1
|
Banaś AM, Bocian-Ostrzycka KM, Jagusztyn-Krynicka EK. Engineering of the Dsb (disulfide bond) proteins - contribution towards understanding their mechanism of action and their applications in biotechnology and medicine. Crit Rev Microbiol 2019; 45:433-450. [PMID: 31190593 DOI: 10.1080/1040841x.2019.1622509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Dsb protein family in prokaryotes catalyzes the generation of disulfide bonds between thiol groups of cysteine residues in nascent proteins, ensuring their proper three-dimensional structure; these bonds are crucial for protein stability and function. The first Dsb protein, Escherichia coli DsbA, was described in 1991. Since then, many details of the bond-formation process have been described through microbiological, biochemical, biophysical and bioinformatics strategies. Research with the model microorganism E. coli and many other bacterial species revealed an enormous diversity of bond-formation mechanisms. Research using Dsb protein engineering has significantly helped to reveal details of the disulfide bond formation. The first part of this review presents the research that led to understanding the mechanism of action of DsbA proteins, which directly transfer their own disulfide into target proteins. The second part concentrates on the mechanism of electron transport through the cell cytoplasmic membrane. Third and lastly, the review discusses the contribution of this research towards new antibacterial agents.
Collapse
Affiliation(s)
- Anna Marta Banaś
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw , Miecznikowa 1 , Warsaw , Poland
| | - Katarzyna Marta Bocian-Ostrzycka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw , Miecznikowa 1 , Warsaw , Poland
| | | |
Collapse
|
2
|
Landeta C, Boyd D, Beckwith J. Disulfide bond formation in prokaryotes. Nat Microbiol 2018; 3:270-280. [PMID: 29463925 DOI: 10.1038/s41564-017-0106-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/21/2017] [Indexed: 12/25/2022]
Abstract
Interest in protein disulfide bond formation has recently increased because of the prominent role of disulfide bonds in bacterial virulence and survival. The first discovered pathway that introduces disulfide bonds into cell envelope proteins consists of Escherichia coli enzymes DsbA and DsbB. Since its discovery, variations on the DsbAB pathway have been found in bacteria and archaea, probably reflecting specific requirements for survival in their ecological niches. One variation found amongst Actinobacteria and Cyanobacteria is the replacement of DsbB by a homologue of human vitamin K epoxide reductase. Many Gram-positive bacteria express enzymes involved in disulfide bond formation that are similar, but non-homologous, to DsbAB. While bacterial pathways promote disulfide bond formation in the bacterial cell envelope, some archaeal extremophiles express proteins with disulfide bonds both in the cytoplasm and in the extra-cytoplasmic space, possibly to stabilize proteins in the face of extreme conditions, such as growth at high temperatures. Here, we summarize the diversity of disulfide-bond-catalysing systems across prokaryotic lineages, discuss examples for understanding the biological basis of such systems, and present perspectives on how such systems are enabling advances in biomedical engineering and drug development.
Collapse
Affiliation(s)
- Cristina Landeta
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Dana Boyd
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Jon Beckwith
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Bocian-Ostrzycka KM, Grzeszczuk MJ, Dziewit L, Jagusztyn-Krynicka EK. Diversity of the Epsilonproteobacteria Dsb (disulfide bond) systems. Front Microbiol 2015; 6:570. [PMID: 26106374 PMCID: PMC4460558 DOI: 10.3389/fmicb.2015.00570] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/24/2015] [Indexed: 12/20/2022] Open
Abstract
The bacterial proteins of the Dsb family-important components of the post-translational protein modification system-catalyze the formation of disulfide bridges, a process that is crucial for protein structure stabilization and activity. Dsb systems play an essential role in the assembly of many virulence factors. Recent rapid advances in global analysis of bacteria have thrown light on the enormous diversity among bacterial Dsb systems. While the Escherichia coli disulfide bond-forming system is quite well understood, the mechanisms of action of Dsb systems in other bacteria, including members of class Epsilonproteobacteria that contain pathogenic and non-pathogenic bacteria colonizing extremely diverse ecological niches, are poorly characterized. Here we present a review of current knowledge on Epsilonproteobacteria Dsb systems. We have focused on the Dsb systems of Campylobacter spp. and Helicobacter spp. because our knowledge about Dsb proteins of Wolinella and Arcobacter spp. is still scarce and comes mainly from bioinformatic studies. Helicobacter pylori is a common human pathogen that colonizes the gastric epithelium of humans with severe consequences. Campylobacter spp. is a leading cause of zoonotic enteric bacterial infections in most developed and developing nations. We focus on various aspects of the diversity of the Dsb systems and their influence on pathogenicity, particularly because Dsb proteins are considered as potential targets for a new class of anti-virulence drugs to treat human infections by Campylobacter or Helicobacter spp.
Collapse
|
4
|
Lee J, Monzingo AF, Keatinge-Clay AT, Harshey RM. Structure of Salmonella FlhE, conserved member of a flagellar type III secretion operon. J Mol Biol 2014; 427:1254-1262. [PMID: 25545591 DOI: 10.1016/j.jmb.2014.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 01/01/2023]
Abstract
The bacterial flagellum is assembled by a multicomponent transport apparatus categorized as a type III secretion system. The secretion of proteins that assemble into the flagellum is driven by the proton motive force. The periplasmic protein FlhE is a member of the flhBAE operon in the majority of bacteria where FlhE is found. FlhA and FlhB are established components of the flagellar type III secretion system. The absence of FlhE results in a proton leak through the flagellar system, inappropriate secretion patterns, and cell death, indicating that FlhE regulates an important aspect of proper flagellar biosynthesis. We isolated FlhE from the periplasm of Salmonella and solved its structure to 1.5Å resolution. The structure reveals a β-sandwich fold, with no close structural homologs. Possible roles of FlhE, including that of a chaperone, are discussed.
Collapse
Affiliation(s)
- Jaemin Lee
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Arthur F Monzingo
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Adrian T Keatinge-Clay
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Rasika M Harshey
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
5
|
Premkumar L, Kurth F, Neyer S, Schembri MA, Martin JL. The multidrug resistance IncA/C transferable plasmid encodes a novel domain-swapped dimeric protein-disulfide isomerase. J Biol Chem 2013; 289:2563-76. [PMID: 24311786 DOI: 10.1074/jbc.m113.516898] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multidrug resistance-encoding IncA/C conjugative plasmids disseminate antibiotic resistance genes among clinically relevant enteric bacteria. A plasmid-encoded disulfide isomerase is associated with conjugation. Sequence analysis of several IncA/C plasmids and IncA/C-related integrative and conjugative elements (ICE) from commensal and pathogenic bacteria identified a conserved DsbC/DsbG homolog (DsbP). The crystal structure of DsbP reveals an N-terminal domain, a linker region, and a C-terminal catalytic domain. A DsbP homodimer is formed through domain swapping of two DsbP N-terminal domains. The catalytic domain incorporates a thioredoxin-fold with characteristic CXXC and cis-Pro motifs. Overall, the structure and redox properties of DsbP diverge from the Escherichia coli DsbC and DsbG disulfide isomerases. Specifically, the V-shaped dimer of DsbP is inverted compared with EcDsbC and EcDsbG. In addition, the redox potential of DsbP (-161 mV) is more reducing than EcDsbC (-130 mV) and EcDsbG (-126 mV). Other catalytic properties of DsbP more closely resemble those of EcDsbG than EcDsbC. These catalytic differences are in part a consequence of the unusual active site motif of DsbP (CAVC); substitution to the EcDsbC-like (CGYC) motif converts the catalytic properties to those of EcDsbC. Structural comparison of the 12 independent subunit structures of DsbP that we determined revealed that conformational changes in the linker region contribute to mobility of the catalytic domain, providing mechanistic insight into DsbP function. In summary, our data reveal that the conserved plasmid-encoded DsbP protein is a bona fide disulfide isomerase and suggest that a dedicated oxidative folding enzyme is important for conjugative plasmid transfer.
Collapse
Affiliation(s)
- Lakshmanane Premkumar
- From the Institute for Molecular Bioscience, Division of Chemistry and Structural Biology and
| | | | | | | | | |
Collapse
|
6
|
Santos CA, Toledo MAS, Trivella DBB, Beloti LL, Schneider DRS, Saraiva AM, Crucello A, Azzoni AR, Souza AA, Aparicio R, Souza AP. Functional and structural studies of the disulfide isomerase DsbC from the plant pathogenXylella fastidiosareveals a redox-dependent oligomeric modulationin vitro. FEBS J 2012; 279:3828-43. [DOI: 10.1111/j.1742-4658.2012.08743.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/01/2012] [Accepted: 08/06/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Clelton A. Santos
- Centro de Biologia Molecular e Engenharia Genética; Universidade Estadual de Campinas; Brazil
| | - Marcelo A. S. Toledo
- Centro de Biologia Molecular e Engenharia Genética; Universidade Estadual de Campinas; Brazil
| | - Daniela B. B. Trivella
- Laboratório de Biologia Estrutural e Cristalografia; Instituto de Química; Universidade Estadual de Campinas; Brazil
| | - Lilian L. Beloti
- Centro de Biologia Molecular e Engenharia Genética; Universidade Estadual de Campinas; Brazil
| | - Dilaine R. S. Schneider
- Centro de Biologia Molecular e Engenharia Genética; Universidade Estadual de Campinas; Brazil
| | - Antonio M. Saraiva
- Centro de Biologia Molecular e Engenharia Genética; Universidade Estadual de Campinas; Brazil
| | - Aline Crucello
- Centro de Biologia Molecular e Engenharia Genética; Universidade Estadual de Campinas; Brazil
| | | | | | - Ricardo Aparicio
- Laboratório de Biologia Estrutural e Cristalografia; Instituto de Química; Universidade Estadual de Campinas; Brazil
| | | |
Collapse
|
7
|
Abstract
The identification of protein disulfide isomerase, almost 50 years ago, opened the way to the study of oxidative protein folding. Oxidative protein folding refers to the composite process by which a protein recovers both its native structure and its native disulfide bonds. Pathways that form disulfide bonds have now been unraveled in the bacterial periplasm (disulfide bond protein A [DsbA], DsbB, DsbC, DsbG, and DsbD), the endoplasmic reticulum (protein disulfide isomerase and Ero1), and the mitochondrial intermembrane space (Mia40 and Erv1). This review summarizes the current knowledge on disulfide bond formation in both prokaryotes and eukaryotes and highlights the major problems that remain to be solved.
Collapse
Affiliation(s)
- Matthieu Depuydt
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
8
|
Shouldice SR, Heras B, Walden PM, Totsika M, Schembri MA, Martin JL. Structure and function of DsbA, a key bacterial oxidative folding catalyst. Antioxid Redox Signal 2011; 14:1729-60. [PMID: 21241169 DOI: 10.1089/ars.2010.3344] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Since its discovery in 1991, the bacterial periplasmic oxidative folding catalyst DsbA has been the focus of intense research. Early studies addressed why it is so oxidizing and how it is maintained in its less stable oxidized state. The crystal structure of Escherichia coli DsbA (EcDsbA) revealed that the oxidizing periplasmic enzyme is a distant evolutionary cousin of the reducing cytoplasmic enzyme thioredoxin. Recent significant developments have deepened our understanding of DsbA function, mechanism, and interactions: the structure of the partner membrane protein EcDsbB, including its complex with EcDsbA, proved a landmark in the field. Studies of DsbA machineries from bacteria other than E. coli K-12 have highlighted dramatic differences from the model organism, including a striking divergence in redox parameters and surface features. Several DsbA structures have provided the first clues to its interaction with substrates, and finally, evidence for a central role of DsbA in bacterial virulence has been demonstrated in a range of organisms. Here, we review current knowledge on DsbA, a bacterial periplasmic protein that introduces disulfide bonds into diverse substrate proteins and which may one day be the target of a new class of anti-virulence drugs to treat bacterial infection.
Collapse
Affiliation(s)
- Stephen R Shouldice
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
9
|
Mogk A, Huber D, Bukau B. Integrating protein homeostasis strategies in prokaryotes. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004366. [PMID: 21441580 DOI: 10.1101/cshperspect.a004366] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacterial cells are frequently exposed to dramatic fluctuations in their environment, which cause perturbation in protein homeostasis and lead to protein misfolding. Bacteria have therefore evolved powerful quality control networks consisting of chaperones and proteases that cooperate to monitor the folding states of proteins and to remove misfolded conformers through either refolding or degradation. The levels of the quality control components are adjusted to the folding state of the cellular proteome through the induction of compartment specific stress responses. In addition, the activities of several quality control components are directly controlled by these stresses, allowing for fast activation. Severe stress can, however, overcome the protective function of the proteostasis network leading to the formation of protein aggregates, which are sequestered at the cell poles. Protein aggregates are either solubilized by AAA+ chaperones or eliminated through cell division, allowing for the generation of damage-free daughter cells.
Collapse
Affiliation(s)
- Axel Mogk
- Zentrum für Molekulare Biologie Heidelberg, DKFZ-ZMBH Alliance, Universität Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
10
|
Kadokura H, Beckwith J. Mechanisms of oxidative protein folding in the bacterial cell envelope. Antioxid Redox Signal 2010; 13:1231-46. [PMID: 20367276 PMCID: PMC2959184 DOI: 10.1089/ars.2010.3187] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Disulfide-bond formation is important for the correct folding of a great number of proteins that are exported to the cell envelope of bacteria. Bacterial cells have evolved elaborate systems to promote the joining of two cysteines to form a disulfide bond and to repair misoxidized proteins. In the past two decades, significant advances have occurred in our understanding of the enzyme systems (DsbA, DsbB, DsbC, DsbG, and DsbD) used by the gram-negative bacterium Escherichia coli to ensure that correct pairs of cysteines are joined during the process of protein folding. However, a number of fundamental questions about these processes remain, especially about how they occur inside the cell. In addition, recent recognition of the increasing diversity among bacteria in the disulfide bond-forming capacity and in the systems for introducing disulfide bonds into proteins is raising new questions. We review here the marked progress in this field and discuss important questions that remain for future studies.
Collapse
Affiliation(s)
- Hiroshi Kadokura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan.
| | | |
Collapse
|