing Inhibitors and Lectin-Resistant Eukaryotic Cells. Methods Mol Biol 2016; 1321:307-22. [PMID: 26082231 DOI: 10.1007/978-1-4939-2760-9_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Some of the most important and interesting molecules in metazoan biology are glycoproteins. The importance of the carbohydrate component of these structures is often revealed by the disease phenotypes that manifest when the biosynthesis of particular glycoforms is disrupted. On the other hand, the presence of large amounts of carbohydrate can often hinder the structural and functional analysis of glycoproteins. There are often good reasons, therefore, for wanting to engineer and predefine the N-glycans present on glycoproteins, e.g., in order to characterize the functions of the glycans or facilitate their subsequent removal. Here, we describe in detail two distinct ways in which to usefully interfere with oligosaccharide processing, one involving the use of specific processing inhibitors, and the other the selection of cell lines mutated at gene loci that control oligosaccharide processing, using cytotoxic lectins. Both approaches have the capacity for controlled, radical alteration of oligosaccharide processing in eukaryotic cells used for heterologous protein expression, and have great utility in the structural analysis of glycoproteins.
Collapse
Affiliation(s)
- Veronica T Chang
- Radcliffe Department of Medicine and MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
13
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
14
|
Abstract
The heterodimeric plant toxin ricin binds exposed galactosyls at the cell surface of target mammalian cells, and, following endocytosis, is transported in vesicular carriers to the endoplasmic reticulum (ER). Subsequently, the cell-binding B chain (RTB) and the catalytic A chain (RTA) are separated reductively, RTA embeds in the ER membrane and then retrotranslocates (or dislocates) across this membrane. The protein conducting channels used by RTA are usually regarded as part of the ER-associated protein degradation system (ERAD) that removes misfolded proteins from the ER for destruction by the cytosolic proteasomes. However, unlike ERAD substrates, cytosolic RTA avoids destruction and folds into a catalytic conformation that inactivates its target ribosomes. Protein synthesis ceases, and subsequently the cells die apoptotically. This raises questions about how this protein avoids the pathways that are normally sanctioned for ER-dislocating substrates. In this review we focus on the molecular events that occur with non-tagged ricin and its isolated subunits at the ER–cytosol interface. This focus reveals that intra-membrane interactions of RTA may control its fate, an area that warrants further investigation.
Collapse
Affiliation(s)
- Robert A Spooner
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | - J Michael Lord
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
15
|
Crispin M, Harvey DJ, Bitto D, Bonomelli C, Edgeworth M, Scrivens JH, Huiskonen JT, Bowden TA. Structural plasticity of the Semliki Forest virus glycome upon interspecies transmission. J Proteome Res 2014; 13:1702-12. [PMID: 24467287 PMCID: PMC4428802 DOI: 10.1021/pr401162k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Cross-species
viral transmission subjects parent and progeny alphaviruses
to differential post-translational processing of viral envelope glycoproteins.
Alphavirus biogenesis has been extensively studied, and the Semliki
Forest virus E1 and E2 glycoproteins have been shown to exhibit differing
degrees of processing of N-linked glycans. However the composition
of these glycans, including that arising from different host cells,
has not been determined. Here we determined the chemical composition
of the glycans from the prototypic alphavirus, Semliki Forest virus,
propagated in both arthropod and rodent cell lines, by using ion-mobility
mass spectrometry and collision-induced dissociation analysis. We
observe that both the membrane-proximal E1 fusion glycoprotein and
the protruding E2 attachment glycoprotein display heterogeneous glycosylation
that contains N-linked glycans exhibiting both limited and extensive
processing. However, E1 contained predominantly highly processed glycans
dependent on the host cell, with rodent and mosquito-derived E1 exhibiting
complex-type and paucimannose-type glycosylation, respectively. In
contrast, the protruding E2 attachment glycoprotein primarily contained
conserved under-processed oligomannose-type structures when produced
in both rodent and mosquito cell lines. It is likely that glycan processing
of E2 is structurally restricted by steric-hindrance imposed by local
viral protein structure. This contrasts E1, which presents glycans
characteristic of the host cell and is accessible to enzymes. We integrated
our findings with previous cryo-electron microscopy and crystallographic
analyses to produce a detailed model of the glycosylated mature virion
surface. Taken together, these data reveal the degree to which virally
encoded protein structure and cellular processing enzymes shape the
virion glycome during interspecies transmission of Semliki Forest
virus.
Collapse
Affiliation(s)
- Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Hudak JE, Bertozzi CR. Glycotherapy: new advances inspire a reemergence of glycans in medicine. CHEMISTRY & BIOLOGY 2014; 21:16-37. [PMID: 24269151 PMCID: PMC4111574 DOI: 10.1016/j.chembiol.2013.09.010] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 09/16/2013] [Accepted: 09/30/2013] [Indexed: 12/21/2022]
Abstract
The beginning of the 20(th) century marked the dawn of modern medicine with glycan-based therapies at the forefront. However, glycans quickly became overshadowed as DNA- and protein-focused treatments became readily accessible. The recent development of new tools and techniques to study and produce structurally defined carbohydrates has spurred renewed interest in the therapeutic applications of glycans. This review focuses on advances within the past decade that are bringing glycan-based treatments back to the forefront of medicine and the technologies that are driving these efforts. These include the use of glycans themselves as therapeutic molecules as well as engineering protein and cell surface glycans to suit clinical applications. Glycan therapeutics offer a rich and promising frontier for developments in the academic, biopharmaceutical, and medical fields.
Collapse
Affiliation(s)
- Jason E Hudak
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
17
|
Assenberg R, Wan PT, Geisse S, Mayr LM. Advances in recombinant protein expression for use in pharmaceutical research. Curr Opin Struct Biol 2013; 23:393-402. [DOI: 10.1016/j.sbi.2013.03.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 03/24/2013] [Accepted: 03/25/2013] [Indexed: 10/26/2022]
|
18
|
Bowden TA, Baruah K, Coles CH, Harvey DJ, Yu X, Song BD, Stuart DI, Aricescu AR, Scanlan C, Jones EY, Crispin M. Chemical and structural analysis of an antibody folding intermediate trapped during glycan biosynthesis. J Am Chem Soc 2012; 134:17554-63. [PMID: 23025485 PMCID: PMC3593610 DOI: 10.1021/ja306068g] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Indexed: 12/17/2022]
Abstract
Human IgG Fc glycosylation modulates immunological effector functions such as antibody-dependent cellular cytotoxicity and phagocytosis. Engineering of Fc glycans therefore enables fine-tuning of the therapeutic properties of monoclonal antibodies. The N-linked glycans of Fc are typically complex-type, forming a network of noncovalent interactions along the protein surface of the Cγ2 domain. Here, we manipulate the mammalian glycan-processing pathway to trap IgG1 Fc at sequential stages of maturation, from oligomannose- to hybrid- to complex-type glycans, and show that the Fc is structurally stabilized following the transition of glycans from their hybrid- to complex-type state. X-ray crystallographic analysis of this hybrid-type intermediate reveals that N-linked glycans undergo conformational changes upon maturation, including a flip within the trimannosyl core. Our crystal structure of this intermediate reveals a molecular basis for antibody biogenesis and provides a template for the structure-guided engineering of the protein-glycan interface of therapeutic antibodies.
Collapse
Affiliation(s)
- Thomas A. Bowden
- Division of Structural
Biology, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford
OX3 7BN, United Kingdom
| | - Kavitha Baruah
- Oxford Glycobiology
Institute, Department of Biochemistry, University
of Oxford, South Parks Road, Oxford OX1 3QU,
United Kingdom
| | - Charlotte H. Coles
- Division of Structural
Biology, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford
OX3 7BN, United Kingdom
| | - David J. Harvey
- Oxford Glycobiology
Institute, Department of Biochemistry, University
of Oxford, South Parks Road, Oxford OX1 3QU,
United Kingdom
| | - Xiaojie Yu
- Oxford Glycobiology
Institute, Department of Biochemistry, University
of Oxford, South Parks Road, Oxford OX1 3QU,
United Kingdom
| | - Byeong-Doo Song
- Scripps Korea Antibody
Institute, 192-1 Hyoja-dong, Chuncheon, Gangwon 200-701,
Korea
| | - David I. Stuart
- Division of Structural
Biology, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford
OX3 7BN, United Kingdom
- Science Division, Diamond Light Source Ltd., Diamond House, Harwell Science
and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United
Kingdom
| | - A. Radu Aricescu
- Division of Structural
Biology, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford
OX3 7BN, United Kingdom
| | - Christopher
N. Scanlan
- Oxford Glycobiology
Institute, Department of Biochemistry, University
of Oxford, South Parks Road, Oxford OX1 3QU,
United Kingdom
| | - E. Yvonne Jones
- Division of Structural
Biology, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford
OX3 7BN, United Kingdom
| | - Max Crispin
- Oxford Glycobiology
Institute, Department of Biochemistry, University
of Oxford, South Parks Road, Oxford OX1 3QU,
United Kingdom
| |
Collapse
|
19
|
Zhao H, Berger AJ, Brown PH, Kumar J, Balbo A, May CA, Casillas E, Laue TM, Patterson GH, Mayer ML, Schuck P. Analysis of high-affinity assembly for AMPA receptor amino-terminal domains. J Gen Physiol 2012; 139:371-88. [PMID: 22508847 PMCID: PMC3343374 DOI: 10.1085/jgp.201210770] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 03/27/2012] [Indexed: 01/06/2023] Open
Abstract
Analytical ultracentrifugation (AUC) and steady-state fluorescence anisotropy were used to measure the equilibrium dissociation constant (Kd) for formation of dimers by the amino-terminal domains (ATDs) of the GluA2 and GluA3 subtypes of AMPA receptor. Previous reports on GluA2 dimerization differed in their estimate of the monomer-dimer Kd by a 2,400-fold range, with no consensus on whether the ATD forms tetramers in solution. We find by sedimentation velocity (SV) analysis performed using absorbance detection a narrow range of monomer-dimer Kd values for GluA2, from 5 to 11 nM for six independent experiments, with no detectable formation of tetramers and no effect of glycosylation or the polypeptide linker connecting the ATD and ligand-binding domains; for GluA3, the monomer-dimer Kd was 5.6 µM, again with no detectable tetramer formation. For sedimentation equilibrium (SE) experiments, a wide range of Kd values was obtained for GluA2, from 13 to 284 nM, whereas for GluA3, the Kd of 3.1 µM was less than twofold different from the SV value. Analysis of cell contents after the ∼1-week centrifuge run by silver-stained gels revealed low molecular weight GluA2 breakdown products. Simulated data for SE runs demonstrate that the apparent Kd for GluA2 varies with the extent of proteolysis, leading to artificially high Kd values. SV experiments with fluorescence detection for GluA2 labeled with 5,6-carboxyfluorescein, and fluorescence anisotropy measurements for GluA2 labeled with DyLight405, yielded Kd values of 5 and 11 nM, consistent with those from SV with absorbance detection. However, the sedimentation coefficients measured by AUC using absorbance and fluorescence systems were strikingly different, and for the latter are not consistent with hydrodynamic protein models. Thus, for unknown reasons, the concentration dependence of sedimentation coefficients obtained with fluorescence detection SV may be unreliable, limiting the usefulness of this technique for quantitative analysis.
Collapse
Affiliation(s)
- Huaying Zhao
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Anthony J. Berger
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Patrick H. Brown
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Janesh Kumar
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Andrea Balbo
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Carrie A. May
- Department of Biochemistry, University of New Hampshire, Durham, NH 03824
| | - Ernesto Casillas
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Thomas M. Laue
- Department of Biochemistry, University of New Hampshire, Durham, NH 03824
| | - George H. Patterson
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Mark L. Mayer
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Peter Schuck
- Laboratory of Cellular Imaging and Macromolecular Biophysics, Bioengineering and Physical Science Shared Resource, and Section on Biophotonics, The National Institute of Biomedical Imaging and Bioengineering, and Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| |
Collapse
|
20
|
Carbohydrate synthesis and biosynthesis technologies for cracking of the glycan code: recent advances. Biotechnol Adv 2012; 31:17-37. [PMID: 22484115 DOI: 10.1016/j.biotechadv.2012.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 03/06/2012] [Accepted: 03/20/2012] [Indexed: 12/22/2022]
Abstract
The glycan code of glycoproteins can be conceptually defined at molecular level by the sequence of well characterized glycans attached to evolutionarily predetermined amino acids along the polypeptide chain. Functional consequences of protein glycosylation are numerous, and include a hierarchy of properties from general physicochemical characteristics such as solubility, stability and protection of the polypeptide from the environment up to specific glycan interactions. Definition of the glycan code for glycoproteins has been so far hampered by the lack of chemically defined glycoprotein glycoforms that proved to be extremely difficult to purify from natural sources, and the total chemical synthesis of which has been hitherto possible only for very small molecular species. This review summarizes the recent progress in chemical and chemoenzymatic synthesis of complex glycans and their protein conjugates. Progress in our understanding of the ways in which a particular glycoprotein glycoform gives rise to a unique set of functional properties is now having far reaching implications for the biotechnology of important glycodrugs such as therapeutical monoclonal antibodies, glycoprotein hormones, carbohydrate conjugates used for vaccination and other practically important protein-carbohydrate conjugates.
Collapse
|
21
|
Wang LX, Lomino JV. Emerging technologies for making glycan-defined glycoproteins. ACS Chem Biol 2012; 7:110-22. [PMID: 22141574 DOI: 10.1021/cb200429n] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein glycosylation is a common and complex posttranslational modification of proteins, which expands functional diversity while boosting structural heterogeneity. Glycoproteins, the end products of such a modification, are typically produced as mixtures of glycoforms possessing the same polypeptide backbone but differing in the site of glycosylation and/or in the structures of pendant glycans, from which single glycoforms are difficult to isolate. The urgent need for glycan-defined glycoproteins in both detailed structure-function relationship studies and therapeutic applications has stimulated an extensive interest in developing various methods for manipulating protein glycosylation. This review highlights emerging technologies that hold great promise in making a variety of glycan-defined glycoproteins, with a particular emphasis in the following three areas: specific glycoengineering of host biosynthetic pathways, in vitro chemoenzymatic glycosylation remodeling, and chemoselective and site-specific glycosylation of proteins.
Collapse
Affiliation(s)
- Lai-Xi Wang
- Institute of Human Virology and Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Joseph V. Lomino
- Institute of Human Virology and Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| |
Collapse
|
22
|
Affiliation(s)
- Ryan M Schmaltz
- The Department of Chemistry and Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
23
|
Wang W, Hale C, Goulding D, Haslam SM, Tissot B, Lindsay C, Michell S, Titball R, Yu J, Toribio AL, Rossi R, Dell A, Bradley A, Dougan G. Mannosidase 2, alpha 1 deficiency is associated with ricin resistance in embryonic stem (ES) cells. PLoS One 2011; 6:e22993. [PMID: 21886775 PMCID: PMC3160287 DOI: 10.1371/journal.pone.0022993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 07/11/2011] [Indexed: 12/19/2022] Open
Abstract
Host gene products required for mediating the action of toxins are potential targets for reversing or controlling their pathogenic impact following exposure. To identify such targets libraries of insertional gene-trap mutations generated with a PiggyBac transposon in Blm-deficient embryonic stem cells were exposed to the plant toxin, ricin. Resistant clones were isolated and genetically characterised and one was found to be a homozygous mutant of the mannosidase 2, alpha 1 (Man2α1) locus with a matching defect in the homologous allele. The causality of the molecular lesion was confirmed by removal of the transposon following expression of PB-transposase. Comparative glycomic and lectin binding analysis of the Man2α1 (-/-) ricin resistant cells revealed an increase in the levels of hybrid glycan structures and a reduction in terminal β-galactose moieties, potential target receptors for ricin. Furthermore, naïve ES cells treated with inhibitors of the N-linked glycosylation pathway at the mannosidase 2, alpha 1 step exhibited either full or partial resistance to ricin. Therefore, we conclusively identified mannosidase 2, alpha 1 deficiency to be associated with ricin resistance.
Collapse
Affiliation(s)
- Wei Wang
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Christine Hale
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
- * E-mail:
| | - Dave Goulding
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Stuart M. Haslam
- Division of Molecular Biosciences, Imperial College London, South Kensington Campus, South Kensington, London, United Kingdom
| | - Bérangère Tissot
- Division of Molecular Biosciences, Imperial College London, South Kensington Campus, South Kensington, London, United Kingdom
| | - Christopher Lindsay
- Cellular Toxicity Team, Biomedical Sciences Department, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Stephen Michell
- School of Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Rick Titball
- School of Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Jun Yu
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Royal College, Glasgow, Scotland, United Kingdom
| | - Ana Luisa Toribio
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Raffaella Rossi
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Anne Dell
- Division of Molecular Biosciences, Imperial College London, South Kensington Campus, South Kensington, London, United Kingdom
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Gordon Dougan
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| |
Collapse
|
24
|
Bonomelli C, Doores KJ, Dunlop DC, Thaney V, Dwek RA, Burton DR, Crispin M, Scanlan CN. The glycan shield of HIV is predominantly oligomannose independently of production system or viral clade. PLoS One 2011; 6:e23521. [PMID: 21858152 PMCID: PMC3156772 DOI: 10.1371/journal.pone.0023521] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/19/2011] [Indexed: 01/04/2023] Open
Abstract
The N-linked oligomannose glycans of HIV gp120 are a target for both microbicide and vaccine design. The extent of cross-clade conservation of HIV oligomannose glycans is therefore a critical consideration for the development of HIV prophylaxes. We measured the oligomannose content of virion-associated gp120 from primary virus from PBMCs for a range of viral isolates and showed cross-clade elevation (62–79%) of these glycans relative to recombinant, monomeric gp120 (∼30%). We also confirmed that pseudoviral production systems can give rise to notably elevated gp120 oligomannose levels (∼98%), compared to gp120 derived from a single-plasmid viral system using the HIVLAI backbone (56%). This study highlights differences in glycosylation between virion-associated and recombinant gp120.
Collapse
Affiliation(s)
- Camille Bonomelli
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
| | - Katie J. Doores
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - D. Cameron Dunlop
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
| | - Victoria Thaney
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
| | - Raymond A. Dwek
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
| | - Dennis R. Burton
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - Max Crispin
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
| | - Christopher N. Scanlan
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Abstract
Glycosylation is a very common modification of protein and lipid, and most glycosylation reactions occur in the Golgi. Although the transfer of initial sugar(s) to glycoproteins or glycolipids occurs in the ER or on the ER membrane, the subsequent addition of the many different sugars that make up a mature glycan is accomplished in the Golgi. Golgi membranes are studded with glycosyltransferases, glycosidases, and nucleotide sugar transporters arrayed in a generally ordered manner from the cis-Golgi to the trans-Golgi network (TGN), such that each activity is able to act on specific substrate(s) generated earlier in the pathway. The spectrum of glycosyltransferases and other activities that effect glycosylation may vary with cell type, and thus the final complement of glycans on glycoconjugates is variable. In addition, glycan synthesis is affected by Golgi pH, the integrity of Golgi peripheral membrane proteins, growth factor signaling, Golgi membrane dynamics, and cellular stress. Knowledge of Golgi glycosylation has fostered the development of assays to identify mechanisms of intracellular vesicular trafficking and facilitated glycosylation engineering of recombinant glycoproteins.
Collapse
Affiliation(s)
- Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York 10461, USA.
| |
Collapse
|
26
|
Spooner RA, Lord JM. How ricin and Shiga toxin reach the cytosol of target cells: retrotranslocation from the endoplasmic reticulum. Curr Top Microbiol Immunol 2011; 357:19-40. [PMID: 21761287 DOI: 10.1007/82_2011_154] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A number of protein toxins bind at the surface of mammalian cells and after endocytosis traffic to the endoplasmic reticulum, where the toxic A chains are liberated from the holotoxin. The free A chains are then dislocated, or retrotranslocated, across the ER membrane into the cytosol. Here, in contrast to ER substrates destined for proteasomal destruction, they undergo folding to a catalytic conformation and subsequently inactivate their cytosolic targets. These toxins therefore provide toxic probes for testing the molecular requirements for retrograde trafficking, the ER processes that prepare the toxic A chains for transmembrane transport, the dislocation step itself and for the post-dislocation folding that results in catalytic activity. We describe here the dislocation of ricin A chain and Shiga toxin A chain, but also consider cholera toxin which bears a superficial structural resemblance to Shiga toxin. Recent studies not only describe how these proteins breach the ER membrane, but also reveal aspects of a fundamental cell biological process, that of ER-cytosol dislocation.
Collapse
Affiliation(s)
- Robert A Spooner
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
27
|
Envelope glycans of immunodeficiency virions are almost entirely oligomannose antigens. Proc Natl Acad Sci U S A 2010; 107:13800-5. [PMID: 20643940 DOI: 10.1073/pnas.1006498107] [Citation(s) in RCA: 279] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The envelope spike of HIV is one of the most highly N-glycosylated structures found in nature. However, despite extensive research revealing essential functional roles in infection and immune evasion, the chemical structures of the glycans on the native viral envelope glycoprotein gp120--as opposed to recombinantly generated gp120--have not been described. Here, we report on the identity of the N-linked glycans from primary isolates of HIV-1 (clades A, B, and C) and from the simian immunodeficiency virus. MS analysis reveals a remarkably simple and highly conserved virus-specific glycan profile almost entirely devoid of medial Golgi-mediated processing. In stark contrast to recombinant gp120, which shows extensive exposure to cellular glycosylation enzymes (>70% complex type glycans), the native envelope shows barely detectable processing beyond the biosynthetic intermediate Man5GlcNAc2 (<2% complex type glycans). This oligomannose (Man5-9GlcNAc2) profile is conserved across primary isolates and geographically divergent clades but is not reflected in the current generation of gp120 antigens used for vaccine trials. In the context of vaccine design, we also note that Manalpha1-->2Man-terminating glycans (Man6-9GlcNAc2) of the type recognized by the broadly neutralizing anti-HIV antibody 2G12 are 3-fold more abundant on the native envelope than on the recombinant monomer and are also found on isolates not neutralized by 2G12. The Manalpha1-->2Man residues of gp120 therefore provide a vaccine target that is physically larger and antigenically more conserved than the 2G12 epitope itself. This study revises and extends our understanding of the glycan shield of HIV with implications for AIDS vaccine design.
Collapse
|
28
|
Dunlop DC, Bonomelli C, Mansab F, Vasiljevic S, Doores KJ, Wormald MR, Palma AS, Feizi T, Harvey DJ, Dwek RA, Crispin M, Scanlan CN. Polysaccharide mimicry of the epitope of the broadly neutralizing anti-HIV antibody, 2G12, induces enhanced antibody responses to self oligomannose glycans. Glycobiology 2010; 20:812-23. [PMID: 20181792 DOI: 10.1093/glycob/cwq020] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Immunologically, "self" carbohydrates protect the HIV-1 surface glycoprotein, gp120, from antibody recognition. However, one broadly neutralizing antibody, 2G12, neutralizes primary viral isolates by direct recognition of Manalpha1-->2Man motifs formed by the host-derived oligomannose glycans of the viral envelope. Immunogens, capable of eliciting antibodies of similar specificity to 2G12, are therefore candidates for HIV/AIDS vaccine development. In this context, it is known that the yeast mannan polysaccharides exhibit significant antigenic mimicry with the glycans of HIV-1. Here, we report that modulation of yeast polysaccharide biosynthesis directly controls the molecular specificity of cross-reactive antibodies to self oligomannose glycans. Saccharomyces cerevisiae mannans are typically terminated by alpha1-->3-linked mannoses that cap a Manalpha1-->2Man motif that otherwise closely resembles the part of the oligomannose epitope recognized by 2G12. Immunization with S. cerevisiae deficient for the alpha1-->3 mannosyltransferase gene (DeltaMnn1), but not with wild-type S. cerevisiae, reproducibly elicited antibodies to the self oligomannose glycans. Carbohydrate microarray analysis of DeltaMnn1 immune sera revealed fine carbohydrate specificity to Manalpha1-->2Man units, closely matching that of 2G12. These specificities were further corroborated by enzyme-linked immunosorbent assay with chemically defined glycoforms of gp120. These antibodies exhibited remarkable similarity in the carbohydrate specificity to 2G12 and displayed statistically significant, albeit extremely weak, neutralization of HIV-1 compared to control immune sera. These data confirm the Manalpha1-->2Man motif as the primary carbohydrate neutralization determinant of HIV-1 and show that the genetic modulation of microbial polysaccharides is a route towards immunogens capable of eliciting antibody responses to the glycans of HIV-1.
Collapse
Affiliation(s)
- D Cameron Dunlop
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|