1
|
Stewart NK, Toth M, Quan P, Buynak JD, Smith CA, Vakulenko SB. Restricted Rotational Flexibility of the C5α-Methyl-Substituted Carbapenem NA-1-157 Leads to Potent Inhibition of the GES-5 Carbapenemase. ACS Infect Dis 2024; 10:1232-1249. [PMID: 38511828 PMCID: PMC11160566 DOI: 10.1021/acsinfecdis.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Carbapenem antibiotics are used as a last-resort treatment for infections caused by multidrug-resistant bacteria. The wide spread of carbapenemases in Gram-negative bacteria has severely compromised the utility of these drugs and represents a serious public health threat. To combat carbapenemase-mediated resistance, new antimicrobials and inhibitors of these enzymes are urgently needed. Here, we describe the interaction of the atypically C5α-methyl-substituted carbapenem, NA-1-157, with the GES-5 carbapenemase. MICs of this compound against Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii producing the enzyme were reduced 4-16-fold when compared to MICs of the commercial carbapenems, reaching clinically sensitive breakpoints. When NA-1-157 was combined with meropenem, a strong synergistic effect was observed. Kinetic and ESI-LC/MS studies demonstrated that NA-1-157 is a potent inhibitor of GES-5, with a high inactivation efficiency of (2.9 ± 0.9) × 105 M-1 s-1. Acylation of GES-5 by NA-1-157 was biphasic, with the fast phase completing within seconds, and the slow phase taking several hours and likely proceeding through a reversible tetrahedral intermediate. Deacylation was extremely slow (k3 = (2.4 ± 0.3) × 10-7 s-1), resulting in a residence time of 48 ± 6 days. MD simulation of the GES-5-meropenem and GES-5-NA-1-157 acyl-enzyme complexes revealed that the C5α-methyl group in NA-1-157 sterically restricts rotation of the 6α-hydroxyethyl group preventing ingress of the deacylating water into the vicinity of the scissile bond of the acyl-enzyme intermediate. These data demonstrate that NA-1-157 is a potent irreversible inhibitor of the GES-5 carbapenemase.
Collapse
Affiliation(s)
- Nichole K. Stewart
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Marta Toth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Pojun Quan
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275, USA
| | - John D. Buynak
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275, USA
| | - Clyde A. Smith
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, CA 94025, USA
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Sergei B. Vakulenko
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
2
|
Giovagnorio F, De Vito A, Madeddu G, Parisi SG, Geremia N. Resistance in Pseudomonas aeruginosa: A Narrative Review of Antibiogram Interpretation and Emerging Treatments. Antibiotics (Basel) 2023; 12:1621. [PMID: 37998823 PMCID: PMC10669487 DOI: 10.3390/antibiotics12111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous Gram-negative bacterium renowned for its resilience and adaptability across diverse environments, including clinical settings, where it emerges as a formidable pathogen. Notorious for causing nosocomial infections, P. aeruginosa presents a significant challenge due to its intrinsic and acquired resistance mechanisms. This comprehensive review aims to delve into the intricate resistance mechanisms employed by P. aeruginosa and to discern how these mechanisms can be inferred by analyzing sensitivity patterns displayed in antibiograms, emphasizing the complexities encountered in clinical management. Traditional monotherapies are increasingly overshadowed by the emergence of multidrug-resistant strains, necessitating a paradigm shift towards innovative combination therapies and the exploration of novel antibiotics. The review accentuates the critical role of accurate antibiogram interpretation in guiding judicious antibiotic use, optimizing therapeutic outcomes, and mitigating the propagation of antibiotic resistance. Misinterpretations, it cautions, can inadvertently foster resistance, jeopardizing patient health and amplifying global antibiotic resistance challenges. This paper advocates for enhanced clinician proficiency in interpreting antibiograms, facilitating informed and strategic antibiotic deployment, thereby improving patient prognosis and contributing to global antibiotic stewardship efforts.
Collapse
Affiliation(s)
- Federico Giovagnorio
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (F.G.); (S.G.P.)
| | - Andrea De Vito
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy;
| | - Giordano Madeddu
- Unit of Infectious Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy;
| | | | - Nicholas Geremia
- Unit of Infectious Diseases, Department of Clinical Medicine, Ospedale “dell’Angelo”, 30174 Venice, Italy
- Unit of Infectious Diseases, Department of Clinical Medicine, Ospedale Civile “S.S. Giovanni e Paolo”, 30122 Venice, Italy
| |
Collapse
|
3
|
Peykov S, Strateva T. Whole-Genome Sequencing-Based Resistome Analysis of Nosocomial Multidrug-Resistant Non-Fermenting Gram-Negative Pathogens from the Balkans. Microorganisms 2023; 11:microorganisms11030651. [PMID: 36985224 PMCID: PMC10051916 DOI: 10.3390/microorganisms11030651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Non-fermenting Gram-negative bacilli (NFGNB), such as Pseudomonas aeruginosa and Acinetobacter baumannii, are among the major opportunistic pathogens involved in the global antibiotic resistance epidemic. They are designated as urgent/serious threats by the Centers for Disease Control and Prevention and are part of the World Health Organization’s list of critical priority pathogens. Also, Stenotrophomonas maltophilia is increasingly recognized as an emerging cause for healthcare-associated infections in intensive care units, life-threatening diseases in immunocompromised patients, and severe pulmonary infections in cystic fibrosis and COVID-19 individuals. The last annual report of the ECDC showed drastic differences in the proportions of NFGNB with resistance towards key antibiotics in different European Union/European Economic Area countries. The data for the Balkans are of particular concern, indicating more than 80% and 30% of invasive Acinetobacter spp. and P. aeruginosa isolates, respectively, to be carbapenem-resistant. Moreover, multidrug-resistant and extensively drug-resistant S. maltophilia from the region have been recently reported. The current situation in the Balkans includes a migrant crisis and reshaping of the Schengen Area border. This results in collision of diverse human populations subjected to different protocols for antimicrobial stewardship and infection control. The present review article summarizes the findings of whole-genome sequencing-based resistome analyses of nosocomial multidrug-resistant NFGNBs in the Balkan countries.
Collapse
Affiliation(s)
- Slavil Peykov
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8, Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, 2, Zdrave Str., 1431 Sofia, Bulgaria
- BioInfoTech Laboratory, Sofia Tech Park, 111, Tsarigradsko Shosse Blvd., 1784 Sofia, Bulgaria
- Correspondence: (S.P.); (T.S.); Tel.: +359-87-6454492 (S.P.); +359-2-9172750 (T.S.)
| | - Tanya Strateva
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, 2, Zdrave Str., 1431 Sofia, Bulgaria
- Correspondence: (S.P.); (T.S.); Tel.: +359-87-6454492 (S.P.); +359-2-9172750 (T.S.)
| |
Collapse
|
4
|
Agarwal V, Yadav TC, Tiwari A, Varadwaj P. Detailed investigation of catalytically important residues of class A β-lactamase. J Biomol Struct Dyn 2023; 41:2046-2073. [PMID: 34986744 DOI: 10.1080/07391102.2021.2023645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An increasing global health challenge is antimicrobial resistance. Bacterial infections are often treated by using β-lactam antibiotics. But several resistance mechanisms have evolved in clinically mutated bacteria, which results in resistance against such antibiotics. Among which production of novel β-lactamase is the major one. This results in bacterial resistance against penicillin, cephalosporin, and carbapenems, which are considered to be the last resort of antibacterial treatment. Hence, β-lactamase enzymes produced by such bacteria are called extended-spectrum β-lactamase and carbapenemase enzymes. Further, these bacteria have developed resistance against many β-lactamase inhibitors as well. So, investigation of important residues that play an important role in altering and expanding the spectrum activity of these β-lactamase enzymes becomes necessary. This review aims to gather knowledge about the role of residues and their mutations in class A β-lactamase, which could be responsible for β-lactamase mediated resistance. Class A β-lactamase enzymes contain most of the clinically significant and expanded spectrum of β-lactamase enzymes. Ser70, Lys73, Ser130, Glu166, and Asn170 residues are mostly conserved and have a role in the enzyme's catalytic activity. In-depth investigation of 69, 130, 131, 132, 164, 165, 166, 170, 171, 173, 176, 178, 179, 182, 237, 244, 275 and 276 residues were done along with its kinetic analysis for knowing its significance. Further, detailed information from many previous studies was gathered to know the effect of mutations on the kinetic activity of class A β-lactamase enzymes with β-lactam antibiotics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vidhu Agarwal
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, Jhalwa, Uttar Pradesh, India
| | - Tara Chand Yadav
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Akhilesh Tiwari
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, Jhalwa, Uttar Pradesh, India
| | - Pritish Varadwaj
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, Jhalwa, Uttar Pradesh, India
| |
Collapse
|
5
|
C6 Hydroxymethyl-Substituted Carbapenem MA-1-206 Inhibits the Major Acinetobacter baumannii Carbapenemase OXA-23 by Impeding Deacylation. mBio 2022; 13:e0036722. [PMID: 35420470 PMCID: PMC9239083 DOI: 10.1128/mbio.00367-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Acinetobacter baumannii has become a major nosocomial pathogen, as it is often multidrug-resistant, which results in infections characterized by high mortality rates. The bacterium achieves high levels of resistance to β-lactam antibiotics by producing β-lactamases, enzymes which destroy these valuable agents. Historically, the carbapenem family of β-lactam antibiotics have been the drugs of choice for treating A. baumannii infections. However, their effectiveness has been significantly diminished due to the pathogen’s production of carbapenem-hydrolyzing class D β-lactamases (CHDLs); thus, new antibiotics and inhibitors of these enzymes are urgently needed. Here, we describe a new carbapenem antibiotic, MA-1-206, in which the canonical C6 hydroxyethyl group has been replaced with hydroxymethyl. The antimicrobial susceptibility studies presented here demonstrated that this compound is more potent than meropenem and imipenem against A. baumannii producing OXA-23, the most prevalent CHDL of this pathogen, and also against strains producing the CHDL OXA-24/40 and the class B metallo-β-lactamase VIM-2. Our kinetic and mass spectrometry studies revealed that this drug is a reversible inhibitor of OXA-23, where inhibition takes place through a branched pathway. X-ray crystallographic studies, molecular docking, and molecular dynamics simulations of the OXA-23-MA-1-206 complex show that the C6 hydroxymethyl group forms a hydrogen bond with the carboxylated catalytic lysine of OXA-23, effectively preventing deacylation. These results provide a promising strategy for designing a new generation of CHDL-resistant carbapenems to restore their efficacy against deadly A. baumannii infections.
Collapse
|
6
|
Medina FE, Jaña GA. QM/MM Study of a VIM-1 Metallo-β-Lactamase Enzyme: The Catalytic Reaction Mechanism. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fabiola E. Medina
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, 7100 Talcahuano, Chile
- Departamento de Química, Facultad de Ciencias, Universidad del Bío-Bío, 4051381 Concepción, Chile
| | - Gonzalo A. Jaña
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, 7100 Talcahuano, Chile
| |
Collapse
|
7
|
In Vivo Evolution of GES β-Lactamases Driven by Ceftazidime/Avibactam Treatment of Pseudomonas aeruginosa Infections. Antimicrob Agents Chemother 2021; 65:e0098621. [PMID: 34125593 DOI: 10.1128/aac.00986-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms underlying an in vivo switch in the resistance phenotype of P. aeruginosa after ceftazidime-avibactam treatment was investigated. The initial isolate (a blood culture) was resistant to meropenem but remained susceptible to antipseudomonal cephalosporins and combinations with β-lactamase inhibitors. One week after ceftazidime-avibactam therapy, a subsequent isolate (a rectal swab) recovered from the same patient showed the opposite phenotype. Whole-genome sequence analysis revealed a single SNP difference between both (ST235) isolates, leading to a P162S change in blaGES-5, creating blaGES-15. Thus, blaGES-1, blaGES-5, and blaGES-15 were cloned and expressed in the wild-type strain PAO1. Susceptibility profiles confirmed the P162S substitution reverted the carbapenemase phenotype determined by the G170S change of GES-5 back into the ESBL phenotype of GES-1.
Collapse
|
8
|
Akeda Y. Current situation of carbapenem-resistant Enterobacteriaceae and Acinetobacter in Japan and Southeast Asia. Microbiol Immunol 2021; 65:229-237. [PMID: 33913535 DOI: 10.1111/1348-0421.12887] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/18/2021] [Accepted: 04/21/2021] [Indexed: 11/30/2022]
Abstract
In the recent years, issues related to drug-resistant bacteria have evolved worldwide, and various countermeasures have been taken to control their spread. Among a wide variety of drug-resistant bacterial species, carbapenem-resistant Gram-negative bacteria, including carbapenem-resistant Enterobacteriaceae (CRE) and carbapenem-resistant Acinetobacter baumannii (CRAb), are those for which countermeasures are particularly important. Carbapenems are the last resort antibiotics for any bacterial infection; therefore, infectious diseases caused by these drug-resistant bacteria are difficult to treat. In the case of CRE, since carbapenemases responsible for carbapenem resistance are mostly encoded on transmissible plasmids, it is known that susceptible bacteria can easily become carbapenem-resistant by transfer of plasmids between Enterobacteriaceae. In addition, Enterobacteriaceae are common bacterial species found in the guts of animals, including humans. Acinetobacter is ubiquitously isolated in the environment. Due to these characteristics, it is quite difficult to prevent the intrusion of multi-drug resistant pathogens in hospitals. Therefore, effective countermeasures should be developed and utilized against such dangerous pathogens based on molecular epidemiological analyses. In this review, there are also some examples presented on how to manage to monitor and control those troublesome drug-resistant bacteria conducted in Japan and Southeast Asia.
Collapse
Affiliation(s)
- Yukihiro Akeda
- Division of Infection Control and Prevention, Osaka University Hospital, Osaka University, Osaka, Japan.,Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Osaka, Japan.,Japan-Thailand Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
9
|
Yoon EJ, Jeong SH. Mobile Carbapenemase Genes in Pseudomonas aeruginosa. Front Microbiol 2021; 12:614058. [PMID: 33679638 PMCID: PMC7930500 DOI: 10.3389/fmicb.2021.614058] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa is one of the major concerns in clinical settings impelling a great challenge to antimicrobial therapy for patients with infections caused by the pathogen. While membrane permeability, together with derepression of the intrinsic beta-lactamase gene, is the global prevailing mechanism of carbapenem resistance in P. aeruginosa, the acquired genes for carbapenemases need special attention because horizontal gene transfer through mobile genetic elements, such as integrons, transposons, plasmids, and integrative and conjugative elements, could accelerate the dissemination of the carbapenem-resistant P. aeruginosa. This review aimed to illustrate epidemiologically the carbapenem resistance in P. aeruginosa, including the resistance rates worldwide and the carbapenemase-encoding genes along with the mobile genetic elements responsible for the horizontal dissemination of the drug resistance determinants. Moreover, the modular mobile elements including the carbapenemase-encoding gene, also known as the P. aeruginosa resistance islands, are scrutinized mostly for their structures.
Collapse
Affiliation(s)
- Eun-Jeong Yoon
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
10
|
Stojanoski V, Hu L, Sankaran B, Wang F, Tao P, Prasad BVV, Palzkill T. Mechanistic Basis of OXA-48-like β-Lactamases' Hydrolysis of Carbapenems. ACS Infect Dis 2021; 7:445-460. [PMID: 33492952 DOI: 10.1021/acsinfecdis.0c00798] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Carbapenem-hydrolyzing class D β-lactamases (CHDLs) are an important source of resistance to these last resort β-lactam antibiotics. OXA-48 is a member of a group of CHDLs named OXA-48-like enzymes. On the basis of sequence similarity, OXA-163 can be classified as an OXA-48-like enzyme, but it has altered substrate specificity. Compared to OXA-48, it shows impaired activity for carbapenems but displays an enhanced hydrolysis of oxyimino-cephalosporins. Here, we address the mechanistic and structural basis for carbapenem hydrolysis by OXA-48-like enzymes. Pre-steady-state kinetic analysis indicates that the rate-limiting step for OXA-48 and OXA-163 hydrolysis of carbapenems is deacylation and that the greatly reduced carbapenemase activity of OXA-163 compared to that of OXA-48 is due entirely to a slower deacylation reaction. Furthermore, our structural data indicate that the positioning of the β5-β6 loop is necessary for carbapenem hydrolysis by OXA-48. A major difference between the OXA-48 and OXA-163 complexes with carbapenems is that the 214-RIEP-217 deletion in OXA-163 creates a large opening in the active site that is absent in the OXA-48/carbapenem structures. We propose that the larger active site results in less constraint on the conformation of the 6α-hydroxyethyl group in the acyl-enzyme. The acyl-enzyme intermediate assumes multiple conformations, most of which are incompatible with rapid deacylation. Consistent with this hypothesis, molecular dynamics simulations indicate that the most stable complex is formed between OXA-48 and imipenem, which correlates with the OXA-48 hydrolysis of imipenem being the fastest observed. Furthermore, the OXA-163 complexes with imipenem and meropenem are the least stable and show significant conformational fluctuations, which correlates with the slow hydrolysis of these substrates.
Collapse
Affiliation(s)
| | | | - Banumathi Sankaran
- Department of Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States,
| | - Feng Wang
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | | | | |
Collapse
|
11
|
Mehta SC, Furey IM, Pemberton OA, Boragine DM, Chen Y, Palzkill T. KPC-2 β-lactamase enables carbapenem antibiotic resistance through fast deacylation of the covalent intermediate. J Biol Chem 2021; 296:100155. [PMID: 33273017 PMCID: PMC7895804 DOI: 10.1074/jbc.ra120.015050] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 01/23/2023] Open
Abstract
Serine active-site β-lactamases hydrolyze β-lactam antibiotics through the formation of a covalent acyl-enzyme intermediate followed by deacylation via an activated water molecule. Carbapenem antibiotics are poorly hydrolyzed by most β-lactamases owing to slow hydrolysis of the acyl-enzyme intermediate. However, the emergence of the KPC-2 carbapenemase has resulted in widespread resistance to these drugs, suggesting it operates more efficiently. Here, we investigated the unusual features of KPC-2 that enable this resistance. We show that KPC-2 has a 20,000-fold increased deacylation rate compared with the common TEM-1 β-lactamase. Furthermore, kinetic analysis of active site alanine mutants indicates that carbapenem hydrolysis is a concerted effort involving multiple residues. Substitution of Asn170 greatly decreases the deacylation rate, but this residue is conserved in both KPC-2 and non-carbapenemase β-lactamases, suggesting it promotes carbapenem hydrolysis only in the context of KPC-2. X-ray structure determination of the N170A enzyme in complex with hydrolyzed imipenem suggests Asn170 may prevent the inactivation of the deacylating water by the 6α-hydroxyethyl substituent of carbapenems. In addition, the Thr235 residue, which interacts with the C3 carboxylate of carbapenems, also contributes strongly to the deacylation reaction. In contrast, mutation of the Arg220 and Thr237 residues decreases the acylation rate and, paradoxically, improves binding affinity for carbapenems. Thus, the role of these residues may be ground state destabilization of the enzyme-substrate complex or, alternatively, to ensure proper alignment of the substrate with key catalytic residues to facilitate acylation. These findings suggest modifications of the carbapenem scaffold to avoid hydrolysis by KPC-2 β-lactamase.
Collapse
Affiliation(s)
- Shrenik C Mehta
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ian M Furey
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Orville A Pemberton
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - David M Boragine
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
12
|
Soeung V, Lu S, Hu L, Judge A, Sankaran B, Prasad BVV, Palzkill T. A drug-resistant β-lactamase variant changes the conformation of its active-site proton shuttle to alter substrate specificity and inhibitor potency. J Biol Chem 2020; 295:18239-18255. [PMID: 33109613 DOI: 10.1074/jbc.ra120.016103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/22/2020] [Indexed: 11/06/2022] Open
Abstract
Lys234 is one of the residues present in class A β-lactamases that is under selective pressure due to antibiotic use. Located adjacent to proton shuttle residue Ser130, it is suggested to play a role in proton transfer during catalysis of the antibiotics. The mechanism underpinning how substitutions in this position modulate inhibitor efficiency and substrate specificity leading to drug resistance is unclear. The K234R substitution identified in several inhibitor-resistant β-lactamase variants is associated with decreased potency of the inhibitor clavulanic acid, which is used in combination with amoxicillin to overcome β-lactamase-mediated antibiotic resistance. Here we show that for CTX-M-14 β-lactamase, whereas Lys234 is required for hydrolysis of cephalosporins such as cefotaxime, either lysine or arginine is sufficient for hydrolysis of ampicillin. Further, by determining the acylation and deacylation rates for cefotaxime hydrolysis, we show that both rates are fast, and neither is rate-limiting. The K234R substitution causes a 1500-fold decrease in the cefotaxime acylation rate but a 5-fold increase in kcat for ampicillin, suggesting that the K234R enzyme is a good penicillinase but a poor cephalosporinase due to slow acylation. Structural results suggest that the slow acylation by the K234R enzyme is due to a conformational change in Ser130, and this change also leads to decreased inhibition potency of clavulanic acid. Because other inhibitor resistance mutations also act through changes at Ser130 and such changes drastically reduce cephalosporin but not penicillin hydrolysis, we suggest that clavulanic acid paired with an oxyimino-cephalosporin rather than penicillin would impede the evolution of resistance.
Collapse
Affiliation(s)
- Victoria Soeung
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Shuo Lu
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Liya Hu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Allison Judge
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Banumathi Sankaran
- Department of Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - B V Venkataram Prasad
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
13
|
Stewart NK, Bhattacharya M, Toth M, Smith CA, Vakulenko SB. A surface loop modulates activity of the Bacillus class D β-lactamases. J Struct Biol 2020; 211:107544. [PMID: 32512156 DOI: 10.1016/j.jsb.2020.107544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 12/23/2022]
Abstract
The expression of β-lactamases is a major mechanism of bacterial resistance to the β-lactam antibiotics. Four molecular classes of β-lactamases have been described (A, B, C and D), however until recently the class D enzymes were thought to exist only in Gram-negative bacteria. In the last few years, class D enzymes have been discovered in several species of Gram-positive microorganisms, such as Bacillus and Clostridia, and an investigation of their kinetic and structural properties has begun in earnest. Interestingly, it was observed that some species of Bacillus produce two distinct class D β-lactamases, one highly active and the other with only basal catalytic activity. Analysis of amino acid sequences of active (BPU-1 from Bacillus pumilus) and inactive (BSU-2 from Bacillus subtilis and BAT-2 from Bacillus atrophaeus) enzymes suggests that presence of three additional amino acid residues in one of the surface loops of inefficient β-lactamases may be responsible for their severely diminished activity. Our structural and docking studies show that the elongated loop of these enzymes severely restricts binding of substrates. Deletion of the three residues from the loops of BSU-2 and BAT-2 β-lactamases relieves the steric hindrance and results in a significant increase in the catalytic activity of the enzymes. These data show that this surface loop plays an important role in modulation of the catalytic activity of Bacillus class D β-lactamases.
Collapse
Affiliation(s)
- Nichole K Stewart
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | | | - Marta Toth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Clyde A Smith
- Department of Chemistry, Stanford University, Stanford, CA, USA; Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, CA, USA.
| | - Sergei B Vakulenko
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
14
|
Evaluation of the EDTA-Modified Carbapenem Inactivation Method for Detecting Metallo-β-Lactamase-Producing Pseudomonas aeruginosa. J Clin Microbiol 2020; 58:JCM.02015-19. [PMID: 32238433 DOI: 10.1128/jcm.02015-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
The prevalence of carbapenem-resistant Pseudomonas aeruginosa is increasing. Identification of carbapenemase-producing P. aeruginosa will have therapeutic, epidemiological, and infection control implications. This study evaluated the performance of the EDTA-modified carbapenem inactivation method (eCIM) in tandem with the modified carbapenem inactivation method (mCIM) against a large collection of clinical P. aeruginosa isolates (n = 103) to provide clinicians a phenotypic test that not only identifies carbapenemase production but also distinguishes between metallo-β-lactamase and serine-carbapenemase production in P. aeruginosa The mCIM test was performed according to Clinical and Laboratory Standards Institute guidelines, while the eCIM was conducted as previously described for Enterobacteriaceae Test performance was compared to the genotypic profile as the reference. mCIM testing successfully categorized 91% (112/123) of P. aeruginosa isolates as carbapenemases or non-carbapenemase producers, with discordant isolates being primarily Guiana extended-spectrum (GES)-type producers. To increase the sensitivity of the mCIM for GES-harboring isolates, a double inoculum, prolonged incubation, or both was evaluated, with each modification improving sensitivity to 100% (12/12). Upon eCIM testing, all Verona integrin-encoded metallo-β-lactamases (VIM; n = 27) and New Delhi metallo-β-lactamases (NDM; n = 13) tested had 100% concordance to their genotypic profiles, whereas all Klebsiella pneumoniae carbapenemase (KPC; n = 8) and GES (n = 12) isolates tested negative, as expected, in the presence of EDTA. The eCIM failed to identify all imipenemase (IMP)-producing (n = 22) and Sao Paulo metallo-β-lactamase (SPM)-producing (n = 14) isolates. KPC-, VIM-, and NDM-producing P. aeruginosa were well defined by the conventional mCIM and eCIM testing methods; additional modifications appear required to differentiate GES-, IMP-, and SPM-producing isolates.
Collapse
|
15
|
Abstract
Resistance to β-lactam antibiotics in Gram-negative bacteria is commonly associated with production of β-lactamases, including extended-spectrum β-lactamases (ESBLs) and carbapenemases belonging to different molecular classes: those with a catalytically active serine and those with at least one active-site Zn2+ to facilitate hydrolysis. To counteract the hydrolytic activity of these enzymes, combinations of a β-lactam with a β-lactamase inhibitor (BLI) have been clinically successful. However, some β-lactam-BLI combinations have lost their effectiveness against prevalent Gram-negative pathogens that produce ESBLs, carbapenemases or multiple β-lactamases in the same organism. In this Review, descriptions are provided for medically relevant β-lactamase families and various BLI combinations that have been developed or are under development. Recently approved inhibitor combinations include the inhibitors avibactam and vaborbactam of the diazabicyclooctanone and boronic acid inhibitor classes, respectively, as new scaffolds for future inhibitor design.
Collapse
|
16
|
Torelli NJ, Akhtar A, DeFrees K, Jaishankar P, Pemberton OA, Zhang X, Johnson C, Renslo AR, Chen Y. Active-Site Druggability of Carbapenemases and Broad-Spectrum Inhibitor Discovery. ACS Infect Dis 2019; 5:1013-1021. [PMID: 30942078 DOI: 10.1021/acsinfecdis.9b00052] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Serine and metallo-carbapenemases are a serious health concern due to their capability to hydrolyze nearly all β-lactam antibiotics. However, the molecular basis for their unique broad-spectrum substrate profile is poorly understood, particularly for serine carbapenemases, such as KPC-2. Using substrates and newly identified small molecules, we compared the ligand binding properties of KPC-2 with the noncarbapenemase CTX-M-14, both of which are Class A β-lactamases with highly similar active sites. Notably, compared to CTX-M-14, KPC-2 was more potently inhibited by hydrolyzed β-lactam products (product inhibition), as well as by a series of novel tetrazole-based inhibitors selected from molecular docking against CTX-M-14. Together with complex crystal structures, these data suggest that the KPC-2 active site has an enhanced ability to form favorable interactions with substrates and small molecule ligands due to its increased hydrophobicity and flexibility. Such properties are even more pronounced in metallo-carbapenemases, such as NDM-1, which was also inhibited by some of the novel tetrazole compounds, including one displaying comparable low μM affinities against both KPC-2 and NDM-1. Our results suggest that carbapenemase activity confers an evolutionary advantage on producers via a broad β-lactam substrate scope but also a mechanistic Achilles' heel that can be exploited for new inhibitor discovery. The complex structures demonstrate, for the first time, how noncovalent inhibitors can be engineered to simultaneously target both serine and metallo-carbapenemases. Despite the relatively modest activity of the current compounds, these studies also demonstrate that hydrolyzed products and tetrazole-based chemotypes can provide valuable starting points for broad-spectrum inhibitor discovery against carbapenemases.
Collapse
Affiliation(s)
- Nicholas J. Torelli
- Department of Molecular Medicine, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| | - Afroza Akhtar
- Department of Molecular Medicine, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| | - Kyle DeFrees
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California San Francisco, 600 16th Street, Genentech Hall N572B, San Francisco, California 94158, United States
| | - Priyadarshini Jaishankar
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California San Francisco, 600 16th Street, Genentech Hall N572B, San Francisco, California 94158, United States
| | - Orville A. Pemberton
- Department of Molecular Medicine, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| | - Xiujun Zhang
- Department of Molecular Medicine, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| | - Cody Johnson
- Department of Molecular Medicine, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California San Francisco, 600 16th Street, Genentech Hall N572B, San Francisco, California 94158, United States
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| |
Collapse
|
17
|
Hamed RB, Gomez-Castellanos JR, Henry L, Warhaut S, Claridge TDW, Schofield CJ. Biocatalytic production of bicyclic β-lactams with three contiguous chiral centres using engineered crotonases. Commun Chem 2019; 2. [PMID: 31157308 PMCID: PMC6542682 DOI: 10.1038/s42004-018-0106-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
There is a need to develop asymmetric routes to functionalised β-lactams, which remain the most important group of antibacterials. Here we describe biocatalytic and protein engineering studies concerning carbapenem biosynthesis enzymes, aiming to enable stereoselective production of functionalised carbapenams with three contiguous chiral centres. Structurally-guided substitutions of wildtype carboxymethylproline synthases enable tuning of their C-N and C-C bond forming capacity to produce 5-carboxymethylproline derivatives substituted at C-4 and C-6, from amino acid aldehyde and malonyl-CoA derivatives. Use of tandem enzyme incubations comprising an engineered carboxymethylproline synthase and an alkylmalonyl-CoA forming enzyme (i.e. malonyl-CoA synthetase or crotonyl-CoA carboxylase reductase) can improve stereocontrol and expand the product range. Some of the prepared 4,6-disubstituted-5-carboxymethylproline derivatives are converted to bicyclic β-lactams by carbapenam synthetase catalysis. The results illustrate the utility of tandem enzyme systems involving engineered crotonases for asymmetric bicyclic β-lactam synthesis. Beta-lactams are important antiobiotics but synthesising functionalised derivatives in high enantiomeric purity can be challenging. Here malonyl-CoA derivatives are applied in an enantioselective multi-enzyme cascade, yielding beta-lactams bearing three contiguous chiral centres in high diastereomeric purity.
Collapse
Affiliation(s)
- Refaat B Hamed
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - J Ruben Gomez-Castellanos
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Luc Henry
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Sven Warhaut
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Timothy D W Claridge
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
18
|
Hazam PK, Goyal R, Ramakrishnan V. Peptide based antimicrobials: Design strategies and therapeutic potential. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 142:10-22. [PMID: 30125585 DOI: 10.1016/j.pbiomolbio.2018.08.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/24/2022]
Abstract
Therapeutic activity of antibiotics is noteworthy, as they are used in the treatment of microbial infections. Regardless of their utility, there has been a steep decrease in the number of drug candidates due to antibiotic resistance, an inevitable consequence of noncompliance with the full therapeutic regimen. A variety of resistant species like MDR (Multi-Drug Resistant), XDR (Extensively Drug-Resistant) and PDR (Pan Drug-Resistant) species have evolved, but discovery pipeline has already shown signs of getting dried up. Therefore, the need for newer antibiotics is of utmost priority to combat the microbial infections of future times. Peptides have some interesting features like minimal side effect, high tolerability and selectivity towards specific targets, which would help them successfully comply with the stringent safety standards set for clinical trials. In this review, we attempt to present the state of the art in the discovery of peptide-based antimicrobials from a design perspective.
Collapse
Affiliation(s)
- Prakash Kishore Hazam
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, 781039, India
| | - Ruchika Goyal
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, 781039, India
| | - Vibin Ramakrishnan
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, 781039, India.
| |
Collapse
|
19
|
Streling AP, Barbosa PP, Marcondes MF, Nicoletti AG, Picão RC, Pinto EC, Marques EA, Oliveira V, Gales AC. Genetic and biochemical characterization of GES-16, a new GES-type β-lactamase with carbapenemase activity in Serratia marcescens. Diagn Microbiol Infect Dis 2018; 92:147-151. [PMID: 29861147 DOI: 10.1016/j.diagmicrobio.2018.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/08/2018] [Accepted: 05/04/2018] [Indexed: 10/16/2022]
Abstract
We evaluated the genetic environment of blaGES-16 found in 2 carbapenem-resistant Serratia marcescens clinical isolates recovered from patients hospitalized at a tertiary hospital located in Rio de Janeiro, Brazil. We also compared the kinetics constants for GES-16 and GES-5 against several β-lactams. Both S. marcescens isolates showed identical PFGE pattern and carried the carbapenemase-encoding gene blaGES-16 and the extended-spectrum β-lactamase encoding gene blaOXA-10. The blaGES-16 was inserted at the first position of a defective class 1 integron, composed by a fragmented integrase gene that lacked its attI1 recombination site, followed by dfr22, aac(6')-IIc, and aadA1 genes. This integron was located on a 30-kb nonconjugative plasmid. The GES-16 showed 2 amino acid substitutions (Gln38Glu and Gly170Ser) compared to GES-1. Kinetic analysis showed that GES-16 presented hydrolytic activity against all β-lactams tested, except for aztreonam. Imipenem was the carbapenem more efficiently hydrolyzed (highest kcat/Km) by GES-16. The kinetic parameters of GES-16 were similar to those of GES-5. In conclusion, we identified a new GES-type enzyme with carbapenemase activity in S. marcescens. The increasing diversity of such resistance determinants confirms the ongoing evolution of these β-lactamases towards a broader spectrum of activity.
Collapse
Affiliation(s)
- Ana Paula Streling
- Universidade Federal de São Paulo-UNIFESP, Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine. Escola Paulista de Medicina-EPM, São Paulo, Brazil.
| | - Paula P Barbosa
- Universidade Federal de São Paulo-UNIFESP, Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine. Escola Paulista de Medicina-EPM, São Paulo, Brazil
| | - Marcelo F Marcondes
- Department of Biophysics, Federal University of São Paulo-UNIFESP, São Paulo-SP, Brazil
| | - Adriana G Nicoletti
- Universidade Federal de São Paulo-UNIFESP, Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine. Escola Paulista de Medicina-EPM, São Paulo, Brazil
| | - Renata C Picão
- Universidade Federal de São Paulo-UNIFESP, Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine. Escola Paulista de Medicina-EPM, São Paulo, Brazil; Laboratório de Investigação em Microbiologia Médica-LIMM, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, Brazil
| | - Elisa C Pinto
- Hospital Universitário Pedro Ernesto, Universidade do Estado do Rio de Janeiro-UERJ, Rio de Janeiro, Brazil
| | - Elizabeth A Marques
- Hospital Universitário Pedro Ernesto, Universidade do Estado do Rio de Janeiro-UERJ, Rio de Janeiro, Brazil
| | - Vitor Oliveira
- Department of Biophysics, Federal University of São Paulo-UNIFESP, São Paulo-SP, Brazil
| | - Ana C Gales
- Universidade Federal de São Paulo-UNIFESP, Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine. Escola Paulista de Medicina-EPM, São Paulo, Brazil
| |
Collapse
|
20
|
Marathe NP, Janzon A, Kotsakis SD, Flach CF, Razavi M, Berglund F, Kristiansson E, Larsson DGJ. Functional metagenomics reveals a novel carbapenem-hydrolyzing mobile beta-lactamase from Indian river sediments contaminated with antibiotic production waste. ENVIRONMENT INTERNATIONAL 2018; 112:279-286. [PMID: 29316517 DOI: 10.1016/j.envint.2017.12.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/21/2017] [Accepted: 12/24/2017] [Indexed: 05/28/2023]
Abstract
Evolution has provided environmental bacteria with a plethora of genes that give resistance to antibiotic compounds. Under anthropogenic selection pressures, some of these genes are believed to be recruited over time into pathogens by horizontal gene transfer. River sediment polluted with fluoroquinolones and other drugs discharged from bulk drug production in India constitute an environment with unprecedented, long-term antibiotic selection pressures. It is therefore plausible that previously unknown resistance genes have evolved and/or are promoted here. In order to search for novel resistance genes, we therefore analyzed such river sediments by a functional metagenomics approach. DNA fragments providing resistance to different antibiotics in E. coli were sequenced using Sanger and PacBio RSII platforms. We recaptured the majority of known antibiotic resistance genes previously identified by open shot-gun metagenomics sequencing of the same samples. In addition, seven novel resistance gene candidates (six beta-lactamases and one amikacin resistance gene) were identified. Two class A beta-lactamases, blaRSA1 and blaRSA2, were phylogenetically close to clinically important ESBLs like blaGES, blaBEL and blaL2, and were further characterized for their substrate spectra. The blaRSA1 protein, encoded as an integron gene cassette, efficiently hydrolysed penicillins, first generation cephalosporins and cefotaxime, while blaRSA2 was an inducible class A beta-lactamase, capable of hydrolyzing carbapenems albeit with limited efficiency, similar to the L2 beta-lactamase from Stenotrophomonas maltophilia. All detected novel genes were associated with plasmid mobilization proteins, integrons, and/or other resistance genes, suggesting a potential for mobility. This study provides insight into a resistome shaped by an exceptionally strong and long-term antibiotic selection pressure. An improved knowledge of mobilized resistance factors in the external environment may make us better prepared for the resistance challenges that we may face in clinics in the future.
Collapse
Affiliation(s)
- Nachiket P Marathe
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Anders Janzon
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Stathis D Kotsakis
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Carl-Fredrik Flach
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Mohammad Razavi
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Fanny Berglund
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden; Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden; Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - D G Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden.
| |
Collapse
|
21
|
Evaluation of a Modified Carbapenem Inactivation Method for Detection of Carbapenemases in Pseudomonas aeruginosa. J Clin Microbiol 2017; 56:JCM.01234-17. [PMID: 29070655 DOI: 10.1128/jcm.01234-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
22
|
Toth M, Smith CA, Antunes NT, Stewart NK, Maltz L, Vakulenko SB. The role of conserved surface hydrophobic residues in the carbapenemase activity of the class D β-lactamases. Acta Crystallogr D Struct Biol 2017; 73:692-701. [PMID: 28777084 PMCID: PMC5571744 DOI: 10.1107/s2059798317008671] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/11/2017] [Indexed: 01/12/2023] Open
Abstract
Carbapenem-hydrolyzing class D β-lactamases (CHDLs) produce resistance to the last-resort carbapenem antibiotics and render these drugs ineffective for the treatment of life-threatening infections. Here, it is shown that among the clinically important CHDLs, OXA-143 produces the highest levels of resistance to carbapenems and has the highest catalytic efficiency against these substrates. Structural data demonstrate that acylated carbapenems entirely fill the active site of CHDLs, leaving no space for water molecules, including the deacylating water. Since the entrance to the active site is obstructed by the acylated antibiotic, the deacylating water molecule must take a different route for entry. It is shown that in OXA-143 the movement of a conserved hydrophobic valine residue on the surface opens a channel to the active site of the enzyme, which would not only allow the exchange of water molecules between the active site and the milieu, but would also create extra space for a water molecule to position itself in the vicinity of the scissile bond of the acyl-enzyme intermediate to perform deacylation. Structural analysis of the OXA-23 carbapenemase shows that in this enzyme movement of the conserved leucine residue, juxtaposed to the valine on the molecular surface, creates a similar channel to the active site. These data strongly suggest that all CHDLs may employ a mechanism whereupon the movement of highly conserved valine or leucine residues would allow a water molecule to access the active site to promote deacylation. It is further demonstrated that the 6α-hydroxyethyl group of the bound carbapenem plays an important role in the stabilization of this channel. The recognition of a universal deacylation mechanism for CHDLs suggests a direction for the future development of inhibitors and novel antibiotics for these enzymes of utmost clinical importance.
Collapse
Affiliation(s)
- Marta Toth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Clyde A. Smith
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California, USA
| | - Nuno T. Antunes
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Nichole K. Stewart
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Lauren Maltz
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California, USA
| | - Sergei B. Vakulenko
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
23
|
Clonal Dissemination of Pseudomonas aeruginosa Sequence Type 235 Isolates Carrying blaIMP-6 and Emergence of blaGES-24 and blaIMP-10 on Novel Genomic Islands PAGI-15 and -16 in South Korea. Antimicrob Agents Chemother 2016; 60:7216-7223. [PMID: 27671068 DOI: 10.1128/aac.01601-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/10/2016] [Indexed: 01/25/2023] Open
Abstract
A total of 431 Pseudomonas aeruginosa clinical isolates were collected from 29 general hospitals in South Korea in 2015. Antimicrobial susceptibility was tested by the disk diffusion method, and MICs of carbapenems were determined by the agar dilution method. Carbapenemase genes were amplified by PCR and sequenced, and the structures of class 1 integrons surrounding the carbapenemase gene cassettes were analyzed by PCR mapping. Multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) were performed for strain typing. Whole-genome sequencing was carried out to analyze P. aeruginosa genomic islands (PAGIs) carrying the blaIMP-6, blaIMP-10, and blaGES-24 genes. The rates of carbapenem-nonsusceptible and carbapenemase-producing P. aeruginosa isolates were 34.3% (148/431) and 9.5% (41/431), respectively. IMP-6 was the most prevalent carbapenemase type, followed by VIM-2, IMP-10, and GES-24. All carbapenemase genes were located on class 1 integrons of 6 different types on the chromosome. All isolates harboring carbapenemase genes exhibited genetic relatedness by PFGE (similarity > 80%); moreover, all isolates were identified as sequence type 235 (ST235), with the exception of two ST244 isolates by MLST. The blaIMP-6, blaIMP-10, and blaGES-24 genes were found to be located on two novel PAGIs, designated PAGI-15 and PAGI-16. Our data support the clonal spread of an IMP-6-producing P. aeruginosa ST235 strain, and the emergence of IMP-10 and GES-24 demonstrates the diversification of carbapenemases in P. aeruginosa in Korea.
Collapse
|
24
|
Smith CA, Nossoni Z, Toth M, Stewart NK, Frase H, Vakulenko SB. Role of the Conserved Disulfide Bridge in Class A Carbapenemases. J Biol Chem 2016; 291:22196-22206. [PMID: 27590339 PMCID: PMC5063999 DOI: 10.1074/jbc.m116.749648] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/31/2016] [Indexed: 08/30/2023] Open
Abstract
Some members of the class A β-lactamase family are capable of conferring resistance to the last resort antibiotics, carbapenems. A unique structural feature of these clinically important enzymes, collectively referred to as class A carbapenemases, is a disulfide bridge between invariant Cys69 and Cys238 residues. It was proposed that this conserved disulfide bridge is responsible for their carbapenemase activity, but this has not yet been validated. Here we show that disruption of the disulfide bridge in the GES-5 carbapenemase by the C69G substitution results in only minor decreases in the conferred levels of resistance to the carbapenem imipenem and other β-lactams. Kinetic and circular dichroism experiments with C69G-GES-5 demonstrate that this small drop in antibiotic resistance is due to a decline in the enzyme activity caused by a marginal loss of its thermal stability. The atomic resolution crystal structure of C69G-GES-5 shows that two domains of this disulfide bridge-deficient enzyme are held together by an intensive hydrogen-bonding network. As a result, the protein architecture and imipenem binding mode remain unchanged. In contrast, the corresponding hydrogen-bonding networks in NMCA, SFC-1, and SME-1 carbapenemases are less intensive, and as a consequence, disruption of the disulfide bridge in these enzymes destabilizes them, which causes arrest of bacterial growth. Our results demonstrate that the disulfide bridge is essential for stability but does not play a direct role in the carbapenemase activity of the GES family of β-lactamases. This would likely apply to all other class A carbapenemases given the high degree of their structural similarity.
Collapse
Affiliation(s)
- Clyde A Smith
- From the Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California 94025 and
| | - Zahra Nossoni
- the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Marta Toth
- the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Nichole K Stewart
- the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Hilary Frase
- the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Sergei B Vakulenko
- the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
25
|
Naas T, Dortet L, Iorga BI. Structural and Functional Aspects of Class A Carbapenemases. Curr Drug Targets 2016; 17:1006-28. [PMID: 26960341 PMCID: PMC5405625 DOI: 10.2174/1389450117666160310144501] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/02/2015] [Accepted: 03/05/2016] [Indexed: 01/28/2023]
Abstract
The fight against infectious diseases is probably one of the greatest public health challenges faced by our society, especially with the emergence of carbapenem-resistant gram-negatives that are in some cases pan-drug resistant. Currently,β-lactamase-mediated resistance does not spare even the newest and most powerful β-lactams (carbapenems), whose activity is challenged by carbapenemases. The worldwide dissemination of carbapenemases in gram-negative organisms threatens to take medicine back into the pre-antibiotic era since the mortality associated with infections caused by these "superbugs" is very high, due to limited treatment options. Clinically-relevant carbapenemases belong either to metallo-β- lactamases (MBLs) of Ambler class B or to serine-β-lactamases (SBLs) of Ambler class A and D enzymes. Class A carbapenemases may be chromosomally-encoded (SME, NmcA, SFC-1, BIC-1, PenA, FPH-1, SHV-38), plasmid-encoded (KPC, GES, FRI-1) or both (IMI). The plasmid-encoded enzymes are often associated with mobile elements responsible for their mobilization. These enzymes, even though weakly related in terms of sequence identities, share structural features and a common mechanism of action. They variably hydrolyse penicillins, cephalosporins, monobactams, carbapenems, and are inhibited by clavulanate and tazobactam. Three-dimensional structures of class A carbapenemases, in the apo form or in complex with substrates/inhibitors, together with site-directed mutagenesis studies, provide essential input for identifying the structural factors and subtle conformational changes that influence the hydrolytic profile and inhibition of these enzymes. Overall, these data represent the building blocks for understanding the structure-function relationships that define the phenotypes of class A carbapenemases and can guide the design of new molecules of therapeutic interest.
Collapse
Affiliation(s)
- Thierry Naas
- Service de Bactériologie- Hygiène, Hôpital de Bicêtre, APHP, EA7361, Faculté de Médecine Paris- Sud, LabEx LERMIT, Le Kremlin-Bicêtre, France.
| | | | | |
Collapse
|
26
|
Abstract
Enterobacteriaceae are responsible for a large proportion of serious, life-threatening infections and resistance to multiple antibiotics in these organisms is an increasing global public health problem. Mutations in chromosomal genes contribute to antibiotic resistance, but Enterobacteriaceae are adapted to sharing genetic material and much important resistance is due to 'mobile' resistance genes. Different mobile genetic elements, which have different characteristics, are responsible for capturing these genes from the chromosomes of a variety of bacterial species and moving them between DNA molecules. If transferred to plasmids, these resistance genes are then able to be transferred 'horizontally' between different bacterial cells, including different species, and well as being transferred 'vertically' during cell division. Carriage of several resistance genes on the same plasmid enables a bacterial cell to acquire multi-resistance in a single step and means that spread of one resistance gene may be co-selected for by use of antibiotics other than those to which it confers resistance. Many different mobile genes conferring resistance to each class of antibiotic have been identified, complicating detection of the factors responsible for a particular resistance phenotype, especially when changes in chromosomal genes may also confer or contribute to resistance. Understanding the mechanisms of antibiotic resistance, and the means by which these mechanisms can evolve and disseminate, is important for developing ways to efficiently track the spread of resistance and to optimise treatment.
Collapse
|
27
|
Structural basis for carbapenem-hydrolyzing mechanisms of carbapenemases conferring antibiotic resistance. Int J Mol Sci 2015; 16:9654-92. [PMID: 25938965 PMCID: PMC4463611 DOI: 10.3390/ijms16059654] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 02/06/2023] Open
Abstract
Carbapenems (imipenem, meropenem, biapenem, ertapenem, and doripenem) are β-lactam antimicrobial agents. Because carbapenems have the broadest spectra among all β-lactams and are primarily used to treat infections by multi-resistant Gram-negative bacteria, the emergence and spread of carbapenemases became a major public health concern. Carbapenemases are the most versatile family of β-lactamases that are able to hydrolyze carbapenems and many other β-lactams. According to the dependency of divalent cations for enzyme activation, carbapenemases can be divided into metallo-carbapenemases (zinc-dependent class B) and non-metallo-carbapenemases (zinc-independent classes A, C, and D). Many studies have provided various carbapenemase structures. Here we present a comprehensive and systematic review of three-dimensional structures of carbapenemase-carbapenem complexes as well as those of carbapenemases. We update recent studies in understanding the enzymatic mechanism of each class of carbapenemase, and summarize structural insights about regions and residues that are important in acquiring the carbapenemase activity.
Collapse
|
28
|
In vitro prediction of the evolution of GES-1 β-lactamase hydrolytic activity. Antimicrob Agents Chemother 2015; 59:1664-70. [PMID: 25561336 DOI: 10.1128/aac.04450-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Resistance to β-lactams is constantly increasing due to the emergence of totally new enzymes but also to the evolution of preexisting β-lactamases. GES-1 is a clinically relevant extended-spectrum β-lactamase (ESBL) that hydrolyzes penicillins and broad-spectrum cephalosporins but spares monobactams and carbapenems. However, several GES-1 variants (i.e., GES-2 and GES-5) previously identified among clinical isolates display an extended spectrum of activity toward carbapenems. To study the evolution potential of the GES-1 β-lactamase, this enzyme was submitted to in vitro-directed evolution, with selection on increasing concentrations of the cephalosporin cefotaxime, the monobactam aztreonam, or the carbapenem imipenem. The highest resistance levels were conferred by a combination of up to four substitutions. The A6T-E104K-G243A variant selected on cefotaxime and the A6T-E104K-T237A-G243A variant selected on aztreonam conferred high resistance to cefotaxime, ceftazidime, and aztreonam. Conversely, the A6T-G170S variant selected on imipenem conferred high resistance to imipenem and cefoxitin. Of note, the A6T substitution involved in higher MICs for all β-lactams is located in the leader peptide of the GES enzyme and therefore is not present in the mature protein. Acquired cross-resistance was not observed, since selection with cefotaxime or aztreonam did not select for resistance to imipenem, and vice versa. Here, we demonstrate that the β-lactamase GES-1 exhibits peculiar properties, with a significant potential to gain activity against broad-spectrum cephalosporins, monobactams, and carbapenems.
Collapse
|
29
|
Stewart NK, Smith CA, Frase H, Black DJ, Vakulenko SB. Kinetic and structural requirements for carbapenemase activity in GES-type β-lactamases. Biochemistry 2014; 54:588-97. [PMID: 25485972 PMCID: PMC4303295 DOI: 10.1021/bi501052t] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Carbapenems are the last resort antibiotics
for treatment of life-threatening
infections. The GES β-lactamases are important contributors
to carbapenem resistance in clinical bacterial pathogens. A single
amino acid difference at position 170 of the GES-1, GES-2, and GES-5
enzymes is responsible for the expansion of their substrate profile
to include carbapenem antibiotics. This highlights the increasing
need to understand the mechanisms by which the GES β-lactamases
function to aid in development of novel therapeutics. We demonstrate
that the catalytic efficiency of the enzymes with carbapenems meropenem,
ertapenem, and doripenem progressively increases (100-fold) from GES-1
to -5, mainly due to an increase in the rate of acylation. The data
reveal that while acylation is rate limiting for GES-1 and GES-2 for
all three carbapenems, acylation and deacylation are indistinguishable
for GES-5. The ertapenem–GES-2 crystal structure shows that
only the core structure of the antibiotic interacts with the active
site of the GES-2 β-lactamase. The identical core structures
of ertapenem, doripenem, and meropenem are likely responsible for
the observed similarities in the kinetics with these carbapenems.
The lack of a methyl group in the core structure of imipenem may provide
a structural rationale for the increase in turnover of this carbapenem
by the GES β-lactamases. Our data also show that in GES-2 an
extensive hydrogen-bonding network between the acyl-enzyme complex
and the active site water attenuates activation of this water molecule,
which results in poor deacylation by this enzyme.
Collapse
Affiliation(s)
- Nichole K Stewart
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | | | | | | | | |
Collapse
|
30
|
Chudyk EI, Limb MAL, Jones C, Spencer J, van der Kamp MW, Mulholland AJ. QM/MM simulations as an assay for carbapenemase activity in class A β-lactamases. Chem Commun (Camb) 2014; 50:14736-9. [PMID: 25321894 DOI: 10.1039/c4cc06495j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbapenems, 'last resort' antibiotics for many bacterial infections, can now be broken down by several class A β-lactamases (i.e. carbapenemases). Here, carbapenemase activity is predicted through QM/MM dynamics simulations of acyl-enzyme deacylation, requiring only the 3D structure of the apo-enzyme. This may assist in anticipating resistance and future antibiotic design.
Collapse
Affiliation(s)
- Ewa I Chudyk
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | | | | | | | | | | |
Collapse
|
31
|
Pan X, Wong WT, He Y, Jiang Y, Zhao Y. Perturbing the general base residue Glu166 in the active site of class A β-lactamase leads to enhanced carbapenem binding and acylation. Biochemistry 2014; 53:5414-23. [PMID: 25020031 DOI: 10.1021/bi401609h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Most class A β-lactamases cannot hydrolyze carbapenem antibiotics effectively. The molecular mechanism of this catalytic inefficiency has been attributed to the unique stereochemistry of carbapenems, including their 6-α-hydroxyethyl side chain and the transition between two tautomeric states when bound at the active site. Previous studies have shown that the 6-α-hydroxyethyl side chain of carbapenems can interfere with catalysis by forming hydrogen bonds with the deacylation water molecule to reduce its nucleophilicity. Here our studies of a class A noncarbapenemase PenP demonstrate that substituting the general base residue Glu166 with Ser or other residues leads to a significant enhancement of the acylation kinetics by ∼100-500 times toward carbapenems like meropenem. The structures of PenP and Glu166Ser both in apo form and in complex with meropenem reveal that Glu166 is critical for the formation of a hydrogen bonding network within the active site that locks Asn170 in an orientation to impose steric clash with the 6-α-hydroxyethyl side chain of meropenem. The Glu166Ser substitution weakens this network and enables Asn170 to adopt an alternative conformation to avoid steric clash and accommodate faster acylation kinetics. Furthermore, the weakened hydrogen bonding network caused by the Glu166Ser substitution allows the 6-α-hydroxyethyl moiety to adopt a catalytically favorable orientation as seen in class A carbapenemases. In summary, our data identify a previously unreported role of the universally conserved general base residue Glu166 in impeding the proper binding of carbapenems by restricting their 6-α-hydroxyethyl group.
Collapse
Affiliation(s)
- Xuehua Pan
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University , Hung Hom, Kowloon, Hong Kong, P. R. China
| | | | | | | | | |
Collapse
|
32
|
Bhattacharya M, Toth M, Antunes NT, Smith CA, Vakulenko SB. Structure of the extended-spectrum class C β-lactamase ADC-1 from Acinetobacter baumannii. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:760-71. [PMID: 24598745 PMCID: PMC3949520 DOI: 10.1107/s1399004713033014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/05/2013] [Indexed: 11/10/2022]
Abstract
ADC-type class C β-lactamases comprise a large group of enzymes that are encoded by genes located on the chromosome of Acinetobacter baumannii, a causative agent of serious bacterial infections. Overexpression of these enzymes renders A. baumannii resistant to various β-lactam antibiotics and thus severely compromises the ability to treat infections caused by this deadly pathogen. Here, the high-resolution crystal structure of ADC-1, the first member of this clinically important family of antibiotic-resistant enzymes, is reported. Unlike the narrow-spectrum class C β-lactamases, ADC-1 is capable of producing resistance to the expanded-spectrum cephalosporins, rendering them inactive against A. baumannii. The extension of the substrate profile of the enzyme is likely to be the result of structural differences in the R2-loop, primarily the deletion of three residues and subsequent rearrangement of the A10a and A10b helices. These structural rearrangements result in the enlargement of the R2 pocket of ADC-1, allowing it to accommodate the bulky R2 substituents of the third-generation cephalosporins, thus enhancing the catalytic efficiency of the enzyme against these clinically important antibiotics.
Collapse
Affiliation(s)
- Monolekha Bhattacharya
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Marta Toth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Nuno Tiago Antunes
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Clyde A. Smith
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California USA
| | - Sergei B. Vakulenko
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
33
|
Abstract
Carbapenem-hydrolyzing class D β-lactamases (CHDLs) are enzymes of the utmost clinical importance due to their ability to produce resistance to carbapenems, the antibiotics of last resort for the treatment of various life-threatening infections. The vast majority of these enzymes have been identified in Acinetobacter spp., notably in Acinetobacter baumannii. The OXA-2 and OXA-10 enzymes predominantly occur in Pseudomonas aeruginosa and are currently classified as narrow-spectrum class D β-lactamases. Here we demonstrate that when OXA-2 and OXA-10 are expressed in Escherichia coli strain JM83, they produce a narrow-spectrum antibiotic resistance pattern. When the enzymes are expressed in A. baumannii ATCC 17978, however, they behave as extended-spectrum β-lactamases and confer resistance to carbapenem antibiotics. Kinetic studies of OXA-2 and OXA-10 with four carbapenems have demonstrated that their catalytic efficiencies with these antibiotics are in the same range as those of some recognized class D carbapenemases. These results are in disagreement with the classification of the OXA-2 and OXA-10 enzymes as narrow-spectrum β-lactamases, and they suggest that other class D enzymes that are currently regarded as noncarbapenemases may in fact be CHDLs.
Collapse
|
34
|
Can inhibitor-resistant substitutions in the Mycobacterium tuberculosis β-Lactamase BlaC lead to clavulanate resistance?: a biochemical rationale for the use of β-lactam-β-lactamase inhibitor combinations. Antimicrob Agents Chemother 2013; 57:6085-96. [PMID: 24060876 DOI: 10.1128/aac.01253-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The current emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis calls for novel treatment strategies. Recently, BlaC, the principal β-lactamase of Mycobacterium tuberculosis, was recognized as a potential therapeutic target. The combination of meropenem and clavulanic acid, which inhibits BlaC, was found to be effective against even extensively drug-resistant M. tuberculosis strains when tested in vitro. Yet there is significant concern that drug resistance against this combination will also emerge. To investigate the potential of BlaC to evolve variants resistant to clavulanic acid, we introduced substitutions at important amino acid residues of M. tuberculosis BlaC (R220, A244, S130, and T237). Whereas the substitutions clearly led to in vitro clavulanic acid resistance in enzymatic assays but at the expense of catalytic activity, transformation of variant BlaCs into an M. tuberculosis H37Rv background revealed that impaired inhibition of BlaC did not affect inhibition of growth in the presence of ampicillin and clavulanate. From these data we propose that resistance to β-lactam-β-lactamase inhibitor combinations will likely not arise from structural alteration of BlaC, therefore establishing confidence that this therapeutic modality can be part of a successful treatment regimen against M. tuberculosis.
Collapse
|
35
|
A novel extended-spectrum β-lactamase, SGM-1, from an environmental isolate of Sphingobium sp. Antimicrob Agents Chemother 2013; 57:3783-8. [PMID: 23716045 DOI: 10.1128/aac.00808-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SGM-1 is a novel class A β-lactamase from an environmental isolate of Sphingobium sp. containing all of the distinct amino acid motifs of class A β-lactamases. It shares 77 to 80% amino acid sequence identity with putative β-lactamases that are present on the chromosome of all Sphingobium species whose genomes were sequenced and annotated. Thus, SGM-type β-lactamases are native to this genus. Antibiotic susceptibility testing classifies SGM-1 as an extended-spectrum β-lactamase, conferring the highest level of resistance to penicillins. Although SGM-1 contains the conserved cysteine residues characteristic of class A carbapenemases, it does not confer resistance to the carbapenem antibiotics imipenem, meropenem, or doripenem but does increase the MIC of ertapenem 8-fold. SGM-1 hydrolyzes penicillins and the monobactam aztreonam with similar catalytic efficiencies, ranging from 10(5) to 10(6) M(-1) s(-1). The catalytic efficiencies of SGM-1 for cefoxitin and ceftazidime were the lowest (10(2) to 10(3) M(-1) s(-1)) among the cephalosporins tested, while the catalytic efficiencies against all other cephalosporins varied from about 10(5) to 10(6) M(-1) s(-1). SGM-1 exhibited measurable but not significant activity toward the carbapenems tested. SGM-1 also showed high affinity for clavulanic acid, tazobactam, and sulbactam (Ki < 1 μM); however, only clavulanic acid significantly reduced the MICs of β-lactams.
Collapse
|
36
|
Papp-Wallace KM, Taracila MA, Gatta JA, Ohuchi N, Bonomo RA, Nukaga M. Insights into β-lactamases from Burkholderia species, two phylogenetically related yet distinct resistance determinants. J Biol Chem 2013; 288:19090-102. [PMID: 23658015 DOI: 10.1074/jbc.m113.458315] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Burkholderia cepacia complex and Burkholderia pseudomallei are opportunistic human pathogens. Resistance to β-lactams among Burkholderia spp. is attributable to expression of β-lactamases (e.g. PenA in B. cepacia complex and PenI in B. pseudomallei). Phylogenetic comparisons reveal that PenA and PenI are highly related. However, the analyses presented here reveal that PenA is an inhibitor-resistant carbapenemase, most similar to KPC-2 (the most clinically significant serine carbapenemase), whereas PenI is an extended spectrum β-lactamase. PenA hydrolyzes β-lactams with k(cat) values ranging from 0.38 ± 0.04 to 460 ± 46 s(-1) and possesses high k(cat)/k(inact) values of 2000, 1500, and 75 for β-lactamase inhibitors. PenI demonstrates the highest kcat value for cefotaxime of 9.0 ± 0.9 s(-1). Crystal structure determination of PenA and PenI reveals important differences that aid in understanding their contrasting phenotypes. Changes in the positioning of conserved catalytic residues (e.g. Lys-73, Ser-130, and Tyr-105) as well as altered anchoring and decreased occupancy of the deacylation water explain the lower k(cat) values of PenI. The crystal structure of PenA with imipenem docked into the active site suggests why this carbapenem is hydrolyzed and the important role of Arg-220, which was functionally confirmed by mutagenesis and biochemical characterization. Conversely, the conformation of Tyr-105 hindered docking of imipenem into the active site of PenI. The structural and biochemical analyses of PenA and PenI provide key insights into the hydrolytic mechanisms of β-lactamases, which can lead to the rational design of novel agents against these pathogens.
Collapse
Affiliation(s)
- Krisztina M Papp-Wallace
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
37
|
Bush K. Proliferation and significance of clinically relevant β-lactamases. Ann N Y Acad Sci 2013; 1277:84-90. [DOI: 10.1111/nyas.12023] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Smith CA, Frase H, Toth M, Kumarasiri M, Wiafe K, Munoz J, Mobashery S, Vakulenko SB. Structural basis for progression toward the carbapenemase activity in the GES family of β-lactamases. J Am Chem Soc 2012; 134:19512-5. [PMID: 23148776 PMCID: PMC3610538 DOI: 10.1021/ja308197j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carbapenem antibiotics have become therapeutics of last resort for the treatment of difficult infections. The emergence of class-A β-lactamases that have the ability to inactivate carbapenems in the past few years is a disconcerting clinical development in light of the diminished options for treatment of infections. A member of the GES-type β-lactamase family, GES-1, turns over imipenem poorly, but the GES-5 β-lactamase is an avid catalyst for turnover of this antibiotic. We report herein high-resolution X-ray structures of the apo GES-5 β-lactamase and the GES-1 and GES-5 β-lactamases in complex with imipenem. The latter are the first structures of native class-A carbapenemases with a clinically used carbapenem antibiotic in the active site. The structural information is supplemented by information from molecular dynamics simulations, which collectively for the first time discloses how the second step of catalysis by these enzymes, namely, hydrolytic deacylation of the acyl-enzyme species, takes place effectively in the case of the GES-5 β-lactamase and significantly less so in GES-1. This information illuminates one evolutionary path that nature has taken in the direction of the inexorable emergence of resistance to carbapenem antibiotics.
Collapse
Affiliation(s)
- Clyde A. Smith
- Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Hilary Frase
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Marta Toth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Malika Kumarasiri
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Kwame Wiafe
- Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Jared Munoz
- Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Sergei B. Vakulenko
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
39
|
GES-18, a new carbapenem-hydrolyzing GES-Type β-lactamase from Pseudomonas aeruginosa that contains Ile80 and Ser170 residues. Antimicrob Agents Chemother 2012; 57:396-401. [PMID: 23114760 DOI: 10.1128/aac.01784-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A clinical isolate of Pseudomonas aeruginosa recovered from the lower respiratory tract of an 81-year-old patient hospitalized in Belgium was sent to the national reference center to determine its resistance mechanism. PCR sequencing identified a new GES variant, GES-18, which differs from the carbapenem-hydrolyzing enzyme GES-5 by a single amino acid substitution (Val80Ile, in the numbering according to Ambler) and from GES-1 by two substitutions (Val80Ile and Gly170Ser). Detailed kinetic characterization showed that GES-18 and GES-5 hydrolyze imipenem and cefoxitin with similar kinetic parameters and that GES-18 was less susceptible than GES-1 to classical β-lactamase inhibitors such as clavulanate and tazobactam. The overall structure of GES-18 is similar to the solved structures of GES-1 and GES-2, the Val80Ile and Gly170Ser substitutions causing only subtle local rearrangements. Notably, the hydrolytic water molecule and the Glu166 residue were slightly displaced compared to their counterparts in GES-1. Our kinetic and crystallographic data for GES-18 highlight the pivotal role of the Gly170Ser substitution which distinguishes GES-5 and GES-18 from GES-1.
Collapse
|
40
|
Fonseca F, Chudyk EI, van der Kamp MW, Correia A, Mulholland AJ, Spencer J. The basis for carbapenem hydrolysis by class A β-lactamases: a combined investigation using crystallography and simulations. J Am Chem Soc 2012; 134:18275-85. [PMID: 23030300 DOI: 10.1021/ja304460j] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carbapenems are the most potent β-lactam antibiotics and key drugs for treating infections by Gram-negative bacteria. In such organisms, β-lactam resistance arises principally from β-lactamase production. Although carbapenems escape the activity of most β-lactamases, due in the class A enzymes to slow deacylation of the covalent acylenzyme intermediate, carbapenem-hydrolyzing class A β-lactamases are now disseminating in clinically relevant bacteria. The reasons why carbapenems are substrates for these enzymes, but inhibit other class A β-lactamases, remain to be fully established. Here, we present crystal structures of the class A carbapenemase SFC-1 from Serratia fonticola and of complexes of its Ser70 Ala (Michaelis) and Glu166 Ala (acylenzyme) mutants with the carbapenem meropenem. These are the first crystal structures of carbapenem complexes of a class A carbapenemase. Our data reveal that, in the SFC-1 acylenzyme complex, the meropenem 6α-1R-hydroxyethyl group interacts with Asn132, but not with the deacylating water molecule. Molecular dynamics simulations indicate that this mode of binding occurs in both the Michaelis and acylenzyme complexes of wild-type SFC-1. In carbapenem-inhibited class A β-lactamases, it is proposed that the deacylating water molecule is deactivated by interaction with the carbapenem 6α-1R-hydroxyethyl substituent. Structural comparisons with such enzymes suggest that in SFC-1 subtle repositioning of key residues (Ser70, Ser130, Asn132 and Asn170) enlarges the active site, permitting rotation of the carbapenem 6α-1R-hydroxyethyl group and abolishing this contact. Our data show that SFC-1, and by implication other such carbapenem-hydrolyzing enzymes, uses Asn132 to orient bound carbapenems for efficient deacylation and prevent their interaction with the deacylating water molecule.
Collapse
Affiliation(s)
- Fátima Fonseca
- School of Cellular and Molecular Medicine, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom.
| | | | | | | | | | | |
Collapse
|
41
|
Antibiotic resistance and substrate profiles of the class A carbapenemase KPC-6. Antimicrob Agents Chemother 2012; 56:6006-8. [PMID: 22908150 DOI: 10.1128/aac.01338-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The class A carbapenemase KPC-6 produces resistance to a broad range of β-lactam antibiotics. This enzyme hydrolyzes penicillins, the monobactam aztreonam, and carbapenems with similar catalytic efficiencies, ranging from 10(5) to 10(6) M(-1) s(-1). The catalytic efficiencies of KPC-6 against cephems vary to a greater extent, ranging from 10(3) M(-1) s(-1) for the cephamycin cefoxitin and the extended-spectrum cephalosporin ceftazidime to 10(5) to 10(6) M(-1) s(-1) for the narrow-spectrum and some of the extended-spectrum cephalosporins.
Collapse
|
42
|
Abstract
FPH-1 is a new class A carbapenemase from Francisella philomiragia. It produces high-level resistance to penicillins and the narrow-spectrum cephalosporin cephalothin and hydrolyzes these β-lactam antibiotics with catalytic efficiencies of 10(6) to 10(7) M(-1) s(-1). When expressed in Escherichia coli, the enzyme confers resistance to clavulanic acid, tazobactam, and sulbactam and has K(i) values of 7.5, 4, and 220 μM, respectively, against these inhibitors. FPH-1 increases the MIC of the monobactam aztreonam 256-fold and the MIC of the broad-spectrum cephalosporin ceftazidime 128-fold, while the MIC of cefoxitin remains unchanged. MICs of the carbapenem antibiotics imipenem, meropenem, doripenem, and ertapenem are elevated 8-, 8-, 16-, and 64-fold, respectively, against an E. coli JM83 strain producing the FPH-1 carbapenemase. The catalytic efficiencies of the enzyme against carbapenems are in the range of 10(4) to 10(5) M(-1) s(-1). FPH-1 is 77% identical to the FTU-1 β-lactamase from Francisella tularensis and has low amino acid sequence identity with other class A β-lactamases. Together with FTU-1, FPH-1 constitutes a new branch of the prolific and ever-expanding class A β-lactamase tree.
Collapse
|
43
|
Bush K, Fisher JF. Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from gram-negative bacteria. Annu Rev Microbiol 2012; 65:455-78. [PMID: 21740228 DOI: 10.1146/annurev-micro-090110-102911] [Citation(s) in RCA: 297] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
β-Lactamase evolution presents to the infectious disease community a major challenge in the treatment of infections caused by multidrug-resistant gram-negative bacteria. Because over 1,000 of these naturally occurring β-lactamases exist, attempts to correlate structure and function have become daunting. Although new enzymes in the extended-spectrum β-lactamase (ESBL) families are frequently identified, the older CTX-M-14 and CTX-M-15 enzymes have become the most prevalent ESBLs in global surveillance. Carbapenemases with either serine-based or zinc-facilitated hydrolysis mechanisms are posing some of the most critical problems. Most geographical regions now report KPC serine carbapenemases and the metallo-β-lactamases VIM, IMP, and NDM-1, even though NDM-1 was only recently identified. The rapid emergence of these newer enzymes, with multiple β-lactamases appearing in a single organism, makes the design of new β-lactamase inactivators or β-lactamase-stable β-lactams all the more difficult. Combination therapy will likely be required to counteract the continuing evolution of these insidious enzymes in multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Karen Bush
- Biology Department, Indiana University, Bloomington, Indiana 47401, USA.
| | | |
Collapse
|
44
|
Hamed RB, Henry L, Gomez-Castellanos JR, Mecinović J, Ducho C, Sorensen JL, Claridge TDW, Schofield CJ. Crotonase Catalysis Enables Flexible Production of Functionalized Prolines and Carbapenams. J Am Chem Soc 2011; 134:471-9. [DOI: 10.1021/ja208318d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Refaat B. Hamed
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Luc Henry
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | | | - Jasmin Mecinović
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christian Ducho
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - John L. Sorensen
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Timothy D. W. Claridge
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christopher J. Schofield
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
45
|
The class A β-lactamase FTU-1 is native to Francisella tularensis. Antimicrob Agents Chemother 2011; 56:666-71. [PMID: 22083489 DOI: 10.1128/aac.05305-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The class A β-lactamase FTU-1 produces resistance to penicillins and ceftazidime but not to any other β-lactam antibiotics tested. FTU-1 hydrolyzes penicillin antibiotics with catalytic efficiencies of 10(5) to 10(6) M(-1) s(-1) and cephalosporins and carbapenems with catalytic efficiencies of 10(2) to 10(3) M(-1) s(-1), but the monobactam aztreonam and the cephamycin cefoxitin are not substrates for the enzyme. FTU-1 shares 21 to 34% amino acid sequence identity with other class A β-lactamases and harbors two cysteine residues conserved in all class A carbapenemases. FTU-1 is the first weak class A carbapenemase that is native to Francisella tularensis.
Collapse
|
46
|
Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. Carbapenems: past, present, and future. Antimicrob Agents Chemother 2011; 55:4943-60. [PMID: 21859938 PMCID: PMC3195018 DOI: 10.1128/aac.00296-11] [Citation(s) in RCA: 910] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In this review, we summarize the current "state of the art" of carbapenem antibiotics and their role in our antimicrobial armamentarium. Among the β-lactams currently available, carbapenems are unique because they are relatively resistant to hydrolysis by most β-lactamases, in some cases act as "slow substrates" or inhibitors of β-lactamases, and still target penicillin binding proteins. This "value-added feature" of inhibiting β-lactamases serves as a major rationale for expansion of this class of β-lactams. We describe the initial discovery and development of the carbapenem family of β-lactams. Of the early carbapenems evaluated, thienamycin demonstrated the greatest antimicrobial activity and became the parent compound for all subsequent carbapenems. To date, more than 80 compounds with mostly improved antimicrobial properties, compared to those of thienamycin, are described in the literature. We also highlight important features of the carbapenems that are presently in clinical use: imipenem-cilastatin, meropenem, ertapenem, doripenem, panipenem-betamipron, and biapenem. In closing, we emphasize some major challenges and urge the medicinal chemist to continue development of these versatile and potent compounds, as they have served us well for more than 3 decades.
Collapse
Affiliation(s)
- Krisztina M. Papp-Wallace
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106
- Departments of Medicine
| | - Andrea Endimiani
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106
- Institute for Infectious Diseases, University of Bern 3010, Bern, Switzerland
- Departments of Medicine
| | | | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106
- Departments of Medicine
- Pharmacology
- Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
47
|
Antunes NT, Frase H, Toth M, Mobashery S, Vakulenko SB. Resistance to the third-generation cephalosporin ceftazidime by a deacylation-deficient mutant of the TEM β-lactamase by the uncommon covalent-trapping mechanism. Biochemistry 2011; 50:6387-95. [PMID: 21696166 DOI: 10.1021/bi200403e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Glu166Arg/Met182Thr mutant of Escherichia coli TEM(pTZ19-3) β-lactamase produces a 128-fold increase in the level of resistance to the antibiotic ceftazidime in comparison to that of the parental wild-type enzyme. The single Glu166Arg mutation resulted in a dramatic decrease in both the level of enzyme expression in bacteria and the resistance to penicillins, with a concomitant 4-fold increase in the resistance to ceftazidime, a third-generation cephalosporin. Introduction of the second amino acid substitution, Met182Thr, restored enzyme expression to a level comparable to that of the wild-type enzyme and resulted in an additional 32-fold increase in the minimal inhibitory concentration of ceftazidime to 64 μg/mL. The double mutant formed a stable covalent complex with ceftazidime that remained intact for the entire duration of the monitoring, which exceeded a time period of 40 bacterial generations. Compared to those of the wild-type enzyme, the affinity of the TEM(pTZ19-3) Glu166Arg/Met182Thr mutant for ceftazidime increased by at least 110-fold and the acylation rate constant was augmented by at least 16-fold. The collective experimental data and computer modeling indicate that the deacylation-deficient Glu166Arg/Met182Thr mutant of TEM(pTZ19-3) produces resistance to the third-generation cephalosporin ceftazidime by an uncommon covalent-trapping mechanism. This is the first documentation of such a mechanism by a class A β-lactamase in a manifestation of resistance.
Collapse
Affiliation(s)
- Nuno T Antunes
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | |
Collapse
|
48
|
Swayne RL, Ludlam HA, Shet VG, Woodford N, Curran MD. Real-time TaqMan PCR for rapid detection of genes encoding five types of non-metallo- (class A and D) carbapenemases in Enterobacteriaceae. Int J Antimicrob Agents 2011; 38:35-8. [PMID: 21549572 DOI: 10.1016/j.ijantimicag.2011.03.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/09/2011] [Accepted: 03/10/2011] [Indexed: 11/17/2022]
Abstract
A real-time TaqMan multiplex polymerase chain reaction (PCR) assay was developed to detect genes encoding five types of serine carbapenemases (GES, IMI/NMC, KPC, OXA-48 and SME). The assay was validated using control strains known to produce each of these types of enzyme and was then further assessed by 'blindly' testing 59 previously characterised clinical isolates, including 19 with serine (KPC or OXA-48) carbapenemases, 22 with metallo- (IMP, VIM or NDM) carbapenemases, and 18 with carbapenem resistance contingent upon extended-spectrum β-lactamase (ESBL) or AmpC production combined with porin loss. The assay detected and correctly assigned the serine carbapenemases in all five positive control strains and in 19 clinical isolates. No false-positive results were seen for isolates with metallo-enzymes or for those that lacked a carbapenemase. The five serine carbapenemase genotypes could also be distinguished by melt-curve analysis or the molecular size of the amplicons.
Collapse
Affiliation(s)
- R L Swayne
- Clinical Microbiology and Public Health Laboratory, Addenbrooke's Hospital, Cambridge CB2 0QW, UK.
| | | | | | | | | |
Collapse
|
49
|
Jambovane S, Kim DJ, Duin EC, Kim SK, Hong JW. Creation of stepwise concentration gradient in picoliter droplets for parallel reactions of matrix metalloproteinase II and IX. Anal Chem 2011; 83:3358-64. [PMID: 21456571 PMCID: PMC9714689 DOI: 10.1021/ac103217p] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a new methodology for generating a stepwise concentration gradient in a series of microdroplets by using monolithic micro valves that act as "faucets" in micrometer-scale. A distinct concentration gradient of a substrate was generated for the determination of the kinetic parameters of two different enzymes using only 10 picoliter-scale droplets. With a single experiment on a chip, we obtained K(M) and k(cat) values of matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9), and compared the catalytic competence of the two enzymes. The present system and method are highly suitable for applications where the reagents or samples are limited and precious.
Collapse
Affiliation(s)
- Sachin Jambovane
- Materials Research and Education Center, Department of Mechanical Engineering, Auburn University, Alabama 36849, United States
| | | | | | | | | |
Collapse
|
50
|
Frase H, Smith CA, Toth M, Champion MM, Mobashery S, Vakulenko SB. Identification of products of inhibition of GES-2 beta-lactamase by tazobactam by x-ray crystallography and spectrometry. J Biol Chem 2011; 286:14396-409. [PMID: 21345789 PMCID: PMC3077639 DOI: 10.1074/jbc.m110.208744] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/19/2011] [Indexed: 01/28/2023] Open
Abstract
The GES-2 β-lactamase is a class A carbapenemase, the emergence of which in clinically important bacterial pathogens is a disconcerting development as the enzyme confers resistance to carbapenem antibiotics. Tazobactam is a clinically used inhibitor of class A β-lactamases, which inhibits the GES-2 enzyme effectively, restoring susceptibility to β-lactam antibiotics. We have investigated the details of the mechanism of inhibition of the GES-2 enzyme by tazobactam. By the use of UV spectrometry, mass spectroscopy, and x-ray crystallography, we have documented and identified the involvement of a total of seven distinct GES-2·tazobactam complexes and one product of the hydrolysis of tazobactam that contribute to the inhibition profile. The x-ray structures for the GES-2 enzyme are for both the native (1.45 Å) and the inhibited complex with tazobactam (1.65 Å). This is the first such structure of a carbapenemase in complex with a clinically important β-lactam inhibitor, shedding light on the structural implications for the inhibition process.
Collapse
Affiliation(s)
- Hilary Frase
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 and
| | - Clyde A. Smith
- the Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, California 94025
| | - Marta Toth
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 and
| | - Matthew M. Champion
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 and
| | - Shahriar Mobashery
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 and
| | - Sergei B. Vakulenko
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 and
| |
Collapse
|